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Abstract

Our objective is transfer training of a discriminatively

trained object category detector, in order to reduce the

number of training images required. To this end we pro-

pose three transfer learning formulations where a template

learnt previously for other categories is used to regularize

the training of a new category. All the formulations result

in convex optimization problems.

Experiments (on PASCAL VOC) demonstrate significant

performance gains by transfer learning from one class

to another (e.g. motorbike to bicycle), including one-shot

learning, specialization from class to a subordinate class

(e.g. from quadruped to horse) and transfer using multi-

ple components. In the case of multiple training samples it

is shown that a detection performance approaching that of

the state of the art can be achieved with substantially fewer

training samples.

1. Introduction

There has been considerable progress recently in object

category detection: the task of determining if one or more

instances of a category are present in an image and, if they

are, localizing them [6]. Indeed, for certain types of object

categories and images (e.g. compact objects, typical view-

points), discriminatively trained template part-based detec-

tors perform very well, and source code is freely avail-

able for training and development [9]. The negative though

is that current methods require training the detector from

scratch for each new category – a costly procedure which

requires an adequate supply of positive and negative anno-

tated data. For challenges like ImageNet [2] and beyond,

where the goal is thousands of categories, this procedure is

not scalable for object category detection.

One solution to this problem is to represent object cat-

egories indirectly by their attributes, and to learn to de-

tect attributes that can be applied across multiple cate-

gories [10, 12, 13, 7, 19, 29]. The benefits are that each

attribute can be learnt from multiple classes, so training data

is plentiful, and that the attribute representation can be ap-
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Figure 1. The benefit of transfer learning. The learnt HOG de-

tector template for a motorbike (a) is used as the source for learn-

ing a bicycle template together with the samples shown in (b). The

resulting learnt bicycle HOG detector template (c) clearly has the

shape of a bicycle. Note, here and in the rest of the paper we only

visualize the positive components of the HOG vector.

plied to classes that were not used in the training, so it is

scalable. However, currently almost all attribute recognition

is for image classification (not detection) and even for clas-

sification (a simpler task than detection) the performance is

inferior to direct discriminative training.

An alternative solution, that we investigate in this pa-

per, is to benefit from category detectors that have previ-

ously been learnt for similar categories by transferring in-

formation to a new target category. In particular, our objec-

tive is to apply transfer learning to the SVM discriminative

training framework for HOG template models of Dalal &

Triggs [1] and Felzenszwalb et al. [9]. The key intuition

is that the learnt template records the spatial layout of pos-

itive and negative orientations. Classes that are geometri-

cally similar (e.g. a horse and a donkey) – those that can

be ‘morphed’ into one another by local deformations – will

have correspondingly similar HOG templates. To achieve

this transfer in the target detector training, the previously

learnt template is introduced as a regularizer in the cost

function. As illustrated in figure 1, this enables a detector

to be learnt for the target category using substantially fewer

samples than tabula rasa.

To this end, we introduce and compare three models,

including a novel cost function for rigid template transfer

and a geometric transfer model where the template is de-

formed using local flow. All three models are defined by

convex optimization problems. We also show that the se-

lection of training samples is critical but can be determined



by the source category for best results in the case of one-

shot learning.

Related work. Model based transfer learning, originally

developed in the machine learning literature as adapta-

tion [14, 27], has been applied to computer vision primar-

ily for image classification [17, 22, 23, 27], rather than

detection. The work closest to ours is that of Tomassi et

al. [22, 23] who also use a discriminative SVM framework

(though with a quadratic loss), and include the previously

learnt model as a regularizer. We extend their work by

developing new models and also by considering the more

challenging detection problem. We also extend their model

by applying local flow algorithms on the classifier template.

Others have investigated transfer learning from multiple

classes [18, 26] though again for classification. The more

general task of reducing training requirements by incorpo-

rating prior models has also been considered by Fei-Fei et

al. [8] for one shot learning, metric-learning by Fink [11],

and hierarchical classification by Zweig and Weinshall [30].

Stark et al. [21] consider a more geometric based transfer

between models, though this is manual at the moment.

There is another school of transfer learning where clas-

sifiers are transferred between domains [3, 4, 20, 28], for

example by learning feature distributions for the source and

target domains, but we are not concerned with this type of

domain transfer problem here.

In the next section we define the problem, and then intro-

duce two new model transfer methods building on an exist-

ing model transfer method of [14, 27]. In the experiments

(section 4) we compare transfer learning models for both

one-shot learning and multiple samples in the case of trans-

ferring from one category to another; and also investigate

the case of specialization from a class to a subordinate class.

2. Model Transfer Support Vector Machines

Suppose that we wish to detect an object category of in-

terest, which will be referred as the target category, and

assume that we have a well trained detector for a visually

similar source category. Then, the goal is to learn an object

detector for the target category by transferring knowledge

from the source category detector with the guidance of a

few available samples of the target category.

We are concerned here with detection using a sliding

window classifier in the manner of [1]. The classifier is

linear and is specified by a template vector w, with a scor-

ing function wTx, where x is the feature vector. Then the

task is to learn w for the target category using a few positive

training instances xi, and the source category detector ws.

In the remainder of the section we introduce and moti-

vate model based transfer learning for support vector ma-

chines (SVM). Three variants will be defined: Adaptive

Support Vector Machines (A-SVM), a direct application of

the classifier transfer of [14, 27]; Projective Model Transfer

Figure 2. Visualization of the projection of the vector w onto w
s,

and onto the separating hyperplane orthogonal to w
s.

SVM (PMT-SVM) which relaxes the transfer of the A-SVM

model; and Deformable Adaptive SVM (DA-SVM), where

the source template ws is geometrically transformed during

the learning.

2.1. Adaptive SVM (ASVM)

The idea, originally introduced by [14, 27], is to learn

from the source model ws by regularizing the distance be-

tween the learned model w and ws. As usual, xi are the

training samples, yi ∈ {−1, 1} the corresponding labels,

and l(xi, yi;w, b) = max
(

0, 1− yi(w
Txi + b)

)

the hinge

loss. The objective function is:

LA = min
w,b

‖w − Γws‖2 + C

N
∑

i

l(xi, yi;w, b) (1)

where Γ controls the amount of transfer regularization, C

controls the weight of the loss function, and N the number

of samples.

Discussion. We present a brief analysis of A-SVMs to

motivate our second model. Intuitively transfer regulariza-

tion for an A-SVM is like a spring between Γws and w, and

is equivalent to providing training samples from the source

class. The transfer can also be understood by expanding the

regularization term. Assume that ws is l2 normalized to 1
then

‖w − Γws‖2 = ‖w‖2 − 2Γ‖w‖cosθ + Γ2 (2)

where ‖w‖2 provides the ‘normal’ SVM margin maximiza-

tion and −2Γ‖w‖cosθ induces the transfer by maximizing

cosθ, i.e. by minimizing the angle θ between the ws and w

as shown in figure 2. Note, that the transfer term ‖w‖cosθ
is maximized (and thus the cost minimized) when θ = 0.

However, the term −2Γ‖w‖cosθ also encourages ‖w‖
to be larger (as this reduces the cost) and this prevents mar-

gin maximization. Thus Γ, which should define the amount

of transfer regularization, becomes a tradeoff parameter be-

tween margin maximization and knowledge transfer.

2.2. Projective Model Transfer SVM (PMTSVM)

Rather than transfer by maximizing the transfer term

‖w‖cosθ, we can instead minimize the projection of w onto

the seperating hyperplane orthogonal to ws (and thereby re-

duce θ, see again figure 2). In this approach, we can in-

crease the amount of transfer (Γ) without penalizing margin



maximization. The objective function for Projective Model

Transfer SVM (PMT-SVM) is:

LPMT = min
w,b

‖w‖2 + Γ‖Pw‖2 + C

N
∑

i

l(xi, yi;w, b)

st : wTws ≥ 0 (3)

where P is the projection matrix P = I − wswsT

wsTws

, Γ con-

trols the amount of transfer regularization, and C controls

the weight of the hinge loss. ‖Pw‖2 = ‖w‖2sin2θ is the

squared norm of the projection of the w onto the source hy-

perplane. wTws ≥ 0 constrains w to the positive halfspace

defined by ws. As Γ → 0, (3) becomes a ‘classical’ SVM

objective. Note that the formulation is convex and can be

minimized using quadratic optimization.

2.3. Transferring from a deformable source

Transfer regularization can also be performed by using

a deformable source template, where small local deforma-

tions are allowed for a better fit of the source template to the

target. For instance, the wheel part of a motorbike template

can be increased in radius and reduced in thickness for a

better fit to a bicycle wheel (see figure 1). These small de-

formations provide more flexible regularization. Local de-

formations are implemented by the flow of weight vectors

from one cell to another, as described in more detail in sec-

tion 3. The deformation is governed by the following flow

definition:

τ(ws)i =
M
∑

j

fijw
s
j ,

where τ denotes the flow transformation, ws
j is the jth cell

in the source template, the flow parameters fij define the

amount of transfer from the jth cell in the source template

to the ith cell in the transformed template. Note that one

source template cell can contribute to multiple transformed

template cells.

To generalize from the rigid A-SVM to deformable

transfer formulation, ws in (1) is replaced with τ(ws) which

gives the following Deformable Adaptive SVM (DA-SVM)

objective:

LDA = min
f,w,b

‖w − Γτ(ws)‖2 + C

N
∑

i

l(xi, yi;w, b)

+λ





M,M
∑

i 6=j

f2
ijdij +

M
∑

i

(1− fii)
2d



 (4)

where dij is the spatial distance between the ith cell and

jth cell, d is the penalization for the additional flow from

the ith source cell to the ith target cell, and λ the weight of

the deformation.

Again, the hyper-parameter Γ controls the amount of

transfer. The additional parameter λ controls the deforma-

bility: high values of λ make the model more rigid so that

the solution of (4) approaches that of (1), conversely small

values allow a very flexible source template with less regu-

larization ability.

Discussion. The DA-SVM objective (4) defines a con-

vex optimization problem. Even though the term ‖w −
Γτ(ws)‖2 may appear to be non-convex (due to the prod-

uct of the terms in fij and wk), a short calculation shows

that the Hessian matrix is positive definite.

2.4. Introducing latent variables

In a similar manner to [9], latent variables can be in-

troduced that specify the position and scale of the detec-

tion ROIs relative to the annotation ROIs. As demonstrated

in [9] the introduction of latent variables boosts the perfor-

mance of the detector, because the training is no longer ad-

versely affected by variations in the annotation and can use

each training sample more fully. The disadvantage is that

the complete optimization problem is no longer convex.

In more detail, the optimization problem becomes

Llatent = minz∈Z(X) L, where L can be any of the model

transfer objectives, Z(X) defines all possible bounding box

positions and scales of positive and negative samples, and z

selects from these sets. In brief, for positive samples z de-

fines a better alignment and for negative samples it defines

the boxes that are more confused with positives and harder

to classify as negative. Even though Llatent is not convex,

it becomes a convex objective function when z is fixed, as

all the transfer model objectives are convex.

3. Implementation details

HOG features. The features used are HOG [1] with the

extensions proposed by [9] and using their source code.

Each HOG cell is represented by a 32 dimensional vector.

The feature vector x thus has dimension 80× 32. As in [9]

we use a 8 × 10 arrangement of HOG cells. The transfer

experiments are based only on the root filter of [9] without

parts. Most of the experiments use a single component, but

multiple components are used in section 4.1.3.

Flow. The weight vector w corresponds to the grid of

M = 80 HOG cells tiled in a rectangle, with each cell rep-

resented by a D = 32 dimensional vector (so w has dimen-

sion M × D). Write hj for the D dimensional part of w

corresponding to the HOG cell j (so that w is a concatena-

tion of M vectors hj , j = 1 . . . D). The flow is restricted

to act on the entire vectors hj , as
∑

j fijhj i.e. it does not

mix components of the cell vectors. This is a simplification

that could be removed if necessary.

Training. We are provided with a training set of anno-

tated images with tight bounding boxes around each posi-

tive instance (see section 4). During training, we switch be-

tween optimizing latent variables (bounding box positions

and scales of positive and negative samples) and SVM ob-

jectives. The SVMs are trained either via quadratic pro-

grammig using the MOSEK [15] optimization toolkit, or via

stochastic gradient descent using the VLFeat library [24]. In



Figure 3. Bicycle classifiers learned using a motorbike classifier as the source and with an increasing number of samples (1,3,6,9,20) from

left to right. Note the transition from a template that looks like a motorbike (left) to one that looks like a bicycle (right). A-SVM method

is used for learning.

Figure 4. The benefits of transfer learning. The three types of

performance improvement aspirations from transfer learning. The

x-axis is the number of training samples for the target class. (figure

from [16, 23]).

other respects (alternating for latent variables etc) the train-

ing follows that of [9], and in section 4 we show that we

obtain a similar performance to [9].

4. Experiments

Transfer learning can provide three types of performance

improvements over learning from the target class alone (see

Figure 4) [16, 23]: (1) higher start: the initial perfor-

mance is higher, (2) higher slope: performance grows more

quickly, (3) higher asymptote: the final performance is bet-

ter. The experiments are designed to see which of these are

achieved by the model transfer methods.

There are two types of experiments: (i) inter-class trans-

fer where the transfer is from one category to another; and

(ii) specialization where the transfer is from superior class

to subordinate (e.g. from a generic quadruped category to a

specific category).

The evaluations are performed on the PASCAL VOC

2007 dataset [5]. The training and validation sets are used

to learn the detector, and the performance is reported as

average precision (AP) on the test set using the standard

PASCAL procedure and evaluation software. For efficiency

purposes, we also select a smaller test subset referred as

PASCAL-500 which consists of all the positive samples of

the target class and a random selection of other images

up to 500. The complete test set is referred as PASCAL-

COMPLETE.

For most of the experiments we restrict the training to

side views of the categories horse, sheep, cow, motorbike,

and bicycle. These are obtained directly from the VOC data

using the pose attributes provided in the annotations. In the

training only side facing objects are used and the obtained

filter is always facing left (i.e right facing samples are mir-

Categories
#pos. samples

Felz. [9] Base. SVM
train test

horse 45 53 40.1% 44.6%

sheep 45 43 30.7% 37.1%

cow 38 41 24.9% 21.5%

bicycle 62 76 50.1% 59.0%

motorbike 36 57 38.1% 33.8%

Table 1. The comparison of the average precision (AP) results ob-

tained from baseline SVM and Felzenszwalb et. al. [9] without

parts for the pascal-side-only object detection task on PASCAL-

COMPLETE test set.

rored before training). Table 1 gives the number of side fac-

ing positives in the training and test sets for each class. In

section 4.1.3 we lift the restriction of side view samples and

use all the views for training multiple component models.

Evaluations are performed using two different proce-

dures: (i) pascal-default, and (ii) pascal-side-only. The

pascal-default case is the PASCAL VOC [5] evaluation pro-

cedure including all views. In pascal-default evaluations,

while obtaining detections we also use the mirrored version

of the side facing detector. In the pascal-side-only case,

only the left side view ground truth of test samples is used

for evaluation and true detections of other poses belonging

to the target class are not counted towards AP computation.

The hyperparameters C, Γ and λ are learned on the vali-

dation set. C is fixed to 0.002 for all the experiments.

Baseline detectors. The baseline detectors are SVM clas-

sifiers trained directly on positive samples without any

transfer learning. These classifiers provide the source mod-

els in the transfer experiments, and also establish the perfor-

mance that can be achieved for the target class if all the pos-

itive samples of that class are used for training. Other than

the learning procedure, the baseline is essentially the same

as the discriminatively trained detector of [9] with only the

root filter (no parts), and we compare to this method us-

ing the code provided by the authors. As shown in table 1

the baseline has very similar performance to [9] (if not bet-

ter). This establishes the state of the art performance for this

dataset.

4.1. Between category transfer

In these experiments we investigate two cases: learning

a bicycle classifier by transferring from the motorbike clas-

sifier, and learning a horse classifier by transferring from



the cow classifier. We discuss first one shot learning, i.e.

learning from a single positive sample of the target class,

and then multiple shot learning.

4.1.1 One Shot Learning

The one shot learning scenario investigates the higher start

aspect of transfer learning benefits (see figure 4). Given

a single positive target class sample, we compare four

learning methods: learning from the given positive sam-

ple only (baseline SVM), rigid transfer using A-SVM and

PMT-SVM, deformable transfer using DA-SVM. Evalua-

tions are conducted on the PASCAL-500 test set using the

pascal-side-only evaluation procedure. The experiments are

performed for each training sample of the target class sepa-

rately.

We explore the scenario where many samples of the tar-

get class are available, and we wish to pick the best one in

order to gain the maximum performance from single shot

learning. In order to see how these four methods respond

to varying the quality of the samples, the training samples

are ranked using the source classifier. A few examples from

high ranked, medium ranked and low ranked bicycle images

are displayed in figure 5.

The results for one shot learning are presented in tables 2

and 3. The APs are averaged over the samples from each

quality group, namely: high ranked, medium ranked and

low ranked. For all the samples, model transfer methods

significantly improve over the baseline SVM which shows

that the transfer models enjoy the high start benefit. For the

high ranked samples, model transfer methods improve ap-

proximately 15% over the baseline SVM on both the bicycle

and horse detection tasks. The improvement over baseline

SVM is around 20% for medium ranked samples in both

tasks. On the low ranked samples the baseline SVM is in-

creased from 7% to 21% in horse detection, and 14% to

42% in bicycle detection.

For high ranked samples both PMT-SVM and A-SVM

have similar performances. For medium ranked samples

PMT-SVM outperforms A-SVM. In general we expect

PMT-SVM to outperform A-SVM, as argued in section 2.

Experimentally, classical SVMs tend to have a very small

‖w‖ for one positive sample models. But we observe that

A-SVM models trained with one positive sample have rel-

atively larger (almost ten times larger) w vectors. This is

due to the transfer term which doesn’t let w reduce fur-

ther after a certain value. This problem is rectified in the

PMT-SVM model. Note, that PMT-SVM performs much

better using some of the medium ranked samples than using

high ranked samples. The explanation is that probably these

medium ranked samples are closer to the target hyperplane,

and this contributes more to the learning procedure than the

high ranked ones. For the low ranked samples, which are

either highly occluded, blurred or distorted, A-SVM clearly

Figure 5. Examples of ranked bicycle samples using the motor-

bike detector. Top row: examples from the high ranked (top 15)

samples which are generally not occluded, clean and clearly side

facing; middle row: the middle ranked (other than top or last 15)

samples which are mainly clear, might have small occlusion and

viewpoint distortions; and bottom row: the low ranked (last 15)

samples which are either highly occluded, blurred or not good rep-

resentatives of side facing class.

Ranks Base. SVM A-SVM DA-SVM PMT-SVM

01-15 40.5 ± 07.2 53.9 ± 04.2 53.7 ± 04.3 53.5 ± 05.7

16-30 33.0 ± 13.5 52.5 ± 08.3 51.9 ± 08.8 54.7 ± 05.7

31-45 26.4 ± 13.3 47.1 ± 07.3 47.1 ± 07.6 48.5 ± 08.7

46-60 14.0 ± 09.3 42.4 ± 03.7 42.5 ± 04.2 27.8 ± 11.3
Source: motorbike(44.7%), Target: bicycle(70.1%), Test-set: PASCAL-500,

Test-procedure: pascal-side-only

In all the tables, test configuration information is given similar to the line above, the

values for the source and target are the AP scores of the source(i.e. motorbike) and

full target(i.e. bicycle trained with all available samples) detectors on the target task.

Table 2. Average Precision (AP) comparison of baseline and

transfer SVMs on the one shot learning task. Models are

learned using one sample of bicycle class and the motorbike clas-

sifier as the source. The top row displays the average AP results

using one of the top 15 (high ranked) samples ranked by the source

classifier. Next rows display the next 15 in the ranking. Note the

tremendous boost obtained by the transfer method compared to the

base SVM (without transfer).

outperforms PMT-SVM. We conclude that PMT-SVM is

highly sensitive to bad (low ranked) samples. DA-SVM per-

forms very similarly to A-SVM for all the samples.

To our knowledge there is no previous work on how to

select or weight samples of the target class while perform-

ing transfer learning. Under the assumption that the source

class is visually similar to the target class, ranking samples

with the source detector provides an idea about the qual-

ity of available samples. Note, the ranking of samples using

the source and full target (i.e. trained with all available sam-

ples) classifier has 50% overlap in the top 15 samples, and

66% overlap for the last 15 samples. This source ranking

can help during the sample selection or weighting of the

samples for transfer learning. Since bad samples clearly de-

teriorate the performance (see table 2 and 3), low scored

samples either should be removed or at least should be as-

signed small weights.



Ranks Base. SVM A-SVM DA-SVM PMT-SVM

01-15 15.0 ± 08.0 30.2 ± 04.0 30.3 ± 03.5 30.1 ± 05.4

16-30 07.2 ± 04.1 27.0 ± 04.2 27.0 ± 04.3 27.7 ± 07.1

31-45 07.2 ± 08.2 24.1 ± 06.0 23.8 ± 05.9 11.9 ± 10.3
Source: cow(26.1%), Target: horse(60.2%), Test-set: PASCAL-500,

Test-procedure: pascal-side-only

Table 3. AP comparison of baseline and transfer SVMs on the

one shot learning task. Models are learned using one sample of

horse class and the cow classifier as the source.

# Base. SVM A-SVM DA-SVM PMT-SVM

1 05.2 ± 05.6 23.6 ± 02.9 24.1 ± 03.2 22.7 ± 12.1

2 09.0 ± 07.7 32.3 ± 03.9 32.4 ± 04.9 34.3 ± 07.3

3 18.9 ± 10.9 34.7 ± 05.5 35.0 ± 04.7 36.0 ± 10.5

4 24.7 ± 12.2 37.1 ± 04.5 37.7 ± 04.0 35.0 ± 05.6

5 28.7 ± 09.5 37.7 ± 06.6 37.9 ± 06.4 34.8 ± 06.9
Source: cow(26.1%), Target: horse(60.2%), Test-set: PASCAL-500,

Test-procedure: pascal-side-only

(a)

# Base. SVM A-SVM DA-SVM PMT-SVM

1 26.9 ± 11.2 51.3 ± 04.5 49.9 ± 05.1 54.9 ± 04.0

2 48.4 ± 05.0 55.5 ± 05.8 55.2 ± 05.1 55.4 ± 06.0

3 46.9 ± 11.0 54.2 ± 07.1 54.1 ± 06.7 56.4 ± 06.9

4 48.2 ± 09.5 56.0 ± 08.5 55.4 ± 07.3 54.2 ± 06.0

5 52.5 ± 09.1 58.1 ± 06.5 58.7 ± 05.6 56.8 ± 06.4
Source: motorbike(44.7%), Target: bicycle(70.1%), Test-set: PASCAL-500,

Test-procedure: pascal-side-only

(b)

# Base. SVM A-SVM DA-SVM PMT-SVM

1 26.9 ± 11.2 06.0 ± 09.4 06.2 ± 09.3 27.8 ± 08.1

2 48.4 ± 05.0 26.4 ± 05.0 27.8 ± 05.4 50.0 ± 06.0

3 46.9 ± 11.0 33.3 ± 12.7 33.5 ± 12.5 51.4 ± 12.9

4 48.2 ± 09.5 36.3 ± 14.7 36.0 ± 14.3 51.1 ± 12.7

5 52.5 ± 09.1 45.4 ± 13.0 45.5 ± 13.4 56.0 ± 09.3
Source: horse(00.9%), Target: bicycle(70.1%), Test-set: PASCAL-500,

Test-procedure: pascal-side-only

(c)

Table 4. AP results of baseline SVM and model transfer meth-

ods. Transfers are performed (a) from cow to horse, (b) from mo-

torbike to bicycle, and (c) from horse to bicycle (negative transfer).

Leftmost column displays the number of positive samples used for

learning. In this, and all the following tables and figures, the ex-

periments are performed five times with different randomized or-

derings of the positive samples.

4.1.2 Multiple shot learning

For the experiments we use a fixed (but random) order-

ing for four learning methods: target samples only, trans-

fer from the rigid source template using A-SVM and PMT-

SVM, and transfer from the deformable source template us-

ing DA-SVM. Each experiment is repeated 5 times with

a different random order. The APs are averaged for each

number of samples. The average removes any idiosyn-

crasies due to particularly good or bad samples turning up

early in the training. These fluctuations in AP can be seen

in the standard deviations of the results given in table 4. The

transition of the learned template is illustrated in figure 3.

As is clear from table 4, transfer from the source class

using A-SVM, DA-SVM and PMT-SVM performs signifi-

cantly better than the baseline SVM, especially for a small

number of positive samples. Note that the standard devi-

ations of all three methods are smaller than the baseline

SVM, showing that the idiosyncrasies due to good and bad

training samples are better tolerated. As the number of

positive samples increases, the improvements from transfer

learning methods over the baseline decreases.

As can be seen from table 4, PMT-SVM works better for

a small number of samples (1-2-3). In table 4(a), one sam-

ple PMT-SVM appears worse than A-SVM. In fact, this is

caused by one of the orderings where a bad sample is intro-

duced. When we remove that ordering and average the other

4 orderings, for the one sample case, PMT-SVM clearly

outperforms A-SVM, with performance 28.12% to 24.64%,

respectively. This incident also shows that PMT-SVM is

good for one shot learning but it is highly sensitive to sam-

ple quality. PMT-SVM also doesn’t perform well with large

number of samples, probably caused by the introduction of

bad samples.

In addition to positive transfer experiments, we also

compared the transfer methods in a negative transfer case

where we learn a bicycle classifier using a horse classifier as

the source. As can be seen from table 4(c) A-SVM and DA-

SVM perform worse than the baseline. Since horse is not

a suitable class for transfer learning of a bicycle class, the

deterioration of A-SVM and DA-SVM is expected. How-

ever PMT-SVM still manages to perform some boost over

the baseline SVM, which shows that this weaker model can

transfer at the coarse (objectness) level as well.

As another type of baseline for the transfer experiments,

we include the performance of the source classifier (without

transfer) for detecting the target category. This measures

the confusion between the two categories. As shown in ta-

ble 4, if more than 1 positive sample is used then the transfer

methods outperform the source classifier for the target cat-

egory detection.

We also evaluated A-SVM and DA-SVM using a larger

scale of positive samples on the PASCAL-COMPLETE test

set (see table 5 and figure 6). In all the cases A-SVM and

DA-SVM perform better that the baseline SVM. DA-SVM

is superior to A-SVM except for the 50 samples case.

In summary, the results show a significant improvement

through transfer learning in terms of higher start and higher

slope (refer to figure 4).

4.1.3 Multiple shot learning with multiple components

(aspects)

These experiments are conducted on classifiers trained with

multiple components (aspects) (similar to [9]). We compare

two methods: baseline SVM, a classifier with multiple com-



Number of Samples 1 3 5 7 10 15 20 30 50

Test-procedure: Base. SVM 09.3 ± 08.8 34.2 ± 11.5 41.9 ± 05.9 44.0 ± 09.9 49.9 ± 05.4 55.9 ± 06.8 55.2 ± 03.5 57.9 ± 02.0 58.9 ± 01.3

pascal-side-only A-SVM 28.4 ± 08.1 40.9 ± 06.1 47.3 ± 04.4 48.8 ± 08.4 52.0 ± 05.9 56.0 ± 03.8 57.0 ± 03.3 59.0 ± 01.6 60.2 ± 01.5

DA-SVM 28.7 ± 08.2 42.1 ± 05.7 48.3 ± 03.6 49.1 ± 07.6 52.0 ± 05.2 57.0 ± 04.7 58.0 ± 01.9 60.3 ± 02.0 59.5 ± 00.9

Test-procedure: Base. SVM 07.0 ± 04.4 18.6 ± 05.2 22.7 ± 02.1 24.7 ± 04.5 27.1 ± 02.3 29.6 ± 01.9 30.1 ± 01.2 30.7 ± 01.4 31.6 ± 00.9

pascal-default A-SVM 14.9 ± 02.5 20.1 ± 02.7 24.0 ± 01.7 25.2 ± 03.1 27.0 ± 02.0 29.9 ± 01.2 31.0 ± 00.9 31.5 ± 01.3 32.3 ± 00.5

DA-SVM 15.3 ± 02.5 20.6 ± 02.4 24.5 ± 01.6 25.5 ± 03.4 27.3 ± 01.7 30.2 ± 01.0 31.1 ± 00.8 31.5 ± 01.3 32.2 ± 00.7

Source: motorbike(pascal-side-only:16.9%, pascal-default:13.2%), Target: bicycle(pascal-side-only:59.0%, pascal-default:32.5%), Test-set: PASCAL-COMPLETE

Table 5. AP results of baseline SVM and model transfer methods for the bicycle detection task.

# of Samples 3 5 8 10 13 15 18 20 23 25 50

Base. SVM 10.0 ± 0.8 13.7 ± 4.9 16.6 ± 6.0 16.9 ± 5.7 20.5 ± 4.4 23.4 ± 6.5 27.8 ± 4.7 28.0 ± 4.3 28.4 ± 3.1 29.8 ± 5.0 36.4 ± 3.4

A-SVM 11.9 ± 1.8 14.4 ± 4.2 17.7 ± 4.0 21.9 ± 3.0 22.2 ± 3.2 25.5 ± 5.0 26.0 ± 3.3 28.0 ± 3.7 29.7 ± 2.0 29.4 ± 2.2 33.9 ± 1.9

Source: motorbike(11.9%), Target: bicycle(46.6%), Test-set: PASCAL-COMPLETE, Test-procedure: pascal-side-only

Table 6. AP results of multiple component baseline SVM and A-SVM for bicycle detection task. For A-SVM, the transfer is performed

from a multiple component motorbike classifier.

Source: motorbike(16.9%), Target: bicycle(59.0%),

Test-set: PASCAL-COMPLETE, Test-procedure: pascal-side-only

Figure 6. AP comparison between baseline SVM and model trans-

fer methods on bicycle detection task.

ponents for the root filter learned from the positive samples

only; and A-SVM, a multiple component classifier learned

by transferring from a multiple component source classifier.

The experimental settings are as above using the PASCAL-

COMPLETE test set, except now, in training, positive train-

ing samples are selected from all poses (not just those of the

side views). A model with two distinct components (corre-

sponding to four components once mirrored) is used for the

source and the target classifiers. Transfer is performed from

the motorbike class to bicycle class.

In the transfer training, each positive training sample is

assigned to one of the components of the source classifier,

depending on the score of the sample obtained from the

source components. Then training is performed in a similar

fashion to [9] except we use transfer SVM training instead

of classical SVM training. Similarly to the other transfer

experiments, transfer methods achieve a good performance,

improving over the classical SVM training, particularly for

a small number of samples (see table 6). The boost gradu-

ally decreases when we increase the number of samples.

4.2. Specialization: superior to subordinate cate
gory transfer

These transfer experiments are conducted on the horse,

cow and sheep categories of PASCAL VOC 2007. A

‘quadruped’ category detector is trained from 100 randomly

selected examples from the horse, cow and sheep cate-

gories. It is then specialized to one of those categories

by transfer learning using the model transfer methods. We

omitted PMT-SVM since it doesn’t perform well for a large

number of samples. The experimental settings and proce-

dures are the same as multiple shot learning experiments on

PASCAL-COMPLETE test set.

Table 7 shows that specializing from the quadruped class

to a subordinate class using model transfer again gives a sig-

nificant performance improvement over the baseline SVM,

especially for a small number of positive samples. Occa-

sionally, using a large number of samples the baseline SVM

can perform better than transfer methods. In our experi-

ments the transfer parameter Γ is fixed, decreasing Γ when

we have large number of samples would solve the problem,

since our models converges to the classical SVM formula-

tion when Γ → 0.

Discussion. The benefits of training a superior class

(quadruped in this case) are that the training samples can

come from multiple subordinate classes. This is similar to

the case of attribute training. Indeed the superior class need

not involve any training from the target class. However, we

are restricted here in using PASCAL VOC – since there are

so few categories it is not possible to train a superior class

without also including all subordinate classes. Neverthe-

less, the benefit of specializing by transfer learning is well

demonstrated.

5. Conclusions and Future Work

Almost all object category detection methods to date

learn the classifier from scratch – tabula rasa. We have

proposed a straightforward modification of the learning ob-

jective function which retains the benefits of (i) convexity,



Number of Samples 1 3 5 7 10 15 20 30 50

Test-procedure: Base. SVM 03.6 ± 03.8 14.3 ± 07.6 20.0 ± 09.0 25.0 ± 07.3 29.9 ± 04.3 35.9 ± 05.7 40.1 ± 02.8 45.8 ± 02.6 47.1 ± 02.3

pascal-side-only A-SVM 21.2 ± 05.5 29.7 ± 06.0 30.9 ± 04.3 32.6 ± 04.7 35.3 ± 03.0 37.8 ± 05.6 40.4 ± 03.3 43.6 ± 03.5 45.4 ± 01.3

DA-SVM 20.9 ± 05.6 29.2 ± 06.0 31.5 ± 03.9 32.1 ± 04.4 36.6 ± 02.8 37.2 ± 04.7 40.3 ± 02.9 42.9 ± 03.1 44.0 ± 01.0

Test-procedure: Base. SVM 03.6 ± 03.6 10.3 ± 02.6 10.6 ± 01.8 12.7 ± 02.0 13.8 ± 03.3 14.6 ± 02.4 16.6 ± 01.1 19.9 ± 00.9 21.1 ± 01.5

pascal-default A-SVM 11.5 ± 04.0 14.5 ± 03.2 13.8 ± 03.3 15.2 ± 03.4 16.0 ± 01.8 16.0 ± 02.8 17.6 ± 01.0 19.9 ± 01.4 20.6 ± 00.8

DA-SVM 11.3 ± 04.5 14.2 ± 03.4 13.6 ± 03.0 15.3 ± 03.0 16.2 ± 01.7 16.1 ± 02.7 17.6 ± 01.0 19.8 ± 01.9 20.8 ± 00.4

Source: quadruped(pascal-side-only:15.4%, pascal-default:07.9%), Target: horse(pascal-side-only:44.6%, pascal-default:22.3%), Test-set: PASCAL-COMPLETE

Number of Samples 1 3 5 7 10 15 20 30 50

Test-procedure: Base. SVM 03.9 ± 05.0 03.5 ± 03.9 07.1 ± 05.8 08.4 ± 06.1 10.8 ± 07.0 14.0 ± 03.0 13.6 ± 04.7 17.0 ± 03.4 21.7 ± 00.0

pascal-side-only A-SVM 12.1 ± 03.1 12.3 ± 05.9 13.2 ± 04.2 12.7 ± 04.9 14.7 ± 04.6 15.0 ± 04.5 16.1 ± 03.2 17.8 ± 02.9 18.7 ± 00.0

DA-SVM 12.6 ± 03.3 12.1 ± 05.8 13.1 ± 04.0 12.8 ± 05.2 14.5 ± 04.5 14.7 ± 03.6 16.2 ± 03.5 17.8 ± 02.1 18.5 ± 00.0

Test-procedure: Base. SVM 04.9 ± 04.1 07.2 ± 03.1 07.0 ± 03.2 06.8 ± 03.4 08.4 ± 02.7 10.9 ± 01.2 11.6 ± 02.5 12.4 ± 01.7 12.6 ± 00.0

pascal-default A-SVM 10.6 ± 02.3 10.4 ± 03.5 09.1 ± 02.5 09.5 ± 03.1 10.0 ± 02.2 10.8 ± 02.1 11.3 ± 00.9 11.7 ± 00.6 11.8 ± 00.0

DA-SVM 10.6 ± 02.5 10.3 ± 03.7 08.7 ± 02.7 09.6 ± 03.3 09.7 ± 02.5 10.6 ± 01.8 11.1 ± 01.6 11.5 ± 00.6 13.3 ± 00.0

Source: quadruped(pascal-side-only:08.1%, pascal-default:07.1%), Target: cow(pascal-side-only:21.5%, pascal-default:14.9%), Test-set: PASCAL-COMPLETE

Table 7. AP results of baseline SVM and specialization using model transfer methods for the horse and cow detection tasks.

(ii) optimization methods honed to the special structure of

an SVM, and also brings the benefit of learning with fewer

training samples. The model transfer methods can act as a

‘power-boost’ plug-in to any SVM training scheme.

There are a number clear extensions to the model: (i) So

far the transfer learning has been applied to the root filter

and multiple component scenario of [9], the next step is to

extend it to multiple parts. (ii) So far a single feature type

has been used, but the model can also be extended to multi-

ple features, such as are used in [25].
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