
IEEE TRANSACTIONS ON INFORhlATION THEORY, VOL. x-27, NO. 3, MAY 1981 327 

Taking the-average over t and once again utilizing (A2) we obtain and add the expressions (A3) and (A4), we obtain the desired 
result (3.7). 

D”=So’E~“(t)2dt=JZlG,(h)lz~w(h-v)dh 
Y 

=JG(h)~rr(A)G*(h)dh (A4) [II 
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where in the last step we have introduced the diagonal matrix PI 

[31 

141 

Q;;(l) %G,j@P,(A-i). [51 

Fl 
If we finally define 

Q(X) g Q’(A) + Q”(X), 
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Tables of Sphere Packings and Spherical 
Codes 

N. J. A. SLOANE, FELLOW, IEEE 

Abstract-Tke theta function of a sphere packing gives the number of 

centers at each distance from the origin. The theta functions of a number 

of important packings (An, D, , E,, the Leech lattice, and others) and tables 

of the first fifty or so of their coefficients are given in this paper. 

I. SUMMARY 

T 
HE MAIN RESULTS in this paper are formulas for 

the theta functions of the sphere packings A,, given in 

(30), A, (34), the face-centered cubic lattice D, (40), the 

body-centered cubic lattice Dji (41), the hexagonal close- 

pack@ (4% 4, (4% D,'- (411, J% (431, E, (441, E, (45), 

K,, (4912 A,, (511, and the Leech lattice A,, (54). Tables 

I-X give the first fifty or so coefficients of these theta 

functions and are far more extensive than any tables 

hitherto published. (Some earlier tables were given in [4] 

and [44]; see also [40] and [41].) 
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Spherical codes are defined in Section II, and one of the 

motivations for constructing these tables is that they supply 

excellent examples of spherical codes. The maximum inner 

product of any one of these codes is given by (12) and (13). 

Sections III-IX deal with the general properties of sphere 

packings and the associated spherical codes, while Section 

X gives formulas for the number of centers inside or on a 

large spherical shell. The connections with number theory 

are sketched in Section XI, and then Sections XII-XX give 

the most important packings in greater detail (including 

their generator matrices, densities and kissing numbers). 

A sequel to this paper will discuss the encoding and 

decoding of these spherical codes and the nearest neighbor 

regions associated with the codewords. 

II. SPHERICAL CODES 

Just as a binary error-correcting code [36] is a subset of 

the vertices of an n-dimensional cube, so a spherical code 

[16], [21] is a subset of the points of an n-dimensional 

sphere. More precisely, let G,, denote the unit sphere in R", 

0018-9448/81/0500-0327$00.75 01981 IEEE 
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i.e. thepointsx=(x,,...,x,)ER”with’ packings we shall consider, M is a square matrix and 

A spherical code C of dimension n , size M and maximum dot 

product s is a set of M points of Q,, with the property that 

x-yGs forallx,yEC, x#y, 0) 

where 

det A = ldet MI. (4) 

The density A of any (lattice or nonlattice) sphere packing 

is, loosely speaking, the fraction of the space R”  that is 

covered by the spheres. For a lattice packing A of radius p 

and dimension d = n, the density is given by the formula 

v,p”  A- 

deth’ 

The problem of finding the largest spherical code with a 

given dot product has a long history, especially in the case 

n = 3 [ 131, [23]. Spherical codes have been extensively 

studied in connection with the design of signals for the 

Gaussian channel [3]-[6], [8], [31], [50], 1551, [60], [63]. They 

also have applications to the design of quantizers and 

samplers [ 181, [19], [39], [58], in numerical quadrature [22], 

[56], tomography [49], and above all to diophantine equa- 

tions (see Section XI). The theory of these codes borrows 

heavily from group representations, modular forms, and 

harmonic analysis [24], [27], [29], [35], [45], [46]. Spherical 

codes may be efficiently constructed from sphere packings, 

as we now demonstrate. 

III. SPHERE PACKINGS 

Stated informally, a sphere packing in R"  is an arrange- 

ment of infinitely many nonoverlapping spheres, ail of the 

same size. More precisely, a sphere packing A in R”  of 

radius p consists of an infinite sequence of points 
xw, x(2) . . , , in R”  (the centers of the spheres) such that 

ast (x(i), .(i) I2 = 11 ,G) - .(i) 11 2 4p2 
(2) 

for all i #j. Then if spheres of radius p’ ‘are drawn around 

the centers xc’), ,c2), . . * the spheres will not overlap. A is 

called a lattice packing if the centers xo) form a group 

under componentwise addition. The literature on sphere 

packings is extensive, and the subject is ‘intimately related 

to the theory of error-correcting codes. For more informa- 

tion the reader is referred to [l], [15], [34], [47], [48], 

[5 l]-[54]. 

IV. THE PARAMETERS OF A SPHERE PACKING 

The dimension d of a lattice packing A is the maximum 

number of linearly independent centers in A. Since A c R” , 
d< n. Let x(1) = (x11) . . .,x:1)),. . .,x(d) = (xjd), . . .,x$4> 

E A be linearly indeiendent centers which span the lattice. 

The d X n matrix 

M: = (xy ), l<i<d, 1 <jGn, 

is a generator matrix for A, and A consists of all integer 

combinations of the rows of M. The determinant of A is 

det A: = (det MMT)“ 2. (3) 

When the lattice has the same dimension as the space in 

which it lies, i.e., when d = n, as is usually the case for the 

(5) 

where 

7T”/2 

‘I= lY((n/2) + 1) 

is the volume of the unit sphere s2,. The density of a 

nonlattice packing must be defined in a more complicated 

way-see [47]. The main sphere packing problem is to 

determine the sphere packings in R”  with the greatest 

density. References [34], [52], and [54] give the most recent 

results. 

The kissing number r(x) of the sphere centered at x is 

the number of neighboring spheres, i.e., the number of 

spheres which just kiss the sphere centered at x (using a 

term borrowed from billiards). The maximum value of r(x) 

for x E A is denoted by r,,. For a lattice packing r(x) = 

= 7, independently of the choice of x. A second im- 

zytant problem is to find the packings in R”  with the 

greatest value of r,, [2], [34], [43], [52]. 

V. AN EXAMPLE: THE LATTICE D4 

The lattice packing D4 (see Section XVI) is a four- 

dimensional lattice in R4 spanned by the vectors 

x(1) =J--  (2,0,0,0), 

Jz 

x’2’=+(1,1,0,0), 

Thus 

is a generator matrix, and det D4 = ldet M I= l/2. The 

lattice points closest to the origin are the 24 points 

‘Note that this definition of II x II is the square of the usual one. 69 
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so we may take the radius of the spheres to be p = l/2. Or 
The kissing number is r = 24, and the density is @ *W = %wIre p la c e q b yq ~2~ 

A=$=O.61686.... 

VI. THE THETA FUNCTION OF A LATTICE 

Many properties of a sphere packing can be obtained 

from its theta function, which is analogous to the weight 

enumerator of a code [36, ch. 51 in that it gives the number 

of centers at each distance from the origin. There is one 

important difference, however: a weight enumerator is a 

polynomial while a theta function is an infinite sum. 

Definition: The theta function of a sphere packing A is 

O*(z):= r, q”““ , (7) 
xE:h 

where q = e” ‘“ . If A is a lattice packing, as it usually is in 

this paper, the theta function is a holomorphic function of 

z for Im(z) > 0 (see [24, p. 711). 

If N, denotes the number of centers x E A with II x II = m, 

i.e., at a squared distance of m from the origin, then (7) can 

be rewritten as 

o,(z) = ii Urn, 
m=O 

where m runs through all the values of II x II for x E A. The 

first two terms are O*(z) = 1 + 7q4PZ+ . . ., where p is the 

radius of A and r = r(O) is the kissing number of the sphere 

at the origin. For example the theta function of D4 begins 

Oo4(z) = 1 + 24q + 24q2 + 96q3 + . . . (see Table V). 

If A is a lattice packing in R”  of dimension n, the dual 

lattice Al is defined to be AL : = {x E R”  I x-y E 2 for all 

y E A}. A generator matrix for AL is (M -l)tr, and its 

determinant and theta function are 

det AL = (det A)-‘, 

VIII. JACOBI THETA FUNCTIONS 

The theta functions of many packings can be specified 

concisely in terms of the classical Jacobi theta functions 0,, 

13,) and 0,, which are defined as follows: 2 

@2(z): = 2 g q(m+ww 

m=O 

= zql/4 + zq9/4 + zq25/4 + . . . 

= 2q’/4( 1 + q2 + q6 + q’2 + q2o + . . * ), 

8,(z):= 1+2 5 qm2 

l? l=l 

=l +2q+2q4+2qg+ **. 

=1+2q(1+q3+q8+q15+*.*), 

e4(z):=1+2 2 (-q)m* 

m=l 

=l-2q+2q4-2qg+**. 

III 1 - 2q( 1 - q3 + q8 -  q’5 + * . . ). 

It is important to notice that e3 is itself the theta function 

of the one-dimensional lattice of integer points, 2, in R’: 

and that 

Furthermore, 

e,(z)=o,(z), 

e,(z) = %+(1,2)(z)- 

e,(z)=e,(z+ 1). 

(9) 

(10) 

We also point out that these theta functions can be written 

@~~(z)=(detA)(f)*‘2@~(-~). 

as infinite products: 

63) 
e2(z)=2q1/4~~,(i-qz~)(i+q2m)2, 

VII. ~&SCALING 

It is frequently necessary to rescale a sphere packing, 

replacing A by A’ = CA = {cx: x E A} for some ap- 

propriate constant c E R. The parameters of A’ and A are 

related as follows: 

P’=cP, 

dim A’ = dim A, 

M’=cM, 

detA’=cdimA.detA, 

A’=A, 

r’(cx) =7(x), 7’ = 7, 

Ox(z) = O*(c2z), 

There are many other useful identities relating these func- 

tions-see [45], [46], [52, eqs. (14)-(23)], [53, eqs. (9)-(19)], 

[571, 1621. 

Example: The theta function of D4 is (see Section XVI) 

o,(l)=; ( e3( 5)4+e4 ( t  )‘). 

*In the older literature these functions are denoted by 0,(0(z), e3(O/ z), 
and 0,(Ol I), but except in Section XV we simply omit the first argument 
(see also [46, sec. 7.51, [62, ch. XXI]). 
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IX. CONSTRUCTION OF SPHERICAL CODES FROM 

SPHERE PACKINGS 

The construction is very simple. Suppose there are N,,, 

centers x with II x II = m in a sphere packing A. Then these 

points, resealed by dividing them by fi, form a spherical 

code of dimension n and size N,. In other words we take a 

shell of points around the origin as the spherical code. The 

theta function of A is thus a generating function for the 

sizes of these codes. 

To find the maximum dot product s of one of these 

codes we may either rescale the points and use (l), or work 

directly with the centers of A and replace (1) by 

s=yatacosz$(xoy) 

=maxX 
XZY m 

(11) 

taken over distinct centers x, y, in the shell. It is easy to 

find s. Suppose 2r is the smallest distance between any two 

points in the code. Then 

s=l-2rz 
m 

-see Fig. 1. Certainly r cannot be less than p, the radius 

of the spheres in A, so 

<12!? SL 
m’ 03) 

and in the majority of cases (13) holds with equality. 

For example consider the lattice D4. The first shell 

consists of the 24 points given in (6), and corresponds to 

m = 1. The points (l/ a)(l,l,O,O) and (l/ \/2)(1,0,1,0) 

are at a distance 2r = 1 = 2p, and for this spherical code 

s=12=l 
m 2’ 

Similarly (13) holds with equality for most of the shells. On 

the other hand (13) can be improved for the shells corre- 

sponding to m = 2,4,8,16, + * a. These spherical codes also 

contain just 24 points, which after resealing are either (6) 

again or 

(i‘Lo,E),o),~~-Y (O,O,O$l), +,*l,cl,~l). 

(14) 

For these codes s is still l/2, but r is K/2. 

X. CODES WITH BOUNDED ENERGY 

A spherical code represents a set of signals for the 

Gaussian channel in which each signal has the same energy 

[50]. A signal set with bounded energy may be obtained by 

taking all the centers of a packing A that are within or on a 

large sphere of radius po. The total number of such centers 

is 

S(PO):= 2 Nm. 

m=+i 

(15) 

The values of S(p,) are not included in the Tables for two 

Fig. 1 The maximum dot product of the spherical code consisting of all 

points in A at distance ~5% from 0 is cos 20 = 1 - 2(r/ h$‘, where 2r 
is the smallest distance between two such points. 

reasons: 1) they are easily found by summing N,; and 2) 

there is an excellent approximation to S(p,) given by 

or 

S(P,) =s 

if A is a lattice packing. Also if A corresponds to an 

integral quadratic form (see Section XI) then a theorem of, 

Val’fiS [61] states that 

(18) 

and so the error in the approximations (16) or (17) is of 

smaller order than the main term. Furthermore (18) gives a 

crude estimate for the order of magnitude of N,. Since 

N,=S(/+S(Jm-I), 

( 18) implies 

qm(n/2)-’ <N < c2m(“/2)-’ 
m 

for some positive constants cl, c2. 

(19) 

XI. CONNECTIONS WITH NUMBER THEORY 

A very old problem asks for the number of ways of 

expressing an integer m as the sum of four squares, or in 

other words for the number of quadruples of integers 

(u,, u2, u3, u4) such that 

uf+u,2+u$+ui=m. (20) 

For example when m is 2 there are 24 solutions, given 

(ignoring the factor fi) by (6): we agree to count (1, l,O,O), 

(l,O, l,O), etc., as different solutions. A moment’s thought 

shows that the general answer is given by the coefficient of 

q”  in the expansion of 

(1 +2q+2q4+2q9+ -*)“ =e,(z)”  

in powers of q. However, this power series is also the theta 

function of the lattice Z4 of integer points in R4: 

e3(z)4= oz4(z j. 

In other words the coefficient of q”  in this theta function 

gives the number of solutions to (20). Call this number 

r4( m). There is in fact a simple formula for this number, 
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due to Jacobi: 

(8 x d? if m is odd, 

rdm) = 
24dtm 2 d, if m is even. 

(21) 

dlm,dodd 

(See [28, thm. 3861, [45, sec. 831, [46, eq. (7.4.23)].) 

To generalize this, suppose A is a lattice of dimension n 

in R”  with the property that II x II is always an integer for 

x E A. The integral quadratic form associated with A is 

fh,* * * ,uJ:= i UiMijMkjUk, 
i,j,k= 1 

or in vector notation 

f(u) = uMMt’ut’, for u EZ”. (22) 

As u runs through Z”, x = uM runs through A, and 

f(u) =d’= Ilxll. 

Thus the theta function of A can be rewritten as 

(23) 

and the coefficient N, is equal to the number of solutions 

to the diophantine equation 

uMMt’u”  = m. (24) 

In the above example M is the 4 X 4 identity matrix I4 and 

the quadratic form is z$ + of + ~3’ + u:. 

This link with number theory makes it possible to apply 

the vast literature on diophantine equations and modular 

forms to the study of lattices [17], [20], [24]-[28], [30], [37], 

[451, [461, [591, [611. 

XII. DESCRIPTION OF SOME IMPORTANT LATTICES 

In the following sections we describe some of the most 

important lattices and give tables of their theta functions. 

In view of the construction in Section IX these are also 

tables of spherical codes. The maximum dot product of any 

of these codes is given by (12) and (13). For lattices in 

higher dimensions see [33], [34], [48], [51], [52]. 

Our notation is that 

dimension of A, 

generator matrix, 

radius, 

determinant, 

kissing number, 

density, 

theta function, 

number of centers x E A with II x II = m. 

XIII. THE CUBIC LATTICE Z” IN R”  

The simplest lattice is Z”, which consists of all points in 

R”  with integer coordinates. For this lattice d = n, M = I,, 

Fig. 2 The hexagonal lattice A, in the plane. The first five shells around 
the origin contain 1, 6,6,6, and 12 points, respectively. 

p=1/2,det=l,r= 2n, A= V,/2” , and 

O,n(z) = e3(z)” 

(25) 

The coefficient rJ m) is the number of ways of representing 

m as a sum of n squares. There are explicit formulas for 

small even values of m. For example 

r2(m)=41{dln, dE 1 (mod4))) 

-4l{dln,d=3 (mod4))l; (26) 

rq(m) is given by (21); 

r6(m)= 16 2 x(d’)d2-4 2 x(d)d2, (27) 

dim dim 

wheredd’=mandx(d)isl, -1,orOaccordingasdisof 

the form 4k + 1, 4k - 1, or 2k; and 

r8(m)= 16(-l)” 2 (-l)dd3. (28) 
dim 

Much more is known about r,(m)- see the references 

given at the end of Section XI. 

XIV. THE TWO-DIMENSIONAL LATTICE A 2 

This familiar lattice is shown in Fig. 2, and is spanned 

by the vectors (1,0) and (- l/2, o/2). Thus d = 2, 

M= 
-- - 

p = I/2, det = o/2, r = 6, and the density is 

A= +7r -=0.9069..., 

26 

which is the highest attainable in R2 (see [47, p. 111). The 
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associated quadratic form is 

u2 - uv + v2 

and the theta function is 

(29) 

@,Jz)= g qu2--u~+~2 

Id,“=-00 

u,“=-oo 

= u jFoo qW/W)2 +P/+’ 

‘0 even 

+ fi 4 
(u-(1/2)o)2+(3/4)oZ 

u,“ =-03 

"odd 

TABLE I 
THEHEXAGONALLATTICE A,INR’ 

- = 

m 
- 

- 

LN 

6 

= 

m 
- 

m 
- 

0 

I 

3 

4 

7 

9 

12 

13 

16 

19 

21 

25 

27 

28 

31 

36 

37 

39 

43 

48 

49 

52 

57 

61 

63 

l/6 

1 

1 

I 

2 

I 

1 

2 

1 
2 

2 

1 

1 

2 

2 

1 

2 

2 

2 

1 

3 

2 

2 

2 

2 

64 

67 

73 

75 

76 

79 

81 

84 

91 

93 

97 

100 

103 

108 

109 

111 

112 

117 

121 

124 

127 

129 

133 

139 

144 

- 

I -N 

6 

1 

2 

2 

1 

2 

2 

1 

2 

4 

2 

2 

I 

2 

1 

2 

2 

2 

2 

1 

2 

2 

2 

4 

2 

1 

147 

148 

151 

156 

157 

163 

169 

171 

172 

175 

181 

183 

189 

192 

193 

196 

199 

201 

208 

211 

217 

219 

223 

225 

228 

z 

1N 

6 

3 

2 

2 

2 

2 

2 

3 

2 

2 

2 

2 

2 

2 

1 

2 

3 

2 

2 

2 

2 

4 

2 

2 

1 

2 

= - - = - 

(30) 

This definition of A, agrees (apart from a rotation) with 

the definition in the previous section if the old version is 

resealed by multiplying it by c = 0. Then A,, has d = n, 

r,.T=-00 T,S=-oO 

= ~,(z)b(3z) + &(z)b(3z) 

= +oo(z) (say). 

If we write 

@,&) = fi N,,C, 
m=O 

then N, is the number of times (29) represents m. It 

follows from the standard theory,3 writing 1 
N’(m) =iNm, 

’ an nX(n+ 1) matrix, p=l/a, det= 4x, and r= 

that N’(m) is multiplicative, i.e., satisfies 2n(n - 1). We may regard A,, as a lattice in R” by restrict- 

N’(rs) =N’(r)Nl(s), 
ing our attention to the hyperplane 

whenever r and s are relatively prime (3 1) { PER”++,+ -+x,+,=0}. 

(see [28]). Therefore it is sufficient to calculate N’(m) when 
Looked at in this way, A,, has density 

m =p”  is a power of a prime. These values are A= v, 

N’(3”) = 1, foralla, 2n5GG- . 

N’(pn)=a+ 1, ifp 5 1 (mod 3), The theta function of A, is most simply expressed in terms 

0, 
N’(P” )= 1 

1. 

ifp-2 (mod3), aodd, 
of the more general Jacobi theta function [62, ch. XXI] 

ifr2 (mod3), a even. e3((lz):= 2 e2mi5+nirmza 
(33) 

t?Z=-CC 
The theta function begins 

e,(z), 03(z), and e,(z) may be expressed in terms of this 

OA,(z)= 1 +6q+6q3+6q4+ 12q7+ ... function by 

(see Fig. 2), and further values are given in Table I. e2(z) = esir/4f33 y z 

( I) 
, 

XV. THEIR-DIMENSIONALLATTICE A,, 
e,(z) = ~3w9y 

A, may be generalized to higher dimensions as follows. 

We describe A, as an n-dimensional lattice in R”+ ‘. Thus 

for n 2 2 let 
@4(z) =e3( $). 

Then the theta function of A,-, is 

A”={x~z~+l~~~~~xj=o}’ (32) .“-,(z)=~~~~e3(~lz)~. (34) 

3Since (21) has class number 1. To prove this, observe that A,- t is a subgroup of the 
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lattice and 

and in fact we may write 

L,= fi {(m,m;**,m)+A,- ,}. 

For n = 3, 4, and 5 D, is the densest possible lattice 

packing (as well as the densest known packing, although 

for n = 3 and 5 there are equally dense nonlattice packings 

[34]). Also 

m=-00 

Therefore 

@&) = is 4”+?4Jz) 
??I=-00 (40) 

= ~3(+!4~,(4. (35) 

m=O 

To find the theta function of L, we weight each point x of using the notation of (25). This begins 

Z” according to the value of Zxj. Let @,~z)=l+2n(n-l)q+2nq2+2n(n-l)q4+~**. 

X(X):=e2~i~~=~x,/n, for x E R", (36) The dual lattice 0,”  (n 2 3) can of course be obtained by 

and 
finding the dual of D,,, or more simply by applying Con- 

@,*,zn w = x~znx*w4x’” (37) 
struction A to the repetition code { (O,O, + . . ,O), (1, 1, * * *, l)}. 

For this lattice d = n, 

for k=O,l;..,n-- 1. Then 

@p,zW = ( 2 x*bw2)n 
XEZ 

=e !Ezn 

i I) 
(38) 3 n 

from (33). Finally the sum of 

@xk,z4Z> 

overk=O,l;.. , n - 1 picks out those x E Zn with Zx, E 0 

(mod n): 

(39) 

2 0 0 *** 0 0 

0 2 0 a*- 0 0 

j,,f=o 0 2 ... 0 0, 
. . . . . . 

0 0 0 *** 2 0 

-1 1 1 *** 1 1, 

p= 6/4 

1 

ifn=3, 

1, if n >, 4, 

det = 2”-‘, 

ifn=3, 

ifn=4, 

ifna5, 

and (34) follows from (35), (38), (39). 

XVI. THE n-DIMENSIONAL LATTICE D,, 

The lattice packing D,, in R" is obtained by applying 

Construction A to the code consisting of all binary vectors 

of even weight,4 and then resealing by multiplying all the 

centers by l/ 0. Alternatively, color the points of Z” red 

and blue with a checkerboard coloring, take the red points, 

and multiply by l/ &?. For this lattice d = n, 

2 0 0 **- 0 

&=t = 2-(n-2)/2 

T=2n(n- lj, 

4Construction A: if C is a binary code of length n, the set of centers 
c+2x (cEC,xeZ” ) forms a sphere packing in R”. Most of the 
properties of this packing can be obtained directly from the code C-see 
[52] for details. 

- = 0.680175 * * . , ifn=3, 

if na4, 

and 

(41) 

The case n = 3. References for these three-dimensional 

packings are [I, ch. V], [14, ch. IV] and [15, ch. 91. D, is the 

familiar face-centered cubic lattice (as seen in a square or 

triangular pyramid of billiard balls), and has density A = 

71/3fi=O.740480--. There is a complicated formula for 

the coefficients r3(2m) (see [17, vol. II, chapter VII]). The 

dual lattice 0; is the body-centered cubic lattice. The 

coefficients of the theta functions are given in Tables II 

and III. 

There is a further packing in R3 that has not yet been 

mentioned. This is the hexagonal close-packing, which is a 

nonlattice packing with the same density and kissing num- 

ber as 4. It may be defined to be the union of the lattice L 

spanned by (fi,O,O), (o/2,3/2,0), and (0,0,20), and 
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TABLE II 
THE FACE-CENTERED CUBIC LATTICE 4 IN R3 (THE TABLE GIVES 

$, FOR m = 1Or + S) 

/s 0 I2 3 4 5 6 7 8 9 

0 l/6 2 I 4 2 4 4/3 8 I 6 

I 4 4 4 12 0 8 2 8 5 12 

2 4 8 4 8 4/3 I4 4 16 8 4 

3 0 16 I16 8 8 6 20 4 8 

4 4 8 8 20 4 20 0 16 4 I8 

5 5 8 I2 I2 16/3 24 0 I6 I2 I2 

6 8 20 0 24 2 8 8 28 8 16 

7 8 8 5 32 4 20 I2 I6 0 I6 

8 4 18 16 20 8 24 4 24 4 16 

9 I2 24 8 24 0 8 4/3 40 9 20 

TABLE III 
THE BODY-CENTERED CUBIC LATTICE 031 IN R3 

m 

0 

3 
4 

8 

II 

I2 
16 

I9 

20 

24 
27 

4 

32 

35 

36 
40 

43 

44 
48 

51 

52 

56 
59 

64 

the coset 
XVII. THE LATTICES E6, E,, E, 

$,$ 2 SL. 
“1 

c 
The lattice packings E6 in R6, E, in RI, and E, in Rs are 

L’ = 
the densest possible lattice packings in these dimensions 
(and also the densest known packings there). E6 is most 

By following the same kind of algebra used to derive (30), 
easily constructed from the ternary code (000, 111,222). 

one can show that the theta functions of L and L’ are 
The complex version of Construction A then produces a 

respectively 
complex lattice5 in C3 with generator matrix 

~3@z)90(34 1 ‘$7 0 0 

and - 0 ifi 0 
13 r I 

m 
= 
YnL m 

1 67 24 136 

8 68 48 139 

6 72 36 140 

12 75 56 144 

24 76 24 147 

8 80 24 I48 

6 83 72 I52 

24 84 48 155 

24 88 24 160 

24 91 48 163 

32 96 24 164 

I2 99 72 168 

48 100 30 I71 

30 104 72 172 

24 107 12 176 

24 I08 32 179 

24 II5 48 I80 

8 I16 72 184 

48 120 48 I87 

24 123 48 192 

48 I28 12 I95 

72 I31 120 196 

6 132 48 200 

= 

TABLE IV 
THE HEXAGONAL CLOSE-PACKING: A NONLATTICE PACKING IN R3 

(THE TABLE GIVES iN,n FOR m = IOr + s) 

F 
,/slO I 2 3 4 5 6 7 8 9 

I 

0 l/6 0 0 2 0 010 l/3 3 

I 0 2 IO 02OZI1 

2 4 I 0 0202 0 4 

2 2 l/3 2 1412 0 4 

0 2 0 14 22412 

04043 224 0 2 

0 2 0 6 0423 2 4 

2 8 l/3 0 0 600 4 2 

27124 202 0 6 

0 2 4 122402 0 8 

TABLE V 
THE LATTICE D4 IN R4 

‘-\l 1 11 
-see [54, sec. 5.8.21. By regarding this as a real lattice in 
R6 we obtain E6, for which d = 6, 

Therefore the theta function of the hexagonal close-packing 
is 

= 1+ 12q3+6q6+2qs+ ... (42) *X1 

-see Table IV. 6 
The case n = 4 (see also Sec. V). D4 is a self-dual lattice: 

D4 = Ddl. The coefficients N, = r,(2m) of the theta func- 
tion are given by the second formula in (21), and the first 
50 terms are given in Table V. Furthermore (24)-‘N, is 
multiplicative. It is worth mentioning that N, is the num- 
ber of integral quaternions of norm m [ 15, p. 251. 5Strictly speaking, this is a Z [ e2”‘ /3]-module in C3. 

0 0 0 fi 0 0 

000 0 J;; 0 
111 0 0 0 

3 
fl 0 3002 ‘0 

oqo 0 2 fi 0 

1 1 1 -(3 -6 -6 - - - 
zzz 2 2 2 
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p = l/2, det = D/23, r = 72, A = r3/48fi = 0.372948 . . . 

and 

=1+72q+270qz+ ***. (43) 

E, may be obtained by applying Construction A to the 

little Hamming code of length seven containing eight 

codewords. For this lattice d = 7, 

2000000 

0200000 

0020000 
M=i 0 0 0 2 0 0 0 ) 

1110100 

0111010 

-0 0 1 1 1 0 l- 

p = l/2, det = l/8, r = 126, A = m3/105 = 0.295298. .-, 

and the theta function is, from [52, thm. 61, 

oE,(z)=e3(z)7+7e3(z)3e2(z)4 

= 1+ 126q+756q2+ 0.e. (44) 

E, is obtained similarly from the extended Hamming 

code of length eight. For this lattice d = 8, 

I-  
2 0 0 0 0 0 0 0 

0 2 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 

M=l 0 0 0 2 0 0 0 0 

211101000 

01110100 

00111010 

-1 1 1 1 1 1 1 1 
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TABLE VI 
THE LATTICES E6, E7, AND Es IN R6, R7, AND R8 

= 
n -7 

- 

I 72 126 

2 270 756 

3 720 2072 

4 936 4158 

5 2160 7560 

6 2214 II592 

7 3600 16704 

8 4590 24948 

9 6552 31878 

IO 5184 39816 

II 10800 55944 

12 9360 66584 

13 I2240 76104 

14 13500 99792 

15 I7712 116928 

I6 14760 133182 

17 25920 160272 

18 19710 177660 

19 26064 205 I28 

10 28080 249480 

!I 36000 265104 

12 25920 281736 

23 47520 350784 

14 37638 382536 

25 43272 390726 

= - - 
26 45900 470232 

17 59040 505568 

28 46800 532800 

29 75600 615384 

10 51840 640080 

31 69264 701568 

12 73710 799092 

33 88560 809424 

34 62208 853176 

35 IO8000 1006992 

36 85176 1051974 

37 98640 1031688 

38 97740 1195992 

39 122400 1286208 

10 88128 1313928 

11 151200 1469664 

12 110700 1474704 

13 133200 1547784 

14 140400 1797768 

15 157680 1776600 

16 II4048 1809360 

17 198720 2 I04704 

18 147600 2 I30968 

19 176472 2123982 

50 162270 2382156 

= - - 

240)-‘.N, (Et 

I 

9 

28 

73 

126 

252 

344 

585 

757 

II34 

1332 

2044 

2198 

3096 

3528 

468 1 

4914 

6813 

6860 

9198 

9632 

I I988 

12168 

I6380 

I5751 

19782 

20440 

25112 

24390 

31752 

29192 

37449 

37296 

44226 

43344 

55261 

50654 

61740 

61544 

73710 

68922 

86688 

79508 

97236 

95382 

109512 

103824 

131068 

117993 

141759 

p = l/2, det = l/16, r = 240, A = #/384 = 0.253670. . . , 

and the theta function is (see for example [52, eqs. (34), 

(47), (48N 

OE8(z) = e3(z)8+ i4e3(z)4e2(z)4+ e2tz>" 

where 

= 1+ 5 N,qm, 

m=l 

N, = 240a,(m) 

(45) 

(46) 

and 

u,(m) = x d’. 

dim 

(47) 

The coefficients lie in the range 

240m3 <N,,, < 240[(3)m3 = 288.5m3. (48) 

Furthermore N, is equal to the number of integral Cayley 

numbers of norm m [ 15, ch. 21. The first fifty terms of these 

XVIII. THE 125DIMENSIONAL LATTICE K,, 

This is the densest packing known in RI2 and like E6 is 

most easily constructed from a complex lattice. The start- 

ing point is the three-dimensional self-dual code g, of 

length six over GF(4) with generator matrix 

[ 

1ww100 
6.3 1 0 0 10, 

w 0 1 0 0 1 1 
where o E GF(4) is a primitive cube root of unity. By 

applying the complex version of Construction A to this 

code [53], [54], we obtain a lattice in C6 with generator 

matrix 

1 

z 

-2 0 0 0 0 0 

020000 

002000 

1w0100’ 
w 1 w 0 1 0 

-0 w 1 0 0 l- 

where now o = e2Ri/3. Then K,, is obtained by regarding 

three theta functions are given in Table VI. this as a real lattice in R12. For this lattice d = 12, M is 
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40000000 0 0 0 0 

040 0 0 0 0 0 0 0 0 0 

004000000000 

2 -1 -1 2 0 0 oJ-5"40 0 0 

-1 2 -I 0 2 oJJoJ3oo 0 

+ ;' -: 0 2 0 0 0 0 0.2J30'0 2JsJsooo 0 0 0 0. 

020000 0 -26 0 0 0 0 

0 0 2 0'0 0 0 0 -2./3 0 0 0 

111 10 o"TJTJ3-fio 0 

,110l on-Ji;dTo-"50 

l~~oor~~~O0-~ 

Fig. 3 Generator matrix for the 1Zdimensional lattice packing K12. 

TABLE VII 
K,,, THE BEST PACKING KNOWNIN RI2 

li= 
- = 

” 

- 
N. 

0 I 

I 0 

2 156 

3 4032 

4 20412 

5 60480 

6 139860 

7 326592 

8 652428 

9 1020096 

IO 2000376 

II 3132864 

I2 4445532 

13 7185024 

I4 10747296 

I5 13148352 

I6 21003948 

17 27506304 

I8 33724404 

= - 

= 

1 N, 

I9 48009024 

20 64049832 

21 70709184 

22 102958128 

23 124782336 

24 142254252 

25 189423360 

26 237588120 

27 248250240 

28 344391264 

29 397510848 

30 433936440 

31 554879808 

32 671393772 

33 677557440 

34 90837.4824 

35 1018507392 

36 1079894844 

= 

shown in Fig. 3, p = l/2, det = 33/212, r = 756, and 

A= @ - = 0.0494542 - - - . 
19440 

Furthermore from the weight enumerator of g, we can 

write down immediately that 

OK,2(z) = +,,(2~)~ + 45&,(2~)~+,(2z)~ + 18+,(2~)~ 

=1+756q2+4032q3+-, (4% 

where cp,(z) is defined in (30) and 

h(z) = e2w3(34 + e2(w3(z) 

=ie2( s)e2( $) 

=2q’/4(1 +q ‘I2 + 2q3/2 + q2 + 2q3 + * . * ). 

(50) 

The first 36 terms of the theta function are given in Table 

VII. 

’ XIX. THE 16-DIMENSIONAL LA’ITICE( A,, 

Only a brief description is given here of A,6, the densest 

known lattice in R16, which is obtained by applying Con- 

struction B to the first-order Reed-Muller code of length 

16 (see [34, sec. 3.41, [52, ex. 91). For this lattice d = 16, M 

is shown in Fig. 4, p = 2- ‘12, det = 2-4, r = 4320, and 
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4 

2 2 

2 0 2 

2 002 

20002 
0 

200002 

2000002 

~20000002 

2200000002 

2000000002 

20000000002 

4 4 q 4 0304 i 004 

0~1~~0~0~~001 

0014140~011001 

0004144040~100~ 

t 1 4 1 1414494lfl14 

Fig. 4 Generator matrix for the 16-dimensional lattice packing A,,. The 
last six rows are a generator matrix for the first-order Reed-Muller 
code of length 16. 

TABLE VIII 
A,,,THEBESTPACKINGKNO~NIN RI6 

= 

n 

0 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

II 

I2 

I3 

I4 

I5 

= 

- 

: - 

- 
Nm 

I 

0 

4320 

61440 

522720 

2211840 

8960640 

23224320 

67154400 

135168000 

319809600 

550195200 

1147643520 

1771683840 

3371915520 

4826603520 

= 

m 

16 

17 

I8 

I9 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

= 

8593797600 

11585617920 

19590534240 

25239859200 

40979580480 

50877235200 

79783021440 

96134307840 

146902369920 

172337725440 

25690012704a 

2954876928OC 

43196927616C 

4870582272OC 

699846624WC 

Again the theta function can be written down from the 

weight enumerator of the code ([52, thm. 171) and is 

On;,(z) =; e2(z>‘6 + e3(z)16 + e4(z)16 + 3oe2(z)8e3(z)8) 

= 1 +4320q2+61440q3+ e-w. (51) 

The first 30 terms are given in Table VIII. 

At this point it is worth mentioning an interesting 

unsolved problem. The Nordstrom-Robinson code [36, ch. 

2, sec. 81, [42] is a union of the first-order Reed-Muller 

code above and seven of its translates; it is optimal in the 

sense that it contains the greatest number of codewords of 

any binary code of length 16 and minimum distance 6. It is 

possible that there exists an analogous nonlattice packing, 

perhaps consisting of a union of A,, and 15 translates. The 

theta function can be determined exactly and the first ten 

terms are given in Table IX. Such a packing would have an 

extremely high kissing number and density (see [52, open 

prob. 71). 

XX. THE ~QDIMENSIONAL LEECH LATTICE A24 

A great deal has already been written about this im- 

portant lattice, the densest known packing in R”  [2], [4], 
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TABLEIX 

THE HYPOTHETICAL “NORDSTROM-ROBINSON” NONLAT~ICE 
PACKING IN R’6 

[9]-[12], [32], [34], [43], [52], [54], [55]. The centers are the 

points 

+0+2c+4x) 

2Jz 

and 

-+1+2c+4y), 

2Jz 

whereO=(O,O;..,O), l=(l,l;..,l),cisanycodewordin 

the binary extended Golay code of length 24, and x E 224 

and y E Z24 satisfy 

izlxi~O (mod2), 

z yi = 1 (mod2). 
i=l 

For this lattice d = 24, M is shown in Fig. 5, p = 1, det = 1, 

7 = 196560, 

and 

A = $ = 0.00192957. . . , 

= 1 + 196560q4 + 16773120q6 + . . . . (54) 

The first 40 terms are given in Table X, together with their 

prime factors. 

There is an explicit formula for N,, the coefficient of 
m. 

4 . 

N =$$+l(+~(~)), (55) m 

where a,,(n) is defined by (47) and r(n) is a Ramanujan 

number defined by 

qJ, (1 -qn)24= $ ++I”. (56) 
?Z=l 

Furthermore 

N = 65520 
m -u,,( 7) + OW>, 

691 

the second term on the right being of much smaller order 

than the first. 
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Fig. 5 Generator matrix for the 24-dimensional Leech lattice. The 11 X 
11 circulant matrix in the bottom left corner comes from the generator 
matrix of the Golay code (see [36, fig. 2.131). 

TABLEX 

THE LEECH LATTICE IN R24 

N, Prime Factors of N, 

1 

0 

196560 

16773120 

398034000 

4629381120 

34417656000 

187489935360 

814879774800 

2975551488000 

9486551299680 

27052945920000 

70486236999360 

169931095326720 

384163586352000 

820166620815360 

1668890090322000 

3249631112232960 

0 
2*3'.5.7.13 

2'*.3*.5.7.13 

2'.3'.5',7.13 

6096882661243920 

11045500816896000 

19428439855275360 
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