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Abstract The dispersion relations of superluminal wave
propagation in electron plasmas are derived, and the tachy-
onic energy flux, the velocity of energy transport, and the
relaxation time asymptotics of the conductivity are stud-
ied. The formalism is based on Maxwell-type equations
for Proca fields with negative mass-square in dispersive
and dissipative media. Specifically, superluminal radiation
fields generated by the ultra-relativistic electronic source
plasma of γ -ray bursts (GRBs) are investigated. The radi-
ation field is coupled to the shock-heated electron gas by
a frequency-dependent fine-structure constant. The varying
coupling constant generates long-range dispersion in the
charge and current densities. At high energy, the coupling
strength approaches a finite limit, so that the Proca field
becomes minimally coupled to the electron current. The
tachyonic fine-structure constant scales with the frequency-
dependent superluminal velocity of the radiated modes. This
scaling is manifested in the tachyonic flux densities of the
GRB plasma, so that the scaling exponent can be extracted
from spectral maps in the soft γ -ray band. To this end,
tachyonic spectral fits of GRB 930506, GRB 950425, and
GRB 910503 are performed. The scaling amplitude of the
fine-structure constant is inferred from the burst duration.
The transversal and longitudinal tachyonic luminosity of the
source plasma is calculated in the high-temperature regime.
Estimates of the plasma temperature and the internal energy
of the ultra-relativistic electron gas are obtained.

1 Introduction

We investigate superluminal wave propagation in γ -ray
burst (GRB) plasmas, where the tachyonic Maxwell–Proca
equations have to be supplemented by material equations.
The formalism is developed in analogy to the electromag-
netic theory of dispersive and dissipative media, based on
permeabilities and inductions. In contrast to vacuum fields,
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the dispersion relations for transversal and longitudinal
wave propagation differ in a permeable medium, and the
tachyonic wavelength can exceed the Compton wavelength
2π/mt, where mt > 0 is the tachyon mass. This is not possi-
ble in vacuum, due to the mass-square in the dispersion rela-

tion 2π/λ =
√

ω2 + m2
t . We analyze the effect of dispersion

and absorption on the tachyonic energy and flux densities,
calculate the group velocity and attenuation length of the su-
perluminal modes, and show that the tachyonic transparency
of an electron plasma depends on the polarization of the ra-
diation.

We study tachyonic Proca fields [1–3] coupled to elec-
tron currents by a frequency-dependent coupling constant
resulting in a nonlocal interaction. The varying coupling
constant generates long-range dispersion of the charge and
current densities in the vacuum field equations, so that the
singular densities of a point charge become extended. The
coupling constant scales with the velocity of the tachyonic
modes, q = qtυ

σ
t (ω). The scaling exponent σ can be ex-

tracted from the low-energy slopes of GRB spectra, and the
scaling amplitude qt is estimated from the burst duration by
balancing the tachyonic luminosity with the internal energy
of the electronic source plasma. In the high-frequency limit,
the radiation modes become minimally coupled to the cur-

rent. The group velocity υt =
√

1 + m2
t /ω

2 of the superlu-
minal vacuum modes depends on their frequency and the
tachyon mass mt, and converges to the speed of light at
high frequency, so that the minimal coupling in the high-
energy regime ω/mt � 1 is determined by the scaling am-
plitude qt [3].

Tachyonic radiation implies superluminal signal transfer
[4–9], the energy quanta propagating faster than light in vac-
uum, in contrast to rotating superluminal light sources emit-
ting vacuum Cherenkov radiation [10–13]. This superlumi-
nal energy propagation by tachyonic modes is also to be
distinguished from superluminal group velocities arising in
photonic crystals, optical fibers, or metamaterials [14–16].
In contrast to tachyonic quanta, the actual signal speed de-
fined by the electromagnetic energy flow in these media is
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always subluminal and occasionally even opposite to the
group velocity [17, 18].

In Sect. 2, we set up the formalism of tachyonic Proca
and Maxwell fields in a permeable space. In Sect. 3, we de-
rive the dispersion relations for transversal and longitudi-
nal wave propagation, and investigate superluminal energy
transport with frequency-dependent permeabilities. Dissipa-
tion is accounted for by complex permeabilities resulting in
exponential attenuation of the tachyonic radiation modes. In
Sect. 4, we explain the nonlocal interaction of tachyonic ra-
diation fields with electron currents. We develop the formal-
ism in Fourier space and real time, and analyze the disper-
sion caused by the energy-dependent coupling constant.

The transversal and longitudinal tachyonic conductivity
of an electron plasma is studied in Sect. 5, by making use
of the relaxation time asymptotics of the dispersion rela-
tions. In Sect. 6, we discuss the superluminal radiation den-
sities of ultra-relativistic electrons, the spectral averaging
over electronic power-law distributions, and the effect of
the frequency-dependent fine-structure constant on the spec-
tral functions. We assemble the transversal and longitudinal
tachyonic flux densities, and perform spectral fits to the γ -
ray bursts GRB 930506, GRB 950425, and GRB 910503
[19]. In Sect. 7, we discuss the superluminal power transver-
sally and longitudinally radiated by ultra-relativistic elec-
trons, in particular the tachyonic luminosity of GRB plas-
mas. In Sect. 8, we present our conclusions. In Appendix A,
we calculate the time asymptotics of the nonlocal charge
density in the Proca equation. In Appendix B, we derive the
high-temperature expansion of the tachyonic luminosity of
thermal and nonthermal electron plasmas.

2 Proca fields with negative mass-square: tachyonic
field strengths, inductions, and constitutive equations

The tachyonic radiation field is a real Proca field (Â0, Â)

with negative mass-square [20, 21], coupled to the electron
current by minimal substitution. We will mostly consider
monochromatic fields, A0(x, t) = Â0(x,ω)e−iωt + c.c.,
A(x, t) = Â(x,ω)e−iωt + c.c., and analogously for cur-
rent and charge density, field strengths, and inductions.
The Fourier amplitudes of Proca fields with negative mass-
square solve the tachyonic Maxwell equations [22]

rot Ĥ + iωD̂ = ĵ + m2
t Ĉ, div D̂ = ρ̂ − m2

t Ĉ0,
(2.1)

rot Ê − iωB̂ = 0, div B̂ = 0,

where mt > 0 is the tachyon mass. The mass-square refers
to the radiation field rather than the current, in contrast to
traditional theories based on superluminal source particles
emitting electromagnetic radiation [4–6]. The constitutive

equations read [23–26]

D̂(x,ω) = ε(ω)Ê(x,ω), B̂(x,ω) = μ(ω)Ĥ(x,ω),
(2.2)

Â(ω) = μ0(ω)Ĉ(ω), Ĉ0(ω) = ε0(ω)Â0(ω).

The field equations (2.1) are based on the Lagrangian

LP = 1

2
(ED − BH) + 1

2
m2

t (AC − A0C0) + Aj + A0ρ.

(2.3)

The mass term is added with a positive sign, so that m2
t > 0

is the negative mass-square of the radiation field. The poten-
tials (Â0, Â) and field strengths Ê and B̂ are primary fields,
whereas the inductive potentials (Ĉ0, Ĉ) and inductions D̂
and Ĥ are connected to the primary fields by frequency-
dependent dielectric (ε0, ε) and magnetic (μ0,μ) perme-
abilities. We may use primary fields instead of inductions,
writing the inhomogeneous equations in (2.1) as

rot B̂ + iωεμÊ = μĵ + m2
t

μ

μ0
Â,

(2.4)
div Ê = 1

ε
ρ̂ − m2

t
ε0

ε
Â0.

The field strengths are related to the tachyonic potentials by
Ê = iωÂ + ∇Â0 and B̂ = rot Â. We take the divergence of
the first equation in (2.4), and substitute the second, to obtain

μ0(iωρ̂ − div ĵ) = m2
t (div Â + iωε0μ0Â0). (2.5)

Current conservation, iωρ̂ = div ĵ, implies the Lorentz con-
dition div Â + iωε0μ0Â0 = 0 or iωĈ0 + div Ĉ = 0. The per-
meabilities ε0 and μ0 define the inductive potentials, and
are not to be confused with vacuum permeabilities; we use
the Heaviside–Lorentz system, so that ε = ε0 = 1 and μ =
μ0 = 1 in vacuum. The potentials (A0,A) are determined
by the current and field strengths, and there is no gauge free-
dom owing to the tachyon mass, as the inductive potentials
(C0,C) appear explicitly in the tachyonic Maxwell equa-
tions. By applying the rotor to the rotor equations in (2.1)
and (2.4), we obtain wave equations for the field strengths,
(

Δ + εμω2 + μ

μ0
m2

t

)
Ê +

(
ε

ε0

μ

μ0
− 1

)
∇ div Ê

= −iωμĵ + μ

μ0

1

ε0
∇ρ̂, (2.6)

(
Δ + εμω2 + μ

μ0
m2

t

)
B̂ = −μ rot ĵ.

The above equations stay valid without alterations for poly-
chromatic fields, if Fourier transforms are used,

A(x, t) = 1

2π

∫ ∞

0

(
Â(x,ω)e−iωt + c.c.

)
dω,

(2.7)

Â(x,ω) =
∫ +∞

−∞
A(x, t)eiωt dt,
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and analogously for the current and charge densities, field
strengths, and inductions. The Fourier modes are contin-
ued to negative frequencies via Â∗(x,ω) = Â(x,−ω) and
ε∗(ω) = ε(−ω), so that we can drop the conjugated terms
in (2.7) and extend the lower integration boundary to −∞.

3 Superluminal radiation: polarization, energy, and
flux

3.1 Transversal and longitudinal modes in a permeable
space

We study plane-wave solutions of the field equations with
vanishing charge and current distributions. In the Fourier
ansatz defined before (2.1), we put Â(x,ω) = A(k)eikx,
Â0 = A0(k)eikx, Ê = E(k)eikx, B̂ = B(k)eikx, and calculate
the dispersion relations and the amplitudes A0(k), E(k), and
B(k) in terms of a prescribed vector potential A(k). To this
end, we define k = k(ω)k0, where the wave number k(ω)

can be complex and k0 is a constant unit vector, also com-
plex in general. (A complex unit vector satisfies k2

0 = 1;
the scalar product k2 is not to be confused with the norm
|k|2 = kk∗.) We start with an arbitrary amplitude A(k), and
use the Lorentz condition to obtain

A0(k) = − k(ω)

ε0μ0ω
k0A(k). (3.1)

The potential representation of the tachyonic field strengths
gives the amplitudes E(k) and B(k) in terms of A(k) and
k = kk0,

E(k) = iω

(
A − k2

ε0μ0ω2
(Ak0)k0

)
,

(3.2)
B(k) = ikk0 × A.

The homogeneous Maxwell equations in (2.1) are solved by
this ansatz, and the inhomogeneous equations (2.4) (with
charge and current put to zero) read

rot B̂ = k2(Â − (Âk0)k0
)
,

(3.3)
div Ê = k

ε0μ0ω

(
k2 − ε0μ0ω

2)Âk0.

The transversality condition is Âk0 = 0, so that the diver-
gence equation in (3.3) is satisfied, and the rotor equation
requires the transversal dispersion relation

k2
T = εμω2 + m2

t μ/μ0. (3.4)

In this way, we find the set of transversal modes as

k0ÂT = 0, ÂT
0 = 0,

(3.5)
ÊT = iωÂT, B̂T = ikTk0 × ÂT.

In terms of inductions,

k0ĈT = 0, ĈT
0 = 0, D̂T = iεμ0ωĈT,

(3.6)
ĤT = i

μ0

μ
kTk0 × ĈT,

and we also note the inversions

ÂT = i

kT
k0 × B̂T, ĈT = i

kT

μ

μ0
k0 × ĤT. (3.7)

Longitudinal polarization occurs if the product Âk0 does not
vanish [27]. The divergence equation in (3.3) implies the
longitudinal dispersion relation

k2
L = ε0μ0ω

2 + m2
t ε0/ε, (3.8)

and the rotor equation reduces to Â = (Âk0)k0. Hence, if Â
and k0 are not orthogonal, the modes must be longitudinal,

ÂL = (
ÂLk0

)
k0, ÂL

0 = − kL

ε0μ0ω
k0ÂL,

(3.9)

ÊL = m2
t

iεμ0ω
ÂL, B̂L = 0.

The associated longitudinal inductions are

ĈL = (
ĈLk0

)
k0, ĈL

0 = −kL

ω
k0ĈL,

(3.10)

D̂L = m2
t

iω
ĈL, ĤL = 0.

Longitudinal modes thus imply wave propagation without
magnetic component. Inversely,

ÂL
0 = 1

i

ε

ε0

kL

m2
t

k0ÊL, ĈL
0 = 1

i

kL

m2
t

k0D̂L. (3.11)

The transversal and longitudinal dispersion relations coin-
cide for ε0 = ε and μ0 = μ. In the case of homogeneous
plane waves, real k0 that is, the waves propagate in the pre-
scribed direction k0 if the roots of (3.4) and (3.8) defining
the wave numbers kT,L are taken with positive real part. If
we put μ0 = μ and ε0 = ε = 1/μ, the permeabilities drop
out in the dispersion relations. In the field equations, they
can be absorbed in the charge and current densities by way
of a frequency-dependent rescaling ∝μ(ω) of the coupling
constant qt, provided that μ is real; this will be discussed
in Sect. 4. The tachyonic fine-structure constant then scales
as αq = q2

t μ2(ω)/(4π), cf. (4.7), and the time averaged flux
vectors (3.21) and energy densities (3.24) conformally scale
∝1/μ.
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3.2 Superluminal energy transport in a dispersive and
absorptive medium

To find the energy flux in a dispersive medium, we start with
the tachyonic Maxwell equations in real time,

div B(x, t) = 0, rot E + ∂B/∂t = 0,
(3.12)

div D = ρ − m2
t C0, rot H − ∂D/∂t = j + m2

t C.

The field strengths are related to the vector potential by
E = ∇A0 − ∂A/∂t and B = rot A. The Lorentz condition,
div C − ∂C0/∂t = 0, follows from the field equations and
current conservation, div j + ∂ρ/∂t = 0, cf. (2.5). Defining
the tachyonic flux vector as

S = E × H + m2
t A0C, (3.13)

we find, by means of the field equations (3.12), the identity
[28]

div S + E
∂D
∂t

+ H
∂B
∂t

− m2
t

(
A0

∂C0

∂t
+ C

∂A
∂t

)
= −jE.

(3.14)

First, we consider constant (i.e. frequency-independent) real
permeabilities, so that the material equations read D(x, t) =
εE(x, t), B = μH, A = μ0C, and C0 = ε0A0, cf. (2.2).
Based on the field equations and current conservation, we
obtain the conservation law div S + ∂ρE/∂t = −Ej, with the
flux vector (3.13) and energy density

ρE = 1

2
(ED + BH) − 1

2
m2

t (A0C0 + AC). (3.15)

To find the energy density in a dispersive medium with
frequency-dependent permeabilities, we have to extract the
energy density from the incomplete time derivative ρE,t =
(ED,t +B,tH)−m2

t (A0C0,t +A,tC), which replaces ∂ρE/∂t

in the above conservation law. Real permeabilities will be
assumed when discussing energy averages, but the flux vec-
tors (3.19) stated below also apply in an absorptive medium.

We start with a plane wave E(ω, t) = Êe−iωt + c.c., and
consider the symmetrized product E(ω, t)∂D(ω′, t)/∂t with
the constitutive relation D̂ = ε(ω)Ê. Expanding in ascend-
ing powers of ω′ − ω except for the phase, we obtain, in the
limit ω′ → ω [23],

1

2

(
E(ω, t)

∂

∂t
D(ω′, t) + (ω′ ↔ ω)

)
= ∂

∂t
ρED,

(3.16)
ρED = 1

2

dε(ω)ω

dω
Ê(ω)Ê∗(ω) + 1

2
ε(ω)Ê2(ω)e−2iωt + c.c.

The time averaged ρED at ω′ = ω is 〈ρED〉 =
ÊÊ∗ d(ωε)/dω, replacing the term ED/2 in energy den-
sity (3.15); terms depending on exp(±2iωt) drop out if av-
eraged over the period 2π/ω. The remaining three pairs

in (3.15) can be treated on equal footing: The averaged
H∂B/∂t contributes the term 〈ρHB〉 = ĤĤ∗(ωμ)′ to the
energy density, the averaging of A0∂C0/∂t amounts to
〈ρA0C0〉 = Â0Â

∗
0(ωε0)

′, and C∂A/∂t gives 〈ρCA〉 =
ĈĈ∗(ωμ0)

′. These three averages replace BH/2,A0C0/2,
and AC/2, respectively. Accordingly, the energy carried by
a superluminal mode A(ω, t) = Âe−iωt +c.c. in a dispersive
medium reads

〈ρE〉 = ÊÊ∗(ωε)′ + ĤĤ∗(ωμ)′ − m2
t Â0Â

∗
0(ωε0)

′

− m2
t ĈĈ∗(ωμ0)

′. (3.17)

The tachyonic flux vector is obtained by substituting the
Fourier modes into the Poynting vector (3.13) and perform-
ing a time average [28],

〈S〉 = 1

μ∗ Ê × B̂∗ + m2
t

μ∗
0
Â0Â∗ + c.c. (3.18)

This flux vector also applies in a dissipative medium; the
nonconservation of energy due to absorption is manifested
by an exponential damping factor in the Fourier amplitudes,
cf. (3.26) below.

We consider homogeneous plane-wave solutions prop-
agating in the direction of the real unit vector k0. The
transversal/longitudinal energy and flux components 〈ρT,L

E 〉
and 〈ST,L〉 are found by replacing the Fourier amplitudes
in (3.17) and (3.18) by the respective polarized compo-
nents (3.5) and (3.9),

〈
ST〉 = μ∗kT + μk∗

T

|μ|2 ω
∣∣ÂT

∣∣2k0,

(3.19)〈
SL〉 = ε∗

0kL + ε0k
∗
L

|μ0|2|ε0|2
m2

t

ω

∣∣ÂL
∣∣2k0.

These flux vectors are quite general, applying to frequency-
dependent complex permeabilities (generating complex
wave numbers kT,L) and homogeneous modes (whose wave
vector is a complex multiple of a real unit vector k0). In the
absence of absorption, the associated transversal and longi-
tudinal tachyonic energy densities (3.17) are assembled with
the modes derived in Sect. 3.1,

〈
ρT〉 = ∣∣ÂT

∣∣2
[
ω2(ωε)′ + k2

T
(ωμ)′

μ2
− m2

t
(ωμ0)

′

μ2
0

]
,

(3.20)
〈
ρL〉 = 1

μ2
0

m2
t

ω2

∣∣ÂL
∣∣2

[
ω2(ωμ0)

′ + k2
L
(ωε0)

′

ε2
0

− m2
t
(ωε)′

ε2

]
,

with real permeabilities (ε, ε0,μ0,μ). The energy carried
by a superluminal mode propagates with speed vT,L =
〈ST,L〉/〈ρT,L〉, cf. Sects. 3.3 and 5.3.
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3.3 Transversal and longitudinal group velocity and
attenuation length of tachyonic modes

In the case of real and frequency-independent permeabili-
ties, we find the transversal and longitudinal flux compo-
nents as, cf. (3.19),

〈
ST〉 = 2kT

μ
ω

∣∣ÂT
∣∣2k0,

〈
SL〉 = 2kL

μ2
0ε0

m2
t

ω

∣∣ÂL
∣∣2k0. (3.21)

The corresponding tachyonic energy densities read, cf.
(3.20),

〈
ρT〉 = 2εω2

∣∣ÂT
∣∣2

,
〈
ρL〉 = 2

m2
t

μ0

∣∣ÂL
∣∣2

. (3.22)

We note the transversal and longitudinal group velocities

1

υT
= dkT

dω
= εμ

ω

kT
,

1

υL
= dkL

dω
= ε0μ0

ω

kL
, (3.23)

to be compared to the phase velocity υph = ω/kT,L in the
medium. We may thus identify υT,Lk0 with the speed of en-
ergy transfer vT,L as defined after (3.20). If ε = μ = 1 and
ε0 = μ0 = 1, the transversal and longitudinal velocities co-
incide, so that ω = mtγt, with the tachyonic Lorentz factor
γt = (υ2

T,L − 1)−1/2.
We study a dispersive transparent medium, where the

permeabilities are real and frequency dependent, so that
k2

T,L > 0, cf. (3.4) and (3.8). The permeabilities may even be
negative, if we restrict to a frequency range admitting posi-
tive squared wave numbers [17]. As in the previous case, we
find the identity 〈ST,L〉 = k0〈ρT,L〉dω/dkT,L, which allows
us to identify the group velocity k0 dω/dkT,L as the speed
of energy transfer 〈ST,L〉/〈ρT,L〉. The flux vectors 〈ST,L〉
in (3.21) remain valid for frequency-dependent real perme-
abilities, and the energy densities read

〈
ρT〉 = ω

μ

dk2
T

dω

∣∣ÂT
∣∣2

,
〈
ρL〉 = 1

μ2
0ε0

m2
t

ω

dk2
L

dω

∣∣ÂL
∣∣2

, (3.24)

derived from (3.20) by expressing the real dielectric perme-
ability ε in terms of k2

T or k2
L via the dispersion relations.

More explicitly, the energy densities associated with the flux
vectors 〈ST,L〉 in (3.21) read, according to (3.20),

〈
ρT〉 = ∣∣ÂT

∣∣2
[
εω2

(
2 + ε′

ε
ω + μ′

μ
ω

)
+ m2

t

μ0
ω

(
μ′

μ
− μ′

0

μ0

)]
,

〈
ρL〉 = 1

μ2
0

m2
t

ω2

∣∣ÂL
∣∣2

[
μ0ω

2
(

2 + μ′
0

μ0
ω + ε′

0

ε0
ω

)
(3.25)

+ m2
t

ε
ω

(
ε′

0

ε0
− ε′

ε

)]
.

They apply in a nonabsorptive medium.

In a dissipative medium with frequency-dependent com-
plex permeabilities, we employ the flux densities (3.19), ap-
plicable to homogeneous plane waves (real k0). Writing the
wave number kT,L as k = kRe + ikIm with kRe > 0, we obtain
the squared amplitudes in (3.19) as

∣∣ÂT,L
∣∣2 = ∣∣AT,L(k)

∣∣2 exp(−2kImk0x). (3.26)

Thus, Im(kT,L) ≥ 0 is required for damping, and δ := 1/kIm

is the tachyonic attenuation length or skin depth of the ab-
sorptive medium. The above formalism is based on real fre-
quencies and complex wave numbers, convenient to derive
penetration depths. In Ref. [28], we used complex frequen-
cies and real wave vectors to calculate decay times. One
may switch to complex frequencies by analytically contin-
uing the dispersion relations, the imaginary part of ω being
determined by Im(k) = 0.

4 Proca fields with negative mass-square coupled to
nonlocal currents

The tachyonic radiation field in vacuum satisfies the Proca
equation (∂ν∂ν + m2

t )Aμ = −jμ, subject to the Lorentz
condition Aμ

,μ = 0 [2, 7]. mt is the mass of the real
superluminal Proca field Aμ, and jμ = (ρ, j) the con-
served subluminal electron current, cf. Sect. 2. In the Proca
equation, the mass term is added with a positive sign,
so that m2

t > 0 is the negative mass-square of the ra-
diation field, and the sign convention for the metric is
diag(−1,1,1,1). Fourier transforms are denoted by a hat,
A(x, t) = (2π)−1

∫ +∞
−∞ Â(x,ω)e−iωt dω, cf. (2.7). In Fourier

space, the Proca equation can be written as
(
Δ + k2)Â0(x,ω) = ρ̂(x,ω),

(4.1)(
Δ + k2)Â(x,ω) = −ĵ(x,ω),

where k =
√

ω2 + m2
t is the wave number of the tachy-

onic modes. Current conservation iωρ̂ = div ĵ implies the
Lorentz condition iωÂ0 + div Â = 0, cf. (2.5). The vacuum
field equations in Fourier space are stated in (2.1) and (2.4),
with ε = ε0 = 1 and μ = μ0 = 1. The whole-space Green’s
function inverting the field equations (4.1) reads

G(x,x0;ω) = 1

4π

eik(ω)|x−x0|

|x − x0| ,

(4.2)(
Δ + k2)G(x,x0;ω) = −δ(x − x0),

with k(ω) as in (4.1), so that the tachyon potential is calcu-
lated as
(
Â0(x,ω), Â(x,ω)

)

=
∫

G(x,x′;ω)
(−ρ̂(x′,ω), ĵ(x′,ω)

)
d3x′. (4.3)
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The singular charge and current densities of a classical sub-
luminal point particle with trajectory x0(t) read ρ(x, t) =
qtδ(x − x0(t)) and j(x, t) = ẋ0(t)ρ(x, t), where qt is the
tachyonic charge, defining the fine-structure constant αt =
q2

t /(4π�c) in the Heaviside-Lorentz system. In the field
equations (4.1), we use the Fourier amplitudes

ρ̂(x,ω) = qt

∫ +∞

−∞
δ
(
x − x0(t)

)
eiωt dt,

(4.4)

ĵ(x,ω) = qt

∫ +∞

−∞
ẋ0(t)δ

(
x − x0(t)

)
eiωt dt.

Alternatively, we may consider a Dirac current jμ =
(ρ, j) = −qtψ̄γ μψ , and replace the classical amplitudes
(4.4) by spinorial matrix elements ρ̂mn(x) and ĵmn(x) [20,
29].

The nonlocal coupling of the superluminal radiation field
to the electron current is effected by a frequency-dependent
coupling constant q(ω), which replaces qt in the Fourier am-
plitudes (4.4) and the corresponding matrix elements [3].
q(ω) scales with a power of the tachyonic velocity,

q(ω) = qtυ
σ
t , υt(ω) = k/ω =

√
1 + m2

t /ω
2, (4.5)

so that qt is recovered in the high-frequency limit q(ω →
∞) = qt. The frequency and wave number of the tachyonic
modes can as well be parametrized by their superluminal
velocity υt > 1,

ω = mt√
υ2

t − 1
, k(ω) = mtυt√

υ2
t − 1

. (4.6)

As mentioned, the sign conventions in the wave equation
are such that the tachyon mass mt is a positive quantity. The
varying tachyonic fine-structure constant reads

αq(ω) = q2(ω)

4π�c
= αtΩ̂

2(ω),

(4.7)

Ω̂(ω) = υσ
t =

(
1 + m2

t

ω2

)σ/2

.

The frequency dependence of αq(ω) is weak at high en-
ergy ω � mt, but it shows in the soft γ -ray band rele-
vant for GRB spectra. In the low-frequency regime, we find
αq(ω → 0) ∝ ω−2σ , and the constant αt = q2

t /(4π�c) is
recovered at high frequencies, αq(∞) = αt. The nonlocal
charge and current densities depending on the varying cou-
pling constant q(ω) = qtΩ̂(ω) are denoted by a subscript Ω ,

ρ̂Ω(x,ω) = Ω̂(ω)ρ̂(x,ω),
(4.8)

ĵΩ(x,ω) = Ω̂(ω)ĵ(x,ω),

with (ρ̂, ĵ) as in (4.4) and Ω̂(ω) in (4.7). In the field equa-
tions (4.1), we replace (ρ̂, ĵ) by (ρ̂Ω, ĵΩ). Occasionally,

we will rescale ω̂ := ω/mt, so that υt = √
1 + ω̂2/ω̂, and

αq = αt(1 + ω̂2)σ /ω̂2σ . To find the tachyon potential gen-
erated by the current (ρ̂Ω, ĵΩ), we only need to multiply
the local charge and current densities with Ω̂(ω), which
amounts to a rescaling of the Fourier amplitudes (Â0, Â)

in (4.3) by the same factor.
In real time, relations (4.8) among the Fourier amplitudes

translate into

ρΩ(x, t) = 1

2π

∫ ∞

−∞
ρ̂Ω(x,ω)e−iωt dω

=
∫ ∞

−∞
Ω(t ′)ρ(x, t − t ′)dt ′,

(4.9)
jΩ(x, t) = 1

2π

∫ ∞

−∞
ĵΩ(x,ω)e−iωt dω

=
∫ ∞

−∞
Ω(t ′)j(x, t − t ′)dt ′,

where

Ω(t) = 1

2π

∫ ∞

−∞
Ω̂(ω)e−iωt dω = δ(t) + Ωreg(t) (4.10)

is a distribution with regular part

Ωreg(t) = 1

2π

∫ ∞

−∞
Ω̂reg(ω)e−iωt dω,

(4.11)
Ω̂reg(ω) = Ω̂(ω) − 1.

The integral in (4.11) converges for exponents σ < 1,
cf. (4.7), which is henceforth assumed; the time asymptotics
of Ωreg(t) is studied in Appendix A.

The convolutions in (4.8) and (4.9) are modeled like
the tachyonic inductions (2.2), but applied to the current
and charge densities rather than to the field strengths, the
counterpart of the permittivity ε(t) being Ω(t). The ana-
log to ĵΩ(x,ω) in (4.9) is the electric induction D̂(x,ω) =
ε̂(ω)Ê(x,ω), which reads in real space

D(x, t) = E(x, t) +
∫ +∞

−∞
κ(t ′)E(x, t − t ′)dt ′, (4.12)

where ε(t) = δ(t) + κ(t) [28]. This is to be compared
to (4.9) and (4.10). κ(t) denotes the electric susceptibility,
whose Fourier transform,

κ̂(ω) = ε̂(ω) − 1, ε̂(ω) =
∫ +∞

−∞
ε(t)eiωt dt, (4.13)

is the analog to Ω̂reg(ω) in (4.11). The counterpart to the
electric polarization D̂ − Ê = κ̂Ê is the charge and current
dispersion, ρ̂Ω − ρ̂ = Ω̂regρ̂ and ĵΩ − ĵ = Ω̂reg ĵ, generated
by the frequency-dependent coupling constant.
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We consider a subluminal charge in uniform motion, z =
υt . The charge density and current along the z axis and the
respective Fourier amplitudes read, cf. after (4.3),

ρ(x, t) = qtδ(x)δ(y)δ(z − υt), j (x, t) = υρ(x, t),

(4.14)
ρ̂(x,ω) = qt

|υ|δ(x)δ(y)eiωz/υ, ĵ = υρ̂.

Replacing qt by q(ω) = qtΩ̂(ω), we arrive at the nonlocal
current (ρ̂Ω, ĵΩ) as defined in (4.8). In real time, cf. (4.9),

ρΩ(x, t) = qt

|υ|Ω(t − z/υ)δ(x)δ(y),

(4.15)
jΩ(x, t) = υρΩ(x, t).

The x and y components of jΩ vanish. We split Ω into a
regular and singular part, cf. (4.10),

ρΩ(x, t) = qt

[
δ(z − υt) + 1

|υ|Ωreg(t − z/υ)

]
δ(x)δ(y).

(4.16)

For negative scaling exponents σ , the total charge∫
ρΩ(x, t)d3x vanishes, since

∫ ∞

−∞
Ωreg(t − z/υ)dz = |υ|Ω̂reg(0), (4.17)

and Ω̂reg(0) = −1, cf. (4.7) and (4.11). If 0 < σ < 1, then
Ω̂reg(0) is infinite, and so is the total charge. The space and
time evolution of the nonlocal regular part of charge den-
sity (4.16) is determined by Ωreg(t − z/υ), cf. Appendix A.

5 Tachyonic conductivity of an electron plasma

We start with a monochromatic superluminal mode,
E(x, t) = Ê(x,ω)e−iωt + c.c., in a dispersive and dissipa-
tive medium, generating the current

ĵ = σ(ω)Ê, ρ̂ = σ

iω
div Ê, (5.1)

where σ(ω) is the tachyonic conductivity specified in (5.5).
The hat always indicates Fourier amplitudes, and the charge
distribution ρ̂ is found by current conservation, cf. af-
ter (2.5). We substitute this into the field equations (2.1),
and absorb the current and charge densities by replacing the
permittivity ε by

εσ (ω) :=
(

1 + i
σ(ω)

εω

)
ε. (5.2)

In this way, we can write the inhomogeneous field equa-
tions (2.4) as

rot B̂ + iεσ μωÊ = m2
t

μ

μ0
Â, div Ê = −m2

t
ε0

εσ

Â0. (5.3)

The homogeneous Maxwell equations in (2.1) remain un-
changed. If ε = 1 in (5.2), we find the polarization P̂ =
D̂ − Ê = i(σ/ω)Ê. The dispersion relations for the transver-
sal and longitudinal modes read as in (3.4) and (3.8), with
ε replaced by εσ . Current and charge densities are related
to the tachyonic field strength Ê by (5.1), so that the poten-
tials (Â0, Â) are unambiguously determined by the charge
density and current,

Â0 = ω

iσm2
t

εσ

ε0
ρ̂, Â = 1

iσω
ĵ + 1

σm2
t

εσ

ε0
∇ρ̂. (5.4)

Taking the rotor of the second equation in (5.4), we find
the London equation rot ĵ = iσωB̂. On substituting this into
wave equation (2.6) for the magnetic field strength, we ar-
rive at (Δ + k2

T)B̂ = 0, where the squared transversal wave
number is defined in (3.4) (with ε → εσ ).

The tachyonic conductivity reads

σ(ω) = iω2
pω

ω2 − ω2
0 + iγ0ω

, ω2
p := q2(ω)

ne

m
, (5.5)

where ωp is the tachyonic plasma frequency, m the electron
mass, ne the electron density of the medium, and q(ω) =
qtΩ̂(ω) the frequency-dependent tachyonic coupling con-
stant, cf. (4.5)–(4.7). This is based on Drude’s damped oscil-
lator model with a nonlocal coupling to the field strength [2],

r̈ + γ0ṙ + ω2
0r = 1

m

∫ +∞

−∞
q(t ′)E(t − t ′)dt ′, (5.6)

with r = r̂e−iωt +c.c.,E as defined before (5.1), and q(t) :=
qtΩ(t), cf. (4.10). ω0 is the characteristic frequency of the
electronic oscillators, and γ0 the damping constant, related
to the resistivity ρ and relaxation time τ as γ0 = ω2

pρ =
1/τ . When solving this equation in dipole approximation
(with a plane wave E as in Sect. 3), we neglect the spa-
tial dependence of the amplitude Ê(x,ω), so that (ω2

0 −
ω2 − iγ0ω)r̂ = q(ω)Ê/m, and σ(ω) in (5.5) follows from
ĵ = q(ω)nev̂, with v̂ = −iωr̂. We note ω2

p = ω2
p,emαq/αe,

where ωp,em is the electromagnetic plasma frequency, αe =
e2/(4π�c) ≈ 1/137 the electric fine-structure constant, and
αq(ω) = αtΩ̂

2(ω) its frequency-dependent tachyonic coun-
terpart, cf. (4.7). Thus, ω2

p = Ω̂2(ω)ω2
p,emαt/αe; the typi-

cal range of the tachyon mass mt for γ -ray bursts is 102–
104 keV, with αt in the range 10−21–10−23, cf. Ref. [3] and
Sect. 6.

The damping constant γ0 is related to the resistivity
by �γ0[eV] ≈ 1.690×103(�ωp[eV])2ρ[Ω cm](with conver-
sion Ω ≈ 1.113×10−12 s/cm) and to the relaxation time by
τ [s] ≈ 6.582 × 10−16/(�γ0[eV]). In the following, we as-
sume the permeabilities (ε0, ε) and (μ0,μ) in (5.2)–(5.4) to
be positive and frequency independent; in the dispersion re-
lations, ε is replaced by εσ , cf. (5.2) and (5.5), and the same
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substitution is performed in the plane-wave solutions (3.6)
and (3.9) as well as in the flux vectors (3.19).

5.1 Transversal dispersion relation and relaxation time
asymptotics

The transversal dispersion relation (3.4) reads k2
T =

εσ μω2 + m2
t μ/μ0, with εσ defined in (5.2) and (5.5). As

for the root, positivity of the real part of kT(ω) is necessary
to obtain waves propagating in the direction of k0, and a pos-
itive imaginary part is required for exponential damping. We
put γ0 = 1/τT in (5.5), where τT is the transversal relaxation
time (related to the transversal resistivity by τTω2

p = 1/ρT),
and rescale the tachyonic plasma frequency for notational
convenience, ω2

p,ε := ω2
p/ε. In the limit τT → 0, the squared

wave number reads

k2
T ∼ k2

T,0 + iεμω2
p,εωτT, k2

T,0 := εμω2 + m2
t

μ

μ0
, (5.7)

where only the leading orders of the real and imaginary
parts are indicated. The permeabilities (ε0, ε) and (μ0,μ)

are positive frequency-independent constants. In the oppo-
site limit, τT → ∞,

k2
T ∼ k2

T,0 − εμω2
p,εω

2

ω2 − ω2
0

+ i
εμω2

p,εω
3

(ω2 − ω2
0)

2

1

τT
. (5.8)

The exact transversal dispersion relation is

k2
T = k2

T,0 + iσμω = k2
T,0 − εμω2

p,εω
2

ω2 − ω2
0 + iγ0ω

, (5.9)

with γ0 = 1/τT and k2
T,0 as defined in (5.7). The root kT

of (5.9) is chosen with positive real and imaginary part,
which is possible for positive τT. The transversal wave num-
ber in the high-resistivity regime, τT → 0, reads, cf. (5.7),

Re(kT) ∼ kT,0, Im(kT) ∼ τT

2
εμω2

p,ε

ω

kT,0
, (5.10)

with kT,0 > 0, cf. (5.7). At low resistivity, τT → ∞, there is
a dichotomy depending on the sign of

KT,∞(ω) := k2
T,0 − εμ

ω2
p,εω

2

ω2 − ω2
0

. (5.11)

If KT,∞ is positive, the asymptotic (τT → ∞) wave number
is found as

Re(kT) ∼ √
KT,∞,

(5.12)

Im(kT) ∼ 1

2τT

εμω2
p,εω

3

√
KT,∞(ω2 − ω2

0)
2
,

and if KT,∞ is negative, the real and imaginary parts are
interchanged,

Re(kT) ∼ 1

2τT

εμω2
p,εω

3

√|KT,∞|(ω2 − ω2
0)

2
,

(5.13)
Im(kT) ∼ √|KT,∞|.
Sign changes of KT,∞(ω) (which is just the squared wave
number k2

T at γ0 = 0) can thus substantially affect tachy-
onic wave propagation at low resistivity, cf. Sect. 5.3.
The transversal flux vector 〈ST〉 is obtained by substi-
tuting 2 Re(kT)/μ for the ratio in (3.19). The transversal
wavelength λT = 2π/Re(kT) and the tachyonic attenuation
length δT = 1/ Im(kT) in the high/low-resistivity regime can
also be read off from these limits. The wave fields as well
as the current and charge densities are damped by a factor
of exp(−k0x/δT) in the direction of propagation k0. The
electromagnetic dispersion relation is recovered by replac-
ing ω2

p,ε by the rescaled electromagnetic plasma frequency

ω2
p,em/ε and dropping the tachyon mass in (5.7) and (5.9).

We then have to replace KT,∞ in (5.11) by

Kem,∞ := εμω2

ω2 − ω2
0

(
ω2 − ω2

0 − 1

ε
ω2

p,em

)
. (5.14)

If Kem,∞ is negative, we find the electromagnetic atten-
uation length at low resistivity as δem ∼ 1/

√|Kem,∞|,
cf. (5.13).

5.2 Longitudinal conductivity and extinction coefficient

The conductivity (5.5) requires a negative longitudinal
damping constant, γ0 = −1/τL, for the wave number kL

to admit positive real and imaginary parts. The magnetic
permeability μ does not show in the dispersion relation,
k2

L = ε0μ0ω
2 + m2

t ε0/εσ , cf. (3.8), as there is no longitu-
dinal magnetic wave component. In the limit τL → 0, we
find

k2
L ∼ k2

L,0 + i
ε0

ε

ω2
p,ε

ω
m2

t τL,

(5.15)
k2

L,0 := ε0μ0ω
2 + m2

t
ε0

ε
,

and in the opposite limit, τL → ∞,

k2
L ∼ k2

L,0 + ε0

ε

m2
t ω

2
p,ε

ω2 − ω2
0 − ω2

p,ε

+ i
ε0

ε

m2
t ω

2
p,εω

(ω2 − ω2
0 − ω2

p,ε)
2

1

τL
. (5.16)

The exact longitudinal dispersion relation reads

k2
L = k2

L,0 − ε0

ε

iσm2
t

εω + iσ

= k2
L,0 + ε0

ε

m2
t ω

2
p,ε

ω2 − ω2
0 − ω2

p,ε + iγ0ω
, (5.17)
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with γ0 = −1/τL and k2
L,0 in (5.15); the permeabilities

(ε0, ε) and μ0 are positive constants. Relaxation time and
longitudinal resistivity are related by τL = 1/(ρLω2

p). Re-
turning to (5.1), we find the polarized current components
ĵT,L = σT,LÊT,L, where σT = σ(ω;γ0 = 1/τT) and σL =
σ(ω;γ0 = −1/τL) are the respective transversal and lon-
gitudinal conductivities (5.5), and ÊT,L the polarized field
strengths, cf. (3.5) and (3.9). We may put σT = ∑

σT,i ,
where the conductivities σT,i are defined as in (5.5), with
constants (ω2

p,i ,ω0,i , γ0,i = 1/τT,i ) characterizing the oscil-
lator species [25], and analogously for σL.

The longitudinal tachyonic extinction coefficient, δL =
1/ Im(kL), is obtained via (5.15) and (5.16) or from (5.17)
in case of moderate relaxation time or in the vicinity of the
resonances. For short relaxation times, τL → 0, we find the
longitudinal wave number

Re(kL) ∼ kL,0, Im(kL) ∼ τL

2

ε0

ε

m2
t ω

2
p,ε

kL,0ω
, (5.18)

with positive kL,0, cf. (5.15). As for the opposite limit, the
low-resistivity regime τL → ∞, we define the shortcut

KL,∞(ω) := k2
L,0 + ε0

ε

m2
t ω

2
p,ε

ω2 − ω2
0 − ω2

p,ε

, (5.19)

which coincides with k2
L at γ0 = 0, cf. (5.16). The lon-

gitudinal asymptotic (τL → ∞) wave number reads, for
KL,∞ > 0,

Re(kL) ∼ √
KL,∞,

(5.20)

Im(kL) ∼ 1

2τL

ε0

ε

m2
t ω

2
p,εω√

KL,∞(ω2 − ω2
0 − ω2

p,ε)
2
,

and for KL,∞ < 0,

Re(kL) ∼ 1

2τL

ε0

ε

m2
t ω

2
p,εω√|KL,∞|(ω2 − ω2

0 − ω2
p,ε)

2
,

(5.21)
Im(kL) ∼ √|KL,∞|.
The longitudinal tachyonic flux vector 〈SL〉 in the high/low-
resistivity regime is found by replacing the first ratio
in (3.19) by 2 Re(kL)/(μ2

0ε0), with the respective asymp-
totic Re(kL) substituted. The transversal and longitudinal
wavelengths λT,L = 2π/Re(kT,L) can become arbitrarily
large in the low-resistivity regime, cf. Sect. 5.3. By con-
trast, the tachyonic wavelength in vacuum cannot exceed
the Compton wavelength λt = 2π/mt, since the vacuum
dispersion relation is k2 = ω2 + m2

t , irrespectively of the
polarization. The longitudinal extinction coefficient, δL =
1/ Im(kL), is obtained from the Im(kL) limits enumerated
in (5.18)–(5.21), or calculated from the exact dispersion re-
lation (5.17).

5.3 The limit of zero resistivity

The tachyonic conductivity (5.5) reduces to σ(ω) = iω2
p/ω,

for transversal and longitudinal modes alike, if we consider
the limit of infinite relaxation time, τT,L = ∞, in the ab-
sence of harmonic binding, ω0 = 0, and use vacuum per-
meabilities, ε = ε0 = 1 and μ = μ0 = 1. The induced per-
mittivity (5.2) is thus εσ = 1 − ω2

p/ω
2, and the squared

transversal wave numbers read k2
T = KT,∞ = ω2 − ω2

p + m2
t

and Kem,∞ = ω2 − ω2
p,em, cf. (5.11) and (5.14). In the sta-

tic limit ω = 0, the electromagnetic attenuation length is
δem = 1/ωp,em, cf. after (5.14). Restoring the units � = c =
1, we obtain �ωp,em[eV] ≈ 1.973 × 103/δem[Å]. In super-
conductors, the electromagnetic penetration depth δem is
typically of order 103 Å. We may write the electromag-
netic plasma frequency as ω2

p,em = 4πc2–λeαene, where –λe is
the reduced electronic Compton wavelength, αe the electric
fine-structure constant, and ne the electron density. Hence,
�ωp,em[eV] ≈ 3.713 × 10−11n

1/2
e [cm−3]; electron densities

of 1026 cm−3 can be reached in inertially or magnetically
confined fusion plasmas [30, 31].

The tachyonic plasma frequency reads ω2
p = κ2Ω̂2(ω),

where κ2 := ω2
p,emαt/αe, cf. after (5.6). For ω2/m2

t � 1, we
find, cf. (4.7),

Ω̂2(ω) =
(

1 + m2
t

ω2

)σ

=
(

m2
t

ω2

)σ (
1 + σ

ω2

m2
t

+ · · ·
)

, (5.22)

with 0 < σ < 1; typically σ ≈ 0.5 for burst plasmas. Given
the values of ωp,em quoted above (1–100 eV) and the rele-
vant ranges of the tachyon mass mt ≈ 102–104 keV and the
tachyonic fine-structure constant αt ≈ 10−21–10−23, we can
safely assume κ/mt � 1. As mentioned, the squared wave
number k2

T is KT,∞(ω) = ω2 + m2
t − κ2Ω̂2(ω), admitting a

zero KT,∞(ωT) = 0 at

ωT

mt
=

(
κ

mt

)1/σ (
1 + σ − 1

2σ

(
κ

mt

)2/σ

+ · · ·
)

. (5.23)

Apparently, ωT � mt, and KT,∞(ω) is positive for ω > ωT

and negative otherwise. If KT,∞ is positive, there is no at-
tenuation of transversally propagating modes in the limit of
infinite relaxation time. In this case, the transversal tachy-
onic flux vector and energy density are obtained from (3.21)
and (3.24) (with ε → εσ and μ = μ0 = ε0 = 1),

〈
ST〉 = 2ω

√
KT,∞

∣∣ÂT
∣∣2k0,

〈
ρT〉 = ω

dk2
T

dω

∣∣ÂT
∣∣2

, (5.24)

where
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KT,∞ = k2
T = ω2 − ω2

p + m2
t ,

(5.25)
dk2

T

dω
= 2ω

(
1 + σ

1 + ω2/m2
t

ω2
p

ω2

)
.

This is valid for ω > ωT, cf. (5.23), where KT,∞ is positive.
The energy density (5.24) can also be recovered from (3.25),
with

dΩ̂2

dω
= −2σ

ω

Ω̂2

1 + ω2/m2
t
,

(5.26)

ε′
σ (ω) = 2

ω2
p

ω3

(
1 + σ

1 + ω2/m2
t

)
.

The transversal group velocity is obtained from (5.25), υT =
2
√

KT,∞ dω/dk2
T.

Next we consider frequencies ω < ωT, where KT,∞(ω)

is negative. The transversal attenuation length reads δT =
1/

√|KT,∞|, cf. after (5.13), with KT,∞ in (5.25). As the
transversal tachyon flux 〈ST〉 ∝ Re(kT) vanishes in the limit
τT → ∞, cf. (5.13), transversal frequencies below ω < ωT

are totally reflected.
We turn to the longitudinal dispersion relation at zero

resistivity (γ0 = 0), which reads k2
L =: KL,∞ = KT,∞ω2/

(ω2 − ω2
p), cf. (5.19). The zero ωL of the denominator

ω2 − ω2
p is found as

ωL

mt
=

(
κ

mt

)1/(σ+1)

×
(

1 + σ

2(σ + 1)

(
κ

mt

)2/(σ+1)

+ · · ·
)

, (5.27)

where we use κ/mt � 1 as in (5.23). Clearly, ωL � mt, and
ω2 −ω2

p is positive for ω > ωL. Since the exponent σ is pos-
itive, we have ωT < ωL, where ωT is the zero of KT,∞(ω),
cf. (5.23). Thus KL,∞ is positive in the intervals ω < ωT and
ω > ωL, where the longitudinal flux and energy densities are
obtained from (3.21), (3.24), and (3.25),

〈
SL〉 = 2

m2
t

ω

√
KL,∞

∣∣ÂL
∣∣2k0,

(5.28)〈
ρL〉 = m2

t

ω

dk2
L

dω

∣∣ÂL
∣∣2

,

by substitution of

KL,∞ = k2
L = ω2

(
1 + m2

t

ω2 − ω2
p

)
,

(5.29)
dk2

L

dω
= 2ω

(
1 − m2

t ω
2
p

(ω2 − ω2
p)

2

(
1 + σ

1 + ω2/m2
t

))
.

The longitudinal group velocity reads υL =
2
√

KL,∞ dω/dk2
L. In the vicinity of ω ≈ ωL (but still ω >

ωL), υL is negative, since ωL is the zero of ω2 − ω2
p. In this

case, we have to change the sign of 〈SL〉 and 〈ρL〉 in (5.28).
As υL is negative and 〈SL〉 = k0υL〈ρL〉, the longitudinal en-
ergy transfer happens in the opposite direction of the wave
vector [17, 18].

KL,∞(ω) is negative in the interval ωT < ω < ωL, where
the longitudinal attenuation length is δL = 1/

√|KL,∞|, with
KL,∞ in (5.29). The flux 〈SL〉 ∝ Re(kL) vanishes in the limit
τL → ∞, cf. (5.21), and longitudinal waves with frequencies
in this interval are totally reflected like transversal modes
below ωT. Outside this interval, the plasma becomes trans-
parent for longitudinal modes, and the flux and energy den-
sities (5.28) apply.

6 Superluminal radiation densities: tachyonic spectral
fits of the γ -ray bursts GRB 930506, GRB 950425,
and GRB 910503

The quantized tachyonic radiation densities of a uniformly
moving electron read [21]

pT,L(ω, γ ) = m2
t

αq(ω)ω

ω2 + m2
t

[
γ 2 − mt

m

ω

mt
γ − 1

4

m2
t

m2

−
(

1 + ω2

m2
t

)
ΔT,L

]
1

γ
√

γ 2 − 1
, (6.1)

where the superscripts T and L refer to the transver-
sal/longitudinal polarization components of the superlumi-
nal radiation defined by ΔT = 1 − m2

t /(2m2) and ΔL = 0.
m and γ denote the mass and Lorentz factor of the electron,
mt is the tachyon mass, and αq(ω) = αtΩ̂

2(ω) the tachy-
onic fine-structure constant, cf. (4.7) and (5.22). The units
� = c = 1 can easily be restored. A spectral cutoff occurs at

ωmax(γ ) = mt

(
μt

√
γ 2 − 1 − 1

2

mt

m
γ

)
,

μt =
√

1 + 1

4

m2
t

m2
. (6.2)

Only frequencies in the range 0 ≤ ω ≤ ωmax(γ ) can be ra-
diated by an inertial electron, the tachyonic spectral densi-
ties pT,L(ω, γ ) being cut off at the break frequency ωmax.
A positive ωmax(γ ) requires Lorentz factors exceeding the
threshold μt [20].

We average the radiation densities (6.1) with a Boltz-
mann power-law distribution [32–34],

dρα,β(γ ) = Aα,βγ −α−1e−βγ
√

γ 2 − 1 dγ, (6.3)

where the normalization factor Aα,β is related to the electron
number ne by
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ne = Aα,βKα,β,

Kα,β =
∫ ∞

1
γ −α−1e−βγ

√
γ 2 − 1 dγ. (6.4)

The exponential cutoff with β = m/(kT ) determines the
electron temperature, kT [keV] ≈ 511/β . A thermal
Maxwell–Boltzmann distribution requires the electron in-
dex α = −2.

The spectral average of the radiation densities (6.1) is car-
ried out as [20, 21]

〈
pT,L(ω)

〉
α,β

=
∫ ∞

μt

pT,L(ω, γ )θ
(
ωmax(γ ) − ω

)
dρα,β(γ ), (6.5)

where θ is the Heaviside step function. The spectral range of
densities (6.1) is bounded by ωmax in (6.2), so that the solu-
tion of ω = ωmax(γ̂ ) defines the minimal electronic Lorentz
factor for radiation at this frequency ,

γ̂ (ω) = μt

√
ω̂2 + 1 + 1

2

mt

m
ω̂, (6.6)

where ω̂ = ω/mt. The average (6.5) can be reduced to the
spectral functions

BT,L(ω, γ1) = 1

Aα,βαt

∫ ∞

γ1

pT,L(ω, γ )dρα,β(γ ), (6.7)

so that

〈
pT,L(ω)

〉
α,β

= Aα,βαtB
T,L(

ω, γ̂ (ω)
)
. (6.8)

The superscripts T and L denote the transversal and lon-
gitudinal radiation components. Performing the integra-
tion (6.7), we find

BT,L(ω, γ1)

= mt

β2γ α+1
1

(
ω̂2 + 1

)σ−1
ω̂1−2σ

×
{[

(1 + α)α + (1 + α)β
mt

m
ω̂

− β2(ω̂2 + 1
)
ΔT,L − 1

4
β2 m2

t

m2

]

× (βγ1)
α+1�(−α − 1, βγ1)

−
(

α − βγ1 + β
mt

m
ω̂

)
e−βγ1

}
, (6.9)

with ΔT,L as in (6.1). The unpolarized density 〈pT+L(ω)〉α,β

is obtained by adding the polarization components, BT+L =
BT +BL. In the following, we use keV units for the tachyon
and electron mass as well as the radiated frequencies, so that
ω stands for �ω[keV] and mt for mtc

2[keV]; the spectral

functions BT,L and 〈pT,L(ω)〉α,β are in keV units accord-
ingly.

The incomplete gamma function in (6.9) satisfies

�(−α − 1, βγ1)

= −(α + 2)�(−α − 2, βγ1) + (βγ1)
−α−2e−βγ1 , (6.10)

and is elementary for thermal Boltzmann averages with
α = −2. BT,L(ω, γ1) decays exponentially for βγ1 � 1, and
so does BT,L(ω, γ̂ (ω)) for ω̂ → ∞, since �(−α−1, βγ1) ∼
(βγ1)

−α−2e−βγ1 . Thus we can define the cutoff frequency as
γ̂ (ωcut) − γ̂ (0) = 1/β or ωcut = ωmax(μt + 1/β), cf. (6.2)
and (6.6). In the low-frequency limit, ω̂ → 0, we find the
scaling BT,L(ω, γ̂ (ω)) ∝ ω̂1−2σ . The dependence of the
spectral functions BT,L on the fine-structure scaling expo-
nent σ weakens at high energy ω � mt, but it shows in the
soft γ -ray band relevant for GRB spectra, where it deter-
mines the initial rise of the flux densities (6.11); σ is usually
(but not always) close to 0.5 [19, 35–37].

The spectral fits of GRB 930506, GRB 950425, and GRB
910503 in Figs. 1, 2 and 3 are based on the E2-rescaled flux
densities

E2 dNT,L

dE

[
keV cm−2 s−1]

= ω[keV] 〈p
T,L(ω)〉α,β [keV]

4πd2[cm]�[keV s] , (6.11)

where E = �ω is the energy of the radiated tachyons, d

the distance to the source, 〈pT,L(ω)〉α,β the spectral av-
erage (6.5), and �[keV s] ≈ 6.582 × 10−19. We consider
ultra-relativistic multi-component plasmas in the collision-
less regime [38], in stationary nonequilibrium described by
the power-law densities (6.3); the fits are performed with the
unpolarized flux density dNT+L = dNT + dNL (denoted by
T + L in the figures, cf. the caption to Fig. 1) of plasma
components ρi specified by the electronic power-law distri-
butions in Table 1. We substitute the averaged density (6.8)
into (6.11), and replace Aα,βαt/d

2 by a fitting parameter n̂

determined by the flux amplitude,

n̂[keV cm−2 s−1]
Kα,βm2

t [keV] = Aα,βαt

4πd2[cm]�[keV s]

≈ 1.270 × 10−32 Aα,βαt

d2[Mpc] . (6.12)

The GRB distances are estimated by d ∼ cz/H0, with the
Hubble distance c/H0 ≈ 4.41 Gpc (that is, h0 ≈ 0.68).
Hence, d[Gpc] ≈ 4.41z, so that we find the electron num-
ber of the source plasma as ne ≈ 1.53 × 1039z2n̂/(αtm

2
t ).

Estimates of the asymptotic fine-structure constant αq(ω →
∞) ∼ αt are obtained from the tachyonic luminosity of the
GRB plasma, cf. Sect. 7. The redshifts of the GRBs depicted
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Fig. 1 Spectral map of γ -ray burst GRB 930506. BATSE and EGRET
data points from Ref. [19]. The solid line T + L depicts the unpolar-
ized differential tachyon flux dNT+L/dE, obtained by adding the flux
densities ρ1,2 radiated by an ultra-relativistic two-component plasma,
and rescaled with E2 for better visibility of the spectral curvature,
cf. (6.11). The transversal and longitudinal flux densities dNT,L/dE

add up to the total unpolarized flux, T + L = ρ1 + ρ2. The expo-

nential decay of the flux components ρ1,2 sets in at about Ecut =
�ωmax(1/β + μt), cf. (6.2) and after (6.10). The low-energy flux ρ1
is fitted with the tachyon–electron mass ratio mt/m ≈ 1.2, cf. Table 1,
and the cutoff energy Ecut ≈ 390 MeV. The least-squares fit is per-
formed with the unpolarized flux T + L, and subsequently split into
transversal and longitudinal components

Fig. 2 Spectral map of GRB 950425. Flux data from Ref. [19], nota-
tion as in Fig. 1. T and L stand for the transversal and longitudinal flux
components, and T + L = ρ1 labels the unpolarized flux generated by
a one-component electron plasma. The tachyon–electron mass ratio is

mt/m ≈ 0.90, and the tachyonic flux density T+L is exponentially cut
at Ecut ≈ 260 MeV. The thermodynamic parameters and the tachyonic
luminosity of the source plasma are recorded in Table 2

in Figs. 1–3 are unknown. The distance estimates do not
affect the spectral fits but the luminosity, electron number,
and internal energy of the source plasma, which scale with
the squared redshift, assuming the above linear redshift–

distance relation, cf. Table 2. The high-energy component
ρ2 of GRB 930506 in Fig. 1 does not imply a small redshift,
as there is no intergalactic absorption of the tachyon flux by
the cosmic background light [39, 40].
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Table 1 Electron distributions ρi generating the tachyonic flux densi-
ties of the γ -ray bursts in Figs. 1–3. The components ρ1,2 of the source
plasma are specified by electronic power-law densities with electron in-
dex α and cutoff parameter β in the Boltzmann factor, cf. (6.3). mt is
the mass parameter of the superluminal modes, and σ the scaling ex-
ponent of the frequency-dependent tachyonic fine-structure constant,

cf. (4.7). The scale factor n̂ determining the amplitude of the super-
luminal flux is defined in (6.12). kT is the temperature of the plasma
components, cf. after (6.4). As for GRB 930506 in Fig. 1, the temper-
ature estimate of the high-energy component ρ2 is tentative, owing to
lack of flux data above 100 MeV

GRB mt (keV) σ α β n̂ (keV cm−2 s−1) kT (MeV)

930506
ρ1 600 0.65 −2 8.76 × 10−4 396 5.83 × 102

ρ2 9.0 × 104 0 −2 1.31 × 10−6 2.11 × 103 3.90 × 105

950425
ρ1 460 0.5 −2 1.15 × 10−3 233 4.44 × 102

910503
ρ1 410 0.55 0 2.41 × 10−2 227 21.2

Fig. 3 Spectral map of GRB 910503. Flux points from Ref. [19], notation as in Figs. 1 and 2. The cutoff energy of the tachyonic flux density
ρ1 = T + L is Ecut ≈ 12 MeV, with mt/m ≈ 0.80. The superluminal flux is radiated by a nonthermal single-component plasma, cf. Tables 1 and 2

7 Tachyonic power transversally and longitudinally
radiated

7.1 Radiant power of ultra-relativistic inertial electrons

The power radiated by an electron in uniform motion is
P T,L = ∫ ωmax

0 pT,L dω, with spectral density pT,L(ω, γ )

in (6.1) and cutoff frequency ωmax(γ ) in (6.2) [20, 41].
When deriving the ultra-relativistic (γ � 1) asymptotics of
P T,L, it is convenient to rewrite the radiation density (6.1) as

pT,L(ω, γ ) = αtmtc
2

γ
√

γ 2 − 1

[(
γ 2 − 1

4

m2
t

m2

)
q0,0(ω̂)

− mt

m
γq1,0(ω̂) − ΔT,Lq0,1(ω̂)

]
, (7.1)

where we restored dimensions and defined

qk,n(ω̂) = ω̂1−2σ+k
(
ω̂2 + 1

)σ−1+n
, ω̂ = �ω

mtc2
. (7.2)

The power radiated in transversal (T) and longitudinal (L)
polarization is assembled as

P T,L(γ ) = mtc
2

�

∫ ω̂max(γ )

0
pT,L(ω, γ )dω̂

= αt

γ
√

γ 2 − 1

m2
t c

4

�

[(
γ 2 − 1

4

m2
t

m2

)
A0,0

(
ω̂max(γ )

)

− mt

m
γA1,0

(
ω̂max(γ )

)

− ΔT,LA0,1
(
ω̂max(γ )

)]
, (7.3)
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Table 2 Tachyonic luminosity, electron number, and internal energy
of the GRB source plasma. 〈P T,L〉α,β denotes the power transversally
and longitudinally radiated, cf. (7.21). αt is the tachyonic fine-structure
constant in the high-frequency limit, cf. (7.22), estimated from the
burst duration τ0 [19]. ne is the electron count, cf. after (6.12), and

U the internal energy, cf. after (7.24), of the respective plasma com-
ponent ρi , cf. the caption to Table 1. The tachyonic power, electron
number, and energy stored in the electron gas scale ∝ z2; we list these
quantities at z = 1, since redshift estimates are not available for the
GRBs in Figs. 1–3

GRB τ0(s) 〈P T〉α,β/z2 (erg/s) 〈P L〉α,β/z2 (erg/s) αt ne/z
2 U/z2 (erg)

930506 65.6

ρ1 1.16 × 1052 1.17 × 1052 3.08 × 10−21 5.48 × 1056 1.53 × 1054

ρ2 6.71 × 1052 6.52 × 1052 8.56 × 10−23 4.66 × 1054 8.68 × 1054

950425 131

ρ1 6.29 × 1051 6.40 × 1051 2.16 × 10−21 7.81 × 1056 1.66 × 1054

910503 98.3

ρ1 2.61 × 1051 2.74 × 1051 1.35 × 10−22 1.53 × 1058 5.26 × 1053

where we use the shortcut

Ak,n(ω̂) =
∫ ω̂

0
qk,n(ω̂)dω̂. (7.4)

It is assumed that γ > μt, where μt is the electronic thresh-
old Lorentz factor for superluminal radiation to occur,
cf. (6.2). The total unpolarized power radiated is obtained
by adding the polarization components, P T+L = P T + P L.
For the integrals Ak,n in (7.4) to converge at the lower inte-
gration boundary, k > 2(σ − 1) is required; convergence of
P T,L is thus assured by σ < 1, which we henceforth assume,
cf. after (4.11). The upper integration boundary in (7.3) is

ω̂max(γ ) = �ωmax

mtc2
= μt

√
γ 2 − 1 − 1

2

mt

m
γ. (7.5)

To derive the ω̂ → ∞ asymptotics of the integrals Ak,n(ω̂)

in (7.4), we note

Ak,n(ω̂) = Ck,n − Bk,n(ω̂),
(7.6)

Bk,n(ω̂) =
∫ ∞

ω̂

qk,n(ω̂)dω̂, Ck,n =
∫ ∞

0
qk,n(ω̂)dω̂.

The integrals in (7.4) and (7.6) are representations of hyper-
geometric functions [42],

Ak,n(ω̂)

= ω̂2−2σ+k

2 − 2σ + k

× 2F1

(
1 − σ − n,1 − σ + k

2
;2 − σ + k

2
;−ω̂2

)
,

(7.7)

Bk,n(ω̂) = − ω̂k+2n

k + 2n

× 2F1

(
1 − σ − n,−k

2
− n;1 − k

2
− n;− 1

ω̂2

)
,

(7.8)

Ck,n = �(1 − σ + k/2)�(−k/2 − n)

2�(1 − σ − n)
, (7.9)

which can also be used for noninteger k and n, in case
that analytic continuation is needed. In leading order, the
ω̂ → ∞ asymptotics of integrals (7.4) is thus Ak,n(ω̂) ∼
Ck,n for k + 2n < 0, and Ak,n(ω̂) ∼ ω̂k+2n/(k + 2n) for
k + 2n > 0, as well as Ak,n(ω̂) ∼ log ω̂ for k + 2n = 0.
If n = 1 − σ + j with integer j ≥ 0, then 2F1 in (7.7) is
a hypergeometric polynomial. If k + 2n = 2l with integer
l ≥ 0, we remove the singularities arising in the gamma
functions and series coefficients by ε regularization, putting
k = 2(l − n) + ε, so that

C2(l−n)+ε,n

= (1 − σ − n)l
(−)l+1

l!
(

1

ε
+ 1

2
ψ(1 − σ − n + l)

− 1

2
ψ(l + 1) + O(ε)

)
, (7.10)

where ψ denotes the logarithmic derivative of the gamma
function, and (α)l is Pochhammer’s symbol �(α + l)/�(α).
The same regularization applied to B2(l−n)+ε,n(ω̂) in (7.8)
gives

B2(l−n)+ε,n(ω̂)

= (−)l+1

l! (1 − σ − n)l

(
1

ε
+ log ω̂

)

+ ω̂2l

2

∞∑
j=0
j �=l

(1 − σ − n)j (−)j

(j − l)j !ω̂2j
+ O(ε). (7.11)

In this way, we find A2(l−n),n(ω̂) and in particular A0,0(ω̂)

and A0,1(ω̂) in (7.3), since the ε poles cancel in
C2(l−n)+ε,n − B2(l−n)+ε,n(ω̂), so that we can perform the
limit ε → 0.
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Expanding ω̂max(γ � 1) in (7.5),

ω̂max = κtγ

(
1 − μt

2κt

1

γ 2
+ O

(
1

γ 4

))
,

(7.12)

κt :=
√

1 + 1

4

m2
t

m2
− 1

2

mt

m
,

and substituting this into (7.8)–(7.11), we obtain the ultra-
relativistic expansions of the integrals Ak,n(ω̂max(γ ))

in (7.3),

A0,0(ω̂max) = log(κtγ ) + 1

2
ψ(1) − 1

2
ψ(1 − σ)

+
(

1 − σ

2κ2
t

− μt

2κt

)
1

γ 2
+ O

(
1

γ 4

)
,

A1,0(ω̂max) = κtγ − √
π

�(3/2 − σ)

�(1 − σ)
+

(
1 − σ

κt
− μt

2

)
1

γ

(7.13)

+ O

(
1

γ 3

)
,

A0,1(ω̂max) = κ2
t

2
γ 2 + σ log(κtγ ) + σ

2
ψ(2) − σ

2
ψ(1 − σ)

− μtκt

2
+ O

(
1

γ 2

)
.

The radiant power P T,L(γ � 1) thus reads

P T,L(γ ) = αtm
2
t c

4/�

γ
√

γ 2 − 1

(
γ 2(logγ + a2) + γ a1

+ asing logγ + a0 + O

(
1

γ 2

))
, (7.14)

where m2
t c

4
�

−1[keV/s] ≈ 1.519 × 1018m2
t [keV]. Estimates

of the tachyonic fine-structure constant αt of GRB electron
plasmas are given in Table 2. The series coefficients in (7.14)
are

a2 = 1

2
ψ(1) − 1

2
ψ(1 − σ) + logκt − 1

2
ΔT,Lκ2

t − mt

m
κt,

a1 = √
π

�(3/2 − σ)

�(1 − σ)

mt

m
, asing = −σΔT,L − 1

4

m2
t

m2
,

a0 = 1 − σ

2κ2
t

− μt

2κt
(7.15)

+ 1

2
ΔT,L(

σψ(1 − σ) − σψ(2) + μtκt − 2σ logκt
)

+ mt

m

(
μt

2
− 1 − σ

κt

)
+ 1

8

m2
t

m2

(
ψ(1 − σ) − ψ(1)

− 2 logκt
)
.

P T,L(γ ) in (7.14) is the transversal/longitudinal tachy-
onic power radiated by an ultra-relativistic inertial electron.

The power collectively radiated by the electrons of a burst
plasma is discussed in the next subsection.

7.2 Tachyonic luminosity of GRB plasmas

The tachyonic power of an ultra-relativistic electron gas is
found by averaging P T,L(γ ) in (7.3) over the electron den-
sity (6.3):

〈
P T,L〉

α,β
=

∫ ∞

μt

P T,L(γ )dρα,β(γ ),

(7.16)〈
P T+L〉

α,β
= 〈

P T〉
α,β

+ 〈
P L〉

α,β
.

The lower integration boundary μt is the threshold Lorentz
factor in (6.2). The high-temperature asymptotics β � 1 of
this average is derived in Appendix B. We find in leading
order, cf. (B.3), (B.13), and (B.26),

〈
P T,L〉

α,β
∼ m2

t c
4

�
neαt

(
log

1

β
+ ψ(1 − α) + a2

)
, (7.17)

valid for electron indices α < 1 and β → 0. The constant a2

defined in (7.15) depends on the tachyon–electron mass ratio
mt/m, the fine-structure scaling exponent σ , and the polar-
ization ΔT,L, cf. after (6.1); ψ denotes the psi function [42].
For electron indices α > 1, the leading order of 〈P T,L〉α,β is
independent of β , cf. (B.5) and (B.26),

〈
P T,L〉

α,β
∼ m2

t c
4

�

neαt

c0,α

(
f T,L

α,∞ − gT,L
α,∞ − hT,L

α,∞
)
, (7.18)

where the constants (f, g,h)
T,L
α,∞ and c0,α are listed in (B.6)

and (B.27). The borderline case α = 1 admits a logarithmic
temperature dependence, and is assembled as

〈
P T,L〉

1,β
∼ m2

t c
4

�

neαt

K1,β

(
P

T,L
1,β − P

T,L
1,Λ + f

T,L
1,Λ

− g
T,L
1,Λ − h

T,L
1,Λ

)
, (7.19)

with normalization K1,β in (B.28) and Λ → ∞. The
shortcuts P

T,L
1,β ,P

T,L
1,Λ , and (f, g,h)

T,L
α,Λ are defined in (B.6)

and (B.24).
Alternatively, the power 〈P T,L〉α,β can be calculated by

first performing the average of pT,L(ω, γ ) over the electron
density as done in (6.5), and subsequently the frequency in-
tegration of 〈pT,L(ω)〉α,β . This also allows us to estimate the
power radiated in a finite frequency interval (ω1,ω2),

〈
P T,L〉

α,β
[keV/s] = 1

�[keV s]
∫ ω2

ω1

〈
pT,L(ω)

〉
α,β

dω, (7.20)

where we substitute 〈pT,L(ω)〉α,β as stated in (6.8) and (6.9),
with integration boundaries ω1,2 in keV units. Integrating
over the full frequency range, ω1 = 0, ω2 = ∞, we arrive at
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〈P T,L〉α,β in (7.16), as we have only interchanged integra-
tions. The integrand in (7.20) decays exponentially at high
frequencies, cf. after (6.10). Convergence at the lower inte-
gration boundary ω1 = 0 requires σ < 1, cf. after (7.4). By
making use of (6.8), we can write

〈
P T,L〉

α,β
[keV/s]

= 4πd2[cm]n̂
Kα,βm2

t [keV]
∫ ω2

ω1

BT,L(
ω, γ̂ (ω)

)
dω, (7.21)

where n̂ is the parameter n̂[keV cm−2 s−1] in (6.12) obtained
from the spectral fit, and d[cm] ≈ 3.086 × 1024d[Mpc], so
that 4πd2[cm] ≈ 2.33 × 1057z2, cf. after (6.12). We also
note 〈P T,L〉α,β [erg/s] ≈ 1.602 × 10−9〈P T,L〉α,β [keV/s].
The total unpolarized power 〈P T+L〉α,β is obtained by
adding the polarization components, replacing BT,L by
BT + BL in the integrand, cf. (6.9).

We identify the burst duration with the time scale τ0 =
U/〈P T+L〉α,β in which the internal energy U of the elec-
tron gas is radiated off. We use U [keV] = nem[keV]uα(β),
cf. (7.23), and 〈P T+L〉α,β in (7.21) to estimate the asymp-
totic fine-structure constant from the burst duration,

αt = m[keV]�[keV s]Kα,βuα(β)

τ0[s]
∫ ∞

0 BT+L(ω, γ̂ (ω))dω
. (7.22)

The electron number ne drops out, since both U and
〈P T+L〉α,β scale linearly with ne. Once αt is known, we
can calculate ne as indicated after (6.12).

The high-temperature limit of the internal energy U =
nemuα(β) of the GRB plasma differs qualitatively in differ-
ent α ranges [32]:

uα<1 ∼ 1 − α

β
, u1<α<2 ∼ 2α√

π

�(α/2)�(2 − α)

�((α − 1)/2)
βα−2,

(7.23)
uα>2 ∼ �(α/2 + 1)�(α/2 − 1)

�((α + 1)/2)�((α − 1)/2)
.

The leading order of uα>2 is independent of β , so that the
energy stored in an ultra-relativistic electron plasma with
electron index α > 2 admits a finite high-temperature limit.
Integer electron indices require special treatment due to a
logarithmic temperature dependence,

uα=1 ∼ 1

β

1

log(2/β) − γE − 1
,

(7.24)

uα=2 ∼ 4

π

(
log

2

β
− γE − 1

)
,

where γE denotes the Euler constant. The energy estimates
of the plasma components ρ1,2 in Table 2 are based on
U [erg] ∼ 8.187 × 10−7ne(1 − α)/β , valid for α < 1.

Instead of (7.21), we can use the asymptotic radiant
power in (7.17)–(7.19) to estimate αt. For electron indices

α < 1, we balance 〈P T,L〉α,β in (7.17) with nemuα<1/τ0 to
find

αt ∼ 1

τ0

�

mc2

m2

m2
t

1

β

× 1 − α

a2,T + a2,L + 2ψ(1 − α) − 2 logβ
, (7.25)

where a2,T + a2,L stems from the summation over the polar-
ization components in (7.17). We note �/(mc2) ≈ 1.288 ×
10−21s, and the burst duration τ0 is typically of the order of
100 s.

8 Conclusion

We have studied γ -ray burst spectra by means of tachyonic
spectral fits, and obtained estimates of the thermodynamic
parameters of the electron plasma generating the superlumi-
nal radiation, cf. Tables 1 and 2. The low-frequency scal-
ing of the averaged spectral densities is determined by the
scaling exponent σ of the tachyonic fine-structure constant,
cf. (4.7) and after (6.10). This exponent can therefore be
extracted from the low-energy slope of the tachyonic flux
densities in Figs. 1–3. The latter are peaked at a moder-
ate multiple of the tachyon mass, which allows one to es-
timate the mass parameter mt of the tachyonic modes ra-
diated by the respective plasma component, cf. Table 1. The
energy carried by the radiation modes is related to the tachy-
onic Lorentz factor γt = (υ2

t − 1)−1/2 by ω = mtγt. For in-
stance, in the case of GRB 910503 in Fig. 3, the rescaled
flux density peaks at about 1 MeV, so that the tachyon mass
of 0.4 MeV implies a superluminal speed of υt/c ≈ 1.1 at
the peak frequency. The exponential cutoff of the flux den-
sity happens at ωcut ≈ mt/β , cf. the caption to Fig. 1, which
provides an estimate of the plasma temperature.

In Sects. 2, 3, and 5, we investigated superluminal energy
transfer and tachyonic wave propagation in electron plas-
mas, derived the dispersion relations for longitudinal and
transversal tachyons, and analyzed conductivity properties
such as relaxation times and extinction coefficients. We have
studied the nonlocal interaction of the plasma current with
the superluminal radiation field, in particular the long-range
dispersion generated by the varying coupling constant, cf.
Sect. 4 and Appendix A. We discussed the tachyonic power
radiated by ultra-relativistic electrons, both individually and
averaged over the plasma components, cf. Sect. 7 and Ap-
pendix B, and disentangled the transversal and longitudinal
radiation components in the spectral maps, cf. Figs. 1–3. In
Table 2, we estimated the scaling amplitude of the tachy-
onic fine-structure constant from the burst duration, as well
as the tachyonic luminosity and internal energy of the burst
plasma.
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The spectrum of GRB 930506 in Fig. 1 is fitted with a
two-component plasma, and the corresponding flux compo-
nents have been resolved in the spectral map, so that the pa-
rameters of each plasma component can be extracted from
the spectral fit. The radiation mechanism is the same for
both components, cf. Sect. 6, but the high-energy compo-
nent is radiated at a higher temperature and with a larger
mass parameter, cf. Table 1. Extended spectral plateaus like
that of GRB 950425 in Fig. 2, ranging over two orders in fre-
quency, are a common occurrence in γ -ray spectra of Galac-
tic sources [32, 33, 43] as well as in the thermal spectra of
TeV blazars [26, 27], and tachyonic flux densities are quite
capable of reproducing these plateaus.
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Appendix A: Time evolution of the nonlocal charge
density

The regular part of the extended charge density ρΩ(x, t)

in (4.15) and (4.16) is defined by Ωreg(t), which admits the
integral representation

Ωreg(t) = 1

π
ReΞ,

Ξ(t) =
∫ ∞

0

(
Ω̂(ω) − 1

)
exp(−iωt)dω, (A.1)

with Ω̂ = (1+m2
t /ω

2)σ/2, cf. (4.7). Throughout this appen-
dix, the time variable can be replaced by t − z/υ without
further changes, cf. (4.16), which allows us to estimate the
dispersion from the time asymptotics of Ωreg(t). To derive
the latter, we split integral Ξ into a low- and high-frequency
part,

Ξ0 :=
∫ Λ

0
(Ω̂ − 1) exp(−iωt)dω,

(A.2)
Ξ∞ :=

∫ ∞

Λ

(Ω̂ − 1) exp(−iωt)dω,

where Λ is a conveniently chosen cutoff parameter.

A.1 Large-t asymptotics of the regular charge distribution

To calculate the asymptotic series of Ωreg(t → ∞), we use
a cutoff Λ < mt in (A.2). First, we consider Ξ0, expand Ω̂

in ascending powers of ω2/m2
t , and employ term-by-term

integration to find

Ξ0 ∼ −
∫ Λ

0
exp(−iωt)dω

+ mt

∞∑
k=0

(
σ/2
k

)
(Λ/mt)

2k+1−σ γ (2k + 1 − σ, iΛt)

(iΛt)2k+1−σ
.

(A.3)

On substituting γ (α, iΛt) = �(α) − �(α, iΛt), where
γ (α, z) and �(α, z) are incomplete gamma functions [42],
we obtain

Ξ0 ∼ exp(−iΛt) − 1

it
+ Ξ0,1 + Ξ0,2, (A.4)

Ξ0,1 := mt

∞∑
k=0

(
σ/2
k

)
�(2k + 1 − σ)

(imtt)2k+1−σ
, (A.5)

Ξ0,2 := −Λ

∞∑
k=0

(
σ/2
k

)
(Λ/mt)

2k−σ

× �(2k + 1 − σ, iΛt)

(iΛt)2k+1−σ
, (A.6)

where
(

σ/2
k

)
= (−)k

�(k − σ/2)

k!�(−σ/2)

= 1

k!
σ

2

(
σ

2
− 1

)
· · ·

(
σ

2
− k + 1

)
. (A.7)

In (A.6), we substitute the asymptotic series of the incom-
plete gamma function,

�(α, iΛt)

(iΛt)α
∼ exp(−iΛt)

iΛt

∞∑
n=0

(−)n

(iΛt)n

�(1 − α + n)

�(1 − α)
, (A.8)

and interchange the summations, to find

Ξ0,2 ∼ −exp(−iΛt)

it

∞∑
n=0

cn(Λ/mt)

(iΛt)n
, (A.9)

with coefficients

cn(x) = (−)n
∞∑

k=0

(
σ/2
k

)
�(σ − 2k + n)

�(σ − 2k)
x2k−σ

= xn dn

dxn

[(
1 + x2)σ/2

x−σ
]
. (A.10)

The series in (A.10) is summed by substitution of the deriv-
atives (xα)(n) = (−)nxα−n(−α)n at α = 2k − σ , where
(−α)n is Pochhammer’s symbol �(−α + n)/�(−α).

As for the high-frequency part Ξ∞ in (A.2), we note that
Ω̂(ω) − 1 and all its derivatives vanish at infinity, and apply
iterated partial integration to find the asymptotic series
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Ξ∞ ∼ exp(−iΛt)

∞∑
n=0

1

(it)n+1

dn

dΛn

(
Ω̂(Λ) − 1

)

= −exp(−iΛt)

it

(
1 −

∞∑
n=0

cn

(iΛt)n

)
, (A.11)

cn := Λn dn

dΛn

(
1 + m2

t /Λ
2)σ/2

.

The coefficients cn apparently coincide with cn(Λ/mt)

in (A.10). We assemble Ξ = Ξ0 + Ξ∞ by way of (A.4),
(A.5), (A.9), and (A.11),

Ξ ∼ i

t
+ mt

∞∑
k=0

(
σ/2
k

)
�(2k + 1 − σ)

(imtt)2k+1−σ
. (A.12)

σ < 1 is required for integral (A.1) to converge. There are
no oscillating terms, as the series in (A.9) and (A.11) cancel
each other. We may split Ξ into a real and imaginary part,

ReΞ ∼ sin

(
π

2
σ

)
S∞,

ImΞ ∼ 1

t
− sign(t) cos

(
π

2
σ

)
S∞, (A.13)

S∞ := mt�(1 − σ)

(mt|t |)1−σ

∞∑
k=0

(
σ/2
k

)
(−)k(1 − σ)2k

(mtt)2k
,

where we use the Pochhammer symbol

(1 − σ)2k := �(2k + 1 − σ)

�(1 − σ)

= (1 − σ)(2 − σ) · · · (2k − σ). (A.14)

The leading order of series S∞ is always positive, so that the
sign of ReΞ is determined in this limit by the sine factor
in (A.13). We note that ImΞ ∼ 1/t for negative odd integer
σ = −2n−1, n = 0,1,2, . . . , irrespectively of n, so that the
difference between different ImΞσ=−2n−1 is exponentially
small. Likewise, the asymptotic expansion of ReΞ vanishes
for σ = −2n, since, at negative even integer σ , the real part
of the integral (which is elementary) decays ∝exp(−mt|t |),
and exponentially small terms are not included in the expan-
sion (A.12).

A.2 Ascending time series of the extended charge density

To derive the series expansion of Ωreg(t → 0) in ascending
powers of t , cf. (A.1), we start with the truncated integral
Ξ0 in (A.2), and choose a cutoff Λ > mt. Expanding the
exponential, we arrive at the integrals

Kn =
∫ Λ

0
Ω̂(ω)ωn dω,

(A.15)
Ω̂(ω) = mσ

t

ωσ

(
1 + ω2/m2

t

)σ/2
,

which represent hypergeometric functions,

Kn = mn+1
t

(Λ/mt)
n−σ+1

n − σ + 1

× 2F1

(
−σ

2
,
n − σ + 1

2
; n − σ + 3

2
;−Λ2

m2
t

)
. (A.16)

Since mt/Λ < 1, we perform a standard transformation of

2F1 inverting the argument [42], so that we can use the as-
cending series expansion of 2F1:

Kn = Λn+1

n + 1

(
1 + F(n)

)
,

(A.17)∫ Λ

0
(Ω̂ − 1)ωn dω = Λn+1

n + 1
F(n),

where

F(n) = 2F1

(
−σ

2
,
−1 − n

2
; 1 − n

2
;−m2

t

Λ2

)
− 1

− (mt/Λ)n+1 �((n + 1 − σ)/2)�((1 − n)/2)

�(−σ/2)
.

(A.18)

We thus find Ξ0 in (A.2) as

Ξ0 = Λ

∞∑
n=0

(−itΛ)n

(n + 1)! F(n). (A.19)

To make this more explicit, we consider the real and imagi-
nary parts of Ξ0 separately. First,

ReΞ0 = Λ

∞∑
m=0

(−)m
(tΛ)2m

(2m + 1)!F(2m), (A.20)

with F(2m) in (A.18), where we substitute the ascending
series of 2F1:

ReΞ0 = κΛ − mt

∞∑
m=0

(−)m(tmt)
2m

× �((2m + 1 − σ)/2)�(1/2 − m)

�(−σ/2)(2m + 1)! , (A.21)

κΛ = Λ

∞∑
n=0

(−)n

(2n)! (Λt)2n

×
∞∑

k=1

(−)k

k!
�(k − σ/2)

�(−σ/2)

(mt/Λ)2k

2n − 2k + 1
. (A.22)

As for the imaginary part of Ξ0, we find, analogously
to (A.20),

ImΞ0 = −Λ

∞∑
m=0

(−)m
(tΛ)2m+1

(2m + 2)!F(2m + 1 + ε), (A.23)



Eur. Phys. J. C (2010) 69: 241–263 259

again with F(2m + 1 + ε) in (A.18). Epsilon expansion is
indicated here, as singularities occur in F(n) at odd inte-
ger n, in a coefficient of the ascending series of 2F1 as well
as in �((1 − n)/2), which cancel if ε expanded [21, 32].
In (A.18), we put n = 2m+ 1 + ε and expand up to terms of
O(ε):

F(2m + 1 + ε)

= (−)m

m! (mt/Λ)2m+2 �(m + 1 − σ/2)

�(−σ/2)

×
[

2 log
mt

Λ
+ ψ(m + 1 − σ/2) − ψ(m + 2)

]

+ 1 + m

�(−σ/2)

×
∞∑

k=1
k �=m+1

�(k − σ/2)

1 + m − k

(−)k

k! (mt/Λ)2k, (A.24)

where ψ denotes the logarithmic derivative of the gamma
function. On substituting this into (A.23), we obtain

ImΞ0 = −χΛ + mt

∞∑
k=1

(−)k
(

σ/2
k

)
(mtt)

2k−1

(2k − 1)!

×
(

1

2
ψ(k + 1) − 1

2
ψ(k − σ/2)

− log(mt/Λ)

)
, (A.25)

χΛ = Λ

∞∑
m=0

(−)m

(2m + 1)! (Λt)2m+1

×
∞∑

k=1
k �=m+1

(
σ/2
k

)
(mt/Λ)2k

2(m + 1 − k)
. (A.26)

Expansions (A.21) and (A.25) constitute the Taylor expan-
sion of the low-frequency integral Ξ0 in (A.2).

The small-t expansion of the high-frequency contribution
Ξ∞ in (A.2) is found by expanding Ω̂(ω) in ascending pow-
ers of m2

t /ω
2, and applying term-by-term integration:

Ξ∞ = mt

∞∑
k=1

(
σ/2
k

)
(mt/Λ)2k−1 �(−2k + 1, iΛt)

(iΛt)−2k+1
. (A.27)

Here, � is the incomplete gamma function as in (A.6); we
substitute its ascending series

�(−2k + 1, iΛt)

(iΛt)−2k+1
= − (iΛt)2k−1

(2k − 1)!
(
ψ(2k) − log (iΛt)

)

−
∞∑

n=0
n�=2k−1

(−)n

n!
(iΛt)n

n − 2k + 1
, (A.28)

valid for positive integer k. Principal values are assumed,
log (iΛt) = log(Λ|t |) + sign(t)iπ/2. In this way, we find

ReΞ∞ = −κΛ

+ mt
π

2

∞∑
k=1

(
σ/2
k

)
(−)k

(mt|t |)2k−1

(2k − 1)! , (A.29)

with series κΛ as in (A.22). κΛ drops out in ReΞ =
ReΞ∞ + ReΞ0, cf. (A.21) and (A.29), so that the Taylor
expansion of the real part of Ξ(t) in (A.1) reads

πΩreg(t) = ReΞ(t)

= mt
π

2

∞∑
k=1

(
σ/2
k

)
(−)k

(mt|t |)2k−1

(2k − 1)!

− mt

∞∑
m=0

(−)m(tmt)
2m

× �((2m + 1 − σ)/2)�(1/2 − m)

�(−σ/2)(2m + 1)! . (A.30)

The ascending t expansion of the imaginary part of the trun-
cated integral Ξ∞ in (A.2) is found like the real part (A.29),
by substituting (A.28) into (A.27),

ImΞ∞ = χΛ + mt

∞∑
k=1

(−)k
(

σ/2
k

)
(mtt)

2k−1

(2k − 1)!
× (

ψ(2k) − log
(
Λ|t |)), (A.31)

with series χΛ in (A.26). We thus obtain, by adding (A.25)
and (A.31),

ImΞ(t) = −
∫ ∞

0
(Ω̂ − 1) sin(ωt)dω

= mt

∞∑
k=1

�(k − σ/2)

�(−σ/2)

(mtt)
2k−1

(2k)!(k − 1)!
× (

2ψ(2k) + ψ(k + 1) − ψ(k − σ/2)

− 2 log
(
mt|t |

))
. (A.32)

Expansions (A.30) and (A.32) constitute the ascending time
series of integral Ξ(t) in (A.1). The convergence radius
of these series is infinite, but they are only efficient for
t � 1/mt. The opposite limit is covered by the asymptotic
expansion (A.13).

Appendix B: Tachyonic luminosity of electron plasmas
at high temperature

B.1 Tachyonic power asymptotics

We average the radiant power P T,L(γ ) of individual inertial
electrons in (7.3) over the electron density (6.3),

〈
P T,L〉

α,β
= Aα,β

∫ ∞

μt

P T,L(γ )dρ̂α,β(γ ), (B.1)
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where μt is the electronic threshold Lorentz factor (6.2),
and

dρ̂α,β(γ ) = γ −α−1e−βγ
√

γ 2 − 1dγ. (B.2)

To derive the high-temperature expansion (β � 1) of
〈P T,L〉α,β , we split integral (B.1) into a singular and reg-
ular part,

〈
P T,L〉

α,β
= Aα,β

(
P

T,L
sing + P T,L

reg

)
, (B.3)

P
T,L
sing =

(∫ ∞

1
−

∫ Λ

1

)
P T,L(γ )dρ̂α,β(γ ),

(B.4)

P T,L
reg =

∫ Λ

μt

P T,L(γ )dρ̂α,β(γ ),

with a cutoff parameter Λ � μt. In P
T,L
reg , we substitute

P T,L(γ ) as defined in (7.3) and (7.7), expand the expo-
nential in (B.2), and use term-by-term integration to find
the high-temperature expansion of this integral in ascend-
ing powers of β . In the following, only terms non-vanishing
in the limit β → 0 will be considered, so that we can put
β = 0 in P

T,L
reg , which means to drop the exponential in den-

sity (B.2) when assembling P
T,L
reg :

P
T,L
reg,β=0 = αt

(
m2

t c
4/�

)(
f

T,L
α,Λ − g

T,L
α,Λ − h

T,L
α,Λ

)
, (B.5)

where we use the shortcuts, cf. (7.7),

f
T,L
α,Λ =

∫ Λ

μt

(
γ 2 − 1

4

m2
t

m2

)
γ −α−2 ω̂2−2σ

max (γ )

2 − 2σ

× 2F1
(
1 − σ,1 − σ ;2 − σ ;−ω̂2

max(γ )
)

dγ,

g
T,L
α,Λ = mt

m

∫ Λ

μt

γ −α−1 ω̂3−2σ
max (γ )

3 − 2σ
(B.6)

× 2F1

(
1 − σ,

3

2
− σ ; 5

2
− σ ;−ω̂2

max(γ )

)
dγ,

h
T,L
α,Λ = ΔT,L

∫ Λ

μt

γ −α−2 ω̂2−2σ
max (γ )

2 − 2σ

× 2F1
(−σ,1 − σ ;2 − σ ;−ω̂2

max(γ )
)

dγ.

The singular part of the high-temperature series (comprising
terms diverging for β → 0) is obtained by substituting the
asymptotic expansion (7.14) of P T,L(γ � 1) into the two
integrals defining P

T,L
sing in (B.4). The subsequent term-by-

term integration reduces to integrals of type

Gλ,β =
∫ ∞

1
γ λ−1e−βγ dγ,

(B.7)
G

(1)
λ,β =

∫ ∞

1
γ λ−1e−βγ logγ dγ,

Hλ,β =
∫ Λ

1
γ λ−1e−βγ dγ,

(B.8)

H
(1)
λ,β =

∫ Λ

1
γ λ−1e−βγ logγ dγ,

so that P
T,L
sing can be assembled as, cf. (7.14),

P
T,L
sing = αt

(
m2

t c
4/�

)[
G

(1)
−α+1,β − H

(1)
−α+1,β

+ a2(G−α+1,β − H−α+1,β)

+ a1
(
G−α,β − H−α,β

)

+ asing
(
G

(1)
−α−1,β − H

(1)
−α−1,β

)

+ a0(G−α−1,β − H−α−1,β)

+ O(G−α−3,β ,H−α−3,β)
]
, (B.9)

where we insert the series expansions (β � 1) of inte-
grals (B.7) and (B.8). The ascending β series of the inte-
grals (B.7) read

Gλ,β = �(λ,β)

βλ
= �(λ)

βλ
−

∞∑
n=0

(−)nβn

n!(n + λ)
,

(B.10)

G
(1)
λ,β = d

dλ
Gλ,β = �(λ)

βλ
(ψ(λ) − logβ) +

∞∑
n=0

(−)nβn

n!(n + λ)2
,

where �(λ,β) is the incomplete gamma function, and ψ(λ)

the logarithmic derivative �′(λ)/�(λ) of the gamma func-
tion [42]. The series (B.10) are valid for real λ except at
integer λ ≤ 0, where singularities emerge in the series co-
efficients requiring ε expansion; this will be studied in the
next subsection. The Taylor series of the integrals Hλ,β and

H
(1)
λ,β in (B.8) are obtained by expanding the exponential; we

will only need the zeroth order (β = 0),

Hλ,β = Λλ

λ
− 1

λ
+ O(β),

(B.11)

H
(1)
λ,β = Λλ

λ

(
logΛ − 1

λ

)
+ 1

λ2
+ O(β).

By substituting expansions (B.10) and (B.11) into (B.9), we
find the singular part of the power (B.3):

P
T,L
sing = αt

(
m2

t c
4/�

)(
P

T,L
α,β − P

T,L
α,Λ

)
, (B.12)

with the shortcuts

P
T,L
α,β = �(−α + 1)

β−α+1

(
log

1

β
+ ψ(−α + 1) + a2

)

+ a1
�(−α)

β−α
+ �(−α − 1)

β−α−1
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×
(

asing log
1

β
+ asingψ(−α − 1) + a0

)

+ O

(
1

β−α−3
, β

)
, (B.13)

and

P
T,L
α,Λ = Λ1−α

1 − α

(
logΛ − 1

1 − α
+ a2

)
− a1

Λ−α

α

− Λ−α−1

α + 1

(
asing logΛ + asing

α + 1
+ a0

)

+ O
(
Λ−α−3). (B.14)

P
T,L
α,β is the contribution of the G terms in (B.9), and P

T,L
α,Λ

of the H terms, up to a constant which cancels in the differ-
ence (B.12). This expansion is valid for noninteger α. The
constant term in the high-temperature expansion of P

T,L
sing +

P
T,L
reg in (B.3) is calculated as P

T,L
reg,β=0 − αt(m

2
t c

4/�)P
T,L
α,Λ ,

with large Λ, cf. (B.5). If the error term O(Λ−α−3) in (B.14)
does not vanish for Λ → ∞, which happens for electron
indices α < −3, we would have to calculate higher orders
in the expansions (7.14) and (B.9) to extract the constant
term. At these electron indices, however, the leading orders
in (B.13) largely overpower the constant term in the expan-
sion. If α > 1, then P

T,L
α,β in (B.13) vanishes for β → 0,

and so does P
T,L
α,Λ in (B.14) for Λ → ∞. In (B.6), we

may thus extend the integration boundary to Λ = ∞, and
P

T,L
reg,β=0 in (B.5) is the leading (constant) term of the high-

temperature expansion, provided that α > 1. Typically, the
electron index ranges in the interval −2 ≤ α ≤ 2.

B.2 High-temperature expansion of the tachyonic power at
integer electron index

For integer electron index α, the expansion (B.12)–(B.14)
of P

T,L
sing needs to be modified, as singularities arise in the se-

ries coefficients, which can be extracted by way of ε expan-
sion. In series (B.10), we substitute λ = −k+ε, with integer
k ≥ 0, to find

G−k+ε,β = �(−k + ε)

β−k+ε
− 1

ε

(−)k

k! βk

−
∞∑

n=0
n�=k

(−)nβn

n!(n − k)
+ O(ε),

(B.15)

G
(1)
−k+ε,β = d

dε

�(−k + ε)

β−k+ε
+ 1

ε2

(−)k

k! βk

+
∞∑

n=0
n�=k

(−)nβn

n!(n − k)2
+ O(ε).

The O(ε2) expansion of the gamma function,

�(−k + ε)

= (−)k

k!
[

1

ε
+ ψ(k + 1) + ε

2

(
ψ2(k + 1)

− ψ ′(k + 1) + π2

3

)
+ O

(
ε2)

]
, (B.16)

valid for integer k ≥ 0, can be used to calculate the ε deriv-
ative �′(−k + ε) up to terms of O(ε). We also note the psi
function and its derivative at positive integers [42],

ψ(k + 1) = −γE + 1 + 1

2
+ · · · + 1

k
,

(B.17)

ψ ′(k + 1) = π2

6
−

(
1 + 1

22
+ · · · + 1

k2

)
,

in particular ψ(1) = −γE, where γE ≈ 0.5772 is Euler’s
constant, and ψ ′(1) = π2/6. We thus find, for k ≥ 0, the
ε expansions

�(−k + ε)

β−k+ε
= (−)k

k! βk

(
1

ε
− logβ + ψ(k + 1) + O(ε)

)
,

d

dε

�(−k + ε)

β−k+ε

(B.18)

= (−)k

k! βk

(
− 1

ε2
+ 1

2
log2 β − ψ(k + 1) logβ

+ 1

2
ψ2(k + 1) − 1

2
ψ ′(k + 1) + π2

6
+ O(ε)

)
.

On substituting this into (B.15), the ε poles cancel, and we
can perform the limit ε → 0 to obtain the ascending β series
of the integrals (B.7) at λ = −k,

G−k,β = (−)k

k! βk
(− logβ + ψ(k + 1)

) −
∞∑

n=0
n�=k

(−)nβn

n!(n − k)
,

G
(1)
−k,β = (−)k

k! βk

[
1

2
log2 β − ψ(k + 1) logβ

(B.19)

+ 1

2
ψ2(k + 1) − 1

2
ψ ′(k + 1) + π2

6

]

+
∞∑

n=0
n�=k

(−)nβn

n!(n − k)2
,

valid for integer k ≥ 0. For negative integer k (or positive
integer λ), we can still use series (B.10). Finally, at λ = 0,
we replace (B.11) by

H0,β = logΛ + O(β),
(B.20)

H
(1)
0,β = 1

2
log2 Λ + O(β).
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The leading orders of P
T,L
sing in (B.3) can thus be calculated by

substituting the respective series (B.10) and (B.11) or (B.19)
and (B.20) into (B.9). P

T,L
reg,β=0 in (B.5) and (B.6) also ap-

plies for integer α. In the following, we list the leading or-
ders of the high-temperature expansion of P

T,L
sing in (B.3) for

integer electron indices −2 ≤ α ≤ 2.
For α = −2(thermal equilibrium) and α = −1, we find

P
T,L
sing = αt(m

2
t c

4/�)P
T,L
α,β , where

P
T,L
α=−2,β = 2

β3

(
log

1

β
+ 3

2
− γE + a2

)
+ a1

β2

+ O

(
logβ

β

)
, (B.21)

P
T,L
α=−1,β = 1

β2

(
log

1

β
+ 1 − γE + a2

)
+ a1

β

+ O

(
log2 β

)
. (B.22)

The H terms in (B.9) need not be considered, as they only
affect the constant term in the expansions, which is smaller
than the indicated error terms. P

T,L
reg,β=0 in (B.5) can be ig-

nored for the same reason, so that the averaged power is
found as 〈P T,L〉α,β ∼ Aα,βαt(m

2
t c

4/�)P
T,L
α,β , cf. (B.3).

For α = 0, we obtain the singular power as P
T,L
sing =

αt(m
2
t c

4/�)(P
T,L
α,β − P

T,L
α,Λ), cf. (B.12), where

P
T,L
α=0,β = 1

β

(
log

1

β
− γE + a2

)
+ a1

(
log

1

β
− γE

)

+ O
(
β log2 β

)
,

(B.23)
P

T,L
α=0,Λ = Λ(logΛ − 1 + a2) + a1 logΛ

− 1

Λ
(asing logΛ + asing + a0) + O

(
Λ−3).

In this case, P
T,L
reg,β=0 in (B.5) has to be included in

〈P T,L〉α,β ∼ Aα,β(P
T,L
sing +P

T,L
reg,β=0), since the constant term

P
T,L
reg,β=0 − αt(m

2
t c

4/�)P
T,L
α,Λ (which is finite for Λ → ∞)

dominates the error term O(β log2 β). The same holds for
α = 1, with (B.23) replaced by

P
T,L
α=1,β = 1

2
log2 1

β
+ (a2 − γE) log

1

β
+ 1

2
γ 2

E + π2

12
− γEa2 + O(β logβ),

(B.24)
P

T,L
α=1,Λ = 1

2
log2 Λ + a2 logΛ − a1

Λ

− 1

Λ2

(
asing

2
logΛ + asing

4
+ a0

2

)
+ O

(
Λ−4).

At α = 2, we find P
T,L
α=2,β = O(β log2 β) and

P
T,L
α=2,Λ = − 1

Λ
(logΛ + 1 + a2) − a1

2

1

Λ2

− 1

Λ3

(
asing

3
logΛ + asing

9
+ a0

3

)

+ O
(
Λ−5). (B.25)

P
T,L
reg,β=0 in (B.5) is finite for Λ → ∞, and P

T,L
α=2,Λ vanishes,

so that 〈P T,L〉α,β ∼ Aα,βP
T,L
reg,β=0, which applies in fact for

all real α > 1, cf. (B.13). Even though the integrals (B.6)
converge, it is efficient to employ P

T,L
α=2,Λ in the numerical

integration.
We still have to settle the normalization factor Aα,β of

the electron density (6.3), which enters in the power aver-
age (B.1). We note Aα,β = ne/Kα,β , where ne is the elec-
tron number and Kα,β = ∫ ∞

1 dρ̂α,β(γ ), cf. (B.2). The high-
temperature expansion of Kα,β reads [32]

Kα,β = βα−1
∞∑

k=0

(−)k
(1/2)k

k! �(1 − α − 2k)β2k + c0,α

+ O(β), (B.26)

where (1/2)k denotes the falling factorial, (a)k = a(a −
1) · · · (a − k + 1), (a)0 = 1, and

c0,α =
√

π

2

�((α − 1)/2)

α�(α/2)
. (B.27)

Hence, Kα,β ∼ �(1 − α)/β1−α for α < 1, and a constant
high-temperature limit Kα,β ∼ c0,α is attained for α > 1. At
integer electron index α, singularities arise in the series co-
efficients in (B.26), which have to be ε expanded to obtain,
for instance [32],

Kα=1,β = log
2

β
− γE − 1 + O(β),

(B.28)
Kα=2,β = π

4
+ O(β logβ).

In the high-temperature regime, the temperature dependence
of the power average 〈P T,L〉α,β in (B.3) is weak, since the
leading orders of P

T,L
sing + P

T,L
reg and Kα,β differ by at most a

logarithmic term, cf. (7.17).
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