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Abstract

We describe several tabular algorithms
for Tree Adjoining Grammar parsing,
creating a continuum from simple pure
bottom-up algorithms to complex pre-
dictive algorithms and showing what
transformations must be applied to each
one in order to obtain the next one in the
continuum.

1 Introduction

Tree Adjoining Grammars are a extension of CFG
introduced by Joshi in (Joshi, 1987) that use
trees instead of productions as the primary rep-
resenting structure. Several parsing algorithms
have been proposed for this formalism, most of
them based on tabular techniques, ranging from
simple bottom-up algorithms (Vijay-Shanker and
Joshi, 1985) to sophisticated extensions of the
Earley’s algorithm (Schabes and Joshi, 1988; Sch-
abes, 1994; Nederhof, 1997). However, it is diffi-
cult to inter-relate different parsing algorithms. In
this paper we study several tabular algorithms for
TAG parsing, showing their common characteris-
tics and how one algorithm can be derived from
another in turn, creating a continuum from simple
pure bottom-up to complex predictive algorithms.

Formally, a TAG is a 5-tuple G =
(VN , VT , S, I,A), where VN is a finite set of
non-terminal symbols, VT a finite set of terminal

symbols, S the axiom of the grammar, I a finite
set of initial trees and A a finite set of auxiliary
trees. I∪A is the set of elementary trees. Internal
nodes are labeled by non-terminals and leaf nodes
by terminals or ε, except for just one leaf per
auxiliary tree (the foot) which is labeled by the
same non-terminal used as the label of its root
node. The path in an elementary tree from the
root node to the foot node is called the spine of
the tree.

New trees are derived by adjoining: let α be a
tree containing a node Nα labeled by A and let
β be an auxiliary tree whose root and foot nodes
are also labeled by A. Then, the adjoining of β

at the adjunction node Nα is obtained by excising
the subtree of α with root Nα, attaching β to Nα

and attaching the excised subtree to the foot of β.
We use β ∈ adj(Nα) to denote that a tree β may
be adjoined at node Nα of the elementary tree α.

In order to describe the parsing algorithms for
TAG, we must be able to represent the partial
recognition of elementary trees. Parsing algo-
rithms for context-free grammars usually denote
partial recognition of productions by dotted pro-
ductions. We can extend this approach to the case
of TAG by considering each elementary tree γ as
formed by a set of context-free productions P(γ):
a node Nγ and its children N

γ
1 . . . Nγ

g are repre-
sented by a production Nγ → N

γ
1 . . . Nγ

g . Thus,
the position of the dot in the tree is indicated by
the position of the dot in a production in P(γ).
The elements of the productions are the nodes of



the tree, except for the case of elements belonging
to VT ∪ {ε} in the right-hand side of production.
Those elements may not have children and are not
candidates to be adjunction nodes, so we identify
such nodes labeled by a terminal with that termi-
nal.

To simplify the description of parsing algo-
rithms we consider an additional production ⊤ →
Rα for each initial tree and the two additional pro-
ductions ⊤ → Rβ and Fβ → ⊥ for each auxiliary
tree β, where Rβ and Fβ correspond to the root
node and the foot node of β, respectively. After
disabling ⊤ and ⊥ as adjunction nodes the gener-
ative capability of the grammars remains intact.

The relation ⇒ of derivation on P(γ) is de-
fined by δ ⇒ ν if there are δ′, δ′′,Mγ , υ such that
δ = δ′Mγδ′′, ν = δ′υδ′′ and Mγ → υ ∈ P(γ) ex-
ists. The reflexive and transitive closure of ⇒ is
denoted

∗

⇒ .

In a abuse of notation, we also use
∗

⇒ to rep-
resent derivations involving an adjunction. So,
δ

∗

⇒ ν if there are δ′, δ′′,Mγ , υ such that δ =
δ′Mγδ′′, Rβ ∗

⇒ υ1F
βυ3, β ∈ adj(Mγ), Mγ → υ2

and ν = δ′υ1υ2υ3δ
′′ .

Given two pairs (p, q) and (i, j) of integers,
(p, q) ≤ (i, j) is satisfied if i ≤ p and q ≤ j. Given
two integers p and q we define p∪ q as p if q is un-
defined and as q if p is undefined, being undefined
in other case.

1.1 Parsing Schemata

We will describe parsing algorithms using Parsing
Schemata, a framework for high-level description
of parsing algorithms (Sikkel, 1997). An interest-
ing application of this framework is the analysis of
the relations between different parsing algorithms
by studying the formal relations between their un-
derlying parsing schemata. Originally, this frame-
work was created for context-free grammars but
we have extended it to deal with tree adjoining
grammars.

A parsing system for a grammar G and string
a1 . . . an is a triple 〈I,H,D〉, with I a set of items
which represent intermediate parse results, H an
initial set of items called hypothesis that encodes
the sentence to be parsed, and D a set of deduc-
tion steps that allow new items to be derived from
already known items. Deduction steps are of the
form η1,...,ηk

ξ
cond, meaning that if all antecedents

ηi of a deduction step are present and the con-
ditions cond are satisfied, then the consequent ξ

should be generated by the parser. A set F ⊆ I of
final items represent the recognition of a sentence.
A parsing schema is a parsing system parameter-
ized by a grammar and a sentence.

Parsing schemata are closely related to gram-
matical deduction systems (Shieber et al., 1995),
where items are called formula schemata, deduc-
tion steps are inference rules, hypothesis are ax-
ioms and final items are goal formulas.

A parsing schema can be generalized from
another one using the following transforma-
tions (Sikkel, 1997):

• Item refinement, breaking single items into
multiple items.

• Step refinement, decomposing a single deduc-
tion step in a sequence of steps.

• Extension of a schema by considering a larger
class of grammars.

In order to decrease the number of items and
deduction steps in a parsing schema, we can apply
the following kinds of filtering:

• Static filtering, in which redundant parts are
simply discarded.

• Dynamic filtering, using context information
to determine the validity of items.

• Step contraction, in which a sequence of de-
duction steps is replaced by a single one.

The set of items in a parsing system PAlg cor-
responding to the parsing schema Alg describing
a given parsing algorithm Alg is denoted IAlg, the
set of hypotheses HAlg, the set of final items FAlg

and the set of deduction steps is denoted DAlg.

2 A CYK-like Algorithm

We have chosen the CYK-like algorithm for TAG
described in (Vijay-Shanker and Joshi, 1985) as
our starting point. Due to the intrinsic limitations
of this pure bottom-up algorithm, the grammars
it can deal with are restricted to those with nodes
having at most two children.

The tabular interpretation of this algorithm
works with items of the form

[Nγ , i, j | p, q | adj]

such that Nγ ∗

⇒ ai+1 . . . ap Fγ aq+1 . . . aj
∗

⇒

ai+1 . . . aj if and only if (p, q) 6= (−,−) and Nγ ∗

⇒
ai+1 . . . aj if and only if (p, q) = (−,−), where
Nγ is a node of an elementary tree with a label
belonging to VN .

The two indices with respect to the input string
i and j indicate the portion of the input string that
has been derived from Nγ . If γ ∈ A, p and q are
two indices with respect to the input string that
indicate that part of the input string recognized



by the foot node of γ. In other case p = q = −
representing they are undefined. The element adj

indicates whether adjunction has taken place on
node Nγ .

The introduction of the element adj taking its
value from the set {true, false} corrects the items
previously proposed for this kind of algorithms
in (Vijay-Shanker and Joshi, 1985) in order to
avoid several adjunctions on a node. A value of
true indicates that an adjunction has taken place
in the node Nγ and therefore further adjunctions
on the same node are forbidden. A value of false
indicates that no adjunction was performed on
that node. In this case, during future processing
this item can play the role of the item recognizing
the excised part of an elementary tree to be at-
tached to the foot node of an auxiliary tree. As a
consequence, only one adjunction can take place
on an elementary node, as is prescribed by the
tree adjoining grammar formalism (Schabes and
Shieber, 1994). As an additional advantage, the
algorithm does not need to require the restriction
that every auxiliary tree must have at least one
terminal symbol in its frontier (Vijay-Shanker and
Joshi, 1985).

Schema 1 The parsing system PCYK corre-
sponding to the CYK-like algorithm for a tree ad-
joining grammar G and an input string a1 . . . an

is defined as follows:

ICYK = { [Nγ , i, j | p, q | adj] }

such that Nγ ∈ P(γ), label(Nγ) ∈ VN , γ ∈ I ∪
A, 0 ≤ i ≤ j, (p, q) ≤ (i, j), adj ∈ {true, false}

HCYK = { [a, i − 1, i] | a = ai, 1 ≤ i ≤ n }

DScan
CYK =

[a, i − 1, i]

[Nγ , i − 1, i | −,− | false]
Nγ → a

Dε
CYK =

[Nγ , i, i | −,− | false]
Nγ → ε

DFoot
CYK =

[Fγ , i, j | i, j | false]

DLeftDom
CYK =

[Mγ , i, k | p, q | adj],
[P γ , k, j | −,− | adj′]

[Nγ , i, j | p, q | false]

such that Nγ → MγP γ ∈ P(γ), Mγ ∈ spine(γ)

DRightDom
CYK =

[Mγ , i, k | −,− | adj],
[P γ , k, j | p, q | adj′]

[Nγ , i, j | p, q | false]

such that Nγ → MγP γ ∈ P(γ), P γ ∈ spine(γ)

DNoDom
CYK =

[Mγ , i, k | −,− | adj],
[P γ , k, j | −,− | adj′]

[Nγ , i, j | −,− | false]

such that Nγ → MγP γ ∈ P(γ), Mγ , P γ 6∈
spine(γ)

DUnary
CYK =

[Mγ , i, j | p, q | adj]

[Nγ , i, j | p, q | false]
Nγ → Mγ ∈ P(γ)

DAdj
CYK =

[Rβ , i′, j′ | i, j | adj],
[Nγ , i, j | p, q | false]

[Nγ , i′, j′ | p, q | true]

such that β ∈ A, β ∈ adj(Nγ)

DCYK = DScan
CYK ∪ Dε

CYK ∪ DFoot
CYK ∪ DLeftDom

CYK ∪

DRightDom
CYK ∪ DNoDom

CYK ∪ DUnary
CYK ∪ DAdj

CYK

FCYK = { [Rα, 0, n | −,− | adj] | α ∈ I }

The hypotheses defined for this parsing system
are the standard ones and therefore they will be
omitted in the next parsing systems described in
this paper.

The key steps in the parsing system PCYK are
DFoot

CYK and DAdj
CYK, which are in charge of the recog-

nition of adjunctions. The other steps are in
charge of the bottom-up traversal of elementary
trees and, in the case of auxiliary trees, the prop-
agation of the information corresponding to the
part of the input string recognized by the foot
node.

The set of deductive steps DFoot
CYK make it possi-

ble to start the bottom-up traversal of each aux-
iliary tree, as it predict all possible parts of the
input string that can be recognized by the foot
nodes. Several parses can exist for an auxiliary
tree which only differs in the part of the input
string which was predicted for the foot node. Not
all of them need take part on a derivation, only
those with a predicted foot compatible with an
adjunction. The compatibility between the ad-
junction node and the foot node of the adjoined
tree is checked by a deductive step DAdj

CYK: when
the root of an auxiliary tree β has been reached,
it checks for the existence of a subtree of an ele-
mentary tree rooted by a node Nγ which satisfies
the following conditions:

1. β can be adjoined on Nγ .

2. Nγ derives the same part of the input string
derived from the foot node of β.



If the conditions are satisfied, further adjunctions
on N are forbidden and the parsing process con-
tinues a bottom-up traverse of the rest of the ele-
mentary tree γ containing Nγ .

3 A Bottom-up Earley-like

Algorithm

To overcome the limitation of binary branching in
trees imposed by CYK-like algorithms, we define a
bottom-up Earley-like parsing algorithm for TAG.
As a first step we need to introduce the dotted
rules into items, which are of the form

[Nγ → δ • ν, i, j | p, q]

such that δ
∗

⇒ ai+1 . . . ap Fγ aq+1 . . . aj
∗

⇒

ai+1 . . . aj if and only if (p, q) 6= (−,−) and δ
∗

⇒
ai+1 . . . aj if and only if (p, q) = (−,−).

The items of the new parsing schema, denoted
buE1, are obtained by refining the items of CYK.
The dotted rules eliminate the need for the ele-
ment adj indicating whether the node in the left-
hand side of the production has been used as ad-
junction node.

Schema 2 The parsing system PbuE correspond-
ing to the bottom-up Earley-like parsing algorithm,
given a tree adjoining grammar G and a input
string a1 . . . an is defined as follows:

IbuE = [Nγ → δ • ν, i, j | p, q]

such that Nγ → δν ∈ P(γ), γ ∈ I ∪ A, 0 ≤ i ≤
j, (p, q) ≤ (i, j)

DInit
buE =

[Nγ → •δ, i, i | −,−]

DFoot
buE =

[Fβ → ⊥•, i, j | i, j]

DScan
buE =

[Nγ → δ • aν, i, j − 1 | p, q],
[a, j − 1, j]

[Nγ → δa • ν, i, j | p, q]

DComp
buE =

[Nγ → δ • Mγν, i, k | p, q],
[Mγ → υ•, k, j | p′, q′]

[Nγ → δMγ • ν, i, j | p ∪ p′, q ∪ q′]

DAdjComp
buE =

[⊤ → Rβ•, k, j | l,m],
[Mγ → υ•, l,m | p′, q′],
[Nγ → δ • Mγν, i, k | p, q],

[Nγ → δMγ • ν, i, j | p ∪ p′, q ∪ q′]

such that β ∈ A, β ∈ adj(Mγ)

DbuE = DInit
buE ∪ DFoot

buE ∪ DScan
buE ∪

DComp
buE ∪ DAdjComp

buE

FbuE = { [⊤ → Rα•, 0, n | −,−] | α ∈ I }

The deduction steps of PbuE are obtained from
the steps in PCYK applying the following refine-
ment:

• LeftDom, RightDom and NoDom deductive
steps have been split into steps Init and
Comp.

• Unary and ε steps are no longer necessary,
due to the uniform treatment of all produc-
tions independently of the length of the pro-
duction.

The algorithm performs a bottom-up recog-
nition of the auxiliary trees applying the steps
DComp

buE1
. During the traversal of auxiliary trees,

information about the part of the input string rec-
ognized by the foot is propagated bottom-up. A
set of deductive steps DInit

buE are in charge of start-
ing the recognition process, predicting all possible
start positions for each rule.

A filter has been applied to the parsing system
PCYK, contracting the deductive steps Adj and
Comp in a single AdjComp, as the item gener-
ated by a deductive step Adj can only be used to
advance the dot in the rule which has been used
to predict the left-hand side of its production.

4 An Earley-like Algorithm

An Earley-like parsing algorithm for TAG can be
obtained by incorporating top-down prediction.
To do so, two dynamic filters must be applied to
PbuE:

• The deductive steps in DInit
E will only consider

productions having the root of an initial tree
as left-hand side.

• A new set DPred
E of predictive steps will be

in charge of controlling the generation of
new items, considering only those new items
which are potentially useful for the parsing
process.

Schema 3 The parsing system PE corresponding
to an Earley-like parsing algorithm for TAG with-
out the valid prefix property, given a tree adjoining
grammar G and a input string a1 . . . an is defined
as follows:

IE = IbuE

DInit
E =

[⊤ → •Rα, 0, 0 | −,−]
α ∈ I



DPred
E =

[Nγ → δ • Mγν, i, j | p, q]

[Mγ → •υ, j, j | −,−]

DAdjPred
E =

[Nγ → δ • Mγν, i, j | p, q]

[⊤ → •Rβ , j, j | −,−]

such that β ∈ adj(Mγ)

DFootPred
E =

[Fβ → •⊥, k, k | −,−],
[Nγ → δ • Mγν, i, j | p, q]

[Mγ → •δ, k, k | −,−]

such that β ∈ adj(Mγ)

DFootComp
E =

[Mγ → υ•, k, l | p, q],
[Fβ → •⊥, k, k | −,−],
[Nγ → δ • Mγν, i, j | p′, q′]

[Fβ → ⊥•, k, l | k, l]

such that β ∈ adj(Mγ), p ∪ p′ and q ∪
q′ are defined

DAdjComp
E =

[⊤ → Rβ•, j,m | k, l],
[Mγ → υ•, k, l | p, q],
[Nγ → δ • Mγν, i, j | p′, q′]

[Nγ → δMγ • ν, i,m | p ∪ p′, q ∪ q′]

such that β ∈ adj(Mγ)

DE = DInit
E ∪ DScan

buE ∪ DPred
E ∪ DComp

buE ∪

DAdjPred
E ∪ DFootPred

E ∪ DFootComp
E ∪

DAdjComp
E

FE = FbuE

Parsing begins by creating the item correspond-
ing to a production having the root of an initial
tree as left-hand side and the dot in the leftmost
position of the right-hand side. Then, a set of de-
ductive steps DPred

E and DComp
E traverse each ele-

mentary tree. A step in DAdjPred
E predicts the ad-

junction of an auxiliary tree β in a node of an ele-
mentary tree γ and starts the traversal of β. Once
the foot of β has been reached, the traversal of β

is momentary suspended by a step in DFootPred
E ,

which re-takes the subtree of γ which must be at-
tached to the foot of β. At this moment, there is
no information available about the node in which
the adjunction of β has been performed, so all pos-
sible nodes are predicted. When the traversal of a
predicted subtree has finished, a step in DFootComp

E

re-takes the traversal of β continuing at the foot
node. When the traversal of β is completely fin-
ished, a deduction step in DAdjComp

E checks if the
subtree attached to the foot of β corresponds with

the adjunction node. With respect to steps in
DAdjComp

E , p and q are instantiated if and only if
the adjunction node is in the spine of γ.

5 The Valid Prefix Property

Parsers satisfying the valid prefix property guaran-
tee that, as they read the input string from left to
right, the substrings read so far are valid prefixes
of the language defined by the grammar. More for-
mally, a parser satisfies the valid prefix property
if for any substring a1 . . . ak read from the input
string a1 . . . akak+1 . . . an guarantees that there is
a string of tokens b1 . . . bm, where bi need not be
part of the input string, such that a1 . . . akb1 . . . bm

is a valid string of the language.

To maintain the valid prefix property, the parser
must recognize all possible derived trees in prefix
form. In order to do that, two different phases
must work coordinately: a top-down phase that
expands the children of each node visited and a
bottom-up phase grouping the children nodes to
indicate the recognition of the parent node (Sch-
abes, 1991).

During the recognition of a derived tree in pre-
fix form, node expansion can depend on adjunc-
tion operations performed in the previously vis-
ited part of the tree. Due to this kind of dependen-
cies the set path is a context-free language (Vijay-
Shanker et al., 1987). A bottom-up algorithm
(e.g. CYK-like or bottom-up Earley-like) can
stack the dependencies shown by the context-free
language defining the path-set. This is sufficient
to get a correct parsing algorithm, but without
the valid prefix property. To preserve this prop-
erty the algorithm must have a top-down phase
which also stacks the dependencies shown by the
language defining the path-set. To transform an
algorithm without the valid prefix property into
another which preserves it is a difficult task be-
cause stacking operations performed during top-
down and bottom-up phases must be correlated
some way and it is not clear how to do so with-
out augmenting the time complexity (Nederhof,
1997).

CYK-like, bottom-up Earley-like and Earley-
like parsing algorithms described above do not
preserve the valid prefix property because foot-
prediction (a top-down operation) is not restric-
tive enough to guarantee that the subtree attached
to the foot node really corresponds with a instance
of the tree involved in the adjunction.

To obtain a Earley-like parsing algorithm for
tree adjoining grammars preserving the valid pre-
fix property we need to refine the items by in-
cluding a new element to indicate the position of



the input string corresponding to the left-most ex-
treme of the frontier of the tree to which the dot-
ted rule in the item belongs:

[h,Nγ → δ • ν, i, j | p, q]

such that Rγ ∗

⇒ ah+1 . . . aiδνυ and δ
∗

⇒

ai . . . ap Fγ aq+1 . . . aj
∗

⇒ ai . . . aj if and only if

(p, q) 6= (−,−) and δ
∗

⇒ ai . . . aj if and only if
(p, q) = (−,−).

Thus, an item [Nγ → δ • ν, i, j | p, q] of PE

corresponds now with a subset of {[h,Nγ → δ •
ν, i, j | p, q]} for all h ∈ [0, n].

Schema 4 The parsing system PEarley corre-
sponding to a Earley-like parsing algorithm with
the valid prefix property, for a tree adjoining gram-
mar G and a input string a1 . . . an is defined as
follows:

IEarley = [h,Nγ → δ • ν, i, j | p, q]

Nγ → δ • ν ∈ P(γ), γ ∈ I ∪ A, 0 ≤ h ≤ i ≤
j, (p, q) ≤ (i, j)

DInit
Earley =

⊢ [0,⊤ → •Rα, 0, 0 | −,−]
α ∈ I

DScan
Earley =

[h,Nγ → δ • aν, i, j − 1 | p, q],
[a, j − 1, j]

[h,Nγ → δa • ν, i, j | p, q]

DPred
Earley =

[h,Nγ → δ • Mγν, i, j | p, q]

[h,Mγ → •υ, j, j | −,−]

DComp
Earley =

[h,Nγ → δ • Mγν, i, k | p, q],
[h,Mγ → υ•, k, j | p′, q′]

[h,Nγ → δMγ • ν, i, j | p ∪ p′, q ∪ q′]

DAdjPred
Earley =

[h,Nγ → δ • Mγν, i, j | p, q]

[j,⊤ → •Rβ , j, j | −,−]

such that β ∈ adj(Mγ)

DFootPred
Earley =

[j,Fβ → •⊥, k, k | −,−],
[h,Nγ → δ • Mγν, i, j | p, q]

[h,Mγ → •δ, k, k | −,−]

such that β ∈ adj(Mγ)

DFootComp
Earley =

[h,Mγ → υ•, k, l | p, q],
[j,Fβ → •⊥, k, k | −,−],
[h,Nγ → δ • Mγν, i, j | p′, q′]

[j,Fβ → ⊥•, k, l | k, l]

β ∈ adj(Mγ), p ∪ p′ and q ∪ q′ are defined

DAdjComp
Earley =

[j,⊤ → Rβ•, j,m | k, l],
[h,Mγ → υ•, k, l | p, q],
[h,Nγ → δ • Mγν, i, j | p′, q′]

[h,Nγ → δMγ • ν, i,m | p ∪ p′, q ∪ q′]

such that β ∈ adj(Mγ)

DEarley = DInit
Earley ∪ DScan

Earley ∪ DPred
Earley∪

DComp
Earley ∪ DAdjPred

Earley ∪ DFootPred
Earley ∪

DFootComp
Earley ∪ DAdjComp

Earley

FEarley = { [0,⊤ → Rα•, 0, n | −,−] | α ∈ I }

Time complexity of the Earley-like algorithm
with respect to the length n of input string is
O(n7), and it is given by steps DAdjComp

Earley . Al-

though 8 indices are involved in a step DAdjComp
Earley ,

partial application allows us to reduce the time
complexity to O(n7).

Algorithms without the valid prefix property
have a time complexity O(n6) with respect to the
length of the input string. The change in com-
plexity is due to the additional index in items of
PEarley. That index is needed to check the trees

involved in steps DFootPred
Earley and DFootComp

Earley . In the
other steps, that index is only propagated to the
generated item. This feature allows us to refine
the steps in DAdjComp

Earley , splitting them into several
steps generating intermediate items without that
index. To get a correct splitting, we must first
differentiate steps in DAdjComp

Earley in which p and q

are instantiated from steps in DAdjComp
Earley in which

p′ and q′ are instantiated. So, we must define two

new sets DAdjComp1

Earley and DAdjComp2

Earley of steps in-

stead of the single set DAdjComp
Earley . Additionally, in

steps in DAdjComp1

Earley we need to introduce a new
item (dynamic filtering) to guarantee the correct-
ness of the steps.

DAdjComp1

Earley =

[j,⊤ → Rβ•, j,m | k, l],
[h,Mγ → υ•, k, l | p, q],
[h,Fγ → ⊥•, p, q | p, q],
[h,Nγ → δ • Mγν, i, j | −,−]

[h,Nγ → δMγ • ν, i,m | p, q]

such that β ∈ adj(Mγ)

DAdjComp2

Earley =

[j,⊤ → Rβ•, j,m | k, l],
[h,Mγ → υ•, k, l | −,−],
[h,Nγ → δ • Mγν, i, j | p′, q′]

[h,Nγ → δMγ • ν, i,m | p′, q′]

such that β ∈ adj(Mγ)

DEarley = DInit
Earley ∪ DScan

Earley ∪ DPred
Earley∪

DComp
Earley ∪ DAdjPred

Earley ∪ DFootPred
Earley ∪

DFootComp
Earley ∪ DAdjComp1

Earley ∪ DAdjComp2

Earley



Now, we must refine steps in DAdjComp1

Earley into

steps in DAdjComp0

Earley and DAdjComp1
′

Earley , and re-

fine steps in DAdjComp2

Earley into steps in DAdjComp0

Earley

and DAdjComp2
′

Earley . Correctness of these splittings
is guaranteed by the context-free property of
TAG (Vijay-Shanker and Weir, 1993) establishing
the independence of each adjunction with respect
to any other adjunction.

After step refinement, we get the Earley-like
parsing algorithm for TAG described in (Neder-
hof, 1997), which preserves the valid prefix prop-
erty having a time complexity O(n6) with respect
to the input string. In this schema we also need
to define a new kind of intermediate pseudo-items

[[Nγ → δ • ν, i, j | p, q]]

such that δ
∗

⇒ ai . . . ap Fγ aq+1 . . . aj
∗

⇒ ai . . . aj

if and only if (p, q) 6= (−,−) and δ
∗

⇒ ai . . . aj if
and only if (p, q) = (−,−) .

Schema 5 The parsing system PEarley corre-
sponding to a the final Earley-like parsing algo-
rithm with the valid prefix property having time
complexity O(n6), for a tree adjoining grammar G
and a input string a1 . . . an is defined as follows:

I1
Earley = { [h,Nγ → δ • ν, i, j | p, q] }

such that Nγ → δ • ν ∈ P(γ), γ ∈ I ∪A, 0 ≤ h ≤
i ≤ j, (p, q) ≤ (i, j)

I2
Earley = { [[Nγ → δ • ν, i, j | p, q]] }

such that Nγ → δ • ν ∈ P(γ), γ ∈ I ∪ A, 0 ≤ i ≤
j, (p, q) ≤ (i, j)

IEarley = I1
Earley ∪ I2

Earley

DInit
Earley =

⊢ [0,⊤ → •Rα, 0, 0 | −,−]
α ∈ I

DScan
Earley =

[h,Nγ → δ • aν, i, j − 1 | p, q],
[a, j − 1, j]

[h,Nγ → δa • ν, i, j | p, q]

DPred
Earley =

[h,Nγ → δ • Mγν, i, j | p, q]

[h,Mγ → •υ, j, j | −,−]

DComp
Earley =

[h,Nγ → δ • Mγν, i, k | p, q],
[h,Mγ → υ•, k, j | p′, q′]

[h,Nγ → δMγ • ν, i, j | p ∪ p′, q ∪ q′]

DAdjPred
Earley =

[h,Nγ → δ • Mγν, i, j | p, q]

[j,⊤ → •Rβ , j, j | −,−]

such that β ∈ adj(Mγ)

DFootPred
Earley =

[j,Fβ → •⊥, k, k | −,−],
[h,Nγ → δ • Mγν, i, j | p, q]

[h,Mγ → •δ, k, k | −,−]

such that β ∈ adj(Mγ)

DFootComp
Earley =

[h,Mγ → δ•, k, l | p, q],
[j,Fβ → •⊥, k, k | −,−],
[h,Nγ → δ • Mγν, i, j | p′, q′]

[j,Fβ → ⊥•, k, l | k, l]

such that β ∈ adj(Mγ), p ∪ p′ and q ∪
q′ are defined

DAdjComp0

Earley =

[j,⊤ → Rβ•, j,m | k, l],
[h,Mγ → δ•, k, l | p, q],

[[Mγ → δ•, j,m | p, q]]

such that β ∈ adj(Mγ)

DAdjComp1
′

Earley =

[[Mγ → δ•, j,m | p, q]],
[h,Fγ → ⊥•, p, q | p, q],
[h,Nγ → δ • Mγν, i, j | −,−]

[h,Nγ → δMγ • ν, i,m | p, q]

such that β ∈ adj(Mγ)

DAdjComp2
′

Earley =

[[Mγ → δ•, j,m | −,−]],
[h,Nγ → δ • Mγν, i, j | p, q]

[h,Nγ → δMγ • ν, i,m | p, q]

such that β ∈ adj(Mγ)

DEarley = DInit
Earley ∪ DScan

Earley ∪ DPred
Earley∪

DComp
Earley ∪ DAdjPred

Earley ∪ DFootPred
Earley ∪

DFootComp
Earley ∪ DAdjComp0

Earley ∪

DAdjComp1
′

Earley ∪ DAdjComp2
′

Earley

FEarley = { [0,⊤ → Rα•, 0, n | −,−] | α ∈ I }

6 Conclusion

We have described a set of parsing algorithms
for TAG creating a continuum which has the
CYK-like parsing algorithm by (Vijay-Shanker
and Joshi, 1985) as its starting point and the
Earley-like parsing algorithm by (Nederhof, 1997)
preserving the valid prefix property with time



complexity O(n6) as its goal. As intermediate al-
gorithms, we have defined a bottom-up Earley-like
parsing algorithm and an Earley-like parsing algo-
rithm without the valid prefix property, which to
our knowledge has not been previously described
in literature1. We have also shown how to trans-
form one algorithm into the next using simple
transformations.Other algorithms could also has
been included in the continuum, but for reasons
of space we have chosen to show only the algo-
rithms we consider milestones in the development
of parsing algorithms for TAG.

An interesting project for the future will be to
translate the algorithms presented here to sev-
eral proposed automata models for TAG which
have an associated tabulation technique: Strongly
Driven 2–Stack Automata (de la Clergerie and
Alonso, 1998), Bottom-up 2–Stack Automata (de
la Clergerie et al., 1998) and Linear Indexed Au-
tomata (Nederhof, 1998).
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