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Abstract. In this paper we study the following generaliza- 

tion of the job-shop scheduling problem. Each operation 

can be performed by one machine out of a set of machines 

given for this operation. The processing time does not 

depend on the machine which has been chosen for 

processing the operation. This problem arises in the area 

of flexible manufacturing. As a generalization of the job- 

shop problem it belongs to the hardest problems in 

combinatorial optimization. We show that an application 

of tabu search techniques to this problem yields excellent 

results for benchmark problems. 

Zusammenfassung. In dieser Arbeit behandeln wir die 

folgende Verallgemeinerung des Job-Shop Scheduling 

Problems. Jede Operation kann auf einer beliebigen 

Maschine aus einer Menge yon Maschinen, die fiir diese 

Operation gegeben ist, bearbeitet werden. Die Bearbei- 

tungszeit h~ingt dabei nicht yon der gew~ihlten Maschine 

ab. Das in dieser Arbeit behandelte Problem tritt im 

Bereich der flexiblen Fertigung auf. Als Verallgemeine- 

rung des klassischen Job-Shop Problems geh6rt es zu 

den schwierigsten Problemen aus dem Bereich der kom- 

binatorischen Optimierung. Wir zeigen, dab eine An- 

wendung der Tabu-Search Metaheuristik hervorragende 
Ergebnisse fiir die yon uns untersuchten Testprobleme 

liefert. 
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1. Introduction 

In this paper we study a problem which arises in the area 

of flexible manufacturing systems. Here we have a small 

number of so-called multi-purpose machines which can be 

equipped with different tools. Moreover, there is a set of 

jobs which have to be processed on the machines. A 

machine can process a job only if it is equipped with the 

tool the job needs for processing. 

We consider the situation that the multi-purpose 

machines in the system are already equipped with tools. 

This yields the following problem which is called job-shop 

scheduling problem with multi-purpose machines (MPM 
job-shop problem). 

We have a set of jobs, each one consisting of a number 

of operations which have to be processed in a given 

order. Moreover there is a set of multi-purpose machines 

which are equipped with different tools. Associated with 

each operation there is a set of machines which due to 

~heir tool equipment can process this operation. The 

processing of an operation takes a given amount of time. 

We have to find an assignment of the operations to the 

machines and a schedule for the operations on the 

machines such that a given objective function is minim- 

ized. 

The MPM job-shop problem is a generalization of the 

classical job-shop problem which belongs to the hardest 

problems in combinatorial optimization. A problem with 

10jobs and 10 machines which has already been formulat- 

ed in 1963 (Fisher and Thompson (1963)) has been solved 

only 26 year later (Carlier and Pinson (1989)). 

In this paper we will present heuristic solution methods 

for the job-shop problem with multi-purpose machines. It 
is organized as follows. 

In Sect. 2 we will give a description of the MPM job- 

shop problem and an overview on previous research. It 
turns out that some MPM job-shop problems are NP-hard 
even if their classical counterparts are solvable in poly- 

nomial time. 

In Sect. 3 we will present methods for the calculation of 
heuristic solutions based on neighborhoods. Initial solu- 



206 J. Hurink et al.: Job-shop scheduling problem 

tions are calculated using a fast heuristic based on 

insertion techniques. 

We have implemented the developed heuristics on a 

Sun Workstation. Computational results are presented in 

Sect. 4. We conclude this paper by providing final remarks 

in Sect. 5. 

2. Preliminaries 

In this section we will give a formal definition of the job- 

shop scheduling problem with multi-purpose machines. 

Moreover, we will review the previous research on related 

problems and give some complexity results for job-shop 

scheduling problems with multi-purpose machines. 

An assignmentp of operations to machines is feasible if 
p(Oib) ~ dg~j for i= 1 ... . .  n; j= 1, ...,ni. For a given assign- 
ment p a p-schedule is defined by the completion times Cij 
of all operations O~j. Such a p-schedule is feasible if the 

schedule of the job-shop problem corresponding to p is 

feasible, i.e. if it fulfills the restrictions given above. 

We are interested in finding a feasible assignment p* 

and a feasible p*-schedule C* such that the total schedule 

lenght  Cma x is minimized. 

Following the a I/~l 7-notation suggested by Graham, 

LaMer, Lenstra, Rinnooy Kan (1979) we denote the 
job-shop problem with multi-purpose machines by 

J(MPM)I I Cmax- 

2.1. Formulation of  the problem 

The job-shop scheduling problems with multi-purpose 

machines (MPMjob-shop problem) may be formulated as 

follwos. There are n jobs J~,..., J,, each job Ji consisting of 

ni operations Ore.. . ,  Oi, i which have to be processed in this 
order. Moreover, there are m different, so-called multi- 

purpose machines M1,... ,Mm which are equipped with 

different tools. The operation Oij(i = 1,..., n; j =  1 .. . . .  nt) 

has to be processed by one specific tool for Pij time units, 

i.e. it can be processed by each machine which is equipped 

with this tool. Thus, associated with each operation Oii 

there is a non-empty set J//~j_ {3/1,..., M~}: O~j has to be 

processed by one machine of Jt/ij. Preemption is not 

allowed. Moreover, the following restrictions have to be 

fulfilled: 

�9 no machine can process more than one operation at the 

same time and 

�9 no job can be processed by more than one machine at 

the same time. 

Oll (~) 

O12( [-I ) 

(V) 

Fig. 1 

M1 

Figure 1 shows an example of a job-shop problem with 

multi-purpose machines with two jobs, three operations, 

and three machines. The operations Oll, O12, and O21 have 
to be processed by the O-tool, by the rT-tool, and by the 

V-tool, respectively. Thus, Oll may be processed by M1 or 

M2, Oa2 may be processed by 3/2 or M3, and O21 has to be 
processed by M3. 

2.2. Previous research 

Most research has been done on the classical job shop 

scheduling problem which is a special case of the MPM 

job-schop problem; we have I Jgijl = 1 for all operations 

Oij. For this problem both exact methods (branch and 

bound methods, see Applegate and Cook (1991); Carlier 

and Pinson (1990); Brucker et al. (1992), and heuristic 

methods (e.g. based on priority dispatching rules, inser- 

tion techniques, or neighborhoods) are known. Recently 

Dell'Amico and Trubian (1993) presented excellent results 

obtained by applying tabu search to the job-shop prob- 

lem. 
There are other special cases of the MPM job-shop 

problem studied in the literature. Graham (1966) con- 

sidered flow-shop problems with parallel machines which 

are generalizations of the classical flow-shop problem. He 

assumed that there is a set dgj of identical machines for 

processing the operations Oij(i = 1,..., n ; j=  1,..., m) with 

IJlj[ = IJg~l for 1 <_j, k<_m. Salvador (1973) generalized 

this problem to so-called "flexible flow-shops". Again 

there is a set ~'j  of parallel identical machines to process 

the operations Oij(i= 1 ..... n; j = l  .. . . .  m), but now we 

may have [Jgjl e IJgkl for j + k .  Salvador proposed a 
branch and bound algorithm for solving this problem 

exactly. 
The MPM job-shop problem in the form considered in 

this paper has been studied first by Brucker and Schlie 

(1990).They gave a polynomial time algorithm for the 

problem of minimizing the makespan when the number of 

jobs is equal to 2, i.e. for J(MPM)ln=21Cm~x. The 

corresponding problem with 3 jobs is NP-hard even if the 

number of machines is restricted to 2 (Jurisch (1992)). 

Nevertheless, Meyer (1992) proved that the problem 
J(MPM) In = r[ Cma x is solvable in pseudo-polynomial time 
for each fixed number r of jobs. If the processing times of 
the operations are restricted to be equal to 1, the resulting 

problem J(MPM)[ n = r, Pij = 1 [ Cm~x becomes polynomial- 

ly solvable again (Mayer (1992)). 
Brandimarte (1993) considered so-called "flexible job- 

shop" which slightly generalize our problem. In flexible 
job-shops the processing times of operations also depend 
on the machine which is chosen for processing. Moreover, 

he briefly discussed the problem of minimizing the 

weighted number of tardy jobs. 



J. Hurink etai.: Job-shop scheduling problem 207 

The main contribution of the paper  of Brandimarte is a 

tabu search algorithm for flexible job-shops. Our ap- 

proach is different in two aspects: 

�9 Our neighborhood is more sophisticated: Brandimarte 

only considers exchanging successive operations on the 

machines. 

�9 Brandimarte uses a more "hierarchical" approach: He 

solves the problem of assigning the operations to the 

machines and then focuses on the resulting job-shop 

problem for some time. A reassignment is done after a pre- 

defined number  of steps. We consider a reassignment of  

operations in each step of the tabu search algorithm. 

In the next section we will introduce the so-called 

disjunctive graph model which will be helpful for the 

presentation of the heuristic algorithms in Sect. 3. 

Z3. The disjunctive graph model 

�9 each disjunctive arc has been fixed, i.e. there is a fixed 

relation between each pair of  operations that  are assigned 

to the same machine and 

�9 the resulting directed graph G(S) = (V, C w S) is acyclic. 

I t  is easy to see that the finish time of a schedule 

corresponding to a complete selection S is equal to the 

length of the longest weighted (so-called critical) path 

from 0 to * in G(S) = (V, C w S ) .  

3. Tabu search for the MPM job-shop problem 

In this section we will present a tabu-search heuristic for 

the job-shop problem with multi-purpose machines. In 

Sect. 3.1 we will present both the basic ideas of local search 

heuristics and two neighborhoods for the problem. The 

initial solution for the tabu search algorithm is calculated 

using a fast heuristic based on insertion techniques and 

beam search. This algorithm is presented in Sect. 3.2. 

We have already observed that if for the job-shop problem 

with multi-purpose machines an assignment # of the 

operations to the machines is given, the problem of 

calculating an optimal/~-schedule is a classical job-shop 

problem. Thus, a feasible solution of  the MPM job-shop 

problem can be described by a feasible assignment/.z and a 

feasible schedule of the job-shop problem corresponding 

to #. 

We will use the disjunctive graph model (Roy and 

Sussmann (1964)) to describe the solution of a job-shop 

problem. For  a given instance of the MPM job-shop 

problem and a corresponding feasible assignment/~ we 

define a disjunctive graph G = (V, C, D) as follows. 

V is the set of nodes, representing the operations of all 

jobs, In addition there are two special nodes, a source 0 

and a sink *. There is a weight associated with each 

node. The weights of 0 and * are zero while the weights 

of the other nodes are the processing times of the 

corresponding operations. 

C is the set of  directed conjunctive arcs. These arcs reflect 

the job-order  of the operations. Additionally there are 

conjunctive arcs between the source and the first 

operations of all jobs and between the last operation of 

all jobs and the sink. More precisely, we have 

C =  {0~ s -~O~, j+~: i - t  . . . .  , n ; j = l , . . . , n j - 1 }  

va{0 --" 0il : i=  l . . . .  ,n} 

{Oi~, -+ * : i = 1 . . . . .  n} 

D is the set of undirected disjunctive arcs. Such an arc 

exists for each pair of operations which are assigned to 

the same machine. 

The basic scheduling decision is to define an ordering 

between all those operations which are assigned to the 

same machine. This can be done by turning undirected 
disjunctive arcs into directed ones. A set S of  directed (so- 

called f ixed) disjunctive arcs is called a selection. I f  a 

selection defines a feasible schedule it is called a complete 
selection. A selection is complete if 

3. I. Heuristics based on local search techniques 

We will present the basic ideas of heuristics based on local 

search techniques in Sect. 3. I. I. tn connection with these 

methods it is necessary to define a neighborhood on the set 

of all feasible solutions or - more generally - on a subset of 

the set of  all feasible solutions which contains the optimal 

solution of the given problem. In Sect. 3.1.2 we will 

present two different neighborhoods for the MPM job- 

shop problem. 

3,1.1. Basic ideas of  local search heuristics. We will describe 

heuristics based on local search techniques for solving an 

arbitrary discrete optimization problem (Hurink (1992)), 

A discrete optimization problem may be described as 

follows. 

For  a given finite set S of feasible solutions and a cost 

funk t ion f :  S + ~, we have to find a solution s* a S with 

f ( s*)  <_f(s) for a l l s e S .  

Heuristics based on local search techniques start f rom 

some solution s e S and search iteratively through the set S 

until some stop condition is fulfilled. When searching 

through the set S in some systematic way it makes no sense 

to allow moves from one feasible solution s to any other 

feasible solution s ' .  This would result in a random search 

procedure or  a complete enumeration. The set of  solutions 

which are reachable f rom s - these solutions are called 

neighbors of s - has to be restricted in some way. This is 

done as follows. 

For each solution s ~ S we define a set N(s)~_ S of 

neigbors of s. It is possible to move from s to another 

solution s '  if and only i f s '  oN(s).  The complete neighbor- 
hood N is defined by the set of neighbors N(s) for each 

s~S .  
In general the set S contains an exponential number of  

solutions. For  this reason it is not possible to store the 

whole neighborhood. The best way to overcome this 
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difficulty is to give a rule which for any feasible solution s 

describes the set N(s) of neighbors. This rule is given by a 

set of allowed modifications. An allowed modification is a 

mapping F: S ~ S. 

In general an heuristic algorithm based on local search 

techniques may be formulated as follows. 

Algorithm local search 

0. Calculate an initial solution s ~ S; 

REPEAT 

1. Calculate some solution s' eN(s); 

2. If s' is accepted THEN 

S := S'; 

3. UNTIL some stop condition is fulfilled; 

Different types of local search heuristics differ by 

�9 the method which is used for calculating a solution 

s'eN(s) (Step 1.); 

�9 the criteria for accepting a solutions s'e N(s) (Step 2.); 

�9 the stop condition which is used (Step 3.). 

The simplest heuristic based on local search techniques is 

the iterative improvement appraoch (e.g., see Papadimi- 

triou and Steiglitz (1982)). From all solutions ~ eN(s) we 

choose the best one (in terms of the objective function) as 

starting solution for the next iteration. The procedure 

continues until no solution ~eN(s) with f(~)<f(s) is 

found. 

One of the main problems with the iterative improve- 

ment algorithm is the following. Because only solutions s' 

which improve the current solutions s are accepted it is not 

possible to leave a local optimum. The objective value of 

such a local optimum may be much greater than the 

objective value of the optimal solution. 

To overcome this problem also solutions which do not 

improve the current solution have to be accepted. How- 

ever, this implies that solutions can be inspected more 

than once and therefore the method might get stuck in a 

cycle. 
One method to avoid these problems would be to store 

all solutions s ~ S which have already been visited in a so- 

called tabu list T. A neighbor s' of the current solution s is 

only accepted as starting solution for the next iteration if it 

is not contained in the tabu list T. Strategies of this type are 

usually called tabu search methods (see, e.g., Glover 

(1989), (1990)). 
Due to capacity restrictions it is not possible to store all 

the solutions which have already been visited. Therefore 

the tabu list will contain only the t solutions which have 

been inspected last.If t is large enough the possibility of 

cyclin becomes small, but it may still occur. Thus, some 

stop-criteria have to be used to guarantee the termination 

of the algorithm. Furthermore we will not store whole 

solutions in the tabu list but only typical properties of a 

solution which guarantee that a visited solution becomes 

tabu, i.e. it will not be reached again. 
We illustrate this proceeding in an example. Assume 

that we try to solve a one-machine problem with n jobs Jl, 

J2 . . . .  , J ,  using a tabu search approach. One solution y may 

be given by the ordering J1 ~ J2 4 . . . 4  j~. Now assume 
that we generate a neighbor o f y  by moving the operation 

Jr to the first position. Instead of storing the whole 

solution y in the tabu list, we only store the part 

Ji l--" J i--" J i+1. All modifications which yield a solution 

containing this partial order are forbidden. Thus, it is not 

possible to return to solution y as long a s  Ji-I --' Ji---' J i  + 1 is 

contained in the tabu list. 

This example also shows a disadvantage of such a 

proceeding. Not only the solution y is forbidden, but all 

solutions containing the partial order Ji_ l~J~Ji+i .  
Thus, solutions may be forbidden even if they have not 

been inspected yet. To overcome this problem heuristics 

based on tabu-search techniques use so-called aspiration- 
criteria which allow to accept neighbors even if they are 

forbidden due to the tabu list; i.e. the aspiration-criteria 

cancel the tabu status of a solution. For  example, 

solutions which improve the best solution found so far 

should always be accepted. For  details we refer to 

Dell 'Amico and Trubian (1993). 

Algorithm tabu search 

T : = 0 ;  

0. Calculate an initial solution s ~ S; 

REPEAT 
IF all modifications lead to solutions which are tabu 

TH EN  

STOP; 

1. Choose an allowed modification F which does not 

lead to a tabu solution; 

Calculate the resulting solution s' := F(s); 

2. s := s'; 

update the tabu list; 

3. UNTIL some stop-condition is fulfilled; 

The stop-conditions in Step 3. of the algorithm may 

depend on the number of iterations, the time which has 

passed without improving the best solution found so far, 

etc. Furthermore a simple and efficient strategy for 

choosing the allowed modification in Step 1 is to choose 

the modification F which gives the best solution s' in the 

set of all solutions which can be generated by allowed 

modifications. 
The quality of an heuristic based on local search 

techniques strongly depends on the neighborhood N 

which is used. In the following section we will give two 

neighborhoods for the MPM job-shop problem which 

yield quite efficient local search heuristics. 

3.1.2. Neighborhoods for the MPM job-shop problem. In 

this section we will give two neighborhoods for the MPM 

job-shop problem. Both neighborhoods are based on a 

theorem which describes how a given solution of a MPM 

job-shop problem may be improved. To describe this 

theorem we need the notation of a block which has been 

introduced in connection with one-machine problems, 

permutation flow-shop problems, etc. (e.g., see Grabows- 

ki et al. (1986)). 
Let r be a feasible assignment and S a complete 

selection of the job-shop problem corresponding to /1. 

Furthermore let P be a critical path in G (S). A sequence of 

successive nodes in P is called a block on P in G(S) if the 

following properties are satisfied: 
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�9 The sequence contains at least two nodes�9 

�9 All operations represented by the nodes in the sequence 

are assigned to the same machine. 

�9 Enlarging the sequence by one operation yields a 

sequence which does not fulfill the second property. 

Note that the selection S defines an optimal solution if one 

critical path P in G(S)  does not contain any block at all. In 

this case, any pair of successive operations on P is 

processed on different machines, i.e. they are connected 

by a conjunctive arc. Thus, all operations on P belong to 

the same job J~, and the length of the critical path P is equal 

to the sum of processing times of all operations of J~. 

Obviously, this value defines a lower bound for the 

makespan of an optimal schedule. 

Based on the given notation we can prove the following 

theorem. 

Theorem 1. Let y and y '  be two feasible solutions of  a given 
M P M  job-shop problem corresponding to the complete 

selection S and S', respectively. I f  y '  improves y, then for 

any critical path P in G(S)  one of  the following properties 
holds: 

�9 in y '  at least one operation of  one block o fP  isprocessed 

on another machine than in y, or 

�9 in y '  at least one operation of  one block B of  P, different 
f rom the first  operation in B is processed before all other 
operations of B, or 
�9 in y" at least one operation of  one block B of  P, different 
from the last operation in B is processed after all other 
operations of  B. 

Proof Any critical path P in G(S) has the following form: 

P: 0, l, u' u 2 
. - - ,  b l ~  . . . ,  b 2 ~  . - - ,  . . . ,  

Here u{,... ,us define a maximal number of operations 
�9 J �9 . 

which are processed on the same machine, i.e. ul j, �9 �9 UbJ 
defines a block if bj>_2. Now assume that in y '  all 

operations of all blocks are processed on the same 

machine as in y, and that in y '  no operation of any block B 

of P is processed before the first or after the last operation 

of B. Thus, we have: 

(i) us is processed before u{ +1 in y '  ( j =  l, . . ., k - 1 ) :  

because u~ and u{ + 1 are processed on different machines in 

j+ 1 �9 Y �9 ' successor of u~/ y, ul is a conjunctive . . 

(ii) If by > 2, all operations u{,. u j _ .., bj are processed on the 

same machine both in y and in y'.  

(iii) If by > 2, u{ is processed before u{, ..., u yb:, and ubjY is 

processed after u{, . J �9 . ,u b l both in y and in y'.  

In y '  the operations ~ . . . . .  u!j are porcesed in an 

order v{ . . . . .  v~j, where J Vl . . . . .  v~j is a permutation of 

U j , U j �9 �9 . ...,. bj(J= 1 .. . .  ,k). Due to (iii) we have v] =u~ and 
J _  J vbj-ubj for all j =  1 . . . .  , k. Thus, G(S')  contains the path 

P': 0 , v l  . . . . .  4 ,vL v L  v * 
�9 , . ~  V b 2 ~  �9 �9 . ~  �9 . . ~  b k ,  �9 

The length L(S ' )  of the longest (critical) path in G(S')  
cannot be less than the lenght of P'. Thus, we have 

k 

L(s')> E 2pv(  
j = l  l - 1  

k bj 

=2  Epu  
j - 1  1 - 1  

- L ( s )  

where L(S )  denotes the length of the critical path in G(S). 

This contradicts the assumption. [] 

Based on this theorem the first neighborhood is defined as 

follows. 

Neighborhood N1 

Consider a feasible solution y for a MPM job-shop 

problem. A feasible solution y '  is a neighbor of y if it is 

constructed in the following way. 

Let S denote the complete selection corresponding to y 

and let P be a critical path in G (S). Then y ' i s  derived from 

y by 

�9 processing one operation of one block of P on another 

machine than in y or by 

�9 moving one operation of  one block B of  P different from 

the first (the last) operation in B before (after) all other 

operations of B. 

Because of theoretical and practical reasons a fundamen- 

tal question is whether a given neighborhood has the 

connectivity property or not. This property is defined as 

follows. 

A neighborhood Nis called connected if it is possible to 

reach from any solution y to an optimal solution in a finite 

number of steps, i.e. if there exists a final sequence 

(Y = Y l, Y2,..., Y~> of solutions such that Yi + 1 a N(yi  ) for all 

i = 1 . . . .  , k - 1 and Yk is an optimal solution. 

We strongly conjecture that neighborhood N1 has the 

connectivity property, but unfortunately a proof  (or a 

counterexample) has not been found yet. Later we will 

prove that the second neighborhood called N2 which is 

based on an idea of Dell 'Amico and Trubian (1993) is 

connected. 

Neighborhood N2 

Consider a feasible solution y for a MPM job-shop 

problem. A feasible solution y '  is a neighbor of y if it is 

constructed in the following way. 

Let S denote the complete selection corresponding to y 

and let P be a critical path in G(S). Then y '  is derived from 

y by 

�9 processing one operation of one block of P on another 

machine than in y or by 

�9 moving one operation of one block B of P different from 

the first (the last) operation in B before (after) all other 

operations of B. If the move of one operation j of one 

block B of P before (after) all other operations of B yield 
an unfeasible solution, then y '  may also be generated by 
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r t, 
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movingj  into the position inside the block B closes to the 

first (last) position of B such that the resulting schedule is 

feasible. 

Note that we have N1 _ N 2 ,  i.e. N l ( y ) c N 2 ( y )  for all 

feasible schedules y. N2 is obtained from N1 by consider- 

ing additional moves whenever a move of an operation 

before or after the corresponding block generates an 

unfeasible schedule due to other fixed disjunctions. In 

Fig. 2 such a situation is shown. The operations 1,2 . . . . .  7 

may define a block on a critical path. Assume that moving 

operation 5 before 1 or 2 generates unfeasible schedules 

because there is a path from 2 to 5 different from the path 

2--* 3 ~ 4--. 5 in the disjunctive graph (symbolized by the 

bent arc in Fig. 2a). Moving 5 after 2 and before 3 may 

generate a feasible schedule. Thus, a neighbor is generated 

by moving 5 between 2 and 3 (see Fig. 2b). 

For  proving the connectivity of the neighborhood N2 

we need the following 

Lemma 1. Let y be a feasible solution of a MPMjob-shop 

problem corresponding to a complete selection S. Let i --*j be 

a disjunctive arc on a criticalpath in G(S) (this implies that i 

andj are two operations which are processed successively on 

one machine in y). Then the inversion of the disjunctive arc 

i ~ j  also yields a feasible schedule. 

Proof Since the assignment of the operations to the 

machines does not change, the result follows immediately 

from a similar result for the job-shop problem given by 

van Laarhoven, et al. (1992). 

Using Lemma 1 we can prove the following 

Theorem 2. The neighborhood N2 is connected. 

Proof Consider an arbitrary feasible schedule y. I f y  is an 

optimal solution we are done. Otherwise consider an 

optimal schedule y* and the corresponding complete 

selection S*. For an arbitrary solution y '  let nM(y') be the 

number of operations which are assigned to different 

machines in y '  and y*, and let nD(y') be the number of 

disjunctive arcs fixed in different directions in S'  and S* 

(S' denotes the complete selection corresponding to y').  

We do not count disjunctive arcs which are fixed in one 

complete selection and which are missing in the other one 

due to the fact that the corresponding operations are fixed 

on other machines. 

We show that it is possible to construct a finite number 

of feasible schedules Yl, Y2,..-, Yk with the following prop- 

erties: 

(1) y - Y l ,  and Yk =Y* or y~ is another optimal schedule. 

(2) Yi+l ~N2(yg) (i= 1, . . . , k -  1). 
(3) Operations which are assigned to the "optimal" 

machine in y~ (i.e. to the machine which processes this 

operation in y*) are still assigned to this machine in y~+ 1. 

Thus, we have nM(yi+ 1)< nM(yi) (i = 1 . . . . .  k -  1). 

(4) If nM(yi+l)=ng(yi), then nD(yi+l)<nD(yi) (i--1 . . . .  , 
k - 1), i.e. the following property holds. Assume that the 

number of operations which are assigned to the "optimal" 

machines does not increase. Then the number of disjunc- 

tive arcs directed into the "wrong" direction (in compari- 

son with y*) decreases. 

Assume that the solutions y2, .-., Yi have been constructed 

in this way. Ifyiis optimal we are done. Otherwise, let Sibe 

the complete selection corresponding to Yi. Due to 

Theorem 1 the following property holds for any critical 

path P in G(Si): One operation of one block on P is 

processed on another machine than in y*, or some 

operation of one block B on P is processed before or after 

all other operations of the block B in y*. 

Now consider an arbitrary critical path P in G(Si). 

First assume that there exists one operat ionj  of one block 

of P which is assigned to machine Mk(Ml) in Yi(Y*) where 

k # L It is possible to r emove j  from Mk and to insert it at 

some position on Mr, obtaining a feasible schedule Yi+ ~. 
Because this is one of the moves in N2, we have 

Yi+ 1 ~ N2(yi) and nM(yi+ 1) <ng(yi). Thus, this move ful- 

fills properties (2), (3), and (4). 
Now assume that all operations of all blocks on the 

critical path P are assigned to the same machines as in y*. 

At least one operation ij of one block B = {il,/2 . . . .  , ij, ..., it} 

is processed before or after all other operations of B in y*. 

If ij has to be processed before all other operations of B, 

then we move ij to the first possible position in B such that 

the resulting schedule Yi+l is feasible. This is one of the 

moves in N2. Note that due to Lemma 1 it is always 
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possible to move ij before ij_ 1 because this defines the 

inversion of one disjunctive arc on the critical path. If/j is 

moved directly before i~(l<_s<j-1), then we have 

nD(Yi) --nD(yi, X) =J-- S, i.e. the number of arcs directed in 
"wrong" direction decreases. 

If ij has to be processed after all other operations of B 

we can argue in a similar way. Thus, we obtain 

Y,+l eN2(yi), nM(Yi+l)=nM(Yi), and nD(yi)< nD(/i+ 1): the 
properties (2), (3), and (4) given above are fulfilled. 

We still have to prove that the number of steps that 

we need to reach the solution y* (or another optimal 

solution) is finite. Consider the pair (nM(yi), nv(yi)). 
Due to the properties (3) and (4) (nM(Yi), n~(yi)) is strong- 
Iy lexicographically decreasing in i. Because we have 

nD(Yi) < nj (the latter value is an upper bound 
j=l 

for the total number of disjunctive arcs), the number of 

steps which are necessary to reach y* or another optimal 

solution from y is bounded by riM(y) nj . [] 
j=l 

Based on the two neighborhoods it is possible to apply 
tabu search to the MPM job-shop problem. It only 

remains to give a method for calculating an initial 

solution. In the next section we will present a fast heuristic 

algorithm which is based on insertion techniques. It is a 

generalization of a heuristic proposed by Werner and 

Winkler (1991) for the classical job-shop problem. 

3.2. A heuristic algorithm based on insertion techniques 

We start with a feasible partial schedule which only 

contains the operations of the longest job. In this partial 

schedule the operations of the longest job have to be 

assigned to machines. The choice of  a machine to process 
an operation is done as follows. 

For each machine we calculate the sum of the process- 

ing times of the operations which have to be processed by 

this machine, i.e. the value 

P(M~) = ~,, Pij. 
O,j 

We assign the first operation of the longest job, say Ol, to 

the machine M~ with minimal value P(Mk). Then we 

update the value P(Mk) by defining P(Mk):=P(M~)+Pl- 
Next we assign the second operation to a machine, etc. 

Thus, after each step P(Mk) is the sum of processing times 

af all operations which can be processed only on this 

machine or which already have been assigned to this 

machine. 
After scheduling the operations of the longest job (i.e. 

after assigning these operations to machines) we succes- 

sively insert the remaining operations into the feasible 

partial schedule in an order of non-increasing processing 

times. For deciding how an operation Oij should be 

inserted into the feasible partial schedule we check all 

possible positions as follows: 

�9 We assign operation Oij to all machines Mk e~/g~? 

�9 For each machine Mk we execute the following steps. 

Assume that 1 operations have already been assigned to 

machine Mg. We insert Oij before the first operation on 

Mk, then after the first and before the second one, etc. 

Finally we insert Oij after the last operation on M~. Thus, 

we check l+ 1 positions for the insertion of Ogj on Mk. The 

cost of assigning an operation in a specific position is 

defined as the length of the longest path through this 

operation in the resulting disjunctive graph. If the result- 

ing graph contains a cycle, the cost is defined as ~.  

After assigning the operation Oij to all machines in Jgij 

and inserting it in all feasible positions we choose the 

assignment and position which gave the lowest costs. 

We illustrate the insertion algorithm using the follow- 

ing example. 

Example. n = 3, m = 3, prec = 0 

Pil ~'zl Pi2 J/{i2 P~3 ~i3 
3"1 1 {M~} 4 {M2, M3} 2 {M3} 

J? 1 {M?} 3 {MI,M3} 3 {MI, M3} 

J3 4 {M~, M3} 1 {2142} 5 {Me} 

The initial feasible partial schedule only contains the 

operations of the longest job J3. The sum of processing 

times of operations which have to be processed on M1 is 1, 

and the sum of processing times of operations to be 

processed on M3 is 2. Thus, we assign O31 to M~. 

Now we insert O12 into this partial schedule. Assigning 

O12 to M3 yields the lowest cost. In the next step we insert 

02z into the resulting schedule. Continuing in this manner 

we finally obtain a schedule with Cmax = 11 (see Fig. 3). 

M3 

Ol1[ 031 

021 0 3 3  

0 1 

012 

I I 

2 3 

022 

032[ 

O,a 

I I I 

4 5 6 7 

023 

I I 

9 10 11 Fig. 3 

I 

12 
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For improving the quality of the heuristic solution we 

additionally use the so-called beam search technique (Ow 

and Morton (1989); Werner and Winkler (1991)). The 

main idea of this technique is to examine a fixed number k 

of feasible partial schedules in parallel. The insertion 

algorithm with beam search applied to the MPM job-shop 

problem works as follows. 

Again we start with a partial schedule consisting only 

of the operations of the longest job. Then we assign the 

longest remaining operation to all feasible machines and 

schedule it in all possible positions. We select the k 

resulting feasible partial schedules which yield the lowest 

costs; if only l < k  feasible partial schedules exist, we 

consider them all. In the next step we insert the second- 

largest operation into all the selected partial schedules, i.e. 

we assign it to all feasible machines and schedule it in all 

feasible positions in all selected partial schedules. Again 

we select the k resulting feasible partial schedules with 

lowest costs, etc. In the last step, the best schedule which 

has been generated is taken as solution. 

4. Computational results 

We implemented the heuristics described in Sect. 3 in C on 

a Sun 4/20 Workstation. For  obtaining test problems for 

the MPM job-shop problem we modified benchmark 

problems for the classical job-shop problem. In detail we 

considered the following problems (problems m06, ml0,  

m20 are from Fisher and Thompson (1963), problems 101- 

140 are from Adams et al. (1988)). m denotes the number of 

machines, n the number of jobs. 

m n 

toO6 6 6 

mlO 10 10 

m20 5 20 

101-105 5 10 

106-110 5 15 

111-115 5 20 

116-120 10 10 

121-125 10 15 

126-130 10 20 

131-135 10 30 

136-140 15 15 

In each case the number of operations per jobs is equal to 

the number of machines, i.e. we have ni - m for i = 1,. . . ,  n. 

These benchmark problems for the classical job-shop 

problem are very special instances of MPM job-shop 

problems: we have IM//ijl = 1 for all operations Oii. For 

obtaining MPM test problems, we modified the job-shop 

benchmark problems in the following way. 

Each operation can be processed by the machine which 

has to process it in the job-shop benchmark problem. For  

each operation Oij, we consider all machines Mk one by 

one, enlarging the set Mdii by Mk with a given probability. 

By considering different probabilities, we obtain different 

sets edata, rdata, vdata of benchmark problems for the 

MPM job-shop problem. 

The main properties of the benchmark problems are 

summarized in the following table. I JC/ij[ ave (l~uI max) 

denotes the average (maximal) cardinality of the sets Jgij. 

[ J/Lij I ave lJgijl max 

edata: 1.15 2 (m _< 6) 

3 (m >_ 10) 

rdata: 2 3 
1 4 

vdata: ~ m ~ m 

We studied four different variants of tabu search. We 

considered both neighborhoods N1 and N2. For  each 

neighborhood we tested two variants, the first one by 

limiting the maximal number of iterations by 1000, the 

other one by limiting this number by 5000. Additionally, 

all variants have the following properties: 

�9 The length of the tabu list is equal to 30. 

�9 Neighbors of the current solution are generated in an 

order of non-decreasing lower bounds. This proceeding 

allows to drop a great number of neighbors without 

considering them in detail. 

�9 The tabu search algorithms terminate before the maxi- 

mal number of iterations is reached if one of the following 

properties holds: 

- All neighbors of the current solutions are tabu. 

- The makespan of the best found solution is equal to a 

lower bound. 

- The methods gets stuck in a cycle. The algorithms are 

able to recognize cycles containing at most 100 solutions. 

The choice of the parameters has been done after some 

preliminary computational tests. The value 1000 for the 

maximal number of iterations seems to be a good trade of 

between time and quality. If one would reduce this 

number from 1000 to 500 the computational times would 

also reduce in most cases by the factor ~ and the quality of 

the solution would get worse only in some cases. However, 

since these deteriorations of the quality were quite large 

for some benchmark problems and since the computa- 

tional times for 1000 iterations are acceptable this number 

has been chosen as basic number. In order to investigate 

the influence of an additional large amount of computa- 

tional time on the quality of the solutions, we have chosen 

5000 as second number for the maximal number of 

iterations. 
For  the length of the tabu list several values have been 

considered in the preliminary tests. In general there was 

no lenght which led in all cases to the best results. For  the 

number 30 we got in average the best results. For  details 

we refer to Thole (1993). 

The complete results with a maximum of 1000 itera- 

tions are presented in Table 1. The table contains the 

following information: 

�9 LB: The value of the best known lower bound for the 

problem given by Jurisch (1992). If this value is marked 

with an asterisk it is the makespan of the optimal solution. 

�9 beam3: The value of the initial solution, calculated by 
using the insertion algorithm based on beam search with 

beamwidth k = 3. 



T
a

b
le

 1
 

d
a

ta
 

L
B

 

m
0

6
 

*
5

5
 

m
l0

 
"
8

7
1

 

m
2

0
 

"
1

0
8

8
 

it
 

1
0
1
 

*
6

0
9

 

1
0
2
 

*
6

5
5

 

1
0
3
 

*
5

5
0

 

1
0
4
 

i 
*

5
6

8
 

1
0
5
 

! 
*

5
0

3
 

1
0
6
 

'i
 

"
''

8
3

3
 

1
0
7
 

i 
*

7
6

2
 

1
0
8
 

! 
*

8
4

5
 

1
0
9
 

*
8

7
8

 

1
1
0
 

*
8

6
6

 

1
1
1
 

'i
 

' 
1

0
8

7
 

1
1
2
 

/ 
*

9
6

0
 

1
1
3
 

"
1

0
5

3
 

1
1
4
 

"
1

1
2

3
 

1
1
5
 

"
1

1
1

1
 

1
1
6
 

" 
' 

*
8

9
2

 

1
1

7
 

*
7

0
7

 

1
1
8
 

*
8

4
2

 

1
1
9
 

*
7

9
6

 

1
2

0
 

*
8

5
7

 

1
2
1
 

8
9

5
 

1
2
2
 

8
3

2
 

1
2
3
 

9
5
O

 

1
2
4
 

8
8

1
 

1
2
5
 

8
9

4
 

1
2
6
 

..
..

 
1

0
8

9
 

1
2

7
 

1
1

8
1

 

1
2
8
 

1
1

1
6

 

1
2

9
 

1
0

5
8

 

1
3
0
 

1
1

4
7

 
rl

 

1
3
1
 

1
5

2
3

 

1
3
2
 

1
6

9
8

 

1
3
3
 

"
1

5
4

7
 

1
3
4
 

1
5

9
2

 

1
3
5
 

"
1

7
3

6
 

tt
 

1
3
6
 

1
0

0
6

 

1
3

7
 

1
3

5
5

 

1
3
8
 

1
0

1
9

 

1
3

9
 

1
1

5
1

 

1
4
0
 

1
0

3
4

 

e
d

a
ta

 

N
1

 
- 

I0
0

0
 

b
e

a
m

3
 

U
B

 

5
7

 
5

7
 

9
9

5
 

9
1

7
 

1
2

1
0

 
1

1
0

9
 

6
8

8
 

6
1

1
 

6
6

7
 

6
5

5
 

6
4

7
 

5
7

3
 

6
1

3
 

5
7

8
 

5
1

0
 

5
0

3
 

9
0

0
 

8
3

3
 

8
0

7
 

7
6

5
 

9
4

9
 

8
4

5
 

9
1

2
 

8
7

8
 

8
8

0
 

8
6

6
 

1
1

5
8

 
1

1
0

6
 

1
0

3
9

 
9

6
0

 

1
2

1
5

 
1

0
5

3
 

1
1

7
3

 
1

1
5

1
 

1
2

1
7

 
1

1
1

1
 

9
6

1
 

9
2

4
 

7
7

4
 

7
5

7
 

8
6

4
 

8
6

4
 

8
5

4
 

8
5

0
 

9
4

7
 

9
1

9
 

1
2

5
9

 
1

0
6

6
 

1
0

4
9

 
9

1
9

 

1
1

2
2

 
9

8
0

 

1
0

4
7

 
9

5
2

 

1
1

4
8

 
9

7
0

 

1
2

6
8

 
1

1
6

9
 

1
4

0
3

 
1

2
3

0
 

1
3

3
5

 
1

2
0

4
 

1
3

6
9

 
1

2
1

0
 

1
4

3
6

 
1

2
5

3
 

N
2

 
- 

I0
0

0
 

C
P

U
 

U
B

 
I 

C
P

U
 

i 

0
.9

 
5

7
 

0
.9

 

1
:0

6
.2

 
8

9
9

 
2

4
.4

 

2
:2

2
.0

 
1

1
3

5
 

3
:4

1
,3

 

1
7

.1
 

6
1

8
 

6
.1

 

3
9

.6
 

6
5

6
 

3
9

.2
 

7
.9

 
5

6
6

 
3

.5
 

3
1

.7
 

5
7

8
 

3
9

.4
 

3
4

,0
 

5
0

3
 

5
.7

 

1
:1

8
.3

 
8

3
3

 
1

:4
7

.8
 

1
:3

3
.6

 
7

7
8

 
1

:5
9

.3
 

1
:1

9
.7

 
8

4
5

 
1

:5
5

.0
 

1
:3

3
,0

 
8

7
8

 
2

:0
9

.7
 

2
2

.2
 

8
6

6
 

1
:2

7
.3

 

2
:4

2
.4

 
1

1
0

6
 

2
:2

6
.6

 
9

6
0

 

1
:5

0
.5

 
1

0
5

3
 

3
:1

3
.2

 
1

1
2

3
 

2
:2

2
.6

 
1

1
2

1
 

3
6

.5
 

9
6

1
 

1
2

.9
 

7
5

7
 

7
.4

 
8

6
4

 

8
.2

 
8

1
3

 

9
.1

 
9

1
9

 

2
:2

2
,8

 
1

0
8

5
 

1
:5

7
.2

 
9

0
5

 

2
:0

6
.1

 
9

8
0

 

1
:5

8
.9

 
9

5
2

 

2
:1

0
.1

 
9

6
9

 

3
:5

8
.3

 
1

1
4

9
 

3
:3

9
.8

 
1

2
3

6
 

3
:3

7
.8

 
1

1
9

7
 

3
:4

7
.6

 
1

2
0

5
 

3
:4

2
.6

 
1

2
8

6
 

ii
 

L
B

 
ii

 
, 

*
4

7
 

6
7

9
 

: 
1

0
2

2
 

it
 : 

5
7

0
 

i 
5

2
9

 

4
7

7
 

*
5

0
2

 

*
4

5
7

 
J

l 

7
9

9
 

7
4

9
 

7
6

5
 

8
5

3
 

8
O

4
 

4
:3

6
.1

 
" 

"
1

0
7

1
 

4
:3

1
.1

 
9

3
6

 

2
:5

6
.3

 
"

I
0

3
8

 

4
:2

6
.2

 
"

1
0

7
0

 

3
:1

5
.9

 
1

0
8

9
 

11
 

1
2

.5
 

"
7

1
7

 

1
3

.0
 

*
6

4
6

 

7
.3

 
*

6
6

6
 

1
1

.4
 

i 
6

4
7

 

9
.2

 
t 

*
7

5
6

 
11

 
�9

 

2
:3

0
.7

 
8

0
8

 

2
:0

6
.8

 
7

3
7

 

2
:1

9
.4

 
8

1
6

 

2
:1

8
.1

 
7

7
5

 

2
:1

0
.2

 
7

5
2

 
tt

, 

4
:1

4
.1

 
1

0
5

6
 

4
:1

9
.5

 
1

0
8

5
 

4
:1

4
.9

 
1

0
7

5
 

4
:3

5
.0

 
9

9
3

 

4
:3

2
.1

 
1

0
6

8
 

I
t 

1
7

9
7

 
1

5
9

6
 

1
0

:3
4

.0
 

1
5

9
3

 
1

4
:3

3
.1

 
1

5
2

0
 

1
8

3
5

 
1

7
6

9
 

3
:3

6
.6

 
1

7
5

7
 

6
:0

0
.4

 
1

6
5

7
 

1
7

4
9

 
1

5
7

5
 

9
:3

2
,2

 
1

5
7

5
 

1
5

:4
3

.5
 

1
4

9
7

 

1
7

8
1

 
1

6
2

7
 

8
:2

8
.1

 
1

6
3

6
 

1
3

:3
6

,1
 

1
5

3
5

 

1
8

1
7

 
1

7
3

6
 

5
:3

4
.6

 
1

7
3

6
 

1
2

:3
7

.0
 

1
5

4
9

 
I
I
 

1
3

5
5

 
1

2
4

7
 

3
:0

3
.0

 
1

2
3

5
 

3
:0

8
,3

 
1

0
1

6
 

1
6

2
1

 
1

4
5

3
 

2
:4

7
.3

 
1

4
5

6
 

3
:0

5
.2

 
9

8
9

 

1
2

3
2

 
1

1
8

5
 

2
:4

5
.8

 
1

1
8

5
 

2
:5

8
.0

 
9

4
3

 

1
3

9
0

 
1

2
2

6
 

2
:5

6
.3

 
1

2
2

6
 

3
:0

6
.9

 
9

6
6

 

1
3

2
4

 
1

2
1

4
 

2
:5

1
.5

 
1

2
3

6
 

3
:0

2
.4

 
9

5
5

 

r
d

a
ta

 

N
1

 
- 

1
0

0
0

 

b
e

a
m

3
 

U
B

 

5
0

 
4

7
 

8
0

3
 

7
3

7
 

1
0

7
2

 
1

0
2

8
 

5
9

1
 

5
7

4
 

5
8

0
 

5
3

5
 

5
3

7
 

4
8

1
 

5
5

0
 

5
0

9
 

4
8

7
 

4
6

0
 

8
3

1
 

8
0

1
 

7
8

0
 

7
5

2
 

7
8

8
 

7
6

7
 

8
9

5
 

8
5

9
 

8
2

4
 

8
0

6
 

1
0

9
3

 
"
1

0
7

3
 

9
6

1
 

9
3

7
 

1
0

4
6

 
1

0
3

9
 

1
0

8
6

 
1

0
7

1
 

1
1

2
6

 
1

0
9

3
 

8
3

5
 

7
1

7
 

8
9

8
 

6
4

6
 

7
5

5
 

6
7

4
 

7
7

7
 

7
2

5
 

8
0

8
 

7
5

6
 

9
6

0
 

8
6

1
 

N
2

-
 
1
0
0
0
 

C
P

U
 

U
B

 
I 

C
P

U
 

L
B

 
i 

I
I
 

5
.6

 
4

7
 

2
9

.7
 

*
4

7
 

1
3

.2
 

7
3

7
 

1
3

.0
 

, 
*

6
5

5
 

1
:2

8
.0

 
1

0
2

8
 

9
:3

1
.2

 
"
1

0
2

2
 

1
:1

6
.8

 
5

7
7

 
1

:2
9

.7
 

*
5

7
0

 

1
:1

9
.7

 
5

3
5

 
1

:3
6

.8
 

, 
*

5
2

9
 

1
:2

5
.0

 
4

8
6

 
1

:3
3

.6
1

 
4

7
7

 

1
:2

3
.4

 
5

0
6

 
1

:3
3

.7
 

*
5

0
2

 

1
:4

1
.9

 
4

5
8

 
1

:5
6

.6
 

4
5

7
 

, 
H

 
, 

3
:1

6
.2

 
8

0
3

 
4

:2
8

,7
 

*
7

9
9

 

3
:3

2
.6

 
7

5
2

 
4

:3
3

.3
 

7
4

9
 

3
:3

0
.5

 
7

6
8

 
4

:3
3

.6
 

7
6

5
 

3
:4

4
.0

 
8

5
7

 
4

:2
9

.4
 

8
5

3
 

3
:4

2
.0

 
8

0
5

 
4

:4
9

.3
 

*
8

0
4

 

7
:5

0
.3

 
1

0
7

3
 

9
:5

0
.0

 
"
 

"
1
0
7
1
 

8
:2

5
,3

 
9

3
7

 
9

:5
1

.0
 

*
9

3
6

 

8
:2

0
.6

 
1

0
3

9
 

1
1

:2
4

.4
 

"
1

0
3

8
 

8
:0

3
.2

 
1

0
7

1
 

1
0

:3
2

.5
 

1
0

7
0

 

3
:1

5
.0

 
1

0
9

3
 

8
:4

3
.3

 
1

0
8

9
 

ii
 

3
2

.2
 

7
1

7
 

1
:0

2
.2

 
"

7
1

7
 

7
.4

 
6

4
6

 
7

.4
 

*
6

4
6

 

1
:3

3
.6

 
6

7
3

 
1

:3
1

.1
 

*
6

6
3

 

1
:3

9
.9

 
7

0
9

 
1

:4
1

.5
 

"
6

1
7

 

1
1

.4
 

7
5

6
 

8
.5

 
*

7
5

6
 

lJ
 

4
:5

6
.2

 
8

6
1

 
5

:2
8

.9
 

8
0

0
 

9
6

0
 

7
9

0
"
 

4
:3

9
.1

 
7

9
5

 
5

:0
0

.3
 

7
3

3
 

9
6

1
 

8
8

4
 

4
:1

9
.5

 
8

8
7

 
5

:0
3

.9
 

8
0

9
 

9
2

5
 

8
2

5
 

4
:5

8
.9

 
8

3
0

 
5

:2
8

.2
 

7
7

3
 

9
1

4
 

8
2

3
 

4
:2

1
.5

 
8

2
1

 
4

:4
1

.4
 

7
5

1
 

1
1

4
8

 
"
1

0
8

6
 

1
0

:4
6

.9
 

1
0

8
7

 
1

2
:5

9
,2

 
" 

1
0

5
2

 

1
2

1
4

 
1

1
0

9
 

1
0

:0
3

.1
 

1
1

1
5

 
1

1
:5

0
.6

 

1
1

6
5

 
1

0
9

7
 

1
0

:1
0

.8
 

1
0

9
0

 
1

1
:2

0
.2

 

1
0

8
2

 
1

0
1

6
 

9
:1

0
.5

 
1

0
1

7
 

1
0

:3
2

.5
 

1
2

2
1

 
1

1
0

5
 

9
:3

7
.9

 
1

1
0

8
 

1
0

:2
3

.3
 

1
5

9
5

 
1

5
3

2
 

2
9

:2
7

,0
 

1
5

3
3

 
3

4
:3

4
.0

 

1
7

6
8

 
1

6
6

8
 

2
9

:3
9

.5
 

1
6

6
8

 
3

9
:1

9
.1

 

1
5

7
5

 
1

5
1

1
 

3
2

:1
3

.6
 

1
5

0
7

 
4

0
:1

5
.2

 

1
6

4
0

 
1

5
4

2
 

3
0

:0
0

.3
 

1
5

4
3

 
3

8
:5

7
.4

 

1
6

2
9

 
1

5
5

9
 

2
9

:1
8

.0
 

1
5

5
9

 
3

7
:2

9
,4

 

1
2

1
4

 
1

0
5

4
 

5
:1

3
,6

 
1

0
7

1
 

5
:2

2
,1

 

1
2

6
4

 
1

1
2

2
 

5
:5

9
.4

 
1

1
3

2
 

6
:0

6
.5

 

1
1

3
4

 
1

0
0

4
 

5
:3

5
.2

 
1

0
0

1
 

5
:3

7
.9

 

1
1

6
9

 
1

0
4

1
 

5
:0

1
.4

 
1

0
6

8
 

5
:1

9
.8

 

1
1

0
5

 
1

0
0

9
 

5
:4

7
.6

 
1

0
0

9
 

5
:4

1
.9

 

1
0

8
4

 

1
0

6
9

 

9
9

3
 

1
0

6
8

 
i,

 

1
5

2
0

 

1
6

5
7

 

1
4

9
7

 
i ! 

1
5

3
5

 

1
5

4
9

 
tl

 

*
9

4
8

 

*
9

8
6

 

*
9

4
3

 

*
9

2
2

 

*
9

5
5

 

v
d

a
ta

 

N
i 

- 
1

0
0

0
 

N
2

 
- 

1
0

0
0

 

b
e

a
m

3
 

U
B

 
I 

C
P

U
 

U
B

 
C

P
U

 

4
8

 
4

7
 

] 
1

,0
 

4
7

 
0

,9
 

6
5

5
 

6
5

5
 

8
.6

 
6

5
5

 
8

.6
 

1
0

3
8

 
1

0
2

3
 

1
1

:3
9

.6
 

1
0

2
3

 
1

4
:0

3
.4

 

5
9

5
 

5
7

3
 

2
:1

9
.6

 
5

7
5

 
2

:2
2

,7
 

6
5

9
 

5
3

1
 

2
:1

2
.1

 
5

3
0

 
2

:3
4

.6
 

4
9

8
 

4
8

2
 

2
:0

2
.3

 
4

8
1

 
2

:1
0

.0
 

5
1

7
 

5
0

4
 

1
:5

4
.9

 
5

0
3

 
2

:2
3

.3
 

4
8

6
 

4
6

4
 

1
:4

9
.3

 
4

6
1

 
2

:0
0

,1
 

8
4

I 
8

0
2

 
5

:2
6

.9
 

7
9

9
 

6
:2

4
.3

 

7
7

4
 

7
5

1
 

5
:1

2
.7

 
7

5
2

 
6

:0
2

,0
 

7
7

4
 

7
6

6
 

5
:1

7
.2

 
7

6
6

 
6

:1
7

.5
 

8
5

7
 

8
5

4
 

5
:5

5
.9

 
8

5
4

 
6

:4
6

.9
 

4
8

6
 

8
0

5
 

5
:5

7
.1

 
8

0
5

 
4

:0
3

.0
 

1
0

7
9

 
1

0
7

3
 

1
1

:0
3

.1
 

1
0

7
3

 
1

3
:1

8
.3

 

9
5

1
 

9
4

0
 

1
:2

3
.2

 
9

4
0

 
1

4
:1

9
.3

 

1
0

5
2

 
1

0
4

0
 

1
1

:0
0

.6
 

1
0

4
] 

1
4

:3
4

,1
 

1
0

9
1

 
1

0
7

1
 

1
0

:3
0

.5
 

1
0

8
0

 
4

:4
1

.0
 

1
0

9
6

 
1

0
9

1
 

1
1

:1
8

.7
 

1
0

9
1

 
1

4
:1

4
.3

 

7
1

7
 

7
1

7
 

8
.8

 
7

1
7

 
8

.8
 

6
4

6
 

6
4

6
 

8
.8

 
6

4
6

 
8

.8
 

6
6

3
 

6
6

3
 

8
.8

 
6

6
3

 
8

,8
 

6
4

8
 

6
1

7
 

2
:1

5
.9

 
6

1
7

 
2

:1
7

,8
 

7
5

6
 

7
5

6
 

8
.7

 
7

5
6

 
8

,7
 

8
4

4
 

8
2

6
 

1
5

:2
0

.8
 

8
2

5
 

1
5

:3
7

.6
 

7
5

7
 

7
4

5
 

1
4

:1
7

.0
 

7
4

4
 

1
5

:2
5

,4
 

8
4

2
 

8
2

6
 

1
5

:1
9

.4
 

8
2

9
 

1
4

:4
1

.5
 

8
1

7
 

7
9

6
 

1
5

:1
8

.6
 

7
9

6
 

1
6

:0
6

.8
 

8
0

4
 

7
7

0
 

1
5

:1
6

.4
 

7
6

9
 

1
5

:5
3

,4
 

1
0

7
3

 
1

0
5

8
 

3
4

:5
8

.0
 

1
0

5
8

 
3

6
:1

6
,7

 

1
1

1
8

 
1

0
8

8
 

3
4

:5
0

.6
 

1
0

8
8

 
3

6
:2

2
.9

 

1
1

0
9

 
1

0
7

3
 

3
4

:5
6

.8
 

1
0

7
3

 
3

3
:0

6
.6

 

1
0

2
0

 
9

9
5

 
3

4
:3

1
.6

 
9

9
6

 
3

5
:3

2
.1

 

1
0

7
8

 
1

0
7

1
 

3
6

:5
0

.4
 

1
0

7
0

 
3

8
:1

1
.5

 

1
5

4
3

 
1

5
2

1
 

1
:4

1
:1

2
.7

 
1

5
2

'I
 

1
:5

6
:1

7
~

1
 

1
6

6
2

 
1

6
5

8
 

1
:4

0
:1

5
.0

 
1

6
5

9
 

1
:5

4
:4

2
.2

 

1
5

0
9

 
1

4
9

8
 

1
:4

5
:0

8
.9

 
1

4
9

9
 

1
:5

5
:0

3
,1

 

1
5

5
0

 
1

5
3

6
 

1
:5

5
:4

2
.1

 
1

5
3

8
 

3
6

:5
3

.3
 

1
5

7
1

 
1

5
5

3
 

1
:5

4
:1

5
.4

 
1

5
5

1
 

1
:5

3
:5

6
.5

 

9
4

8
 

9
4

8
 

1
:1

2
.8

 
9

4
8

 
1

:1
3

.6
 

9
9

3
 

9
8

6
 

1
:2

1
.6

 
9

8
6

 
1

:2
1

.0
 

9
4

3
 

9
4

3
 

1
:0

7
.4

 
9

4
3

 
1

:0
8

.0
 

9
5

2
 

9
2

2
 

5
:5

3
.6

 
9

2
2

 
2

:2
9

,8
 

9
5

5
 

9
5

5
 

1
:0

8
,2

 
9

5
5

 
1

:0
8

,5
 

C
) 

o
"

 

&
 

t~
 

T~
 

t~
 

9
"

a
 

O
 ~
r 

t,
o

 



214 J. Hurink et al.: Job-shop scheduling problem 

Table 2 

N1-1000 N2-1000 N1-5000 N2-5000 

5. Concluding remarks 

edata ave (%) 5.2 5.3 4.8 4.5 
max (%) 24.0 22.8 23.4 19.8 

rdata ave (%) 2.8 2.9 2.3 2.3 
max (%) 13.4 14.5 12.0 10.7 

vdata ave (%) 0.5 0.5 0.4 0.4 
max (%) 3.2 3.1 1.9 2.1 

�9 N1-1000: The tabu-search algorithm based on neigh- 

borhood N1 with a maximum of 1000 iterations. 

�9 N2-1000: The tabu-search algorithm based on neigh- 

borhood N2 with a maximum of 1000 iterations. 

�9 UB: The makespan of the obtained solution. 

�9 CPU: The CPU-time (hours: minutes: seconds). 

Table 2 summarizes the obtained results, both, with a 

maximum of 1000 and 5000 iterations. By ave (max) we 

denote the average (maximal) percentage deviation from 

the best known lower bound. 

The results can be summarized as follows. 

�9 Both neighborhoods give very similar results. N1 is a 

little better than N2 if the number of iterations is limited to 

1000, N2 is better than N1 if this number is limited to 5000. 

In average the N2-heuristics need more computational 

time than the Nl-heuristics, even if the number of 

iterations is identical. In the worst case N2 needs 80% 

more time than N1 (for a benchmark problem with 5000 

iterations). 

�9 It is only useful to consider 5000 iterations for the 

"large" problems of edata and rdata. In the remaining 

cases an improvement is obtained only in a few cases, and 

the improvements are only small. Especially for large 

vdata problems N1 - 5000 and N 2 -  5000 need an enormou s 

amount of computational time: in five cases the heuristics 

run for approximately 10 hours. 

�9 In most cases the tabu-search algorithm improves the 

initial solution given by beam3 considerably. 

�9 Only for a small number of small problems the algo- 

rithms terminate before the maximal number of iterations 

is reached. In most of these cases the value of the best 

found solution is equal to a lower bound, i.e. the best 

found solution is optimal. 

Summarizing the tabu-search heuristic yield excellent 

results for almost all benchmark problems. The best 

results are obtained for the vdata problems. The average 

deviation from the best lower bound is 0.5%, even if the 

number of iterations is limited to 1000. 

The computational times for the heuristics with a 

maximal number of 1000 iterations are not too large (max. 

16 min for edata, max. 40 min for rdata, and max. 2 h for 

vdata). The computational time strictly increases with the 

number of jobs. If the number of jobs is less than or equal 

to 15 then 1000 iterations never need more than 15 min! 

We have considered job-shop scheduling problems with 

multi-purpose machines. These problems arise in the area 

of flexible manufacturing systems where tool equipped 

machines can execute different types of operations. 

We proposed a tabu-search based algorithm for calcu- 

lating good heuristic solutions for the MPM job-shop 

problem. Initial solutions are calculated using a fast 

heuristic based on insertion techniques and beam search. 

We presented computational results derived by testing 

the algorithms which have been developed in this paper on 

a number of benchmark problems. The tabu search 

algorithms yield excellent results for almost all problems. 

Acknowledgements. We gratefully acknowledge the comments of 
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paper. 

References 

Adams J, Balas E, Zawack D (1988) The shifting bottleneck 
procedure for job-shop scheduling. Manag Sci 34:391-401 

Applegate D, Cook W (1991) A computational study of the job shop 
scheduling problem. ORSA J Comput 3:149-156 

Brandimarte P (1993) Routing and scheduling in a flexible job schop 
by tabu search. Ann Ope Res 41 : 157-183 

Brucker P, Jurisch B, Sievers B (1992) A branch and bound 
algorithm for the job-shop scheduling problem. Osnabrficker 
Schriften zur Mathematik, Reihe D, Heft 136 (to appear in: Discr 
Appl Math) 

Brucker P, Schlie R (1990) Job-shop scheduling with multi-purpose 
machines. Computing 45:369-375 

Carlier J, Pinson E (1989) An algorithm for solving the job-shop 
problem. Manag Sci 35:164-176 

Carlier J, Pinson E (1990) A practical use of Jackson's preemptive 
schedule for solving the job shop problem. Ann Oper Res 
26: 269-287 

Dell'Amico M, Trubian M (1993) Applying tabu search to the job- 
shop scheduling problem. Ann Oper Res 41:231-252 

Fisher H, Thompson GL (1963) Probabilistic learning combinations 
of local job-shop scheduling rules. In: Muth JF, Thompson GL 
(eds) Industrial scheduling. Prentice Hall, Englewood Cliffs, 
pp 225-251 

Glover F (1989) Tabu search, Part I. ORSA J Comput 1 : 190-206 
Glover F (1990) Tabu search, Part II. ORSA J Comput 2:4-32 
Graboswski J, Nowicki E, Zdrazalka S (1986) A block approach for 

single machine scheduling with release dates and due dates. Eur J 
Oper Res 26:278-285 

Graham RL (1966) Bounds for certain multiprocessing anomalies. 
Bell Syst Tech J 45:1563-1581 

Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) 
Optimization and approximation in deterministic sequencing 
and scheduling: a Survey. Ann Disc Math 5:287-326 

Hurink J (1992) Polygon scheduling. Dissertation, Fachbereich 
Mathematik/Informatik, Universitat Osnabrtick 

Jurisch B (1992) Scheduling jobs in shops with multi-purpose 
machines. Dissertation, Fachbereich Mathematik/Informatik, 
Universitfit Osnabrt~ck 

Laarhoven PJM van, Aarts EHL, Lenstra JK (1992) Job shop 
scheduling by simulated annealing. Oper Res 40:113-125 

Meyer W (1992) Geometrische Methoden zur L6sung von Job-Shop 
Problemen und deren Verallgemeinerungen, Dissertation, Fach- 
bereich Mathematik/Informatik, Universit~it Osnabriick 

Ow PS, Morton TE (1989) The single machine early/tardy problem. 
Manag Sci 35:177-191 

Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization. 
Prentice Hall, Englewood Cliffs 



J. Hurink et al.: Job-shop scheduling problem 215 

Roy B, Sussmann B (1964) Les problbmes d'ordonnancement avec 
contraintes disjonctives, Note DS no. 9 bis, SEMA, Paris 

Salvador MS (1973) A solution of a special class of flowshop 
scheduling problems. Proceedings of the Symposium on the 
Theory of Scheduling and its Applications. Springer, Berlin 
Heidelberg New York, pp 83-91 

Thole M (1993) L6sung von Multi-Purpose Job-Shop Problemen 
durch Tabu-Suche, Diplomarbeit, Fachbereich Mathematik/ 
Informatik, Universit~it Osnabriick 

Werner F, Winkler A (1991) Insertion techniques for the heuristic 
solution of the job shop problem. TU Magdeburg, Preprint 
26/91 


