
Tables of Hyperonic Matter Equation of State

for Core-Collapse Supernovae ‡

Chikako Ishizuka1, Akira Ohnishi1,2, Kohsuke Tsubakihara1

Kohsuke Sumiyoshi3 and Shoichi Yamada4

1 Department of Physics, Faculty of Science,
Hokkaido University, Sapporo 060-0810, Japan
2 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan
3 Numazu College of Technology, Numazu, Japan
4 Science and Engineering, Waseda University, Tokyo, Japan

E-mail: chikako@nucl.sci.hokudai.ac.jp, ohnishi@yukawa.kyoto-u.ac.jp,
sumi@numazu-ct.ac.jp

Abstract. We present sets of equation of state (EOS) of nuclear matter including
hyperons using an SUf (3) extended relativistic mean field (RMF) model with a wide
coverage of density, temperature, and charge fraction for numerical simulations of core
collapse supernovae. Coupling constants of Σ and Ξ hyperons with the σ meson are
determined to fit the hyperon potential depths in nuclear matter, UΣ(ρ0) ' +30MeV
and UΞ(ρ0) ' −15MeV, which are suggested from recent analyses of hyperon
production reactions. At low densities, the EOS of uniform matter is connected
with the EOS by Shen et al., in which formation of finite nuclei is included in the
Thomas-Fermi approximation. In the present EOS, the maximum mass of neutron
stars decreases from 2.17M¯ (Neµ) to 1.63M¯ (NY eµ) when hyperons are included. In
a spherical, adiabatic collapse of a 15M¯ star by the hydrodynamics without neutrino
transfer, hyperon effects are found to be small, since the temperature and density do
not reach the region of hyperon mixture, where the hyperon fraction is above 1 %
(T > 40MeV or ρB > 0.4 fm−3).

1. Introduction

The equation of state (EOS) plays an important role in high density phenomena such

as high energy heavy-ion collisions, neutron stars, supernova explosions, and black

hole formations [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. The recent discovery

of the strongly interacting quark gluon plasma (sQGP) [14] attracts attentions to the

EOS and transport coefficients in the quark gluon plasma (QGP). The core region

of neutron stars, where matter becomes very dense (∼ 1015g/cm3), is an interesting

play ground of quark and hadronic matter models. Various ideas for the new form

inside neutron stars have been proposed including strangeness and quark degrees of

freedom [1, 2, 3, 4, 5, 6, 7, 8, 9]. Core-collapse supernovae also involve high density

‡ http://nucl.sci.hokudai.ac.jp/˜chikako/EOS
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and temperature. The nuclear repulsion at high densities drives the shock wave at core

bounce and the passage of shock wave heats up the matter inside the supernova core.

A hot, lepton-rich neutron star (proto-neutron star) is born after the explosion and

cools down by emitting supernova neutrinos. When black holes are formed for more

massive cores, extremely high density and temperature are involved, where hyperons

should appear and quarks would be deconfined. In order to describe the whole evolution

of core-collapse supernovae by numerical simulations, one needs to prepare the set of

microphysics under such extreme conditions. One of the most important ingredients is

the set of equation of state (EOS) that contains necessary physical quantities. It is to

be noted that one must cover a wide range of temperature, density and composition in

a consistent manner and theoretical framework.

Until now, the two sets of EOS (Lattimer-Swesty EOS [15] and Shen EOS [16]) have

been widely used and applied to numerical simulations of core-collapse supernovae [10,

11] and black hole formations [12, 13]. The Lattimer-Swesty EOS is based on a

compressible liquid-drop model, whose mass and mean field potential are motivated

by non-relativistic zero-range Skyrme type interactions. The Shen EOS is based on a

relativistic mean field (RMF) model, whose interactions are determined by fitting the

binding energies and nuclear radii of stable as well as unstable nuclei [17]. Coexistence

of nuclei and uniform matter is included in the Thomas-Fermi approximation in

the Wigner-Seitz cell, and the alpha particles are assumed to follow the statistical

distribution with excluded volume effects.

The constituents in these EOSs are neutrons, protons, alpha-particles and nuclei,

restricting the framework within the non-strange baryons. These degrees of freedom

may be enough to simulate the early stage of hydrodynamical evolution of supernova

explosions. However, in order to clarify the long-time evolution from core collapse [11]

to proto-neutron star cooling [18, 19], black hole formation [12, 13], neutron star

mergers and gamma ray bursts that may involve higher density/temperature, it would

be necessary to include other particle degrees of freedom. Especially, hyperons (baryons

containing strange quarks) are commonly believed to appear in neutron star core and

to modify the neutron star profile [1, 2, 3, 4, 5, 6, 7]. While there are several works

which include the hyperons in the proto-neutron star cooling [19], there has been no

study on the dynamics of core-collapse supernovae adopting the EOS with hyperons.

This is partially because EOS table of supernova matter including hyperons has not

been available in public. In addition, the determination of the interaction for hyperons

has been difficult having large uncertainties so far.

Recently, developments in hypernuclear physics have narrowed down the allowed

range of hyperon potential depth in nuclear matter. The potential depth of Λ has

been well known to be around U
(N)
Λ (ρ0) ' −30MeV from bound state spectroscopy.

For Σ baryons, it was considered to feel similar potential to Λ, because it contains

the same number of light (u, d) quarks. From the recently observed quasi-free Σ

production spectra [20], it is now believed that Σ baryons would feel repulsive potential

in nuclear matter; UΣ(ρ0) ' +30MeV [21, 22, 23], Also for Ξ baryons, the analyses of
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the twin hypernuclear formation [24] and the Ξ production spectra [25, 26, 27], suggest

the potential depth of around U
(N)
Ξ (ρ0) ' −15MeV. These Σ and Ξ hyperons are

particularly important in neutron stars, since nuclear matter can take a large energy

gain from neutron Fermi energy and symmetry energy by replacing, for example, two

neutrons with a proton and a negatively charged hyperon (Σ− or Ξ−). The updates

on the interactions of hyperons may have impact on supernova dynamics and thermal

evolution of proto-neutron stars.

In this paper, we present new sets of EOS of dense matter with hyperons,

abbreviated as EOSY , under the current understanding of interaction. We provide the

data table covering a wide range of temperature (T ), density (ρB), and charge-to-baryon

number ratio in hadronic part (YC), which enables one to apply to supernova simulations.

Our framework is based on the RMF theory with the parameter set TM1 [17], which was

used to derive the EOS table by Shen et al. [16], and is extended to include hyperons

by considering the flavor SU(3) Lagrangian [2]. Therefore, our EOS table is smoothly

connected with Shen EOS and can be used easily as an extension of Shen EOS table in

numerical simulations.

It is well known that the RMF predicts large values of incompressibility (K ∼
300 MeV) and symmetry energy, and these are sometimes considered to cause problems

in applying to dense matter EOS, since they lead to too high maximum mass of neutron

stars without hyperons and may be unfavorable to core-collapse explosions. It should

be noted that K and symmetry energy values are not yet well determined separately in

a model independent manner. Analyses of collective flow data at AGS energies suggest

K = 210 − 300 MeV [28, 29], and collective flows at SPS energies are shown to be

more sensitive to the mean field of resonance hadrons rather than to the cold matter

EOS [30]. For symmetry energy, it is possible to describe binding energies, proton-

neutron radius differences and isovector giant monopole resonances simultaneously by

incorporating density dependent coupling (DD-ME1) in RMF and relativistic RPA [31]

with a larger value of symmetry energy than that in non-relativistic models. Note

that the interaction of RMF-TM1 is constrained by the nuclear masses, radii, neutron

skins and excitations [17]. The large value of K leads to a large neutron star mass

(stiff EOS), which seems not preferable for explosion. On the other hand, the large

symmetry energy is known to be preferable for explosion, having less free proton

fraction and smaller electron captures. These two effects are competing each other

in the sophisticated numerical simulations [11]. We note also that the RMF fulfills

automatically the causality (the sound velocity should not exceed the light velocity)

whereas the non-relativistic frameworks breaks down at high densities appearing in the

simulations. Thus at present we do not find problems in applying RMF EOS to dense

matter compared to non-relativistic models.

This paper is arranged as follows. In section 2, we describe the framework to

calculate the dense matter at finite temperature including hyperons. We explain the

updated information on hyperon potentials in nuclear matter and adopted potential

values in EOSY . We describe also the prescriptions to provide the data table for
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the wide range of density including sub-saturation densities where finite nuclei appear.

In section 3, we report the properties of EOSY in comparisons with nucleonic EOS

(TM1/Shen EOS). We apply EOSY to cold neutron star matter and supernova matter.

We show several properties of EOSY at finite temperatures by examining energies,

chemical potentials and compositions. The data tables are successfully applied to

hydrodynamical calculations of adiabatic collapse of iron core of massive stars. We

examine the possibilities of hyperon appearance in supernova cores. Summary and

discussions are given in section 4. In the appendix, we provide the the definitions of

quantities in EOSY .

2. Model and Method

In this work, we construct the EOS table of supernova matter based on a relativistic

mean field model. We adopt the parameter set TM1 [17] for non-strange sector. For

its flavor SU(3) extension, we start from the work by Schaffner and Mishustin [2], and

we include the updated information on hyperon potentials from recent experimental

and theoretical hypernuclear physics developments. Low density part of the EOS is

connected with the Shen EOS.

2.1. Relativistic mean field model with hyperons

The relativistic mean field (RMF) theory is constructed to describe nuclear matter and

nuclei based on the relativistic Brückner-Hartree-Fock theory [32], which successfully

describes the nuclear matter saturation. It is preferable to adopt the relativistic

frameworks for astrophysical applications, since they automatically satisfy the causality,

i.e. the sound velocity is always less than the speed of light.

The RMF parameter set TM1 is determined to describe binding energies and

nuclear radii of finite nuclei from Ca to Pb isotopes and fulfills the nuclear matter

saturation. The incompressibility of symmetric uniform matter and the symmetry

energy parameters are found to be K = 281 MeV and asym = 36.9 MeV. When it

is applied to neutron stars, the maximum mass of cold neutron stars with TM1 is

2.17M¯.

The extension of the RMF to flavor SU(3) has been investigated by many authors.

A typical form of the Lagrangian density including hyperons is given as [2],

L =
∑
B

Ψ̄B (i/∂ − MB) ΨB +
1

2
∂µσ∂µσ − Uσ(σ)

− 1

4
ωµνωµν +

1

2
m2

ωωµωµ − 1

4
~Rµν · ~Rµν +

1

2
m2

ρ
~Rµ · ~Rµ

−
∑
B

Ψ̄B

(
gσBσ + gωB /ω + gρB

~/R · ~tB
)

ΨB +
1

4
cω(ωµωµ)2 + LY Y ,

Uσ(σ) =
1

2
m2

σσ
2 +

g3

3
σ3 +

g4

4
σ4 ,
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LY Y =
1

2
∂νζ∂νζ − 1

2
m2

ζζ
2 − 1

4
φµνφ

µν +
1

2
m2

φφµφ
µ

−
∑
B

Ψ̄B (gζBζ + gφBγµφµ) ΨB , (1)

where the sum runs over all the octet baryons. In this Lagrangian, hidden strangeness

(s̄s) scalar and vector mesons, ζ and φ, are included in addition to σ, ω and ρ

(represented by ~Rµ) mesons. Strength tensors of ω, ρ and φ mesons are shown in ωµν ,
~Rµν and φµν , respectively. The Lagrangian contains meson masses, coupling constants,

and self-coupling constants as parameters.

In introducing hyperons in RMF, we have large ambiguities in hyperon-meson

coupling constants. One of the ways to determine the parameters is to rely on

symmetries. Schaffner and Mishustin [2] have determined hyperon-vector meson

coupling constants based on the SU(6) (flavor-spin) symmetry,

1

3
gωN =

1

2
gωΛ =

1

2
gωΣ = gωΞ , gρN =

1

2
gρΣ = gρΞ , gρΛ = 0 , (2)

2gφΛ = 2gφΣ = gφΞ = −2
√

2

3
gωN , gφN = 0 . (3)

Scalar mesons in RMF may partially represent contributions from some other

components than q̄q, such as ππ in σ. In Ref. [2], the scalar meson couplings to hyperons

have been given based on the assumption that hyperons feel potentials in nuclear and

hyperon matter as,

U
(N)
Λ = U

(N)
Σ = −30 MeV , U

(N)
Ξ = − 28MeV ,

U
(Σ)
Σ ∼ U

(Σ)
Λ ∼ U

(Λ)
Σ ∼ 2U

(Λ)
Λ ∼ −40 MeV ,

where U
(B′)
B denotes the potential of B in baryonic matter at around ρ0 composed of B′.

Recent developments in hypernuclear physics suggest that hyperon potentials in nuclear

matter are repulsive for Σ [20, 21, 22, 23], and weakly attractive for Ξ [24, 25, 26, 27],

respectively.

Ξ hyperons are expected to have nuclear bound states, and the bound state

spectroscopy at forthcoming facilities such as J-PARC and FAIR will give a strong

constraints on the Ξ potential in nuclear matter. At present, the depth of the Ξ−-nucleus

potential has been suggested to be around 15 MeV from the analysis of twin hypernuclear

formation [24] and the (K−, K+) spectrum in the bound state region [25]. In the former,

the binding energy of the Ξ−-nuclear system is found to be consistent with a shallow

Ξ−-nuclear potential in an event accompanied by two single hyperfragments emitted

from a Ξ− nuclear capture at rest (a twin hypernuclei) found in a nuclear emulsion [24].

In the latter, while the resolution of experimental data is not enough to distinguish the

bound state peaks, the observed yield or the spectrum shape in the bound state region is

found to be in agreement with the calculated results with U
(N)
Ξ ' −15 MeV [25, 26, 27].

For Σ hyperons, it is necessary to analyze continuum spectra. In the observed

(quasi-)bound Σ nucleus 4
ΣHe [33], the coupling effect is strong and the repulsive

contribution in the T = 3/2, 3S1 channel is suppressed, then it does not strongly

constrain the Σ potential in nuclear matter. The analysis of Σ− atomic data suggested a
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Σ−-nucleus potential having a shallow attractive pocket around the nuclear surface and

repulsion inside the nucleus [34, 35, 36], but the atomic energy shift is not sensitive to

the potential inside the nucleus. In the distorted wave impulse approximation (DWIA)

analyses of the quasi free (QF) spectrum in the continuum region [20, 21, 22, 23], it is

suggested that the Σ hyperon would feel repulsive real potential of 10 ∼ 90MeV. Recent

theoretical analyses favor the strength of repulsion of around +30MeV [21, 22, 23]. This

repulsion may come from the Pauli blocking effects between quarks due to the isovector

nature of the diquark pair in Σ [37]. In a Quark-Meson Coupling (QMC) model, medium

modification of the color hyperfine interaction in the quark bag is found to be the origin

of repulsive Σ potential [38]. The Σ potential in nuclear matter at saturation density

is predicted to be around +30 MeV (repulsion) in a quark cluster model Y N potential

[37], and a chiral model also predicts a similar repulsion [39].

From these discussions, we adopt the following potential strength as recommended

values,

U
(N)
Σ (ρ0) ' +30 MeV , U

(N)
Ξ (ρ0) ' −15 MeV . (4)

The above spectroscopic studies have been done mainly with non-relativistic

frameworks for hyperons, then the potential should be regarded as the Schrödinger

equivalent potential in RMF. The Schrödinger equivalent potential is related to the

scalar (Us) and vector (Uv) potentials as,

UB(ρ,E(p)) = Us(ρ) +
E(p)

MB

Uv(ρ)

= gσBσ + gζBζ +
E

M
(gωBω + gρBR + gφBφ) , (5)

where R represents the expectation value of the ρ meson. We have fixed gσB value by

fitting the hyperon potential depth in normal symmetric nuclear matter,

U
(N)
B (ρ0) = gσBσ(N)(ρ0) + gωBω(N)(ρ0) , (6)

where σ(N)(ρ0) and ω(N)(ρ0) represent the expectation values of σ and ω mesons in

symmetric nuclear matter at ρ0. We adopt the parameter set TM1 for nucleon sector,

and we determine gσΣ and gσΞ to reproduce the potential depths of Σ and Ξ hyperons in

Eq. (4) as listed in Table 1. We choose other hyperon-meson coupling constants referring

to the values in Ref. [2]. We show the values of gσΣ and gσΞ for different potentials in

Table 2.

In the literatiure, the instatibility due to the negative effective mass of nucleon

has been reported [40, 41]. As σ increases, the nucleon effective mass reaches zero at

σ = MN/gσN where hyperon effective masses are still positive and act to further increase

σ, leading to the nucleon negative effective mass. This effect depends very much on σY

couplings, which are small within the current sets of parameters, and we did not find

this instability in the range of data tables. However, we found this instability occurs at

very high densities/temperatures which are relevant in the black hole formation [42].
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Table 1. The coupling constants of the parameter sets.

mσ (MeV) g3 (MeV) g4 cω

511.198 1426.466 0.6183 71.3075

gMB σ ζ ω ρ φ

N 10.0289 0 12.6139 4.6322 0

Λ 6.21 6.67 8.41 0 −5.95

Σ 4.36 6.67 8.41 9.26 −5.95

Ξ 3.11 12.35 4.20 4.63 −11.89

Table 2. The coupling constants of ΣN and ΞN .

U
(N)
Σ (ρ0) (MeV) gσΣ

+90 2.58

+30 4.36 present

0 5.35

−10 5.63

−30 6.21 Ref. [2]

U
(N)
Ξ (ρ0) (MeV) gσΞ

−15 3.11 present

−28 3.49 Ref. [2]

2.2. Free thermal pions

In black hole formation processes as found in Ref. [12], the temperature goes up to

around 100 MeV. At these high temperatures, pion contributions become dominant.

Charged pions may condensate at high densities in neutron star matter [1, 8]. To

estimate the effect of pion mixtures, we also prepare the EOS table including free

thermal pions assuming the pion mass is not affected by the interaction. This is of

course oversimplification, however, the first trial to include pions. Further sophisticated

studies are necessary.

The density of free thermal pions is calculated to be

ρπ = ρCond
π +

∫
d3p

(2π)3

1

exp((Eπ(p) − µπ)/T ) − 1
, (7)

where µπ = µC , 0,−µC for π+, π0, π−, respectively. When the absolute value of the

chemical potential reaches the pion mass, pion condensation occurs; i.e. the amount of

condensed π at zero momentum can take any value at µC = ±mπ. We have determined

the amount of condensed π in the following way. First we solve the equilibrium condition

and obtain µB and µC without condensed π. When |µC | > mπ, we set |µC | = mπ

and re-evaluate hadron densities except for the condensed π to satisfy the condition of
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ρB = ρB(Given). Finally, the amount of condensed π is given so as to satisfy the charge

density condition, ρC = YC(Given)ρB.

The pion condensation in the current treatment is a simple s-wave Bose-Einstein

condensation, which is different from the pion condensation derived from p-wave πN

interaction [8]. We mention that pion condensation will be suppressed after considering

s-wave πN repulsive interaction discussed in the energy shift of deeply bound pionic

atoms [43, 44, 45] and in pion-nucleus scattering [46].

2.3. Low density

By using these potentials, we can immediately obtain a EOS of uniform dense matter

with strangeness based on the RMF theory. We also need to cover the low-density region

below ρ0, where the inhomogeneous matter appears. Here we connect the uniform matter

EOS with Shen EOS [16], which is based on the same RMF parameter set TM1 and

treats the inhomogeneity with the Thomas-Fermi approach.

We include the contribution from inhomogeneity by adding the free energy

difference of Shen EOS values from those in uniform matter,

F = F Y
RMF + ∆FNucl (8)

at ρB ≤ ρ0, where

∆FNucl = FShen − F
(np)
RMF . (9)

Other variables are derived in the same way as the above equations. The deviation due

to inhomogeneity ∆F vanishes at ρB > ρ0. These prescriptions produce the extended

EOS tables for studies in astrophysics, containing inhomogeneity at low density and

strangeness information. The compositions of n, p, α,A, Y are consistent with Shen

EOS table and the sum of each component ratio becomes unity.

2.4. Tabulation of thermodynamical quantities

Thermodynamical quantities are provided in the data table as a function of baryon mass

density ρB, charge ratio YC , and temperature T . Here YC means the charge ratio defined

as YC = nC/nB and nC is a charge density. See Appendix for the list of quantities and

their definitions, which are slightly revised from the original table of Shen EOS.

For the purpose of numerical simulations, we prepare the EOS table containing the

contributions of leptons and photons by adding the energy, pressure and entropy from

electrons, positrons and photons to the hadronic EOS. We treat electrons and positrons

as ideal Fermi gas with the finite rest mass and calculate photons according to the

standard expressions for radiations.

The baryon mass density, charge ratio and temperature cover the following range,

• ρB = 105.1 ∼ 1015.4 (g/cm3) (104 points)

• YC = 0 and 0.01 ∼ 0.56 (72 points)

• T = 0 and 0.1 ∼ 100 (MeV) (32 points)
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Mesh points for ρB, YC(> 0) and T (> 0) are taken as approximate geometric sequences

with ∆ log10 ρB = 0.1, ∆ log10 YC = 0.025 (−2.00 ≤ log10 YC ≤ −0.25) and ∆ log10 T '
0.1, respectively. These ranges and mesh points are the same as those in Shen EOS. By

connecting smoothly in the way described above, the EOS table is combined with Shen

EOS at lower densities below ρ0 while it includes full baryon octet at high densities

so that one can see the effects of hyperon mixture. Some tabulated quantities in the

EOS table need attentions. The values of the mass A and charge number Z of heavy

nucleus are taken from Shen EOS at densities below ρ0 and are set to be zero above ρ0.

Similarly, the fraction of α-particle and heavy nucleus are taken from Shen EOS at low

densities and are set to be zero at high densities.

3. Properties of EOS tables and astrophysical applications

We report the properties of dense matter in the present EOS table with hyperons

(EOSY ) and their applications to neutron stars and supernovae. We adopt hereafter

the case of (U
(N)
Σ (ρ0), U

(N)
Ξ (ρ0)) = (+30 MeV,−15 MeV) as a standard case, which

is currently the most recommended set of hyperon potentials. We also consider the

case with pion contribution (EOSY π) and the attractive hyperon potential case [2]

(U
(N)
Σ (ρ0), U

(N)
Ξ (ρ0)) = (−30 MeV,−28 MeV), abbreviated as EOSY (SM).

3.1. Neutron star matter

We first study the EOS of neutron star matter, which is under the β equilibrium at zero

temperature. We here add electron and muon contributions under the β equilibrium

and charge neutrality conditions. We consider uniform matter ignoring finite nuclear

effects.

We show particle compositions in neutron star matter in Fig. 1 to see the appearance

of new degrees of freedom. We display the cases of nucleonic (TM1, upper-left) and

hyperonic (EOSY , upper-right) EOS. Results with hyperonic EOS with attractive Σ

potential (EOSY (SM), lower-left) and hyperonic EOS with pions (EOSY π, lower-right)

are also shown for comparison. The particle composition of neutron star matter is very

sensitive to the choice of hyperon potentials. With attractive Σ potential, Σ− appears

at lower densities than Λ. With repulsive Σ potential, Λ appears first followed by

Ξ− and Ξ0. This behavior is different from the previous works that adopt attractive

potentials [1, 2, 3, 4, 5], and pointed out in Refs. [2, 3, 4, 38]. When we allow

the appearance of pions, condensed pions (π−) appear prior to hyperons. With πc

condensation, the charge chemical potential is restricted to be |µc| ≤ mπ and the proton

fraction becomes larger, then the neutron chemical potential is reduced. As a result,

the threshold density of hyperons are shifted up. The density of Λ appearance is about

0.37 fm−3 and other hyperons such as Ξ− are also suppressed.

In the left panel of Fig. 2, we show the energy per baryon (E/B) and chemical

potentials (µn and µp) in neutron star matter in nucleonic EOS (TM1), EOSY and



Tables of Hyperonic Matter Equation of State for Core-Collapse Supernovae 10

Table 3. Constituents, assumed hyperon potentials, threshold densities, maximum
masses of neutron stars, central densities giving maximum masses of neutron stars and
neutron star masses at the threshold central densities in nucleonic EOS (TM1/Shen
EOS [17, 16]), hyperonic EOS with attractive hyperon potentials (EOSY (SM) [2]),
hyperonic EOS with repulsive hyperon potentials (EOSY , present work) and hyperonic
EOS with repulsive hyperon potentials including pions (EOSY π, present work). For
π−, the maximum density of condensation is also shown in parentheses. Threshold
densities of protons and muons are 1.1 × 10−4 fm−3 and 0.11 fm−3, respectively.

EOS TM1/Shen EOS EOSY (SM) EOSY EOSY π

Constituents Ne(µ) NY e(µ) NY e(µ) NY πe(µ)

U
(N)
Σ (MeV) −30 +30 +30

U
(N)
Ξ (MeV) −28 −15 −15

ρ(thr)(fm
−3)

Λ 0.32 0.32 0.37

Σ− 0.29 1.14 1.1

Σ0 0.57 1.34 1.3

Σ+ 0.69 1.47 1.5

Ξ− 0.43 0.40 0.56

Ξ0 0.62 0.71 0.74

π− 0.16(0.88)

M
(max)
NS (M¯) 2.17 1.55 1.63 1.65

ρ
(max)
B (fm−3) 1.12 0.79 0.79 0.97

M
(thr)
NS (M¯) 1.17(Σ−) 1.28(Λ) 1.22(Λ)

0.51(π−)

EOSY π. Compared with nucleonic EOS, E/B is much lower in EOSY at high densities.

Chemical potentials are also suppressed with hyperons correspondingly. There are

several origins for this energy gain. First, nucleon Fermi energy decreases due to

the hyperon mixture. Secondly, the lepton contribution is suppressed when negatively

charged hyperons emerge. In addition, the repulsive vector potential becomes small,

because the ωY couplings are smaller than ωN and the isospin asymmetry becomes

smaller when negatively charged hyperons appear, as shown in the long-dashed lines in

Fig. 3.

For E/B and µn, pionic effects are small and only visible around ρB ∼ 0.4 fm−3,

while we find large differences in µp. The equality µC = µp − µn = −mπ under π−

condensation reads the Fermi energy relation, EF (n) = EF (p) + mπ. Since a neutron

on the Fermi surface is replaced with a proton and a π− having the same total energy,

we have to pay the cost of the pion rest mass energy in exchange for the Fermi energy

reduction and symmetry energy gain. At higher densities where hyperons appear, pionic

effects becomes smaller, and disappear at ρB = 0.88 fm−3.

The s-wave pion condensation would be suppressed when we include the πN
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Figure 1. Composition of neutron star matter in nucleonic EOS (TM1, upper-left),
hyperonic EOS with attractive potential (EOSY (SM), lower-left), hyperonic EOS with
repulsive potential without (EOSY , upper-right) and with pions (EOSY π, lower-right).
The number fraction of particles are plotted as functions of baryon density. The species
of particles are denoted as in the legend.

interaction. We evaluate the pion energy by using the potential of the form [43, 44,

45, 46],

Us(π
−) = − 2π

mπ

[(
1 +

mπ

MN

)
(b0ρB + b1δρ) +

(
1 +

mπ

2MN

)
ReB0 ρ2

B

]
,(10)

where b1 = bfree
1 /(1−αρB/ρ0), δρ = ρn−ρp. As typical examples, we adopt the parameter

sets from the analyses of pionic atom data; b0 = −0.023/mπ, b1 = −0.085/mπ (α = 0),

ReB0 = −0.021/m4
π (less repulsive) [44], and b0 = −0.0233/mπ, bfree

1 = −0.1473/mπ,

α = 0.367 (b1 = −0.1149/mπ at ρB = 0.6ρ0), ReB0 = −0.019/m4
π (more repulsive) [45].

In Fig. 3, we show the pion energy, Eπ =
√

m2
π + 2mπUs, calculated with these potentials

and proton fraction in TM1 EOS. With these potentials, we find that the existence

of the s-wave pion condensed region, Eπ < µe, depends on the pion optical potential

parameters. Since the pion potential above the normal nuclear density is not yet known,

the realization of pion condensation may be marginal and model-dependent.

We apply the above four EOSs of neutron star matter discussed above (TM1 EOS,

EOSY (SM), EOSY , EOSY π) to the hydrostatic structure of neutron stars by solving

the Tolman-Oppenheimer-Volkoff equation. We plot the gravitational mass of neutron
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stars as a function of central baryon mass density in Fig.4. The maximum mass of

neutron stars in EOSY is smaller than the case of nucleonic EOS because of the softness

from hyperons. The maximum mass is 1.63 M¯ for EOSY in contrast to 2.17 M¯

for nucleonic EOS when we adopt repulsive potentials for hyperons. The maximum

mass is further reduced to be 1.55 M¯ in EOSY (SM) with attractive potentials. The

neutron star masses with EOSY π are reduced in the mid range of central density

0.16 fm−3 < ρB < 0.8 fm−3, but the maximum mass (1.65M¯) is almost the same. This

is because the maximum mass is mainly determined by the EOS at densities around

0.8 fm−3 or more, where the condensed pion density is small. The central density of

a typical neutron star having 1.4M¯ is 0.35 fm−3 in nucleonic EOS (TM1), which is a

little above the threshold density of Λ in EOSY . In this case, hyperons are limited only

in the core region, and the neutron star mass does not get a large reduction as seen

in Fig. 4. We summarize the neutron star masses and the threshold densities to have

hyperons in neutron star matter in Table 3.
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Figure 5. Composition of supernova matter at (T, YC) = (10 MeV, 0.4) (left) and
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and with (EOSY π, lower) pions. The number fraction of particles are plotted as
functions of baryon density. The species of particles are denoted as in the legend.

3.2. Hyperonic matter at finite temperatures

We next study the EOS of supernova matter, where the hadronic charge fraction (YC)

is fixed at finite temperature. We here show the results including electron and photon

contributions. Finite nuclear effects in Shen EOS are included. The treatment of leptons

in supernova matter are explained in Appendix A.4.

In order to demonstrate the contents of the EOS table, we show the energy and

compositions as functions of baryon density by choosing T = 10 MeV and YC = 0.4

as an example. In the upper-right panel of Fig. 2, we plot energy per baryon (E/B)

in EOSY together with the results in Shen EOS for comparison. At ρB > 0.4 fm−3,

the energy is lower in EOSY than in Shen EOS due to hyperons (See Fig. 5). In the

lower-right panel of Fig. 2, neutron and proton chemical potentials are shown. In EOSY ,

the difference of chemical potentials between neutron and proton is small and neutron

chemical potential becomes smaller than proton chemical potential at 0.7 fm−3. This

is because more SUf (3) symmetric matter is preferred toward high densities, and the

charge fraction under β equilibrium decreases below YC = 0.4 at high densities.

We show the particle compositions as functions of baryon density in EOSY and

EOSY π at YC = 0.4 in the left panels of Fig. 5. In moderately isospin asymmetric
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matter (YC = 0.4), the fraction of Λ particle grows at around ρB ∼ 0.4 fm−3, and

becomes comparable to nucleons at higher densities. The fractions of other strange

baryons increase slowly and remains small until very high density. In the right panels of

Fig. 5, we show the particle compositions at YC = 0.2. With this small charge fraction,

total hyperon fraction reaches 1 % at 0.25 fm−3.

In Fig. 6, we plot the contour map of the fraction of hyperons (sum of strange

baryons) in the density-temperature plane. In order to have a significant amount of

hyperons, one needs high density or temperature. In supernova core, the entropy per

baryon is typically around 1–2 kB, therefore, one needs high densities 0.3–0.4 fm−3 to

have 1% mixture of hyperons and 0.45 fm−3 for 10%.

In supernova matter, the effects of hyperons and pions are limited. When isospin

asymmetry is not high (ex. YC = Ye = 0.4), total amount of hyperons which appears at

0.4 fm−3 is around 1% of baryons. The value of YC remains high due to the neutrino

trapping during the collapse and bounce [48]. However, after the deleptonization due to

neutrino emission, YC becomes smaller and hyperons may appear in the proto-neutron

star cooling process. Dense matter at higher densities and temperatures may appear

also in black hole formations, and hyperon effects can be expected in such processes.
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3.3. Applications to core-collapse supernovae

As an application of the EOS table with hyperons, we perform the numerical calculations

of hydrodynamics of core-collapse supernovae. This calculation is aimed to test the data

of EOS table for numerical simulations and to provide the basic information on the

properties of EOS in supernovae such as the appearance of hyperons. For this purpose,

we calculate the adiabatic collapse of iron core of massive stars of 15M¯ [47]. In the

same way as the hydrodynamical calculations in Sumiyoshi et al. [10], we calculate

the general relativistic hydrodynamics under the spherical symmetry without neutrino-

transfer, which is time-consuming, by assuming that the electron fraction is fixed to

the initial value in the stellar model. Numerical simulations by neutrino-radiation

hydrodynamics are in progress.

We have found that the adiabatic collapse of 15M¯ star with EOSY leads to a

prompt explosion. This model explosion is caused by the large electron fraction assumed

and is quite similar to the case obtained with Shen EOS [10]. The explosion energy is

almost the same as the case with Shen EOS and the difference turns out to be small

within 0.5%. We plot the trajectory of density and temperature of the central grid in

the hydrodynamical calculation in Fig. 6.

We have examined the appearance of hyperons during the evolution of core-collapse

and bounce. We find that the fraction of hyperons turn out to be very small within 10−3.

This is because the density does not increase drastically even at the core bounce in the

current model. The peak density is 0.24 fm−3 which is lower than the threshold density

0.60 fm−3 at temperature 21.5 MeV and electron fraction 0.42, where Λ hyperons appear

by the same order as nucleons. This small mixture does not affect largely the dynamics

in the model explosion.

A large electron fraction leads to a large proton fraction, and, therefore, suppresses

the appearance of hyperons [48]. We note here that this is the outcome of simple

adiabatic hydrodynamics without the treatment of neutrinos. When electron captures

and neutrino trapping are taken into account [11], electron fraction might be smaller

than the current value and may enhance the hyperon appearance. The hyperons will

definitely appear in the thermal evolution of proto-neutron stars after 20 seconds [19],

during which the central density becomes high and the electron fraction gets smaller. In

recent findings of black hole formation from massive stars of 40M¯ [12, 13], the hyperon

EOS is necessary since the density becomes extremely high during the collapse toward

the black hole. It would be interesting to perform the full simulations of core-collapse

supernovae and related astrophysical phenomena.

4. Summary and discussion

In this paper, we have presented several sets of equation of state (EOS) of supernova

matter (finite temperature nuclear matter with lepton mixture) including hyperons

(EOSY ) using an SUf (3) extended relativistic mean field (RMF) model with a wide
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coverage of density, temperature, and charge fraction. Supernova matter EOS is one of

the most essential parts in numerical simulations of core collapse supernovae. At present,

two sets of supernova matter EOS (Lattimer-Swesty EOS [15] and Shen EOS [16]) are

widely used. The constituents in these EOSs are nucleons and nuclei, then it is desired

to include hyperons, which are believed to appear at high densities. Here we have

extended the relativistic EOS by Shen et al. [16] by introducing hyperons.

We start from the RMF parameter set TM1 for nucleon sector [17], which well

describes the bulk properties of nuclei in the wide mass and isospin range. For hyperon-

meson coupling constants, we adopt the values in Ref. [2] as the starting points.

Hyperon-vector meson couplings are fixed based on the flavor-spin SU(6) symmetry,

and hyperon-scalar meson couplings are determined to give the hyperon potentials

in nucleonic and hyperonic matter. Hyperon potentials in nuclear matter around the

normal density, U
(N)
Y (ρ0), are accessible in hypernuclear production reactions. Recent

developments in hypernuclear physics suggest the following potentials for Σ [21, 22, 23]

and Ξ baryons [24, 25, 26, 27]

U
(N)
Σ (ρ0) ' +30 MeV , U

(N)
Ξ (ρ0) ' −15 MeV . (11)

These potentials are consistent with those in the quark-cluster model for Y N

interaction [37] and a chiral model prediction [39]. In this paper, we have modified

gσΣ and gσΞ to explain these potentials, while other coupling constants are unchanged

from those in Ref. [2].

The Σ potential in nuclear matter still has ambiguities. Recent theoretical

analysis [23] has shown that the shape and absolute values of quasi-free Σ production

spectra are well explained in a Woods-Saxon potential with UΣ(ρ0) ' +15 MeV. On the

other hand, a few MeV attractive pocket is known to be required to explain the energy

shift of Σ− atom [34, 35, 36], then the central repulsion would be stronger to cancel the

effects of this pocket. Other theoretical analyses [21, 22] suggest that UΣ(ρ0) ' +30 MeV

would be preferred in order to explain the shape or the absolute yield in Σ production

spectra. In any of these analyses, Σ potential should be repulsive or less attractive than

that for Λ, then the effects of Σ hyperons are much smaller than those in the attractive

case. It is to be noted that the ambiguities in UΣ do not affect the supernova EOS very

much as far as Σ hyperon fraction is small.

Formation of finite nuclei at low densities is another important ingredient in

supernova simulations. In the present EOS, effects of finite nuclear formation are

included by using the Shen EOS [16], in which formation of finite nuclei is included

in the Thomas-Fermi approximation. Effects from finite nuclei are evaluated by the

difference of free energy and its derivatives in the Shen EOS from the EOS of uniform

nucleonic matter (TM1) without hyperons at each (T, ρB, YC).

We have examined the properties of the EOS with hyperons in neutron star matter

(T = 0, β-equilibrium) and supernova matter. Hyperon effects are significant in neutron

stars as discussed already in the literature [1, 2, 3, 4, 5, 6, 7]. Hyperons appear at around

ρB ' 2ρ0 in cold matter under β-equilibrium and soften the EOS. The maximum mass
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of neutron stars decreases from 2.17M¯ to 1.55M¯ and 1.63M¯ when hyperons are

included with attractive and repulsive hyperon potentials, respectively. In prompt phase

in supernova explosions, on the other hand, hyperon effects are found to be small in

a spherical, adiabatic collapse of a 15M¯ star by the hydrodynamics without neutrino

transfer. In the case with YC = Ye = 0.4 as a typical example, hyperon fraction becomes

meaningful (YY > 1%) at ρB > 0.4 fm−3 or T > 40 MeV. In the spherical and adiabatic

core collapse calculation of a massive star with the 15M¯ [47], the maximum density

and temperature are found to be (ρB, T ) = (0.24 fm−3, 22 MeV), which do not reach the

region of the above hyperon mixture region. It should be noted that this conclusion is

model dependent. Hyperons may appear more abundantly in more realistic calculations

with neutrino transfer, which are in progress.

We have also discussed the roles of pions in neutron stars and supernovae. In this

work, we have examined the effects of free thermal pions [1]. In neutron star matter, the

absolute value of the charge chemical potential µC = µp − µn is calculated to be larger

than the pion mass at ρB & ρ0, thus charged pions can condensate as far as the pion-

nucleon interaction is not very repulsive. The EOS softening from pions is moderate and

limited in the density range ρB < 0.88 fm−3 without (p-wave) πN attraction, then the

maximum mass of neutron stars (1.65M¯) is almost the same as that without pions. In

supernova explosions, temperatures are not very high and pion contributions are small.

At higher temperatures as in the case of black hole formation or high energy heavy-ion

collisions, the role of pions should be significant.

There are several points to be improved for deeper understanding of supernova

matter EOS. First, it is necessary to examine the coupling constants of hyperons with

hidden strangeness mesons, ζ and φ, which critically decide Y Y interaction. In this

paper, we have adopted gζY and gφY in Ref. [2], where the couplings are determined

based on the SU(6) relation and a conjecture on the hyperon potential depth in hyperon

matter. An alternative way to determine these couplings would be to invoke various

hypernuclear and hyperon atom data, such as the double Λ hypernuclear binding energy

in 6
ΛΛHe [49] and atomic energy shifts in Σ− atom [34, 35, 36]. In Ref. [36], Tsubakihara

et al. have determined the scalar couplings of gσΛ, gζΛ, gσΣ and gζΣ, by using the double

Λ hypernuclear bond energy and the atomic energy shift of Σ− atom, while vector

couplings are fixed from the SUf (3) relations. At present, available data are so scarce

that we cannot fix these couplings based on the data unambiguously, but future coming

J-PARC and FAIR facilities will provide much more data on Y Y interaction. Next, it

is desired to respect chiral symmetry in order to describe very dense matter, in which

spontaneous broken chiral symmetry will be partially restored. A chiral symmetric

RMF model [50] is recently developed based on a scalar meson self-energy derived in

the strong coupling limit of lattice QCD, and it describes binding energies and radii of

normal nuclei in a comparable precision to TM1. An SUf (3) extended version of this

chiral RMF is now being developed [36]. Finally, distribution of finite nuclear species

may be important at low densities [51]. At finite temperatures, the entropy increase

by the formation of various fragments will contribute to gain the free energy compared
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with the single heavy-nuclear configuration assumed in the Thomas-Fermi approach. It

is not straightforward but challenging to include nuclear statistical equilibrium (NSE)

distribution in a consistent way in the EOS based on RMF.

These challenging developments of hadronic and nuclear physics are important to

understand the extreme conditions in compact objects and to clarify the mechanism of

explosive phenomena in astrophysics.
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Appendix A. Note on the EOS table

Appendix A.1. Locations of data tables

The data tables are available on

http://nucl.sci.hokudai.ac.jp/~chikako/EOS/index.html

or upon request to A. Ohnishi. On the web page, the tables under the name of

’***.tbl’ (EOS table) and ’***.rat’ (composition table) are available for the sets using

U
(N)
Σ = −30, 0, +30, +90 [MeV] at normal density. The most recommended potential is

U
(N)
Σ = +30 MeV. For other hyperons, we adopt the potential depth U

(N)
Λ = −30 MeV

and U
(N)
Ξ = −15 MeV as described in section 2.1. The EOS table with thermal pions are

available in addition to the standard choice without pions. As described in section 2.2,

the set with thermal free pions are aimed only for the assessment of pion contributions

in a simple treatment. Further careful treatment of pion interactions is necessary.

Appendix A.2. Definition of quantities in the EOS table

We list the definitions of the physical quantities tabulated in the EOS table, ’***.tbl’.

We note that the order of quantities in the list is partly different from the original Shen

EOS table [16] since the current table contains lepton and photon contributions. The

definitions of quantities follows the ones in Shen EOS unless stated specifically below.

(1) Logarithm of baryon mass density: log10(ρB) [g/cm3]

The baryon mass density ρB is defined by

ρB = MunB (A.1)
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where Mu and nB are the atomic mass unit and the baryon number density,

respectively.

(2) Charge ratio: YCC = nC/nB The charge density nC is defined by

nC =
∑
B

qini , (A.2)

where qi and ni are the charge and the number density of the baryons and the sum

runs over the baryon octet.

(3) Entropy per baryon: S/B [kB]

The entropy per baryon contains the contributions from hadrons, leptons and

photons.

(4) Temperature: T [MeV]

(5) Pressure: P [MeV/fm3]

The pressure contains the contributions from hadrons, leptons and photons.

(6) Chemical potential of neutron: µn [MeV]

The chemical potential of neutron is measured relative to the nucleon mass

MN = 938 MeV. It is connected with the baryon chemical potential as

µn = µB − MN (A.3)

(7) Chemical potential of proton: µp [MeV]

The chemical potential of proton is measured relative to the nucleon mass MN .

The relation to the baryon and charge chemical potentials reads

µp = µB + µC − MN (A.4)

(8) Chemical potential of electron: µe [MeV]

The chemical potential of electron is determined by the charge neutrality as

ne =
∑
B

qini. (A.5)

See below for the descriptions on the lepton contributions.

(9) Free neutron fraction: Yn

In the uniform matter, the free neutron fraction is simply the ratio, nn/nB. For

the non-uniform matter at low density, the definition follows the one in Shen EOS.

(10) Free proton fraction: Yp

The ratio, np/nB, as in Yn above. For the fraction of strangeness baryons, see the

description below on the table of number fractions.

(11) Mass number of heavy nucleus: A

The values of from (11) to (14) are taken from Shen EOS table or zero set above

normal nuclear density.

(12) Charge number of heavy nucleus: Z

(13) Heavy nucleus fraction: XA
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(14) Alpha-particle fraction: Xα

(15) Energy per baryon: E/B [MeV]

The energy per baryon is defined with respect to the free nucleon mass MN and

contains the contributions from hadrons, leptons and photons.

(16) Free energy per baryon: F/B [MeV]

The free energy per baryon is defined with respect to the atomic mass unit Mu and

contains the contributions from hadrons, leptons and photons.

(17) Effective mass: M∗ [MeV]

The effective mass of nucleon is obtained in the RMF theory for uniform matter.

In non-uniform matter, we replace the effective mass M∗
N by the free nucleon mass

MN .

Appendix A.3. Data table of composition

In order to provide the information on the appearance of hyperons other than nucleons,

we prepare a separate data table (***.rat) for the number fractions. The number

fraction, Yi = ni/nB, is given as a function of (ρB, T, YC) in the following order.

(1) Logarithm of baryon mass density: log10 ρB [g/cm3]

(2) Temperature: T [MeV]

(3) Charge ratio: YC

(4) Neutron ratio (including neutrons in alpha): Yn

(5) Proton ratio (including protons in alpha): Yp

(6) Λ ratio: YΛ

(7) Σ− ratio: YΣ−

(8) Σ0 ratio: YΣ0

(9) Σ+ ratio: YΣ+

(10) Ξ− ratio: YΞ−

(11) Ξ0 ratio: YΞ0

Appendix A.4. Treatment of leptons

We describe briefly on the contribution of leptons (electrons, muons and neutrinos) in

the current study.

We remark that we take into account muons in the case of cold neutron stars. Muons

appear abundantly at densities higher than the threshold when the electron chemical

potential exceeds the muon rest mass. The chemical potentials of electrons and muons

are related with

µµ = µe (A.6)
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This is because neutrinos freely escape from the neutron star and are not trapped

inside. Accordingly, the contributions of electrons and muons are taken into account in

the discussions of cold neutron stars.

For the EOS table for core-collapse supernovae, we add the contributions of

electrons, positrons and photons while muons are not added because of the following

reason. In the supernova cores, neutrinos are trapped inside the supernova core and

the Fermi energies of neutrinos becomes high and non-zero. If the chemical equilibrium

holds, the chemical potentials follows the relations,

µµ − µνµ = µe − µνe , (A.7)

nµ + nνµ = 0 . (A.8)

The latter relation comes from the fact that the net µ-type lepton number is zero.

Because of positive values of µνe , r.h.s of the chemical equilibrium is reduced. In

addition, the appearance of muon requires the production of anti-neutrinos of µ-type and

leads to the negative value of µνµ . Therefore, the appearance of muons are suppressed

in supernova core.

Contributions of neutrinos are not added because the treatment depends on the

density region. In the central part of supernova core, neutrinos are trapped and

the chemical equilibrium are reached together with neutrinos. Outside the neutrino

trapping surface, typically at ∼ 1011 g/cm3, neutrinos escape freely and neutrinos do

not contribute. They also depend on the method of neutrino-radiation in numerical

simulations.
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