
OR Spektrum (1994) 15:205-215

ORSpektmm
�9 Springer-Verlag 1994

Tabu search for the job-shop scheduling problem
with multi-purpose machines*

Johann Hurink 1, Bernd Jurisch 2, and Monika Thole 1

1 Fachbereich Mathematik/Informatik, Universit~it Osnabriick, Postfach 4469, D-49069 Osnabrt~ck, Germany
2 Faculty of Business Administration, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A 1B 3X5

Received 19 May 1993/Accepted 16 November 1993

Abstract. In this paper we study the following generaliza-

tion of the job-shop scheduling problem. Each operation

can be performed by one machine out of a set of machines

given for this operation. The processing time does not

depend on the machine which has been chosen for

processing the operation. This problem arises in the area

of flexible manufacturing. As a generalization of the job-

shop problem it belongs to the hardest problems in

combinatorial optimization. We show that an application

of tabu search techniques to this problem yields excellent

results for benchmark problems.

Zusammenfassung. In dieser Arbeit behandeln wir die

folgende Verallgemeinerung des Job-Shop Scheduling

Problems. Jede Operation kann auf einer beliebigen

Maschine aus einer Menge yon Maschinen, die fiir diese

Operation gegeben ist, bearbeitet werden. Die Bearbei-

tungszeit h~ingt dabei nicht yon der gew~ihlten Maschine

ab. Das in dieser Arbeit behandelte Problem tritt im

Bereich der flexiblen Fertigung auf. Als Verallgemeine-

rung des klassischen Job-Shop Problems geh6rt es zu

den schwierigsten Problemen aus dem Bereich der kom-

binatorischen Optimierung. Wir zeigen, dab eine An-

wendung der Tabu-Search Metaheuristik hervorragende
Ergebnisse fiir die yon uns untersuchten Testprobleme

liefert.

Key words: Job-shop scheduling, tabu search, flexible

manufacturing

Schliisselwiirter: Job-Shop Scheduling, Tabu Suche, Fle-

xible Fertigung

* Supported by Deutsche Forschungsgemeinschaft, Project JoP-
TAG

Correspondence to: J. Hurink

1. Introduction

In this paper we study a problem which arises in the area

of flexible manufacturing systems. Here we have a small

number of so-called multi-purpose machines which can be

equipped with different tools. Moreover, there is a set of

jobs which have to be processed on the machines. A

machine can process a job only if it is equipped with the

tool the job needs for processing.

We consider the situation that the multi-purpose

machines in the system are already equipped with tools.

This yields the following problem which is called job-shop

scheduling problem with multi-purpose machines (MPM
job-shop problem).

We have a set of jobs, each one consisting of a number

of operations which have to be processed in a given

order. Moreover there is a set of multi-purpose machines

which are equipped with different tools. Associated with

each operation there is a set of machines which due to

~heir tool equipment can process this operation. The

processing of an operation takes a given amount of time.

We have to find an assignment of the operations to the

machines and a schedule for the operations on the

machines such that a given objective function is minim-

ized.

The MPM job-shop problem is a generalization of the

classical job-shop problem which belongs to the hardest

problems in combinatorial optimization. A problem with

10jobs and 10 machines which has already been formulat-

ed in 1963 (Fisher and Thompson (1963)) has been solved

only 26 year later (Carlier and Pinson (1989)).

In this paper we will present heuristic solution methods

for the job-shop problem with multi-purpose machines. It
is organized as follows.

In Sect. 2 we will give a description of the MPM job-

shop problem and an overview on previous research. It
turns out that some MPM job-shop problems are NP-hard
even if their classical counterparts are solvable in poly-

nomial time.

In Sect. 3 we will present methods for the calculation of
heuristic solutions based on neighborhoods. Initial solu-

206 J. Hurink et al.: Job-shop scheduling problem

tions are calculated using a fast heuristic based on

insertion techniques.

We have implemented the developed heuristics on a

Sun Workstation. Computational results are presented in

Sect. 4. We conclude this paper by providing final remarks

in Sect. 5.

2. Preliminaries

In this section we will give a formal definition of the job-

shop scheduling problem with multi-purpose machines.

Moreover, we will review the previous research on related

problems and give some complexity results for job-shop

scheduling problems with multi-purpose machines.

An assignmentp of operations to machines is feasible if
p(Oib) ~ dg~j for i= 1 n; j= 1, ...,ni. For a given assign-
ment p a p-schedule is defined by the completion times Cij
of all operations O~j. Such a p-schedule is feasible if the

schedule of the job-shop problem corresponding to p is

feasible, i.e. if it fulfills the restrictions given above.

We are interested in finding a feasible assignment p*

and a feasible p*-schedule C* such that the total schedule

lenght Cma x is minimized.

Following the a I/~l 7-notation suggested by Graham,

LaMer, Lenstra, Rinnooy Kan (1979) we denote the
job-shop problem with multi-purpose machines by

J(MPM)I I Cmax-

2.1. Formulation of the problem

The job-shop scheduling problems with multi-purpose

machines (MPMjob-shop problem) may be formulated as

follwos. There are n jobs J~,..., J,, each job Ji consisting of

ni operations Ore.. . , Oi, i which have to be processed in this
order. Moreover, there are m different, so-called multi-

purpose machines M1,... ,Mm which are equipped with

different tools. The operation Oij(i = 1,..., n; j = 1 nt)

has to be processed by one specific tool for Pij time units,

i.e. it can be processed by each machine which is equipped

with this tool. Thus, associated with each operation Oii

there is a non-empty set J//~j_ {3/1,..., M~}: O~j has to be

processed by one machine of Jt/ij. Preemption is not

allowed. Moreover, the following restrictions have to be

fulfilled:

�9 no machine can process more than one operation at the

same time and

�9 no job can be processed by more than one machine at

the same time.

Oll (~)

O12([-I)

(V)

Fig. 1

M1

Figure 1 shows an example of a job-shop problem with

multi-purpose machines with two jobs, three operations,

and three machines. The operations Oll, O12, and O21 have
to be processed by the O-tool, by the rT-tool, and by the

V-tool, respectively. Thus, Oll may be processed by M1 or

M2, Oa2 may be processed by 3/2 or M3, and O21 has to be
processed by M3.

2.2. Previous research

Most research has been done on the classical job shop

scheduling problem which is a special case of the MPM

job-schop problem; we have I Jgijl = 1 for all operations

Oij. For this problem both exact methods (branch and

bound methods, see Applegate and Cook (1991); Carlier

and Pinson (1990); Brucker et al. (1992), and heuristic

methods (e.g. based on priority dispatching rules, inser-

tion techniques, or neighborhoods) are known. Recently

Dell'Amico and Trubian (1993) presented excellent results

obtained by applying tabu search to the job-shop prob-

lem.
There are other special cases of the MPM job-shop

problem studied in the literature. Graham (1966) con-

sidered flow-shop problems with parallel machines which

are generalizations of the classical flow-shop problem. He

assumed that there is a set dgj of identical machines for

processing the operations Oij(i = 1,..., n ; j= 1,..., m) with

IJlj[= IJg~l for 1 <_j, k<_m. Salvador (1973) generalized

this problem to so-called "flexible flow-shops". Again

there is a set ~'j of parallel identical machines to process

the operations Oij(i= 1 n; j = l m), but now we

may have [Jgjl e IJgkl for j + k . Salvador proposed a
branch and bound algorithm for solving this problem

exactly.
The MPM job-shop problem in the form considered in

this paper has been studied first by Brucker and Schlie

(1990).They gave a polynomial time algorithm for the

problem of minimizing the makespan when the number of

jobs is equal to 2, i.e. for J(MPM)ln=21Cm~x. The

corresponding problem with 3 jobs is NP-hard even if the

number of machines is restricted to 2 (Jurisch (1992)).

Nevertheless, Meyer (1992) proved that the problem
J(MPM) In = r[Cma x is solvable in pseudo-polynomial time
for each fixed number r of jobs. If the processing times of
the operations are restricted to be equal to 1, the resulting

problem J(MPM)[n = r, Pij = 1 [Cm~x becomes polynomial-

ly solvable again (Mayer (1992)).
Brandimarte (1993) considered so-called "flexible job-

shop" which slightly generalize our problem. In flexible
job-shops the processing times of operations also depend
on the machine which is chosen for processing. Moreover,

he briefly discussed the problem of minimizing the

weighted number of tardy jobs.

J. Hurink etai.: Job-shop scheduling problem 207

The main contribution of the paper of Brandimarte is a

tabu search algorithm for flexible job-shops. Our ap-

proach is different in two aspects:

�9 Our neighborhood is more sophisticated: Brandimarte

only considers exchanging successive operations on the

machines.

�9 Brandimarte uses a more "hierarchical" approach: He

solves the problem of assigning the operations to the

machines and then focuses on the resulting job-shop

problem for some time. A reassignment is done after a pre-

defined number of steps. We consider a reassignment of

operations in each step of the tabu search algorithm.

In the next section we will introduce the so-called

disjunctive graph model which will be helpful for the

presentation of the heuristic algorithms in Sect. 3.

Z3. The disjunctive graph model

�9 each disjunctive arc has been fixed, i.e. there is a fixed

relation between each pair of operations that are assigned

to the same machine and

�9 the resulting directed graph G(S) = (V, C w S) is acyclic.

I t is easy to see that the finish time of a schedule

corresponding to a complete selection S is equal to the

length of the longest weighted (so-called critical) path

from 0 to * in G(S) = (V, C w S) .

3. Tabu search for the MPM job-shop problem

In this section we will present a tabu-search heuristic for

the job-shop problem with multi-purpose machines. In

Sect. 3.1 we will present both the basic ideas of local search

heuristics and two neighborhoods for the problem. The

initial solution for the tabu search algorithm is calculated

using a fast heuristic based on insertion techniques and

beam search. This algorithm is presented in Sect. 3.2.

We have already observed that if for the job-shop problem

with multi-purpose machines an assignment # of the

operations to the machines is given, the problem of

calculating an optimal/~-schedule is a classical job-shop

problem. Thus, a feasible solution of the MPM job-shop

problem can be described by a feasible assignment/.z and a

feasible schedule of the job-shop problem corresponding

to #.

We will use the disjunctive graph model (Roy and

Sussmann (1964)) to describe the solution of a job-shop

problem. For a given instance of the MPM job-shop

problem and a corresponding feasible assignment/~ we

define a disjunctive graph G = (V, C, D) as follows.

V is the set of nodes, representing the operations of all

jobs, In addition there are two special nodes, a source 0

and a sink *. There is a weight associated with each

node. The weights of 0 and * are zero while the weights

of the other nodes are the processing times of the

corresponding operations.

C is the set of directed conjunctive arcs. These arcs reflect

the job-order of the operations. Additionally there are

conjunctive arcs between the source and the first

operations of all jobs and between the last operation of

all jobs and the sink. More precisely, we have

C = {0~ s -~O~, j+~: i - t , n ; j = l , . . . , n j - 1 }

va{0 --" 0il : i= l ,n}

{Oi~, -+ * : i = 1 n}

D is the set of undirected disjunctive arcs. Such an arc

exists for each pair of operations which are assigned to

the same machine.

The basic scheduling decision is to define an ordering

between all those operations which are assigned to the

same machine. This can be done by turning undirected
disjunctive arcs into directed ones. A set S of directed (so-

called f ixed) disjunctive arcs is called a selection. I f a

selection defines a feasible schedule it is called a complete
selection. A selection is complete if

3. I. Heuristics based on local search techniques

We will present the basic ideas of heuristics based on local

search techniques in Sect. 3. I. I. tn connection with these

methods it is necessary to define a neighborhood on the set

of all feasible solutions or - more generally - on a subset of

the set of all feasible solutions which contains the optimal

solution of the given problem. In Sect. 3.1.2 we will

present two different neighborhoods for the MPM job-

shop problem.

3,1.1. Basic ideas of local search heuristics. We will describe

heuristics based on local search techniques for solving an

arbitrary discrete optimization problem (Hurink (1992)),

A discrete optimization problem may be described as

follows.

For a given finite set S of feasible solutions and a cost

funk t ion f : S + ~, we have to find a solution s* a S with

f (s*) <_f(s) for a l l s e S .

Heuristics based on local search techniques start f rom

some solution s e S and search iteratively through the set S

until some stop condition is fulfilled. When searching

through the set S in some systematic way it makes no sense

to allow moves from one feasible solution s to any other

feasible solution s ' . This would result in a random search

procedure or a complete enumeration. The set of solutions

which are reachable f rom s - these solutions are called

neighbors of s - has to be restricted in some way. This is

done as follows.

For each solution s ~ S we define a set N(s)~_ S of

neigbors of s. It is possible to move from s to another

solution s ' if and only i f s ' oN(s). The complete neighbor-
hood N is defined by the set of neighbors N(s) for each

s~S .
In general the set S contains an exponential number of

solutions. For this reason it is not possible to store the

whole neighborhood. The best way to overcome this

208 J. Hurink et al.: Job-shop scheduling problem

difficulty is to give a rule which for any feasible solution s

describes the set N(s) of neighbors. This rule is given by a

set of allowed modifications. An allowed modification is a

mapping F: S ~ S.

In general an heuristic algorithm based on local search

techniques may be formulated as follows.

Algorithm local search

0. Calculate an initial solution s ~ S;

REPEAT

1. Calculate some solution s' eN(s);

2. If s' is accepted THEN

S := S';

3. UNTIL some stop condition is fulfilled;

Different types of local search heuristics differ by

�9 the method which is used for calculating a solution

s'eN(s) (Step 1.);

�9 the criteria for accepting a solutions s'e N(s) (Step 2.);

�9 the stop condition which is used (Step 3.).

The simplest heuristic based on local search techniques is

the iterative improvement appraoch (e.g., see Papadimi-

triou and Steiglitz (1982)). From all solutions ~ eN(s) we

choose the best one (in terms of the objective function) as

starting solution for the next iteration. The procedure

continues until no solution ~eN(s) with f(~)<f(s) is

found.

One of the main problems with the iterative improve-

ment algorithm is the following. Because only solutions s'

which improve the current solutions s are accepted it is not

possible to leave a local optimum. The objective value of

such a local optimum may be much greater than the

objective value of the optimal solution.

To overcome this problem also solutions which do not

improve the current solution have to be accepted. How-

ever, this implies that solutions can be inspected more

than once and therefore the method might get stuck in a

cycle.
One method to avoid these problems would be to store

all solutions s ~ S which have already been visited in a so-

called tabu list T. A neighbor s' of the current solution s is

only accepted as starting solution for the next iteration if it

is not contained in the tabu list T. Strategies of this type are

usually called tabu search methods (see, e.g., Glover

(1989), (1990)).
Due to capacity restrictions it is not possible to store all

the solutions which have already been visited. Therefore

the tabu list will contain only the t solutions which have

been inspected last.If t is large enough the possibility of

cyclin becomes small, but it may still occur. Thus, some

stop-criteria have to be used to guarantee the termination

of the algorithm. Furthermore we will not store whole

solutions in the tabu list but only typical properties of a

solution which guarantee that a visited solution becomes

tabu, i.e. it will not be reached again.
We illustrate this proceeding in an example. Assume

that we try to solve a one-machine problem with n jobs Jl,

J2 , J , using a tabu search approach. One solution y may

be given by the ordering J1 ~ J2 4 . . . 4 j~. Now assume
that we generate a neighbor o f y by moving the operation

Jr to the first position. Instead of storing the whole

solution y in the tabu list, we only store the part

Ji l--" J i--" J i+1. All modifications which yield a solution

containing this partial order are forbidden. Thus, it is not

possible to return to solution y as long a s Ji-I --' Ji---' J i + 1 is

contained in the tabu list.

This example also shows a disadvantage of such a

proceeding. Not only the solution y is forbidden, but all

solutions containing the partial order Ji_ l~J~Ji+i .
Thus, solutions may be forbidden even if they have not

been inspected yet. To overcome this problem heuristics

based on tabu-search techniques use so-called aspiration-
criteria which allow to accept neighbors even if they are

forbidden due to the tabu list; i.e. the aspiration-criteria

cancel the tabu status of a solution. For example,

solutions which improve the best solution found so far

should always be accepted. For details we refer to

Dell 'Amico and Trubian (1993).

Algorithm tabu search

T : = 0 ;

0. Calculate an initial solution s ~ S;

REPEAT
IF all modifications lead to solutions which are tabu

TH EN

STOP;

1. Choose an allowed modification F which does not

lead to a tabu solution;

Calculate the resulting solution s' := F(s);

2. s := s';

update the tabu list;

3. UNTIL some stop-condition is fulfilled;

The stop-conditions in Step 3. of the algorithm may

depend on the number of iterations, the time which has

passed without improving the best solution found so far,

etc. Furthermore a simple and efficient strategy for

choosing the allowed modification in Step 1 is to choose

the modification F which gives the best solution s' in the

set of all solutions which can be generated by allowed

modifications.
The quality of an heuristic based on local search

techniques strongly depends on the neighborhood N

which is used. In the following section we will give two

neighborhoods for the MPM job-shop problem which

yield quite efficient local search heuristics.

3.1.2. Neighborhoods for the MPM job-shop problem. In

this section we will give two neighborhoods for the MPM

job-shop problem. Both neighborhoods are based on a

theorem which describes how a given solution of a MPM

job-shop problem may be improved. To describe this

theorem we need the notation of a block which has been

introduced in connection with one-machine problems,

permutation flow-shop problems, etc. (e.g., see Grabows-

ki et al. (1986)).
Let r be a feasible assignment and S a complete

selection of the job-shop problem corresponding to /1.

Furthermore let P be a critical path in G (S). A sequence of

successive nodes in P is called a block on P in G(S) if the

following properties are satisfied:

J. Hurink et al.: Job-shop scheduling problem 209

�9 The sequence contains at least two nodes�9

�9 All operations represented by the nodes in the sequence

are assigned to the same machine.

�9 Enlarging the sequence by one operation yields a

sequence which does not fulfill the second property.

Note that the selection S defines an optimal solution if one

critical path P in G(S) does not contain any block at all. In

this case, any pair of successive operations on P is

processed on different machines, i.e. they are connected

by a conjunctive arc. Thus, all operations on P belong to

the same job J~, and the length of the critical path P is equal

to the sum of processing times of all operations of J~.

Obviously, this value defines a lower bound for the

makespan of an optimal schedule.

Based on the given notation we can prove the following

theorem.

Theorem 1. Let y and y ' be two feasible solutions of a given
M P M job-shop problem corresponding to the complete

selection S and S', respectively. I f y ' improves y, then for

any critical path P in G(S) one of the following properties
holds:

�9 in y ' at least one operation of one block o fP isprocessed

on another machine than in y, or

�9 in y ' at least one operation of one block B of P, different
f rom the first operation in B is processed before all other
operations of B, or
�9 in y" at least one operation of one block B of P, different
from the last operation in B is processed after all other
operations of B.

Proof Any critical path P in G(S) has the following form:

P: 0, l, u' u 2
. - - , b l ~ . . . , b 2 ~ . - - , . . . ,

Here u{,... ,us define a maximal number of operations
�9 J �9 .

which are processed on the same machine, i.e. ul j, �9 �9 UbJ
defines a block if bj>_2. Now assume that in y ' all

operations of all blocks are processed on the same

machine as in y, and that in y ' no operation of any block B

of P is processed before the first or after the last operation

of B. Thus, we have:

(i) us is processed before u{ +1 in y ' (j = l, . . ., k - 1) :

because u~ and u{ + 1 are processed on different machines in

j+ 1 �9 Y �9 ' successor of u~/ y, ul is a conjunctive . .

(ii) If by > 2, all operations u{,. u j _ .., bj are processed on the

same machine both in y and in y'.

(iii) If by > 2, u{ is processed before u{, ..., u yb:, and ubjY is

processed after u{, . J �9 . ,u b l both in y and in y'.

In y ' the operations ~ u!j are porcesed in an

order v{ v~j, where J Vl v~j is a permutation of

U j , U j �9 �9,. bj(J= 1 ,k). Due to (iii) we have v] =u~ and
J _ J vbj-ubj for all j = 1 , k. Thus, G(S') contains the path

P': 0 , v l 4 ,vL v L v *
�9 , . ~ V b 2 ~ �9 �9 . ~ �9 . . ~ b k , �9

The length L(S ') of the longest (critical) path in G(S')
cannot be less than the lenght of P'. Thus, we have

k

L(s')> E 2pv(
j = l l - 1

k bj

=2 Epu
j - 1 1 - 1

- L (s)

where L(S) denotes the length of the critical path in G(S).

This contradicts the assumption. []

Based on this theorem the first neighborhood is defined as

follows.

Neighborhood N1

Consider a feasible solution y for a MPM job-shop

problem. A feasible solution y ' is a neighbor of y if it is

constructed in the following way.

Let S denote the complete selection corresponding to y

and let P be a critical path in G (S). Then y ' i s derived from

y by

�9 processing one operation of one block of P on another

machine than in y or by

�9 moving one operation of one block B of P different from

the first (the last) operation in B before (after) all other

operations of B.

Because of theoretical and practical reasons a fundamen-

tal question is whether a given neighborhood has the

connectivity property or not. This property is defined as

follows.

A neighborhood Nis called connected if it is possible to

reach from any solution y to an optimal solution in a finite

number of steps, i.e. if there exists a final sequence

(Y = Y l, Y2,..., Y~> of solutions such that Yi + 1 a N(yi) for all

i = 1 , k - 1 and Yk is an optimal solution.

We strongly conjecture that neighborhood N1 has the

connectivity property, but unfortunately a proof (or a

counterexample) has not been found yet. Later we will

prove that the second neighborhood called N2 which is

based on an idea of Dell 'Amico and Trubian (1993) is

connected.

Neighborhood N2

Consider a feasible solution y for a MPM job-shop

problem. A feasible solution y ' is a neighbor of y if it is

constructed in the following way.

Let S denote the complete selection corresponding to y

and let P be a critical path in G(S). Then y ' is derived from

y by

�9 processing one operation of one block of P on another

machine than in y or by

�9 moving one operation of one block B of P different from

the first (the last) operation in B before (after) all other

operations of B. If the move of one operation j of one

block B of P before (after) all other operations of B yield
an unfeasible solution, then y ' may also be generated by

210 J. Hurink et al.: Job-shop scheduling problem

r t,
@__.. @_-.. @--. @--.. @--. @--. �9

c

@--.|169

b Fig. 2

movingj into the position inside the block B closes to the

first (last) position of B such that the resulting schedule is

feasible.

Note that we have N1 _ N 2 , i.e. N l (y) c N 2 (y) for all

feasible schedules y. N2 is obtained from N1 by consider-

ing additional moves whenever a move of an operation

before or after the corresponding block generates an

unfeasible schedule due to other fixed disjunctions. In

Fig. 2 such a situation is shown. The operations 1,2 7

may define a block on a critical path. Assume that moving

operation 5 before 1 or 2 generates unfeasible schedules

because there is a path from 2 to 5 different from the path

2--* 3 ~ 4--. 5 in the disjunctive graph (symbolized by the

bent arc in Fig. 2a). Moving 5 after 2 and before 3 may

generate a feasible schedule. Thus, a neighbor is generated

by moving 5 between 2 and 3 (see Fig. 2b).

For proving the connectivity of the neighborhood N2

we need the following

Lemma 1. Let y be a feasible solution of a MPMjob-shop

problem corresponding to a complete selection S. Let i --*j be

a disjunctive arc on a criticalpath in G(S) (this implies that i

andj are two operations which are processed successively on

one machine in y). Then the inversion of the disjunctive arc

i ~ j also yields a feasible schedule.

Proof Since the assignment of the operations to the

machines does not change, the result follows immediately

from a similar result for the job-shop problem given by

van Laarhoven, et al. (1992).

Using Lemma 1 we can prove the following

Theorem 2. The neighborhood N2 is connected.

Proof Consider an arbitrary feasible schedule y. I f y is an

optimal solution we are done. Otherwise consider an

optimal schedule y* and the corresponding complete

selection S*. For an arbitrary solution y ' let nM(y') be the

number of operations which are assigned to different

machines in y ' and y*, and let nD(y') be the number of

disjunctive arcs fixed in different directions in S' and S*

(S' denotes the complete selection corresponding to y').

We do not count disjunctive arcs which are fixed in one

complete selection and which are missing in the other one

due to the fact that the corresponding operations are fixed

on other machines.

We show that it is possible to construct a finite number

of feasible schedules Yl, Y2,..-, Yk with the following prop-

erties:

(1) y - Y l , and Yk =Y* or y~ is another optimal schedule.

(2) Yi+l ~N2(yg) (i= 1, . . . , k - 1).
(3) Operations which are assigned to the "optimal"

machine in y~ (i.e. to the machine which processes this

operation in y*) are still assigned to this machine in y~+ 1.

Thus, we have nM(yi+ 1)< nM(yi) (i = 1 k - 1).

(4) If nM(yi+l)=ng(yi), then nD(yi+l)<nD(yi) (i--1 ,
k - 1), i.e. the following property holds. Assume that the

number of operations which are assigned to the "optimal"

machines does not increase. Then the number of disjunc-

tive arcs directed into the "wrong" direction (in compari-

son with y*) decreases.

Assume that the solutions y2, .-., Yi have been constructed

in this way. Ifyiis optimal we are done. Otherwise, let Sibe

the complete selection corresponding to Yi. Due to

Theorem 1 the following property holds for any critical

path P in G(Si): One operation of one block on P is

processed on another machine than in y*, or some

operation of one block B on P is processed before or after

all other operations of the block B in y*.

Now consider an arbitrary critical path P in G(Si).

First assume that there exists one operat ionj of one block

of P which is assigned to machine Mk(Ml) in Yi(Y*) where

k # L It is possible to r emove j from Mk and to insert it at

some position on Mr, obtaining a feasible schedule Yi+ ~.
Because this is one of the moves in N2, we have

Yi+ 1 ~ N2(yi) and nM(yi+ 1) <ng(yi). Thus, this move ful-

fills properties (2), (3), and (4).
Now assume that all operations of all blocks on the

critical path P are assigned to the same machines as in y*.

At least one operation ij of one block B = {il,/2 , ij, ..., it}

is processed before or after all other operations of B in y*.

If ij has to be processed before all other operations of B,

then we move ij to the first possible position in B such that

the resulting schedule Yi+l is feasible. This is one of the

moves in N2. Note that due to Lemma 1 it is always

3. Hurink et at.: Job-shop scheduling problem 211

possible to move ij before ij_ 1 because this defines the

inversion of one disjunctive arc on the critical path. If/j is

moved directly before i~(l<_s<j-1), then we have

nD(Yi) --nD(yi, X) =J-- S, i.e. the number of arcs directed in
"wrong" direction decreases.

If ij has to be processed after all other operations of B

we can argue in a similar way. Thus, we obtain

Y,+l eN2(yi), nM(Yi+l)=nM(Yi), and nD(yi)< nD(/i+ 1): the
properties (2), (3), and (4) given above are fulfilled.

We still have to prove that the number of steps that

we need to reach the solution y* (or another optimal

solution) is finite. Consider the pair (nM(yi), nv(yi)).
Due to the properties (3) and (4) (nM(Yi), n~(yi)) is strong-
Iy lexicographically decreasing in i. Because we have

nD(Yi) < nj (the latter value is an upper bound
j=l

for the total number of disjunctive arcs), the number of

steps which are necessary to reach y* or another optimal

solution from y is bounded by riM(y) nj . []
j=l

Based on the two neighborhoods it is possible to apply
tabu search to the MPM job-shop problem. It only

remains to give a method for calculating an initial

solution. In the next section we will present a fast heuristic

algorithm which is based on insertion techniques. It is a

generalization of a heuristic proposed by Werner and

Winkler (1991) for the classical job-shop problem.

3.2. A heuristic algorithm based on insertion techniques

We start with a feasible partial schedule which only

contains the operations of the longest job. In this partial

schedule the operations of the longest job have to be

assigned to machines. The choice of a machine to process
an operation is done as follows.

For each machine we calculate the sum of the process-

ing times of the operations which have to be processed by

this machine, i.e. the value

P(M~) = ~,, Pij.
O,j

We assign the first operation of the longest job, say Ol, to

the machine M~ with minimal value P(Mk). Then we

update the value P(Mk) by defining P(Mk):=P(M~)+Pl-
Next we assign the second operation to a machine, etc.

Thus, after each step P(Mk) is the sum of processing times

af all operations which can be processed only on this

machine or which already have been assigned to this

machine.
After scheduling the operations of the longest job (i.e.

after assigning these operations to machines) we succes-

sively insert the remaining operations into the feasible

partial schedule in an order of non-increasing processing

times. For deciding how an operation Oij should be

inserted into the feasible partial schedule we check all

possible positions as follows:

�9 We assign operation Oij to all machines Mk e~/g~?

�9 For each machine Mk we execute the following steps.

Assume that 1 operations have already been assigned to

machine Mg. We insert Oij before the first operation on

Mk, then after the first and before the second one, etc.

Finally we insert Oij after the last operation on M~. Thus,

we check l+ 1 positions for the insertion of Ogj on Mk. The

cost of assigning an operation in a specific position is

defined as the length of the longest path through this

operation in the resulting disjunctive graph. If the result-

ing graph contains a cycle, the cost is defined as ~.

After assigning the operation Oij to all machines in Jgij

and inserting it in all feasible positions we choose the

assignment and position which gave the lowest costs.

We illustrate the insertion algorithm using the follow-

ing example.

Example. n = 3, m = 3, prec = 0

Pil ~'zl Pi2 J/{i2 P~3 ~i3
3"1 1 {M~} 4 {M2, M3} 2 {M3}

J? 1 {M?} 3 {MI,M3} 3 {MI, M3}

J3 4 {M~, M3} 1 {2142} 5 {Me}

The initial feasible partial schedule only contains the

operations of the longest job J3. The sum of processing

times of operations which have to be processed on M1 is 1,

and the sum of processing times of operations to be

processed on M3 is 2. Thus, we assign O31 to M~.

Now we insert O12 into this partial schedule. Assigning

O12 to M3 yields the lowest cost. In the next step we insert

02z into the resulting schedule. Continuing in this manner

we finally obtain a schedule with Cmax = 11 (see Fig. 3).

M3

Ol1[031

021 0 3 3

0 1

012

I I

2 3

022

032[

O,a

I I I

4 5 6 7

023

I I

9 10 11 Fig. 3

I

12

212 J. Hurink et al.: Job-shop scheduling problem

For improving the quality of the heuristic solution we

additionally use the so-called beam search technique (Ow

and Morton (1989); Werner and Winkler (1991)). The

main idea of this technique is to examine a fixed number k

of feasible partial schedules in parallel. The insertion

algorithm with beam search applied to the MPM job-shop

problem works as follows.

Again we start with a partial schedule consisting only

of the operations of the longest job. Then we assign the

longest remaining operation to all feasible machines and

schedule it in all possible positions. We select the k

resulting feasible partial schedules which yield the lowest

costs; if only l < k feasible partial schedules exist, we

consider them all. In the next step we insert the second-

largest operation into all the selected partial schedules, i.e.

we assign it to all feasible machines and schedule it in all

feasible positions in all selected partial schedules. Again

we select the k resulting feasible partial schedules with

lowest costs, etc. In the last step, the best schedule which

has been generated is taken as solution.

4. Computational results

We implemented the heuristics described in Sect. 3 in C on

a Sun 4/20 Workstation. For obtaining test problems for

the MPM job-shop problem we modified benchmark

problems for the classical job-shop problem. In detail we

considered the following problems (problems m06, ml0,

m20 are from Fisher and Thompson (1963), problems 101-

140 are from Adams et al. (1988)). m denotes the number of

machines, n the number of jobs.

m n

toO6 6 6

mlO 10 10

m20 5 20

101-105 5 10

106-110 5 15

111-115 5 20

116-120 10 10

121-125 10 15

126-130 10 20

131-135 10 30

136-140 15 15

In each case the number of operations per jobs is equal to

the number of machines, i.e. we have ni - m for i = 1,. . . , n.

These benchmark problems for the classical job-shop

problem are very special instances of MPM job-shop

problems: we have IM//ijl = 1 for all operations Oii. For

obtaining MPM test problems, we modified the job-shop

benchmark problems in the following way.

Each operation can be processed by the machine which

has to process it in the job-shop benchmark problem. For

each operation Oij, we consider all machines Mk one by

one, enlarging the set Mdii by Mk with a given probability.

By considering different probabilities, we obtain different

sets edata, rdata, vdata of benchmark problems for the

MPM job-shop problem.

The main properties of the benchmark problems are

summarized in the following table. I JC/ij[ave (l~uI max)

denotes the average (maximal) cardinality of the sets Jgij.

[J/Lij I ave lJgijl max

edata: 1.15 2 (m _< 6)

3 (m >_ 10)

rdata: 2 3
1 4

vdata: ~ m ~ m

We studied four different variants of tabu search. We

considered both neighborhoods N1 and N2. For each

neighborhood we tested two variants, the first one by

limiting the maximal number of iterations by 1000, the

other one by limiting this number by 5000. Additionally,

all variants have the following properties:

�9 The length of the tabu list is equal to 30.

�9 Neighbors of the current solution are generated in an

order of non-decreasing lower bounds. This proceeding

allows to drop a great number of neighbors without

considering them in detail.

�9 The tabu search algorithms terminate before the maxi-

mal number of iterations is reached if one of the following

properties holds:

- All neighbors of the current solutions are tabu.

- The makespan of the best found solution is equal to a

lower bound.

- The methods gets stuck in a cycle. The algorithms are

able to recognize cycles containing at most 100 solutions.

The choice of the parameters has been done after some

preliminary computational tests. The value 1000 for the

maximal number of iterations seems to be a good trade of

between time and quality. If one would reduce this

number from 1000 to 500 the computational times would

also reduce in most cases by the factor ~ and the quality of

the solution would get worse only in some cases. However,

since these deteriorations of the quality were quite large

for some benchmark problems and since the computa-

tional times for 1000 iterations are acceptable this number

has been chosen as basic number. In order to investigate

the influence of an additional large amount of computa-

tional time on the quality of the solutions, we have chosen

5000 as second number for the maximal number of

iterations.
For the length of the tabu list several values have been

considered in the preliminary tests. In general there was

no lenght which led in all cases to the best results. For the

number 30 we got in average the best results. For details

we refer to Thole (1993).

The complete results with a maximum of 1000 itera-

tions are presented in Table 1. The table contains the

following information:

�9 LB: The value of the best known lower bound for the

problem given by Jurisch (1992). If this value is marked

with an asterisk it is the makespan of the optimal solution.

�9 beam3: The value of the initial solution, calculated by
using the insertion algorithm based on beam search with

beamwidth k = 3.

T
a

b
le

 1

d
a

ta

L
B

m
0

6

*
5

5

m
l0

"
8

7
1

m
2

0

"
1

0
8

8

it

1
0
1

*
6

0
9

1
0
2

*
6

5
5

1
0
3

*
5

5
0

1
0
4

i
*

5
6

8

1
0
5

!
*

5
0

3

1
0
6

'i

"
''

8
3

3

1
0
7

i
*

7
6

2

1
0
8

!
*

8
4

5

1
0
9

*
8

7
8

1
1
0

*
8

6
6

1
1
1

'i

'
1

0
8

7

1
1
2

/
*

9
6

0

1
1
3

"
1

0
5

3

1
1
4

"
1

1
2

3

1
1
5

"
1

1
1

1

1
1
6

"
'

*
8

9
2

1
1

7

*
7

0
7

1
1
8

*
8

4
2

1
1
9

*
7

9
6

1
2

0

*
8

5
7

1
2
1

8
9

5

1
2
2

8
3

2

1
2
3

9
5
O

1
2
4

8
8

1

1
2
5

8
9

4

1
2
6

..
..

1

0
8

9

1
2

7

1
1

8
1

1
2
8

1
1

1
6

1
2

9

1
0

5
8

1
3
0

1
1

4
7

rl

1
3
1

1
5

2
3

1
3
2

1
6

9
8

1
3
3

"
1

5
4

7

1
3
4

1
5

9
2

1
3
5

"
1

7
3

6

tt

1
3
6

1
0

0
6

1
3

7

1
3

5
5

1
3
8

1
0

1
9

1
3

9

1
1

5
1

1
4
0

1
0

3
4

e
d

a
ta

N
1

-

I0
0

0

b
e

a
m

3

U
B

5
7

5

7

9
9

5

9
1

7

1
2

1
0

1

1
0

9

6
8

8

6
1

1

6
6

7

6
5

5

6
4

7

5
7

3

6
1

3

5
7

8

5
1

0

5
0

3

9
0

0

8
3

3

8
0

7

7
6

5

9
4

9

8
4

5

9
1

2

8
7

8

8
8

0

8
6

6

1
1

5
8

1

1
0

6

1
0

3
9

9

6
0

1
2

1
5

1

0
5

3

1
1

7
3

1

1
5

1

1
2

1
7

1

1
1

1

9
6

1

9
2

4

7
7

4

7
5

7

8
6

4

8
6

4

8
5

4

8
5

0

9
4

7

9
1

9

1
2

5
9

1

0
6

6

1
0

4
9

9

1
9

1
1

2
2

9

8
0

1
0

4
7

9

5
2

1
1

4
8

9

7
0

1
2

6
8

1

1
6

9

1
4

0
3

1

2
3

0

1
3

3
5

1

2
0

4

1
3

6
9

1

2
1

0

1
4

3
6

1

2
5

3

N
2

-

I0
0

0

C
P

U

U
B

I

C
P

U

i

0
.9

5

7

0
.9

1
:0

6
.2

8

9
9

2

4
.4

2
:2

2
.0

1

1
3

5

3
:4

1
,3

1
7

.1

6
1

8

6
.1

3
9

.6

6
5

6

3
9

.2

7
.9

5

6
6

3

.5

3
1

.7

5
7

8

3
9

.4

3
4

,0

5
0

3

5
.7

1
:1

8
.3

8

3
3

1

:4
7

.8

1
:3

3
.6

7

7
8

1

:5
9

.3

1
:1

9
.7

8

4
5

1

:5
5

.0

1
:3

3
,0

8

7
8

2

:0
9

.7

2
2

.2

8
6

6

1
:2

7
.3

2
:4

2
.4

1

1
0

6

2
:2

6
.6

9

6
0

1
:5

0
.5

1

0
5

3

3
:1

3
.2

1

1
2

3

2
:2

2
.6

1

1
2

1

3
6

.5

9
6

1

1
2

.9

7
5

7

7
.4

8

6
4

8
.2

8

1
3

9
.1

9

1
9

2
:2

2
,8

1

0
8

5

1
:5

7
.2

9

0
5

2
:0

6
.1

9

8
0

1
:5

8
.9

9

5
2

2
:1

0
.1

9

6
9

3
:5

8
.3

1

1
4

9

3
:3

9
.8

1

2
3

6

3
:3

7
.8

1

1
9

7

3
:4

7
.6

1

2
0

5

3
:4

2
.6

1

2
8

6

ii

L
B

ii

,

*
4

7

6
7

9

:
1

0
2

2

it
 :

5
7

0

i
5

2
9

4
7

7

*
5

0
2

*
4

5
7

J

l

7
9

9

7
4

9

7
6

5

8
5

3

8
O

4

4
:3

6
.1

"

"
1

0
7

1

4
:3

1
.1

9

3
6

2
:5

6
.3

"

I
0

3
8

4
:2

6
.2

"

1
0

7
0

3
:1

5
.9

1

0
8

9

11

1
2

.5

"
7

1
7

1
3

.0

*
6

4
6

7
.3

*

6
6

6

1
1

.4

i
6

4
7

9
.2

t

*
7

5
6

11

�9

2
:3

0
.7

8

0
8

2
:0

6
.8

7

3
7

2
:1

9
.4

8

1
6

2
:1

8
.1

7

7
5

2
:1

0
.2

7

5
2

tt

,

4
:1

4
.1

1

0
5

6

4
:1

9
.5

1

0
8

5

4
:1

4
.9

1

0
7

5

4
:3

5
.0

9

9
3

4
:3

2
.1

1

0
6

8

I
t

1
7

9
7

1

5
9

6

1
0

:3
4

.0

1
5

9
3

1

4
:3

3
.1

1

5
2

0

1
8

3
5

1

7
6

9

3
:3

6
.6

1

7
5

7

6
:0

0
.4

1

6
5

7

1
7

4
9

1

5
7

5

9
:3

2
,2

1

5
7

5

1
5

:4
3

.5

1
4

9
7

1
7

8
1

1

6
2

7

8
:2

8
.1

1

6
3

6

1
3

:3
6

,1

1
5

3
5

1
8

1
7

1

7
3

6

5
:3

4
.6

1

7
3

6

1
2

:3
7

.0

1
5

4
9

I
I

1
3

5
5

1

2
4

7

3
:0

3
.0

1

2
3

5

3
:0

8
,3

1

0
1

6

1
6

2
1

1

4
5

3

2
:4

7
.3

1

4
5

6

3
:0

5
.2

9

8
9

1
2

3
2

1

1
8

5

2
:4

5
.8

1

1
8

5

2
:5

8
.0

9

4
3

1
3

9
0

1

2
2

6

2
:5

6
.3

1

2
2

6

3
:0

6
.9

9

6
6

1
3

2
4

1

2
1

4

2
:5

1
.5

1

2
3

6

3
:0

2
.4

9

5
5

r
d

a
ta

N
1

-

1
0

0
0

b
e

a
m

3

U
B

5
0

4

7

8
0

3

7
3

7

1
0

7
2

1

0
2

8

5
9

1

5
7

4

5
8

0

5
3

5

5
3

7

4
8

1

5
5

0

5
0

9

4
8

7

4
6

0

8
3

1

8
0

1

7
8

0

7
5

2

7
8

8

7
6

7

8
9

5

8
5

9

8
2

4

8
0

6

1
0

9
3

"
1

0
7

3

9
6

1

9
3

7

1
0

4
6

1

0
3

9

1
0

8
6

1

0
7

1

1
1

2
6

1

0
9

3

8
3

5

7
1

7

8
9

8

6
4

6

7
5

5

6
7

4

7
7

7

7
2

5

8
0

8

7
5

6

9
6

0

8
6

1

N
2

-

1
0
0
0

C
P

U

U
B

I

C
P

U

L
B

i

I
I

5
.6

4

7

2
9

.7

*
4

7

1
3

.2

7
3

7

1
3

.0

,
*

6
5

5

1
:2

8
.0

1

0
2

8

9
:3

1
.2

"
1

0
2

2

1
:1

6
.8

5

7
7

1

:2
9

.7

*
5

7
0

1
:1

9
.7

5

3
5

1

:3
6

.8

,
*

5
2

9

1
:2

5
.0

4

8
6

1

:3
3

.6
1

4

7
7

1
:2

3
.4

5

0
6

1

:3
3

.7

*
5

0
2

1
:4

1
.9

4

5
8

1

:5
6

.6

4
5

7

,
H

,

3
:1

6
.2

8

0
3

4

:2
8

,7

*
7

9
9

3
:3

2
.6

7

5
2

4

:3
3

.3

7
4

9

3
:3

0
.5

7

6
8

4

:3
3

.6

7
6

5

3
:4

4
.0

8

5
7

4

:2
9

.4

8
5

3

3
:4

2
.0

8

0
5

4

:4
9

.3

*
8

0
4

7
:5

0
.3

1

0
7

3

9
:5

0
.0

"

"
1
0
7
1

8
:2

5
,3

9

3
7

9

:5
1

.0

*
9

3
6

8
:2

0
.6

1

0
3

9

1
1

:2
4

.4

"
1

0
3

8

8
:0

3
.2

1

0
7

1

1
0

:3
2

.5

1
0

7
0

3
:1

5
.0

1

0
9

3

8
:4

3
.3

1

0
8

9

ii

3
2

.2

7
1

7

1
:0

2
.2

"

7
1

7

7
.4

6

4
6

7

.4

*
6

4
6

1
:3

3
.6

6

7
3

1

:3
1

.1

*
6

6
3

1
:3

9
.9

7

0
9

1

:4
1

.5

"
6

1
7

1
1

.4

7
5

6

8
.5

*

7
5

6

lJ

4
:5

6
.2

8

6
1

5

:2
8

.9

8
0

0

9
6

0

7
9

0
"

4
:3

9
.1

7

9
5

5

:0
0

.3

7
3

3

9
6

1

8
8

4

4
:1

9
.5

8

8
7

5

:0
3

.9

8
0

9

9
2

5

8
2

5

4
:5

8
.9

8

3
0

5

:2
8

.2

7
7

3

9
1

4

8
2

3

4
:2

1
.5

8

2
1

4

:4
1

.4

7
5

1

1
1

4
8

"
1

0
8

6

1
0

:4
6

.9

1
0

8
7

1

2
:5

9
,2

"

1
0

5
2

1
2

1
4

1

1
0

9

1
0

:0
3

.1

1
1

1
5

1

1
:5

0
.6

1
1

6
5

1

0
9

7

1
0

:1
0

.8

1
0

9
0

1

1
:2

0
.2

1
0

8
2

1

0
1

6

9
:1

0
.5

1

0
1

7

1
0

:3
2

.5

1
2

2
1

1

1
0

5

9
:3

7
.9

1

1
0

8

1
0

:2
3

.3

1
5

9
5

1

5
3

2

2
9

:2
7

,0

1
5

3
3

3

4
:3

4
.0

1
7

6
8

1

6
6

8

2
9

:3
9

.5

1
6

6
8

3

9
:1

9
.1

1
5

7
5

1

5
1

1

3
2

:1
3

.6

1
5

0
7

4

0
:1

5
.2

1
6

4
0

1

5
4

2

3
0

:0
0

.3

1
5

4
3

3

8
:5

7
.4

1
6

2
9

1

5
5

9

2
9

:1
8

.0

1
5

5
9

3

7
:2

9
,4

1
2

1
4

1

0
5

4

5
:1

3
,6

1

0
7

1

5
:2

2
,1

1
2

6
4

1

1
2

2

5
:5

9
.4

1

1
3

2

6
:0

6
.5

1
1

3
4

1

0
0

4

5
:3

5
.2

1

0
0

1

5
:3

7
.9

1
1

6
9

1

0
4

1

5
:0

1
.4

1

0
6

8

5
:1

9
.8

1
1

0
5

1

0
0

9

5
:4

7
.6

1

0
0

9

5
:4

1
.9

1
0

8
4

1
0

6
9

9
9

3

1
0

6
8

i,

1
5

2
0

1
6

5
7

1
4

9
7

i !

1
5

3
5

1
5

4
9

tl

*
9

4
8

*
9

8
6

*
9

4
3

*
9

2
2

*
9

5
5

v
d

a
ta

N
i

-
1

0
0

0

N
2

-

1
0

0
0

b
e

a
m

3

U
B

I

C
P

U

U
B

C

P
U

4
8

4

7

]
1

,0

4
7

0

,9

6
5

5

6
5

5

8
.6

6

5
5

8

.6

1
0

3
8

1

0
2

3

1
1

:3
9

.6

1
0

2
3

1

4
:0

3
.4

5
9

5

5
7

3

2
:1

9
.6

5

7
5

2

:2
2

,7

6
5

9

5
3

1

2
:1

2
.1

5

3
0

2

:3
4

.6

4
9

8

4
8

2

2
:0

2
.3

4

8
1

2

:1
0

.0

5
1

7

5
0

4

1
:5

4
.9

5

0
3

2

:2
3

.3

4
8

6

4
6

4

1
:4

9
.3

4

6
1

2

:0
0

,1

8
4

I
8

0
2

5

:2
6

.9

7
9

9

6
:2

4
.3

7
7

4

7
5

1

5
:1

2
.7

7

5
2

6

:0
2

,0

7
7

4

7
6

6

5
:1

7
.2

7

6
6

6

:1
7

.5

8
5

7

8
5

4

5
:5

5
.9

8

5
4

6

:4
6

.9

4
8

6

8
0

5

5
:5

7
.1

8

0
5

4

:0
3

.0

1
0

7
9

1

0
7

3

1
1

:0
3

.1

1
0

7
3

1

3
:1

8
.3

9
5

1

9
4

0

1
:2

3
.2

9

4
0

1

4
:1

9
.3

1
0

5
2

1

0
4

0

1
1

:0
0

.6

1
0

4
]

1
4

:3
4

,1

1
0

9
1

1

0
7

1

1
0

:3
0

.5

1
0

8
0

4

:4
1

.0

1
0

9
6

1

0
9

1

1
1

:1
8

.7

1
0

9
1

1

4
:1

4
.3

7
1

7

7
1

7

8
.8

7

1
7

8

.8

6
4

6

6
4

6

8
.8

6

4
6

8

.8

6
6

3

6
6

3

8
.8

6

6
3

8

,8

6
4

8

6
1

7

2
:1

5
.9

6

1
7

2

:1
7

,8

7
5

6

7
5

6

8
.7

7

5
6

8

,7

8
4

4

8
2

6

1
5

:2
0

.8

8
2

5

1
5

:3
7

.6

7
5

7

7
4

5

1
4

:1
7

.0

7
4

4

1
5

:2
5

,4

8
4

2

8
2

6

1
5

:1
9

.4

8
2

9

1
4

:4
1

.5

8
1

7

7
9

6

1
5

:1
8

.6

7
9

6

1
6

:0
6

.8

8
0

4

7
7

0

1
5

:1
6

.4

7
6

9

1
5

:5
3

,4

1
0

7
3

1

0
5

8

3
4

:5
8

.0

1
0

5
8

3

6
:1

6
,7

1
1

1
8

1

0
8

8

3
4

:5
0

.6

1
0

8
8

3

6
:2

2
.9

1
1

0
9

1

0
7

3

3
4

:5
6

.8

1
0

7
3

3

3
:0

6
.6

1
0

2
0

9

9
5

3

4
:3

1
.6

9

9
6

3

5
:3

2
.1

1
0

7
8

1

0
7

1

3
6

:5
0

.4

1
0

7
0

3

8
:1

1
.5

1
5

4
3

1

5
2

1

1
:4

1
:1

2
.7

1

5
2

'I

1
:5

6
:1

7
~

1

1
6

6
2

1

6
5

8

1
:4

0
:1

5
.0

1

6
5

9

1
:5

4
:4

2
.2

1
5

0
9

1

4
9

8

1
:4

5
:0

8
.9

1

4
9

9

1
:5

5
:0

3
,1

1
5

5
0

1

5
3

6

1
:5

5
:4

2
.1

1

5
3

8

3
6

:5
3

.3

1
5

7
1

1

5
5

3

1
:5

4
:1

5
.4

1

5
5

1

1
:5

3
:5

6
.5

9
4

8

9
4

8

1
:1

2
.8

9

4
8

1

:1
3

.6

9
9

3

9
8

6

1
:2

1
.6

9

8
6

1

:2
1

.0

9
4

3

9
4

3

1
:0

7
.4

9

4
3

1

:0
8

.0

9
5

2

9
2

2

5
:5

3
.6

9

2
2

2

:2
9

,8

9
5

5

9
5

5

1
:0

8
,2

9

5
5

1

:0
8

,5

C
)

o
"

&

t~

T~

t~

9
"

a

O
 ~
r

t,
o

214 J. Hurink et al.: Job-shop scheduling problem

Table 2

N1-1000 N2-1000 N1-5000 N2-5000

5. Concluding remarks

edata ave (%) 5.2 5.3 4.8 4.5
max (%) 24.0 22.8 23.4 19.8

rdata ave (%) 2.8 2.9 2.3 2.3
max (%) 13.4 14.5 12.0 10.7

vdata ave (%) 0.5 0.5 0.4 0.4
max (%) 3.2 3.1 1.9 2.1

�9 N1-1000: The tabu-search algorithm based on neigh-

borhood N1 with a maximum of 1000 iterations.

�9 N2-1000: The tabu-search algorithm based on neigh-

borhood N2 with a maximum of 1000 iterations.

�9 UB: The makespan of the obtained solution.

�9 CPU: The CPU-time (hours: minutes: seconds).

Table 2 summarizes the obtained results, both, with a

maximum of 1000 and 5000 iterations. By ave (max) we

denote the average (maximal) percentage deviation from

the best known lower bound.

The results can be summarized as follows.

�9 Both neighborhoods give very similar results. N1 is a

little better than N2 if the number of iterations is limited to

1000, N2 is better than N1 if this number is limited to 5000.

In average the N2-heuristics need more computational

time than the Nl-heuristics, even if the number of

iterations is identical. In the worst case N2 needs 80%

more time than N1 (for a benchmark problem with 5000

iterations).

�9 It is only useful to consider 5000 iterations for the

"large" problems of edata and rdata. In the remaining

cases an improvement is obtained only in a few cases, and

the improvements are only small. Especially for large

vdata problems N1 - 5000 and N 2 - 5000 need an enormou s

amount of computational time: in five cases the heuristics

run for approximately 10 hours.

�9 In most cases the tabu-search algorithm improves the

initial solution given by beam3 considerably.

�9 Only for a small number of small problems the algo-

rithms terminate before the maximal number of iterations

is reached. In most of these cases the value of the best

found solution is equal to a lower bound, i.e. the best

found solution is optimal.

Summarizing the tabu-search heuristic yield excellent

results for almost all benchmark problems. The best

results are obtained for the vdata problems. The average

deviation from the best lower bound is 0.5%, even if the

number of iterations is limited to 1000.

The computational times for the heuristics with a

maximal number of 1000 iterations are not too large (max.

16 min for edata, max. 40 min for rdata, and max. 2 h for

vdata). The computational time strictly increases with the

number of jobs. If the number of jobs is less than or equal

to 15 then 1000 iterations never need more than 15 min!

We have considered job-shop scheduling problems with

multi-purpose machines. These problems arise in the area

of flexible manufacturing systems where tool equipped

machines can execute different types of operations.

We proposed a tabu-search based algorithm for calcu-

lating good heuristic solutions for the MPM job-shop

problem. Initial solutions are calculated using a fast

heuristic based on insertion techniques and beam search.

We presented computational results derived by testing

the algorithms which have been developed in this paper on

a number of benchmark problems. The tabu search

algorithms yield excellent results for almost all problems.

Acknowledgements. We gratefully acknowledge the comments of
two anonymous referees which improved the presentation of the
paper.

References

Adams J, Balas E, Zawack D (1988) The shifting bottleneck
procedure for job-shop scheduling. Manag Sci 34:391-401

Applegate D, Cook W (1991) A computational study of the job shop
scheduling problem. ORSA J Comput 3:149-156

Brandimarte P (1993) Routing and scheduling in a flexible job schop
by tabu search. Ann Ope Res 41 : 157-183

Brucker P, Jurisch B, Sievers B (1992) A branch and bound
algorithm for the job-shop scheduling problem. Osnabrficker
Schriften zur Mathematik, Reihe D, Heft 136 (to appear in: Discr
Appl Math)

Brucker P, Schlie R (1990) Job-shop scheduling with multi-purpose
machines. Computing 45:369-375

Carlier J, Pinson E (1989) An algorithm for solving the job-shop
problem. Manag Sci 35:164-176

Carlier J, Pinson E (1990) A practical use of Jackson's preemptive
schedule for solving the job shop problem. Ann Oper Res
26: 269-287

Dell'Amico M, Trubian M (1993) Applying tabu search to the job-
shop scheduling problem. Ann Oper Res 41:231-252

Fisher H, Thompson GL (1963) Probabilistic learning combinations
of local job-shop scheduling rules. In: Muth JF, Thompson GL
(eds) Industrial scheduling. Prentice Hall, Englewood Cliffs,
pp 225-251

Glover F (1989) Tabu search, Part I. ORSA J Comput 1 : 190-206
Glover F (1990) Tabu search, Part II. ORSA J Comput 2:4-32
Graboswski J, Nowicki E, Zdrazalka S (1986) A block approach for

single machine scheduling with release dates and due dates. Eur J
Oper Res 26:278-285

Graham RL (1966) Bounds for certain multiprocessing anomalies.
Bell Syst Tech J 45:1563-1581

Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979)
Optimization and approximation in deterministic sequencing
and scheduling: a Survey. Ann Disc Math 5:287-326

Hurink J (1992) Polygon scheduling. Dissertation, Fachbereich
Mathematik/Informatik, Universitat Osnabrtick

Jurisch B (1992) Scheduling jobs in shops with multi-purpose
machines. Dissertation, Fachbereich Mathematik/Informatik,
Universitfit Osnabrt~ck

Laarhoven PJM van, Aarts EHL, Lenstra JK (1992) Job shop
scheduling by simulated annealing. Oper Res 40:113-125

Meyer W (1992) Geometrische Methoden zur L6sung von Job-Shop
Problemen und deren Verallgemeinerungen, Dissertation, Fach-
bereich Mathematik/Informatik, Universit~it Osnabriick

Ow PS, Morton TE (1989) The single machine early/tardy problem.
Manag Sci 35:177-191

Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization.
Prentice Hall, Englewood Cliffs

J. Hurink et al.: Job-shop scheduling problem 215

Roy B, Sussmann B (1964) Les problbmes d'ordonnancement avec
contraintes disjonctives, Note DS no. 9 bis, SEMA, Paris

Salvador MS (1973) A solution of a special class of flowshop
scheduling problems. Proceedings of the Symposium on the
Theory of Scheduling and its Applications. Springer, Berlin
Heidelberg New York, pp 83-91

Thole M (1993) L6sung von Multi-Purpose Job-Shop Problemen
durch Tabu-Suche, Diplomarbeit, Fachbereich Mathematik/
Informatik, Universit~it Osnabriick

Werner F, Winkler A (1991) Insertion techniques for the heuristic
solution of the job shop problem. TU Magdeburg, Preprint
26/91

