
Table Recognition in Spreadsheets via a Graph Representation

Elvis Koci, Maik Thiele, Wolfgang Lehner

Department of Computer Science
Technische Universität Dresden

Dresden, Germany
Email: {name.surname}@tu-dresden.de

Oscar Romero

Departament d’Enginyeria de Serveis i Sistemes d’Informació
Universitat Politècnica de Catalunya-BarcelonaTech

Barcelona, Spain
Email: oromero@essi.upc.edu

Abstract—Spreadsheet software are very popular data
management tools. Their ease of use and abundant function-
alities equip novices and professionals alike with the means to
generate, transform, analyze, and visualize data. As a result,
spreadsheets are a great resource of factual and structured
information. This accentuates the need to automatically un-
derstand and extract their contents. In this paper, we present
a novel approach for recognizing tables in spreadsheets.
Having inferred the layout role of the individual cells, we
build layout regions. We encode the spatial interrelations
between these regions using a graph representation. Based on
this, we propose Remove and Conquer (RAC), an algorithm
for table recognition that implements a list of carefully
curated rules. An extensive experimental evaluation shows
that our approach is viable. We achieve significant accuracy
in a dataset of real spreadsheets from various domains.

Keywords-Spreadsheet; Table Recognition; Table Identifi-
cation; Graph; Rule-based

I. INTRODUCTION

Spreadsheets are used for a great variability of data man-

agement tasks from users with different expertise level.

The abundance of usage led to an enormous wealth of

structured data contained in spreadsheets. However, the

free-for-all nature and the lack of schema (or a specific

data model) prevents the reusability and visibility of this

information. This results into data silos.

While there is some support to perform spreadsheet

data extraction, like [1] and [2], it can not be considered

a general purpose solution for arbitrary inputs. Previous

work often assumes just one table per sheet. Furthermore,

these tables are expected to be well formed and complete.

In this paper, we focus on the task of table recognition

for single-table and multi-table spreadsheets (see Figure 1a

for an example). We thereby do not rely on any assump-

tions with what regards the arrangement of tables in these

documents. Additionally, we enforce a certain level of

flexibility, which allows us to work even with slightly

problematic tables (e.g., containing empty cells).

Since spreadsheets are comprehended visually by hu-

mans, they contain many formatting and stylistic artifacts.

Therefore, an automatic approach needs to infer the struc-

tural semantics attached to the various subsections of the

user generated content. For our proposed approach, we

use a Random Forest classifier to infer the layout role of

individual cells in spreadsheets (see Figure 1b), based on

previous work outlined at [3].

In a similar fashion to [4], we then use the inferred roles to

create the so-called layout regions (see Figure 1c). These

group together adjacent cells having the same layout role.

As a result, we get coherent blocks of cells, which are

easier to handle for the table recognition task.

Here, we propose a graph representation where vertices

correspond to the layout regions of a sheet and edges

encode the spatial interrelations between these regions.

Moreover, we annotate the vertices with additional proper-

ties, such as the coordinates of the corresponding region.

Given the dual nature (spatial and semantic) of the

problem, graphs can naturally provide an intuitive ground

to debug and experiment with different methods for ta-

ble recognition. In this paper, we present our approach,

called Remove and Conquer (RAC). We implement a

comprehensive set of rules and heuristics to identify tables,

given the graph representation of a sheet. Additionally,

in Section VI-D, we discuss our experiments with an

alternative approach involving this representation.

The rest of the paper is organized as follows. Section III

provides formal definitions for terms used throughout the

proposed approach. In Section IV we describe the creation

of the graph representation. A detailed description of

RAC is given in Section V. Our experimental evaluation

is outlined in Section VI, followed by related work in

Section II. We conclude this paper in Section VII.

II. RELATED WORK

There is a considerable number of works tackling layout

inference and information extraction in spreadsheets. Re-

cent publications propose approaches involving to some

extent machine learning techniques, such as [2], [3], [4],

[5], and [6]. Also, we find rule-based approaches, like [7].

Other works make use of domain specific languages, such

as [1], [8], and [9]. Furthermore, it is worth mentioning

[10], and [11], which discuss systems having spreadsheets

as front-end and a relational databases as back-end.

As emphasized in the introduction, most of the afore-

mentioned publications assume single-table worksheets.

In this paper, we avoid this assumption and work with

arbitrary number of tables and arrangements. In addition,

we aim at recognizing tables even in the presents of

irregularities, such as misclassifications and empty cells.

An active area of research is spreadsheet debugging

(i.e., error detection). In these works, similar to us, individ-

ual cells and regions of cells are studied to detect errors.

Summary Sales 2017

Client Industry Country Contact
Bravo Retail Spain Juan Garcia
Sonra Non Profit France Alain Baptiste
Ambra IT Vietnam Pham Van Duc

Cheetah Retail China Li Wei

Item
TotalMouse Monitor Adapter

VGA HDMI Items Code
Europe Mouse alb1sf
Spain 500 200 85 61 846 Monitor tbyx1f
France 465 169 80 80 794 Adaptors 3rbsfz

Asia VGA etb1t1
China 422 163 90 44 719 HDMI pxbsic
Vietnam 473 182 74 55 784

Item “Keyboard” is omitted. Check next sheet.

(a) Initial Worksheet

M

H H H H
D D D D
D D D D
D D D D
D D D D

H
HH H H

H H H H
A D D
A D D D D D D
A D D D D D D
A D D
A D D D D D D
A D D D D D!

M

(b) Classify Cells

M

H

D

H
H

A DD

D
D

M

(c) Create Label Regions

Figure 1. Example worksheet containing three tables.

At [12] worksheet contents are decomposed into fragments

to assist better debugging of formula cells. A recent work,

[13], detects formula errors using neural networks. Also,

[14] outlines a rule-based approach to infer unit errors.

Table recognition has been a subject of research in other

document formats, as well. The following surveys [15] and

[16] provide a comprehensive summary of such works.

Here we single out [17]. This work outlines a method

for recognizing tables in document images. They make

use of a graph model, which is very similar to the one

we propose for spreadsheets. Also, we can draw parallels

with [18], which proposes an approach for analysis of

complex table forms. The authors, in a similar fashion to

us, study the geometrical arrangement and the semantics

of the individual fields that compose the forms.

III. PRELIMINARIES

A spreadsheet file contains one or more sheets. Each sheet

is comprised of a collection of cells organized in rows and

columns. This results into a grid-like structure. A cell can

be uniquely identified using its row and column number.

In this paper, we adopt the Microsoft Excel terminology,

and refer to a sheet from now on as worksheet. Moreover,

we make use of the following definitions.

Definition 1. Let W denote the set containing all the cells

of a worksheet. We define row : W �→ N>0 as a function

that maps cells in W to their row number. Respectively,

col : W �→ N>0 returns the column number.

In the proposed approach we will extensively work with

subsets of W . However, we are not interested in any

arbitrary subset. Instead, we focus on those holding cells

from rectangular areas of the worksheet.

Definition 2. A Region, R ⊆ W , is the collection of all

cells from a rectangular area of the worksheet. There does

not exist a cell c �∈ R such that minRow(R) ≤ row(c) ≤
maxRow(R) and minCol(R) ≤ col(c) ≤ maxCol(R).
Here, the functions prefixed with max and min return the

boundaries of the region R.

Before identifying tables, we infer the layout role of non-

empty cells in the worksheet. As outlined at [3], the latter

is defined as a classification task. Each non-empty cell is

assigned one of the following layout roles: Header (H),

Data (D), Metadata (M), Attributes (A), Derived (Ď).

Definition 3. Let label : W �→ Labels, where Labels =
{Header,Data,Attributes,Metadata,Derived}, be a

function that maps cells to their assigned layout role. For

empty cells label is undefined. We identify them using

empty : W �→ {0, 1}. It returns 1 for empty cells,

otherwise 0.

With respect to the Wang model [19], Headers correspond

to the Boxhead and Stub Head. Attributes are row headers

in the Stub. Data is the body of the table. For the rest we

provide our definitions. Metadata is additional information

about the table, such as the title and footnotes. Derived are

aggregations (typically via formulas) of Data.

By grouping together adjacent cells having the same

layout role (label), we form larger structures. We refer to

them as Label Regions. This term was also used at [4], but

with a different definition than the one provided below1.

Definition 4. A Label Region (LR) is a region of a

worksheet, where ∀c, c′ ∈ LR the label(c) = label(c′)
and empty(c) �= 1, empty(c′) �= 1.

We briefly describe the procedure for building LRs as

follows. In the first pass, we iterate over each row to

create sequences of cells having the same label. These

form the base LRs. Subsequently, we merge LRs from

consecutive rows, if their labels, minimum column, and

maximum column match. Figure 1c displays the label

regions corresponding to the classified cells in Figure 1b.

Note, there can be incorrect classifications in worksheets,

such as D! at the lower end of Figure 1b.

The label regions created from this procedure tend to be

wide (i.e., spanning multiple columns). This is favorable

for the proposed approach. As outlined in Section V,

Header regions play a key role in our analysis. Typically,

Headers reside in few rows, but span multiple columns.

Thus wide regions, comply better with this behavior.

IV. BUILDING GRAPHS

Once the regions are constructed we build a graph repre-

sentation to assist the table recognition task.

Definition 5. Let G(V,E) be the a directed graph that

captures the spatial interrelations of label regions (LR)

1Here, we do not allow overlaps between label regions. As well as,
we ensure that there are no empty cells inside a label region.

H1

D1

H2
H3

A1
D5

D2 1

D3 2
D4

Table 2
Table 3

Table 1

(a) Load Regions

H1

D1

D2 1

H2

D3 2A1

H3

D5

D4

(b) Create Graph

H1

D1

D2 1

H2

D3 2A1

H3

D5

D4

(c) Remove Left/Right

H1

D1

D2 1

H2

D3 2A1

H3

D5

D4

(d) Output Tables

Figure 2. From Regions to Tables via a Graph Representation

from a worksheet W . There is a one-to-one correspon-

dence between V , the set of vertices, and LR.

Furthermore, we carry the label region characteristics into

the graph. For this we define the following functions.

Definition 6. Function lbl : V �→ Labels maps vertices

to labels. Moreover, rmin : V �→ N>0 and rmax : V �→
N>0 return respectively the minimum and maximum row

number. Equivalently, cmin and cmax do the same for

the column numbers.

Next step is to create edges between the vertices of the

graph. Here, our aim is to identify spatial relations such as

top of, bottom of, left of, and right of. In other terms, we

capture the relative location of other regions with respect

to the selected region in the following four directions: Top,

Bottom, Left, and Right. However, we focus only on the

nearest neighboring regions for each direction.

To better illustrate the edge creation process, below

we outline the steps for the identification of the nearest

neighbors on the Top for a vertex v ∈ V .

Tv = {u ∈ V |rmin(v) > rmax(u) and

not (cmin(v) > cmax(u)

or cmax(v) < cmin(u))}
As shown above, we identify all vertices whose maximum

row is less than the minimum row of v. On the same time,

we enforce that the selected vertices span, at least partially,

the same columns as v. To get the nearest vertices we use

the following distance functions.

Definition 7. For each direction we define a distance

function. Let tdist := rmin(v)− rmax(u) and bdist :=
rmin(w) − rmax(v) calculate respectively the distance

from Top (u ∈ Tv) and Bottom (w ∈ Bv) vertices of v.

Likewise, we define ldist for Left and rdist for Right.

Returning to our example, we identify the nearest vertices

at the Top for v as follows.

NTv = {n ∈ Tv| tdist(v, n) = min
u∈Tv

tdist(v, u)}

We create a directed edge (v, n), for every n ∈ NTv . The

same can be performed for the nearest neighbors of v on

the rest of the directions. Furthermore, using these steps

all the vertices of the graph can be analyzed to populate

the set of edges E. Figure 2b provides an example graph

corresponding to the regions shown in Figure 2a.

Note, we always define two edges for a vertex and

its immediate neighbor. More specifically, for an edge

(v, u) ∈ E there exists an equivalent edge (u, v) ∈ E.

In Figure 2 we use bidirectional arrows to depict this.

Typically, being the nearest neighbor of vertex holds the

other way around, from the viewpoint of the neighbors.

However, there are also counter examples. In Figure 2, the

nearest Top neighbor for H3 is D1, but the nearest Bottom

neighbor for D1 is H2. In this and similar scenarios, we

enforce symmetry by creating the equivalent directed edge,

which goes the opposite way.

For the proposed approach we need to tell the relation

for connected vertices, which is implicit in Figure 2.

Therefore, we define the following function.

Definition 8. dir : E �→ {Top,Bottom,Left, Right}
is a function that maps edges to directions. For an edge

(v, u) ∈ E the result of this function communicates the

direction that u is nearest neighbor of v.

Finally, we point out that in Figure 2 there are no Meta-

data regions. We do not consider them for the proposed

approach. Metadata could describe multiple tables in a

worksheet. As a result, they can not be deterministically

assigned to just one table, during our process. Therefore,

we leave this as an open question for future work.

V. REMOVE AND CONQUER

For each worksheet in our dataset we construct a directed

graph, as described previously. Our rule-based algorithm,

RAC, processes these graphs individually, and outputs a

set of proposed tables P . These tables themselves are col-

lections of vertices, which in turn can be used to create the

table subgraphs from the original input graph (Figure 2d).

Additionally to this, RAC returns, in a separate set U ,

vertices that could not form tables.

Initially, RAC attempts to divide the vertices into hor-

izontal groups. Next, these are subdivided vertically. The

resulting groups should resemble valid tables. Neverthe-

less, in the final steps RAC attempts to re-assign vertices

from U to valid tables.

Vertices from neighboring tables arranged horizontally

get connected with Left and Right edges (e.g., Table 2
and Table 3 in Figure 2). Such edges can also be found

within the same table. Yet, for the latter we expect Top

and Bottom edges as well. Thus, removing those Left

and Right (lines 2-4, Figure 4) should mostly impact the

inter-table connections. Nevertheless, we take measures

to protect the intra-table connections. We avoid removing

edges when distance is 1 (i.e., adjacent vertices with no

other column in-between them). In lines 23-27 we address

the cases where the distance is greater.

In lines 5-21 we process the strongly connected com-

ponents (SCC) of the graph. These represent what we

previously referred to as the horizontal groups. For each

component (GS) we seek to pair Headers with Data,

Attributes, and Derived in order to form valid tables. These

in turn will be the so called vertical groups.

H1 H2
H3

D1

(a) True Layout Roles

H1 H2H3 D1
D2 H4 D3

D4

(b) Misclassified Cells

Figure 3. The impact of misclassifications

Before going into the details on how RAC splits verti-

cally, we need to address the implications arising from

misclassified cells. Consider the examples above. In the

left (Figure 3a) regions are formed using the true layout

roles of the cells. While, in Figure 3b we use the predicted

roles. Here, cells in D1 and H4 were incorrectly classified.

RAC needs to infer that all regions in Figure 3b belong

to one table, instead of many. The alignment between

Header and Data regions provides some hints. The same

is true for the size of the regions.

We use these insights starting from line 7 of RAC

(Figure 4). We perform our search for tables in an inverse

manner, from bottom to top. For this, we sort vertices in

descending order of their maximum row, followed by the

ascending order of their minimum row. Note, for Figure 3b

this means H2 will be ordered before D1, H3 and H1.

We process each Header h individually, in lines 10-19.

If h is not already paired (line 11), we proceed to identify

vertices having minimum row greater than or equal to h.

The latter represents a set of vertices (including h) with

the potential to form a table, denoted as Q. However, we

also need to handle scenarios like in Figure 2, where D5

satisfies the above condition for H2. Thus, we additionally

ensure that the other vertices are connected with h.

Line 13 checks the validity of a Header (discussed

in detail later). Vertices paired with a valid Header are

subtracted from S′, the list of sorted vertices. However,

we do not append Q to P yet. Consider, the scenario in

Figure 3a. Pairing H3 with D1 could form a seemingly

complete table, but it leaves H1 and H2 out. Thus, in line

17-19 we identify Headers having no other vertex to pair

with (i.e., only h satisfies the conditions in line 12). We

append these headers to the Q of the last valid Header,

denoted as LQ, if they have columns in common (i.e., are

aligned) with vertices in LQ.

There are cases where tables can not be formed. In line

9 we identify strongly connected components that do

not contain headers, and store them in U (line 21). The

latter holds also vertices that remain still un-paired, after

processing all Headers in the component.

Input: G: graph representation of a worksheet

Output: P: proposed tables, U : other undetermined

1: P ← ∅; U ← ∅;
2: El ← {e ∈ E|dir(e) = Left and ldist(e) > 1}
3: Er ← {e ∈ E|dir(e) = Right and rdist(e) > 1}
4: E ← E \ (El ∪ Er)
5: for all GS ∈ getSCC(G) do // GS = (S,ES)

6: LQ← NIL // holds Q of last valid Header

7: S′ ← sortV ertices(S)
8: S′

H ← {v ∈ S′|lbl(v) = Header}
9: if |S′

H | > 0 then
10: for all h ∈ S′

H do
11: if h ∈ LQ then continue
12: Q ← {s ∈ S′|rmin(s) ≥ rmin(h) and

hasPath(s, h,ES)}
13: if isV alid(h,Q, 0.5) then
14: P ← P ∪ {LQ}
15: S′ ← S′ \Q
16: LQ← Q
17: else if LQ �= NIL then
18: if |Q| = 1 and isAligned(h, LQ) then
19: LQ← LQ ∪ {h}
20: P ← P ∪ {LQ} // after for all ends

21: U ← U ∪ S′ // remaining unpaired

22: P, U ← handleOverlapping(P, U)
23: for all u ∈ U do // find nearest table left or right

24: N, dist← getNearestV ertices(u, (El ∪ Er))
25: P ′ ← {P ∈ P| 0 < |N ∩ P |}
26: if |P ′| = 1 and dist ≤ 3 then
27: P ← P ∪ {u}, where P ∈ P ′

28: return P , U

Figure 4. Remove and Conquer Algorithm

Occasionally, the minimum bounding rectangle enclosing

the regions (vertices) of a proposed table will overlap with

that of another one. Consider Table 1 in Figure 2. If it was

extending more to the left, it would align with A1. In such

scenario, A1 would mistakenly be paired with H1 and D1.

The function in line 22 handles such cases. Initially, it

attempts to merge the two overlapping tables, to form a

larger valid one. Otherwise, it targets the vertices causing

the overlap (referred to as OV). The minimum header row

of the lower table is used as boundary. Vertices spanning

more rows on the other side of the boundary, rather than

in their own table, are considered OV. They are moved

from the proposed tables to U , for further processing.

The last steps, lines 24-27, attempt to pair regions in

U with the nearest table on their Left or Right. We can

make this decision deterministically, only when there is

one nearest table. Here, additional constrains could be

imposed on the minimum distance (line 26).

The procedure to check the header validity is outlined

Input: h: a Header vertex, Q: vertices to form table

with, th: threshold for alignment ratio

Output: True if h is valid, False otherwise

1: if |{q ∈ Q|rmin(q) > rmax(h)}| > 0 then
2: QH ← {q ∈ Q|lbl(q) = Header and rmin(q) ≤

rmax(h) and rmin(q) ≥ rmin(h)}
3: X ← ∅; X ′ ← ∅
4: for all u ∈ QH do
5: X ← X ∪ {x ∈ N|cmin(u) ≤ x ≤ cmax(u)}
6: for all v ∈ Q \QH do
7: X ′ ← X ′∪{x ∈ N|cmin(v) ≤ x ≤ cmax(v)}
8: return

|X ∩X ′|
|X ′| ≥ th and |X| > 1

9: else
10: return False

Figure 5. Header Validity Check (isV alid)

in Figure 5. Initially, we make sure that there are vertices

below the specified Header h (line 1 in Figure 5). Also,

in line 2 we identify Headers in Q that span one or more

rows in the range [cmin(h), cmax(h)]. Note, again the

latter contains h itself. We calculate the alignment ratio

of these Headers with the rest of the vertices (line 3-8).

Intuitively, our aim is to ensure that Headers sit on top

of the other values in the columns. For the experimental

evaluation, we constrain the alignment ratio to be ≥ 0.5.

We also ensure that Headers span two or more columns.

Single-column Headers suggests lists rather than tables.

VI. EXPERIMENTAL EVALUATION

A. Spreadsheet Dataset

We drew a representative sample of 208 worksheets2, from

three corpora; FUSE [20], ENRON [21], and EUSES [22]

respectively contribute 128, 56, and 28 worksheets. The

resulting dataset was manually annotated, so we are aware

of the cell layout roles and the location of tables. In

detail, 176 worksheets contain one table, while 32 contain

multiple tables (up to 68). For multi-table sheets, we have

29 instances with vertically (top-down) arranged tables

and 3 with horizontally (left-right) arranged tables.

Additionally, the dataset was pre-processed as follows.

During the region creation we omit rows and columns that

are hidden (i.e., not displayed). This is necessary, since we

do the same prior to the classification task. Furthermore,

we omit columns with width ≤ 2 characters for standard

Excel font. Here, the intention is to discard empty columns

used for formatting purposes within tables.

B. Objective

The goal of our table recognition approach is to maximize

the match between a proposed table P and a true table T .

This means maximizing the number of cells they have

in common and minimizing the number of cells by which

they differ. Here, we only consider non-empty cells, which

also constitute our label regions (LRs). Note that a region

2https://wwwdb.inf.tu-dresden.de/research-projects/deexcelarator

might contain cells from two distinct true tables. This

arises due misclassifications when tables are adjacent.

μ(P, T, V) =

∑
u∈P areaIn(u, T)

∑
u∈P area(u) +

∑
v∈V \P areaIn(v, T)

The formula for calculating the match for a pair P , T is

defined above. The function areaIn, calculates how much

from the area of a vertex (region) is in T . Also, note V
is the set of vertices in G, and P ⊆ V .

C. Testing RAC

We test RAC on the gold standard (i.e., true cell layout

roles are used to create regions), as well as on the classified

worksheets. Note, the latter could contain misclassifica-

tions. Additionally, we have conceived a stress test for

RAC. We induce different levels of random noise into the

gold standard (from 1% up to 20%). Here, we used a

uniform distribution, i.e. each cell label could be flipped

to one of the other four labels with the same chance.

Figure 6 presents the evaluation results on the gold

standard and classified cells. T is considered recognized

if there exists a P such that they have a match ≥ 0.9.

Additionally, the chart below provides individually the

results for worksheets with single and multiple tables.

96.0% 96.6% 95.3%83.9% 94.7%
73.1%

All Single Multi

Gold Standard Classified Cells

Figure 6. Gold Standard Vs Classified Cells

We note that RAC has considerably high accuracy in

the gold standard, while the numbers are lower for the

classified cells. Further analysis showed that incorrect

classifications often occur in adjacent cells. This has an

impact on valid Headers, making it harder to spot them.

On the other hand, misclassifications might introduce false

Headers. We observe that thin tables (i.e., ≤ 4 columns)

are the more vulnerable, since a relatively small number

of misclassifications could prevent their recognition.

Another factor is empty columns. They can be found in

true tables, as formatting artifacts. In other cases, they are

used to separate tables arranged horizontally. Additional

domain specific rules are required to better differentiate

between these two usages.

50%

60%

70%

80%

90%

100%

1% 3% 5% 7.5% 10% 15% 20%

All_0.8 All_0.85 All_0.9 All_0.95

Figure 7. Stress Test

The results from the stress test are presented in Figure 7.

For each level of induced noise we generate three copies

from the gold standard and average the results. Unlike the

previous chart, we consider different thresholds (0.8, 0.85,

0.9, and 0.95) for the match between true and proposed

tables. The results show that RAC is noticeably resilient

to random noise. The performance is considerably good

even for high levels of induced error.

D. Alternative Methods

Besides RAC, we experimented with a method incorpo-

rating a weighted undirected graph. Again, vertices corre-

spond to layout regions. Edges are weighted using metrics

involving the distance and the alignment between layout

regions. Then, we make use of the minimum cut algorithm

from Stoer-Wagner [23], to iteratively cut weak edges. A

stopping criteria eventually terminates this process. The

resulting subgraphs are treated as proposed tables. Never-

theless, our evaluation showed that this method recognizes

only 86.74% of the tables in the gold standard dataset.

VII. CONCLUSION

This paper proposes a rule-based table recognition ap-

proach for spreadsheets, called Remove and Conquer

(RAC). Having inferred the layout roles of the individual

cells, from previous work, we build layout regions. Then,

we use a graph model to describe their arrangement (i.e.,

location with respect to each other). The vertices of the

graph represent the layout regions together with their

properties. Edges are directed and each one of them points

to a neighboring vertex (region) in one of the following

directions: Top, Bottom, Left, and Right.

This graph representation provides a rich context, upon

which we define a set of curated rules. RAC applies these

rules to return a list of proposed tables per worksheet.

Our experimental evaluation on a diverse corpus of spread-

sheets shows encouraging results.

In the future, we aim to expand this work in the

following ways. We can define more rules for RAC to

capture additional table structures. Alternatively, we can

test more automatic methods with the given graph repre-

sentation. Finally, we plan to enlarge further our dataset

with spreadsheet from various sources.

REFERENCES

[1] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wran-
gler: Interactive visual specification of data transformation
scripts,” in SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2011, pp. 3363–3372.

[2] Z. Chen, S. Dadiomov, R. Wesley, G. Xiao, D. Cory, M. Ca-
farella, and J. Mackinlay, “Spreadsheet property detection
with rule-assisted active learning,” in CIKM. ACM, 2017,
pp. 999–1008.

[3] E. Koci, M. Thiele, Ó. Romero Moral, and W. Lehner,
“A machine learning approach for layout inference in
spreadsheets,” in IC3K: volume 1: KDIR. SciTePress,
2016, pp. 77–88.

[4] E. Koci, M. Thiele, O. Romero, and W. Lehner, “Ta-
ble identification and reconstruction in spreadsheets,” in
CAiSE. Springer, 2017, pp. 527–541.

[5] Z. Chen and M. Cafarella, “Automatic web spreadsheet data
extraction,” in International Workshop on Semantic Search
over the Web. ACM, 2013, p. 1.

[6] M. D. Adelfio and H. Samet, “Schema extraction for tabular
data on the web,” Proceedings of the VLDB Endowment,
vol. 6, no. 6, pp. 421–432, 2013.

[7] J. Eberius, C. Werner, M. Thiele, K. Braunschweig, L. Dan-
necker, and W. Lehner, “Deexcelerator: A framework for
extracting relational data from partially structured docu-
ments,” in CIKM. ACM, 2013, pp. 2477–2480.

[8] A. O. Shigarov and A. A. Mikhailov, “Rule-based spread-
sheet data transformation from arbitrary to relational ta-
bles,” Information Systems, vol. 71, pp. 123–136, 2017.

[9] F. Hermans, M. Pinzger, and A. Van Deursen, “Automati-
cally extracting class diagrams from spreadsheets,” ECOOP
2010–Object-Oriented Programming, pp. 52–75, 2010.

[10] M. Bendre, B. Sun, D. Zhang, X. Zhou, K. C.-C. Chang,
and A. Parameswaran, “Dataspread: Unifying databases
and spreadsheets,” Proceedings of the VLDB Endowment,
vol. 8, no. 12, pp. 2000–2003, 2015.

[11] J. Cunha, J. Saraiva, and J. Visser, “From spreadsheets
to relational databases and back,” in SIGPLAN workshop
on Partial evaluation and program manipulation. ACM,
2009, pp. 179–188.

[12] T. Schmitz, D. Jannach, B. Hofer, P. W. Koch, K. Schekoti-
hin, and F. Wotawa, “A decomposition-based approach to
spreadsheet testing and debugging,” in VL/HCC. IEEE
Computer Society, 2017, pp. 117–121.

[13] R. Singh, B. Livshits, and B. Zorn, “Melford: Using neural
networks to find spreadsheet errors,” Tech. Rep., January
2017. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/melford-using-neural-networks-
find-spreadsheet-errors/

[14] R. Abraham and M. Erwig, “Header and unit inference for
spreadsheets through spatial analyses,” in VL/HCC. IEEE,
2004, pp. 165–172.

[15] R. Zanibbi, D. Blostein, and J. R. Cordy, “A survey of table
recognition,” Document Analysis and Recognition, vol. 7,
no. 1, pp. 1–16, 2004.

[16] D. Lopresti and G. Nagy, “A tabular survey of automated
table processing,” in International Workshop on Graphics
Recognition. Springer, 1999, pp. 93–120.

[17] M. A. Rahgozar and R. Cooperman, “A graph-based table
recognition system,” Document Recognition, vol. 111, pp.
192–203, 1996.

[18] A. Amano and N. Asada, “Complex table form analysis
using graph grammar,” Lecture notes in computer science,
pp. 283–286, 2002.

[19] X. Wang, “Tabular abstraction, editing, and formatting,”
University of Waretloo, Waterloo, Ontaria, Canada, Tech.
Rep., 1996.

[20] T. Barik, K. Lubick, J. Smith, J. Slankas, and E. Murphy-
Hill, “F use: a reproducible, extendable, internet-scale
corpus of spreadsheets,” in Working Conference on Mining
Software Repositories. IEEE Press, 2015, pp. 486–489.

[21] F. Hermans and E. Murphy-Hill, “Enron’s spreadsheets and
related emails: A dataset and analysis,” in International
Conference on Software Engineering-Volume 2. IEEE
Press, 2015, pp. 7–16.

[22] M. Fisher and G. Rothermel, “The euses spreadsheet
corpus: a shared resource for supporting experimentation
with spreadsheet dependability mechanisms,” in SIGSOFT,
vol. 30, no. 4. ACM, 2005, pp. 1–5.

[23] M. Stoer and F. Wagner, “A simple min-cut algorithm,”
Journal of the ACM, vol. 44, no. 4, pp. 585–591, 1997.

