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Abstract: Vibration analysis is an effective tool for the condition monitoring and fault 

diagnosis of rolling element bearings. Conventional diagnostic methods are based on the 

stationary assumption, thus they are not applicable to the diagnosis of bearings working 

under varying speed. This constraint limits the bearing diagnosis to the industrial 

application significantly. In order to extend the conventional diagnostic methods to speed 

variation cases, a tacholess envelope order analysis technique is proposed in this paper. In 

the proposed technique, a tacholess order tracking (TLOT) method is first introduced to 

extract the tachometer information from the vibration signal itself. On this basis, an 

envelope order spectrum (EOS) is utilized to recover the bearing characteristic frequencies 

in the order domain. By combining the advantages of TLOT and EOS, the proposed 

technique is capable of detecting bearing faults under varying speeds, even without the use 

of a tachometer. The effectiveness of the proposed method is demonstrated by both 

simulated signals and real vibration signals collected from locomotive roller bearings with 

faults on inner race, outer race and rollers, respectively. Analyzed results show that the 

proposed method could identify different bearing faults effectively and accurately under 

speed varying conditions. 

Keywords: bearings fault diagnosis; generalized demodulation; tacholess order tracking; 

envelope order spectrum; adaptive short-time Fourier transform 
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1. Introduction 

Rolling element bearings are critical mechanical components in rotating machinery and their failure 

may lead to fatal breakdown and significant economic losses. Hence, the fault detection of rolling 

element bearing has attracted considerable attention in recent years. Vibration signals collected from 

bearings carry rich information about their health condition. Therefore, the vibration-based diagnostic 

methods have received intensive study during the past decade [1,2]. 

When a fault occurs in a bearing, periodic or quasi-periodic impulses will appear in the waveform 

of the vibration signal, while the corresponding bearing characteristic frequencies (BCFs) and their 

harmonics emerge in the frequency domain [3]. For this reason, the detection of faults in rolling 

element bearings is traditionally achieved by identification of the BCFs from the measured vibration 

signal. However, the fault signal of bearing is often corrupted by the measurement noise and 

interferences coming from other machine components, such as gears, which makes the BCFs not easy 

to be recognized. To effectively diagnose faults occurring in bearings, a variety of signal processing 

techniques have been developed. For example, the envelope analysis method focuses on the  

low-amplitude high-frequency broadband signals characterizing bearing conditions and may minimize 

the effects of interfering signals within the selected frequency band [1,4]. The major challenge in the 

application of envelope analysis is how to choose the optimal band for the demodulation [5]. To 

address this issue, spectral kurtosis was intensively investigated by Antoni [6–8]. It is shown that 

spectral kurtosis can indicate not only transient components in the signal but also their locations in the 

frequency domain, and therefore provides a guideline for the optimal demodulation bandwidth 

selection in the envelope analysis. Other signal processing tools, such as wavelet analysis [9,10], 

empirical mode decomposition (EMD) [11–13], minimum entropy deconvolution (MED) [14,15] and 

stochastic resonance [16–18] have also been applied to the bearing fault detection in recent years. 

Although the above mentioned methods successfully detect fault for bearings to some extents, most 

of those methods are based on the assumption of constant running speed. However, in practice, almost 

all of the bearings experience different kinds of speed variations. For instance, the rotating speed (RS) 

of vehicle bearing is varying with its running speed, the RS of wind turbine supporting bearing is 

fluctuating with the wind speed [19], and the RS of mining excavator bearing is affected by the 

external load. Under variable speed conditions, the repetition frequencies of impulses also vary with 

time and hence the corresponding envelope signals are non-stationary in nature. The direct application 

of frequency-based methods (such as envelope spectrum analysis, spectral correlation) to those 

vibration signals of bearings will lead to spectral smearing and false diagnosis [1,20].  

Several methods have been developed to process non-stationary vibration signals in recent  

years [21–27]. Among those techniques, order tracking [1,20,28] is an effective approach which has 

been applied to the diagnosis of rolling element bearings successfully. Different from traditional  

frequency-based methods, order tracking resamples the vibration signal at constant angular increments 

of a reference shaft. In this way, the frequency modulation and spectral smearing due to speed 

variation will not be introduced in the angular domain. Meanwhile, this technique can be combined 

with synchronous averaging to remove the background noise and non-concerned signal components 

generated by the gear meshing. For this reason, order tracking is an effective tool for the fault detection 

of rolling element bearings under the varying speed conditions. However, it should be stressed that 
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order tracking method requires a tachometer or an encoder to provide a phase reference signal, which 

not only increases the measurement cost, but also brings inconvenience in the installation and 

adjustment. In some cases, it is even impossible to install those sensors. 

To overcome the shortcomings of conventional methods, a tacholess envelope order analysis 

technique is established in this paper. In this technique, a tacholess order tracking method is first 

proposed based on generalized demodulation transform. By using this method, the tacho information 

of the bearing could be recovered from the vibration signal itself. On this basis, envelope order 

spectrum is utilized to transform the non-stationary envelope signal in the time-domain into a  

cyclo-stationary signal in the angular domain. In this way, the smearing problem caused by speed 

variation is solved effectively. The rest of this paper is organized as follows. The principle and 

implementation of order tracking and generalized demodulation is briefly reviewed in Section 2. The 

procedure of proposed technique is given in Section 3. The effectiveness of the proposed method is 

validated by some simulations and experiments in Section 4 and Section 5, respectively. Finally, 

conclusions are drawn in Section 6. 

2. Review of Order Tracking and Generalized Demodulation 

As discussed above, order tracking involves resampling the vibration signal at constant increments 

of shaft angle. Hence, instantaneous phase of shaft, φ(t), must be known as a prior. Conventionally, φ(t) 

is estimated by utilizing an encoder or a tachometer mounted the shaft of interest. However, this 

hardware-based order tracking scheme is only suitable for the case when those sensors are available. 

With the advancement of signal processing, the extraction of φ(t) from vibration signal itself has 

attracted much attention [29,30]. 

Generally, the vibration signals from rolling element bearings contain not only the structure 

resonance frequency excited by impacts, but also the fundamental frequency and its harmonics of 

bearing shaft. Since all the rotating harmonics are phase-locked with respect to the rotation angle of the 

bearing shaft, naturally, the φ(t) could be estimated by calculating the instantaneous phase of one 

certain harmonic, say the k th, as follows: 

( )
( ) k t
t

k


   (1) 

where φk(t) denotes the instantaneous phase of the k th rotating harmonic. 

However, the concept of instantaneous phase has physical meaning only for mono-component 

signal [31], which implies that the kth harmonic, xk(t), should be extracted from the raw vibration 

signal before calculating its instantaneous phase. In previous works [29,30], that harmonic is extracted 

by band-pass filtering. Unfortunately, this method is only applicable to small speed variation cases, 

where the frequency-bands of interested harmonic (the k th) and its adjacent harmonic (the k-1th) are 

separable in frequency domain, which is illustrated in Figure 1a. When the speed variation is large, the 

frequency-bands will overlap in the spectrum as illustrated in Figure 1b. Thus, it cannot be extracted 

by band-pass filtering. This deficiency significantly limits the application of order tracking to bearing 

fault diagnosis. In order to address this drawback, generalized demodulation is introduced to in  

this work. 
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Figure 1. Time-frequency distribution and frequency-bands of harmonics: (a) Small speed 

variation; (b) Large speed variation. 

  

(a) (b) 

Generalized demodulation is a novel signal processing tool, which is especially suitable for  

the separating of non-stationary multi-component signals [32–34]. The key of the generalized 

demodulation lies in the development of a signal transform, i.e., generalized Fourier transform, which 

could transform the curved instantaneous frequency trajectory of an interested component into a line 

parallel to the time axis, thus avoiding overlap with other components in the frequency domain. This 

property makes it possible to separate any interested component from the non-stationary raw signal. 

For a signal x(t), the generalized Fourier transform (GFT) is defined as [32]: 

02 [ ( )]
( ) ( )e

j ft s t

GX f x t dt



 


   (2) 

where 02 ( )
e

j s t  is the transform kernel, and s0(t) is a real-valued phase function depending on the time 

only. It can be seen from Equation (2) that GFT is the same as the traditional Fourier transform when 
02 ( )

( )e
j s t

x t
  is considered as the analyzed signal. When s0(t) = 0, GFT degrades into Fourier transform. 

From this point of view, the Fourier transform can be considered as a special case of GFT. Like the 

Fourier transform, the inverse GFT is defined as: 

0 02 [ ( )] 2 ( ) 2( ) ( )e e ( )e
j ft s t j s t j ft

G Gx t X f df X f df
  

 


 
    (3) 

If we assume 0( ) ( )GX f f f  , then 0 02 [ ( )]
( ) e

j f t s t
x t

 
 . It implies that a signal with curved IF, i.e., 

f(t) = f0 + s0'(t), will be mapped to a linear IF path that parallel to the time axis by applying appropriate 

generalized Fourier transform. More specifically, if we wish to transform a signal with curved IF, f(t), 

into constant frequency of f0, we simply need to specify a function s0(t), which satisfies: 

0 0( ) ( )s t f t f    (4) 

where 0 0( ) ( ) /s t ds t dt  . 

According to this property of generalized demodulation, the kth harmonic, xk(t), could be extracted 

from the raw vibration signal x(t) by the following procedures: 

1. Although the definition of GFT is applicable to both real signal and analytic signal, however, the 

latter one is preferred in practice. It is due to the fact that the interference on the time-frequency 

plane caused by meaningless negative frequency could be avoided when the signal is analytic [34]. 
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For this reason, the analytic form of x(t) is first created by ( ) ( ) [ ( )]y t x t jH x t  , where [ ]H 

denotes the Hilbert transform of a real signal. 

2. Estimate the instantaneous frequency of k th harmonic, f(t), by searching the local maximum in 

the time-frequency representation of x(t). 

3. Construct the kernel function s0(t) via numerical integration of the right-hand side of  

Equation (4), where f0 takes the average value of f(t) in this paper. 

4. Apply the GFT to the analytic signal y(t), by doing so, xk(t) is mapped into a constant frequency 

signal ˆ ( )kx t . As ˆ ( )kx t  is well separated with other signal components in frequency domain, it 

can be extracted by conventional band-pass filtering. 

5. Apply the inverse GFT to the filtered ˆ ( )kx t , and then extract the real part of ˆ ( )kx t . In this way, 

the waveform of xk(t) is finally obtained. 

3. The Procedure of Tacholess Envelope Order Analysis Technique 

To effectively diagnose the faults of rolling element bearings under variable operating conditions 

without a tachometer, a tacholess envelope order analysis (TLEOA) technique is proposed in this paper. 

The principle of TLEOA is mainly composed of two parts, i.e., tacholess order tracking (TLOT) and 

envelope order spectrum (EOS). TLOT recovers the tacho information from the vibration signal in an 

adaptive way. EOS transforms the envelope to angular domain, which makes the BCFs more clear  

and discernible in the envelope order spectrum. The flow chart of the TLEOA technique is shown in  

Figure 2, and the implementation is discussed in detail as follows. 

Figure 2. Flow chart of the proposed tacholess envelope order analysis technique. 
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Step 1. Extract the envelope signal of impulses by using spectral kurtosis and band-pass filtering. 

Spectral kurtosis (SK) has been proven efficient in detecting incipient faults from large noise, which 

provides a means of determining which frequency bands contain a signal of maximum impulsivity [1,13]. 

As a result, SK is an effective tool to determine the centre frequency and bandwidth where the 
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impulses hidden in. For the gear-bearing signals, the frequency components from gears have wide 

frequency spread and may contaminate the resonance frequency band of bearing. This interference will 

affect the performance of SK significantly. For this reason, it is usually advantageous to remove such 

discrete frequencies by order tracking and synchronous averaging before SK [1]. However, for  

rotor-bearing signals, the rotating frequency and its harmonics of the rotor are mainly located in the 

low frequency region, which is well separated with the resonance frequency band of bearing. In these 

applications, the SK could be directly applied to the raw signal to find out the optimal filtering band. 

Once the filtering band is obtained, a band-pass filter could be designed so as to recover the envelope 

signal of impulses from the broad-band background noise. 

Step 2. Estimate the IF of k th harmonic by adaptive short-time Fourier transform. 

As discussed in Section 2.2, the accurate instantaneous frequency (IF) of kth harmonic is required 

before generalized demodulation. There are several algorithms available for IF estimation [35–38]. In 

this article, the adaptive short-time Fourier transform (ASTFT) based IF estimation method is 

employed [39]. The main advantage of this method is that the basis function of ASTFT can be adjusted 

to match the analyzed signal, hence a more concentrated time-frequency representation could be 

obtained. Moreover, this method is robust to measurement noise, thus it can produce reliable IF 

estimation results even under low SNR situation. 

Step 3. Recover the instantaneous phase of the shaft via generalized demodulation and  

Hilbert transform. 

Once the IF of kth harmonic is estimated, its waveform xk(t) can be extracted from overall signal by 

generalized demodulation as given in Section 2. Since the extracted xk(t) is a mono-component signal, 

its instantaneous phase φk(t) can be calculated by the following equation: 

[ ( )]
( ) tan

( )

k
k

k

H x t
t arc

x t


 
  

 
 (5) 

After that, the instantaneous phase of the shaft could be estimated according to Equation (1).  

Step 4. Resample the envelope signal in angular domain. 

As discussed previously, the envelope signal of the impulses is non-stationary due to speed 

variation, which in turn leads to the smearing effect in the envelope spectrum. To deal with this 

problem, the envelope signal is resampled in angular domain according to the instantaneous phase 

information recovered from the vibration signal. In this way, the non-stationary envelope signal in 

time-domain can be transformed into a cyclo-stationary signal in the angular domain [40,41]. 

Step 5. Detect the bearing fault by identifying the BCFs in envelope order spectrum. 

Since the envelope signal has already been resampled (or order tracked), the traditional FFT-based 

methods can be effectively applied to that signal. By identifying of the BCFs in envelope order 

spectrum, the fault type of bearing can be determined. 
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4. Simulations 

To validate the proposed method, a simulated signal is generated according to the vibration model 

for rolling element bearings [20]: 

 ( ) ( ) cos 2 ( ) ( )i i n n

i n

x t As t T B nf t n t        (6) 

The simulated signal x(t) is composed of three terms. The first term represents a series of impulses 

excited by fault, where Ai is the amplitude of the ith impulse and Ti is the time of its occurrence. The 

second term represents the fundamental frequency and its harmonics of the shaft, which is caused by 

misalignment, eccentric or imbalance. In this term, Bn and βn are the amplitude and initial phase of the 

nth harmonic, f(t) is the instantaneous rotating frequency of the shaft. The third term n(t) denotes the 

measurement noise. 

In this simulation, we assume the outer race is keep fixed and the inner race is rotating with shaft. 

There is a local fault on the outer race, and the fault excited impulse is simulated by an exponentially 

decaying sinusoid as follows: 

( ) sin(2 )t

rs t e f t   (7) 

where α is the damping ratio of the impulse, which takes 500 Hz here; fr is the resonance frequency, 

which takes 2,000 Hz here. The ball pass frequency of outer race (BPFO) is assumed three times of the 

rotating frequency of shaft, then the average angular period of impulse is 360/3 = 120 degrees. 

Suppose there are three harmonics of shaft in the signal, and their amplitudes and phases are B1 = 0.3, 

B2 = 0.5, B3 = 0.4, β1 = π/6, β2 = −π/3, β3 = π/2, respectively. The bearing experiences a speed up and 

coast down process during the measurement, and the speed curve is given by Equation (8): 

( ) [250 400 sin(2 0.125 )] / 60f t t      (8) 

White noise is added to obtain a noisy signal with SNR of −3 dB. The sampling frequency is 10 k 

Hz and the time length of data is 4 s. The impulse signal, harmonics of shaft, noise signal and mixed 

signal are shown in Figure 3, respectively. 

Figure 3. Simulated signal: (a) Impulse signal; (b) Harmonics of shaft; (c) Noise signal; (d) 

Mixed signal. 
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Figure 3. Cont. 

 

(b) 

 

(c) 

 

(d) 

The impulses generated by fault can hardly be observed in the mixed signal due to heavy noise. 

Moreover, the impulses are not equally spaced in time domain due to speed variation, which will bring 

difficulties to the conventional diagnostic methods based on constant speed. To demonstrate this 

problem, the conventional envelope analysis [1] is applied to the vibration signal, and the 

corresponding envelope spectrum is given in Figure 4. It is observed that the envelope spectrum is 

smeared when speed variation occurs, from which we cannot identify the BPFO. This drawback of 

conventional method decreases the accuracy and reliability of diagnostic results significantly. 

For comparison, the proposed TLEOA technique is performed on the same simulated signal by the 

following steps. 

Firstly, in order to find out the optimal frequency-band for demodulation, a fast-kurtogram [8] 

based spectral kurtosis analysis is applied to the simulation signal. We chose to analyze the simulated 

signal with 5 decomposition levels, with a 1/3-binary tree. The corresponding kurtogram is displayed 

in Figure 5, from which the resonance frequency-band with centre frequency of 2031.25 Hz and 

bandwidth of 312.5 Hz can be identified clearly. With this information, an optimal band-pass filter is 
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then designed to extract the impulses from the raw signal. Figure 6 illustrates the filtered signal and the 

corresponding envelope, respectively. 

Figure 4. The conventional envelope spectrum of simulated signal. 

 

Figure 5. Kurtogram of simulated signal. 

 

Figure 6. (a) Band-pass filtered signal; (b) The envelope signal of (a). 
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Figure 6. Cont. 

 

(b) 

Subsequently, the time-frequency representation of the simulated signal is obtained by using 

ASTFT. Figure 7a illustrates the corresponding spectrogram zoomed in 0–40 Hz. From this figure, the 

fundamental and 2nd harmonic of bearing shaft can be identified clearly. Since the latter is  

energy-dominant, we decide to use its instantaneous phase to resample the envelope signal. The IF of 

2nd harmonic is then estimated by searching the local maximum in the spectrogram. The IF estimation 

result is presented in Figure 7b; for comparison, the actual IF of 2nd harmonic is also plotted in the 

same figure. It is clear that the estimated IF agrees well with the actual one and the maximum 

estimation error is less than 1%. 

Figure 7. (a) ASTFT spectrogram zoomed in 0–40 Hz; (b) IF estimation result. 
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Once the IF of 2nd harmonic is estimated, generalized demodulation is further applied to extract its 

waveform from the raw signal. The exacting procedure is presented intuitively in Figure 8. Firstly, the 

kernel function of GFT, s0(t), is constructed by numerical integration. By multiplying the analytic 

signal with s0(t), the 2nd harmonic is mapped into a constant frequency signal in the transformed 

domain as shown in Figure 8a. A band-pass filter is then employed to extract the 2nd harmonic as 

illustrated in Figure 8b,c, and the half bandwidth takes 3 Hz so as to exclude the 1st harmonic. By 

inverse GFT, the waveform of 2nd harmonic is obtained as shown in Figure 9a. After that, the 

instantaneous phase of the shaft as presented in Figure 9b is obtained according to Equation (5) and 
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Equation (1). It is reasonable to conclude that the proposed method could recover the instantaneous 

phase of the shaft accurately even without tachometer.  

Figure 8. Extracting the 2nd harmonic by generalized demodulation: (a) Spectrogram of 

the generalized Fourier transformed signal; (b) Extracting the 2nd harmonic by BPF;  

(c) The 2nd harmonic is separated after BPF; (d) Restoring the 2nd harmonic by inverse GFT. 

  

(a) (b) 

  

(c) (d) 

Finally, the envelope signal is resampled according to the instantaneous phase recovered from the 

vibration signal. The spectral analysis is performed on this resampled signal and the corresponding 

envelope order spectrum is presented in Figure 10. Since the envelope signal has been transformed into 

angular domain, the smearing problem encountered in the conventional method, as illustrated in  

Figure 4, is eliminated effectively. It can be seen from Figure 10 that the BPFO = 3 orders  

(which means the BPFO is three times the rotating frequency of the bearing) and its harmonics are 

rather evident, which clearly indicates the existence of a fault on the outer race. 
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Figure 9. (a) Waveform of 2nd harmonic; (b) Instantaneous phase of shaft. 

  

(a) (b) 

Figure 10. Envelope order spectrum obtained by proposed TLEOA technique. 

 

5. Application to Fault Detection of Locomotive Roller Bearings 
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demonstrate the effectiveness of the proposed method. 

The overview of the bearing test bench is given in Figure 11a. The outer race of the locomotive 

bearing is driven by a Nylon driving wheel which is connected to a hydraulic motor, while the inner 

race of the bearing is keep fixed in the measuring process. The nominal rotational speed of the 

hydraulic motor is 400 rpm. However, due to oil pressure fluctuation, the actual rotational speed can 

hardly keep constant. The geometric parameters of the bearing are listed in Table 1. According to those 

parameters, the bearing characteristic frequencies, including the ball pass frequency of inner race 

(BPFI), the ball pass frequency of outer race (BPFO) and the ball spin frequency (BSF), are calculated 

and given in Table 2. Since the bearing is not running with a constant speed, the normalized BCFs with 

respect to the rotating frequency of outer race in terms of order, are also listed in Table 2. 
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Figure 11. (a) The arrangement of the locomotive bearing test bench; (b) Schematic view. 
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Table 1. Geometric parameters of the roller bearing. 

Pitch Diameter (mm) Roller Diameter (mm) Contact Angle (degree) Number of Rollers 

180 23.775 9 20 

Table 2. BCFs of the bearing. 

Items BCFs in Hz BCFs in Order 

BPFO 57.97 8.695 

BPFI 75.37 11.305 

BSF 24.81 3.721 

A tri-axial PCB accelerometer with the model number 356A12 is mounted on the shaft end, as 

shown in Figure 11b, to collect the vibration signal generated by the locomotive roller bearing. Since 

the vertical vibrations are constrained by loading wheel and driving wheel of the test bench, their 

amplitudes are not as large as those of the horizontal vibrations. For this reason, the vibration signals 

of the horizontal direction are more sensitive to the damage and therefore they are analyzed in this 

paper. The sampling frequency is 76,800 Hz and the data length is 153,600. Figure 12 displays the 

collected vibration signal from a bearing with unknown fault. Due to heavy noise and interferences 

from other rotating components, we cannot see the impulses characterizing bearing faults from the raw 

signal. In order to assess the health status of the bearing, conventional envelope analysis is first applied 

to the vibration signal, and the corresponding envelope spectrum is illustrated in Figure 13. As 

discussed previously, the speed variation leads to smearing in the envelope spectrum, from which, 
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none of the BCFs listed in Table 1 can be identified. As a consequence, the diagnostic result of 

conventional method is that the bearing is in healthy state. However, since some abnormal sound 

emitted from the bearing during the measurement, we suspect there may be some damages undetected. 

So we decide to reassess the condition of the bearing using the proposed TLEOA technique.  

Figure 12. The raw vibration signal. 

 

Figure 13. The envelope spectrum of the bearing signal. 

 

Firstly, SK and band-pass filtering are performed on the raw signal to extract the envelope signal. Then 

the time-frequency representation of the raw vibration signal is obtained by ASTFT and the corresponding 

spectrogram is illustrated in Figure 14a. In this figure, two energy-dominant harmonics within 100–150 Hz 

can be seen clearly. By checking their center frequencies (133.9 Hz and 126.9 Hz at 1.5 s, respectively) and 

frequency interval (133.9 − 126.9 = 7 Hz) in the zoomed-in plot of Figure 14b, it is confirmed that they are 

the 18th and 19th harmonics of the driving wheel, respectively (126.9/7 ≈ 18, 133.9/7 ≈ 19). Since the 19th 

harmonic has greater energy, we try to use its instantaneous phase to resample the envelope signal. 

The IF of 19th harmonic is estimated by ridge searching in the ASTFT spectrogram. After that, the 

19th harmonic shown in Figure 15 is extracted from the raw signal by generalized demodulation method. 

Finally, the envelope signal is resampled according to the instantaneous phase of the extracted harmonic. 

The envelope order spectrum obtained by the proposed method is illustrated in Figure 16. From this 

figure, the BPFO and its harmonics are clearly discriminated. Moreover, the sidebands caused by load 

modulation can also be detected. Those characteristics of envelope order spectrum clearly indicate the 

existence of a fault on the outer race of the bearing. Figure 17 shows the image of the disassembled 

bearing, from which, the spall fault in the outer race can be seen obviously.  
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Figure 14. The ASTFT spectrogram of the bearing signal: (a) Overview; (b) Zoomed in 

100–160 Hz. 

  

(a) (b) 

Figure 15. The ASTFT spectrogram of the extracted 19th harmonic. 

 

Figure 16. The envelope order spectrum obtained by proposed technique. 
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Figure 17. The spall fault on the outer race. 

 

To further confirm the reliability of the proposed technique, the vibration signals from inner race 

and roller faults as shown in Figure 18 are also analyzed. The envelope order spectrums obtained by 

proposed technique are presented in Figures 19, respectively. For comparison, the envelope spectrums 

by conventional method are frequency normalized and plotted in the same figure. It can be seen from 

those figures that conventional method suffers from smearing problem when speed variation exists, 

which makes the amplitudes of BCFs decrease significantly. While the proposed TLEOA is free from 

smearing problem, and could recover the BCFs clearly and sharply even under speed variation cases. 

For a quantitative comparison, the enhancement in amplitudes of BCFs by the proposed technique is 

calculated and listed in Table 3. It can be concluded from Table 3 that the proposed TLEOA provides 

better capabilities of bearing detection than conventional method.  

Figure 18. (a) Inner race fault; (b) Roller fault. 

  

(a) (b) 

Table 3. The enhancement in amplitude by proposed TLEOA technique. 

Items 1st Harmonic  2nd Harmonic 3rd Harmonic 

BPFI 113.7% (6.6 dB) 194.0% (9.4 dB) 154.0% (8.1 dB) 

BSF 60.5% (4.1 dB) 113.8% (6.6 dB) 207.1% (9.7 dB) 
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Figure 19. Comparison with conventional method: (a) Inner race fault detection; (b) Roller 

fault detection. 

 
(a) 

 
(b) 

6. Conclusions 

A technique has been proposed to extract the fault information of rolling element bearings in the 

variable speed case. Some conclusions are drawn in this work as follows:  

Generalized modulation is an effective non-stationary signal analysis tool, which is capable of 

extracting one particular harmonic of bearing shaft rotating frequency from the raw signal. By using 

the instantaneous phase information of the extracted harmonic, order tracking can be performed on the 

envelope signal without tachometer. Envelope order spectrum could exploit the cyclic feature from 

non-stationary envelope signals, thus the smearing problem encountered in conventional methods 

could be addressed effectively. By combining those advantages, the proposed tacholess envelope order 

analysis technique could not only extend the conventional envelope analysis to speed varying case, but 

also be carried out without the use of additional sensors, such as tachometer or encoder. The 

effectiveness of the proposed method is demonstrated by simulation and experimental results. It is 

shown that this method gives a more reliable diagnostic result than conventional technique and 

therefore it is a promising method for bearing fault diagnosis.  
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