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Abstract

Key message Climate change and Genotype-by-Environment-by-Management interactions together challenge our 

strategies for crop improvement. Research to advance prediction methods for breeding and agronomy is opening 

new opportunities to tackle these challenges and overcome on-farm crop productivity yield-gaps through design of 

responsive crop improvement strategies.

Abstract Genotype-by-Environment-by-Management (G × E × M) interactions underpin many aspects of crop productiv-

ity. An important question for crop improvement is “How can breeders and agronomists effectively explore the diverse 

opportunities within the high dimensionality of the complex G × E × M factorial to achieve sustainable improvements in 

crop productivity?” Whenever G × E × M interactions make important contributions to attainment of crop productivity, we 

should consider how to design crop improvement strategies that can explore the potential space of G × E × M possibilities, 

reveal the interesting Genotype–Management (G–M) technology opportunities for the Target Population of Environments 

(TPE), and enable the practical exploitation of the associated improved levels of crop productivity under on-farm conditions. 

Climate change adds additional layers of complexity and uncertainty to this challenge, by introducing directional changes 

in the environmental dimension of the G × E × M factorial. These directional changes have the potential to create further 

conditional changes in the contributions of the genetic and management dimensions to future crop productivity. Therefore, 

in the presence of G × E × M interactions and climate change, the challenge for both breeders and agronomists is to co-design 

new G–M technologies for a non-stationary TPE. Understanding these conditional changes in crop productivity through the 

relevant sciences for each dimension, Genotype, Environment, and Management, creates opportunities to predict novel G–M 

technology combinations suitable to achieve sustainable crop productivity and global food security targets for the likely 

climate change scenarios. Here we consider critical foundations required for any prediction framework that aims to move 

us from the current unprepared state of describing G × E × M outcomes to a future responsive state equipped to predict the 

crop productivity consequences of G–M technology combinations for the range of environmental conditions expected for a 

complex, non-stationary TPE under the influences of climate change.

Introduction

We use modelling and simulation whenever our empiri-

cal experimentation is not feasible because of costs, risks, 

impacts, or required scale. The complex factorial nature of 

Genotype-by-Environment-by-Management (G × E × M) 

interactions in current and future scenarios requires use of 

modelling and simulation to augment our empirical studies 

to evaluate many of the important properties of prediction 

frameworks designed to improve on-farm crop productiv-

ity for current and future climates. The proposed integrated 

empirical-modelling framework provides flexibility to 

account for contributions from genetics, management and 
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their interactions. The proposed framework requires iterative 

enhancement of crop models, to account for the potential 

influences of G × E × M interactions for traits and applica-

tions within genomic prediction for breeding (e.g. Technow 

et al. 2015; Messina et al. 2018; Diepenbrock et al. 2021) 

and agronomic prediction for optimisation of crop manage-

ment (e.g. Hammer et al. 2014). Empirical discovery work 

underpins the definition of targets for improvement of crop 

models and simulation methods. We discuss how the frame-

work can be applied to design crop improvement strategies 

to enhance crop productivity and close on-farm yield-gaps 

in the presence of strong G × E × M interactions. Further, we 

also consider how the framework and the prediction methods 

can be applied to account for the non-stationary effects of 

climate change. Importantly, the iterative empirical-model-

ling framework is grounded and motivated by successful out-

comes achieved from applications to coordinate the devel-

opment of improved maize hybrids and agronomy for the 

heterogeneous environments of the US corn-belt (McFadden 

et al. 2019; Boyer et al. 2013; Cooper et al. 2014a, 2020; 

Gaffney et al. 2015). The pathway to impact, from proof 

of concept, through reduction to practice, to adoption for 

improved maize yield productivity in the water-limited envi-

ronments of the US corn-belt, was achieved through a long-

term research effort involving private–public partnerships 

(Messina et al. 2020a).

Seeking workable Genotype–Management 
technology solutions

Crop scientists are familiar with the concept of Genotype-

by-Environment (G × E) interactions and their implications 

for the on-farm crop productivity achieved by farmers. 

Plant breeders design breeding programs to account for the 

effects of G × E interactions in the processes involved in 

creation and selection of new genotypes with superior per-

formance for a Target Population of Environments (TPE). 

Agronomists design and evaluate management strategies for 

the same TPE. These management strategies are designed 

to work for the genotypes created by the breeders. Farm-

ers adopt the improved genotypes and management strate-

gies to achieve the potential on-farm crop productivity for 

Genotype–Management (G–M) technology combinations. 

Farmers must also manage the risk of crop failures (yield 

and quality) due to the occurrence of extreme environmental 

conditions. Breeders and agronomists recognise the potential 

for Genotype-by-Environment-by-Management (G × E × M) 

interactions (Messina et al. 2009; Snowdon et al. 2020). 

However, to date the magnitude of the G × E × M facto-

rial has made it impractical to design breeding programs 

or agronomy research programs to deal with G × E × M 

interactions explicitly at all stages of the crop improvement 

process. However, new opportunities are emerging to tackle 

the complexities of the G × E × M factorial through comple-

menting empirical research programs with an array of pre-

diction methods (Messina et al. 2009, 2020a, b; Cooper et al. 

2014a, b, 2020; Chenu et al. 2017; Hammer et al. 2020; Peng 

et al. 2020; Ersoz et al. 2020; Ramirez-Villegas et al. 2020; 

Kruseman et al. 2020; Rotili et al. 2020). These prediction 

methods take advantage of advances in genomics, proximal 

and remote environmental sensor technologies, phenotyping, 

envirotyping, and genetic and crop modelling, together with 

high-performance computing. Therefore, within the scope 

of crop improvement there is interest in the development 

of prediction methodologies that can account for important 

G × E × M interactions that affect current and future crop 

productivity.

Improving crop productivity and breeding for improved 

climate resilience is a “big objective” for crop improve-

ment (e.g. Reynolds 2010; Yadav et al. 2011; Chapman 

et al. 2012; Fischer et al. 2014; Vermeulen et al. 2018; 

Hammer et al. 2020; Cassman and Grassini 2020; Ram-

irez-Villegas et al. 2020; Kruseman et al. 2020; Snowdon 

et al. 2020; Prasanna et al. 2021; Kamenya et al. 2021). 

Lobell and Burke (2010) posed a fundamental question: 

“How will climate change interact with the many other fac-

tors that affect the future of food production and food secu-

rity?” As they state, “there are no easy answers”. However, 

the compelling evidence for climate change (IPCC 2014; 

National Research Council 2020) leaves no choice but to 

question the impact of non-stationary changes in the TPE 

on the requirements for crop adaptation and crop produc-

tivity and to seek workable solutions that open pathways 

towards finding answers to their question. Historically, 

successful workable solutions, those that have enabled 

the documented improvements in on-farm crop produc-

tivity (e.g. Smith et al. 2014; Fischer et al. 2014; Snowdon 

et al. 2020), have been outcomes of positive interactions 

between genotype (G) and the agronomic management 

(M) of the selected genotypes, herein referred to as G–M 

technologies (Hammer et al. 2014), for the range of envi-

ronments (E) encountered in the TPE. We can anticipate 

this to be a consistent feature for the foreseeable future. 

Anthropogenic drivers of climate change impose a direc-

tionality to changes in the environmental composition and 

variability of crop productivity within the TPE, to which 

we seek workable genotype and management solutions. We 

can use our collective understanding from the scientific 

disciplines contributing to crop improvement to predict the 

interplay of genetics and management with the projected 

environmental changes associated with climate change to 

provide a foundation to understand the impact of climate 

change on the future of food production (Chapman et al. 

2012; Messina et al. 2020b; Hammer et al. 2020; Snow-

don et al. 2020). At present, breeders and agronomists 

largely work as a sequential tag team, or independently, 
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conducting empirical research and making predictions to 

seek answers for the pressing questions within their own 

domains (e.g. Reynolds 2010; Fischer et al. 2014; Cooper 

et al. 2014b; Assefa et al. 2018; Edreira et al. 2018; Beres 

et al. 2020; Rotili et al. 2020; Snowdon et al. 2020). Pro-

posals to accelerate improvement of crop productivity 

to account for the effects of climate change have largely 

ignored the influences of G × E × M interactions, or have 

assumed that the traditional research sequence of breeding 

for improved adaptation followed by agronomic optimisa-

tion will be effective for our future agricultural systems 

(e.g. Federoff et al. 2010; Reynolds 2010; Yadav et al. 

2011; Snowdon et al. 2020). Alternative approaches based 

on advancing prediction methods to explore and exploit 

the full potential of the G × E × M state-space are emerg-

ing and deserve greater consideration (Chapman et al. 

2012; Peng et al. 2020; Messina et al. 2020b). Prediction 

of G × E × M interactions will require an integration of the 

progress that has been made to enable genomic prediction 

of traits for breeding applications, together with advances 

in understanding crop responses to environmental varia-

tion for applications in agronomic prediction (Hammer 

et al. 2019; Voss-Fels et al. 2019; Messina et al. 2020b). 

Consideration of the foundations for such prediction of 

crop productivity outcomes in the presence of G × E × M 

interactions will be the primary focus of this review.

In theory, whenever G × E × M interactions exist, and 

they account for a major source of the yield variation 

among genotypes, there is the potential to select positive 

G–M technology combinations to accelerate the rate of 

improvement for on-farm crop productivity (Hammer et al. 

2014, 2020). This also creates opportunities to close yield-

gaps between the current on-farm yields and the achiev-

able yields (and potential yields), given the environmental 

conditions (van Ittersum et al. 2013; Fischer et al. 2014; 

Sadras et al. 2015; Cooper et al. 2020; Rotili et al. 2020). 

However, in practice, to realise the potential benefits of 

a crop improvement strategy targeting G–M technology 

combinations, there must be repeatable positive contribu-

tions from the G × M interactions associated with spe-

cific G–M technology combinations that can predictably 

enhance yield productivity in the target on-farm environ-

ments (Hammer et al. 2014, 2020; Cooper et al. 2020). 

Further, beyond prediction, there must be mechanisms 

for detection and selection of the positive G–M combina-

tions by either or both breeders and agronomists during 

the crop improvement process (Cooper et al. 2014b; Ham-

mer et al. 2020). Finally, to realise the benefits, farmers 

must adopt the positive G–M technology combinations for 

their on-farm crop production systems. Here we consider 

some motivating examples and discuss these foundations 

for prediction of crop productivity within the context of 

G × E × M interactions (Messina et al. 2009, 2020a, b; 

Kholová et al. 2013, 2014; Ramirez-Villegas et al. 2020; 

Kruseman et al. 2020).

Exploiting workable Genotype–Management 
technology solutions: an example

Long-term improvement of maize production in the US 

corn-belt provides an illustrative example to understand the 

hallmarks that enable translation of G × E × M interactions 

into pathways to improved crop productivity. Elements of 

the theory and practice for exploiting G–M technology com-

binations, within the context of G × E × M interactions, as 

defined above, can be recognised in the well-documented 

contributions of hybrid-by-density interactions to the histori-

cal increase in on-farm yield productivity of maize in the US 

corn-belt (Duvick et al. 2004, Duvick 2005a, b; Hammer 

et al. 2009; Assefa et al. 2018). Hybrid-by-density inter-

actions for yield of maize represent an example of repeat-

able G × M interactions that became targets for selection by 

breeders and for investigation and optimisation by agrono-

mists. Components of these G × M interactions themselves 

had predictable interactions with environmental variation 

for on-farm water availability and nitrogen fertiliser inputs 

across the US corn-belt environments. Therefore, important 

G × E × M interactions for yield existed and positive G–M 

technology combinations, representing repeatable, positive 

G × M interactions, became workable crop improvement 

targets. We adopt the notation (G–M) × E to emphasise the 

definition of components of the total G × E × M interaction 

that are associated with the interaction of G–M technolo-

gies and environmental variation. As genetic variation for 

tolerance of maize hybrids to high density became better 

understood, breeders developed methods to successfully 

select maize hybrids with improved levels of high-density 

tolerance (Duvick et al. 2004; Duvick 2005a, b; Tollenaar 

and Wu 1999; Tollenaar and Lee 2002; Lee and Tollenaar 

2007). Farmers operating in regions of the US corn-belt with 

reliable access to water, through either high rainfall or access 

to irrigation, systematically increased on-farm plant density 

and nitrogen inputs as hybrids with improved high-density 

tolerance became available (Duvick et  al. 2004). Thus, 

farmers exploited positive G × M interactions by selecting 

G–M technology combinations, enabled through appropri-

ate hybrid selection and management of plant density and 

nitrogen inputs, in combination with their understanding of 

on-farm environmental water supply conditions. In response 

to these trends, commercial maize breeders operating in the 

US corn-belt undertook multi-environment testing of poten-

tial new hybrids at higher plant density levels, relative to the 

distribution of plant density levels used by farmers. Thus, 

through breeding programs designed to exploit the positive 

G × M interactions associated with hybrid tolerance to high 

density, farmers gained access to a range of hybrids that 
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delivered high grain yield for the range of densities they used 

on-farm, which depended on reliability of access to water 

and water holding capacity of the soil type. Therefore, the 

farmers could manage plant density, hybrid selection and 

other inputs to target on-farm crop yields, conditional on 

the water availability for their specific environments, and in 

alignment with their attitudes towards risk of achieving their 

target level of on-farm crop productivity.

A number of other studies have described the importance 

of G × E × M interactions and their contributions to crop 

yield productivity (Cooper et al. 2001; Duvick et al. 2004; 

Messina et al. 2009; Hatfield and Walthall 2015; Beres et al. 

2020; Peake et al. 2020; Rotili et al. 2020; Snowdon et al. 

2020). Beyond the hybrid-by-density maize example above, 

a few studies have demonstrated effective improvement and 

utilisation of positive G × M interactions: improvement of 

sorghum yield for drought-prone environments in Australia 

(Hammer et al. 2014, 2020; Rodriguez et al. 2018); improve-

ment of wheat for drought-prone and irrigated environments 

in Australia (Hunt et al. 2019); and improvement of maize 

hybrids for drought-prone environments of the US corn-

belt by targeting selection for traits contributing to effec-

tive water use (Messina et al. 2009, 2018; Cooper et al. 

2014a, Gaffney et al. 2015). Based on these examples, it is 

argued that we are now poised at a point where prediction of 

G × E × M interactions, and the contributions of G–M tech-

nology combinations to improved crop productivity provide 

the foundation for a feasible strategy to enhance and acceler-

ate crop improvement and to close on-farm yield-gaps.

Beyond the specifics of predicting G × E × M interactions 

and selecting for G–M technology combinations, a general 

principle guiding development of future crop productivity 

prediction technologies is to develop the capability to iden-

tify crop improvement strategies that can avoid problems, 

before they arise, rather than solving those problems once 

they have occurred (Messina et al. 2020b). Here we consider 

the motivations for predicting G × E × M interactions from a 

perspective of identifying pathways to sustainable improve-

ments in crop productivity, while avoiding those pathways 

that increase the risks of global food insecurity, given the 

environmental changes projected for climate change.

Climate change and crop improvement

On a global scale, for recent periods, spatial patterns in asso-

ciations between climate variability and crop yield produc-

tivity have been documented (Ray et al. 2015). The long-

term trend of global increase in  [CO2] is continuing (IPCC 

2014; National Research Council 2020). Consequences of 

anthropogenic climate change for crop productivity have 

been the subject of recent investigations (Lobell and Burke 

2010; Chapman et al. 2012; Lobell et al. 2015; Hammer 

et al. 2020; Chen et al. 2020). The projected increase in 

 [CO2] is predicted to further contribute to a photosynthesis 

fertilization effect (Ainsworth and Long 2005; Ainsworth 

and Rogers 2007), reduced stomatal conductance and 

increased transpiration efficiency (Lobell et al. 2015; Leakey 

et al. 2019, Hammer et al. 2020). Experimental and model-

ling studies have demonstrated that the increases in  [CO2] 

will have a positive photosynthesis fertilisation impact for 

 C3 species (Ainsworth and Long 2005; Leakey et al. 2009). 

For  C4 species, the impact will be through increased water 

use efficiency (Leakey et al. 2019). Associated increases in 

temperature will continue to have an impact on crop devel-

opment patterns (Zheng et al. 2016). The consequences of 

accelerated development due to elevated temperatures will 

depend on the G × E × M opportunities within the context 

of the TPE (e.g. Hunt et al. 2019). The predicted increases 

in the frequency of high-temperature events, during critical 

yield determining stages of crop development, are likely to 

have significant negative consequences for yield productivity 

of all crops in future environments and will require coordi-

nated adjustments in genotype and management technolo-

gies (Hammer et al. 2020).

Given the documented long-term trends in  [CO2] and 

temperature, it is likely we are already dealing with their 

early effects on crop productivity in many of our crop 

improvement programs (Lobell and Field 2007; Chapman 

et al. 2012; Lobell et al. 2013, 2015; Hammer et al. 2014, 

2020; Zheng et al. 2016; Snowdon et al. 2020). These effects 

have the potential to affect outcomes through their influences 

on evaluations of genotype adaptation and management 

strategies within multi-environment trials (METs). They 

have been investigated in terms of potential shifts in the 

environmental composition of the TPE (Lobell et al. 2015; 

Hammer et al. 2020). These studies demonstrated that near-

term projected increases in temperature levels, their associ-

ated effects on crop water balance and the predicted increas-

ing incidence of high-temperature events are of a sufficient 

magnitude to create shifts in the frequency of occurrence 

of major environmental conditions within a TPE (Chapman 

et al. 2012; Lobell et al. 2015; Hammer et al. 2020). When-

ever the effects of climate change are of a sufficient magni-

tude to result in shifts in the environmental composition of 

the TPE, there will be the potential for associated shifts in 

the frequency of occurrence of different environment-types 

sampled within METs. The sampling strategy used by breed-

ers and agronomists to design their METs will determine 

whether such climate change influences are assayed and can 

therefore be investigated and accounted for within the METs 

(Braun et al. 2010; Snowdon et al. 2020).

Given the challenges from the natural effects of climate 

variability and G × E interactions (Chapman et al. 2000, 

2002), combined with anthropogenic climate changes 

(Chapman et al. 2012), prediction methodologies provide 

the potential for developing tools to identify new pathways 
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for crop improvement that are responsive to the effects of 

climate change. Prediction methods provide tactical tools to 

choose among many options to achieve crop improvement 

and manage risk within the short to medium-term horizon 

(Hammer et al. 2014, 2020; Cooper et al. 2020). They can 

also provide strategic tools to define and navigate trajectories 

for long-term crop improvement (Messina et al. 2011) and 

sustainable intensification of crop systems (Cassman and 

Grassini 2020). To realise the potential of these opportuni-

ties, we require integrated modelling methods that can deal 

with the high dimensionality of the G × E × M problem space 

and can combine genomic prediction for breeding with agro-

nomic prediction for management to improve crop produc-

tivity and reduce on-farm yield-gaps (Cooper et al. 2014b, 

2020; Messina et al. 2018, 2020a, b; Hammer et al. 2020).

Exploring the high dimensionality of G × E × M 
interaction space

With evidence of G × E × M interactions for traits relevant 

to crop productivity within a TPE, many questions require 

deeper consideration than they currently attract (Snowdon 

et al. 2020). An important question to consider is how to 

explore among the diverse genetic and management opportu-

nities accessible within the high dimensionality of the com-

plex G × E × M factorial, to identify those G–M technology 

combinations that can lead to sustainable improvements for 

crop productivity? This requires simultaneous considera-

tion of contributions from each dimension, in order to avoid 

confounding the outcomes of the chosen crop improvement 

strategy with conditional effects that are associated with 

limited sampling of one or two of the other dimensions: the 

genetic dimension, in context with the reference population 

of genotypes (Messina et al. 2011; Ramstein et al. 2019), 

and the environmental dimension, in context with the TPE 

(Chapman et al. 2000; Lӧffler et al. 2005; Chenu et al. 2011; 

Kholová et al. 2013). The management dimension for its 

joint influences on both the environmental dimensionality 

and the contributions of trait genetic diversity to crop pro-

ductivity (Chapman et al. 2003; Messina et al. 2011; Ham-

mer et al. 2014; Snowdon et al. 2020). Thus, considering 

crop productivity from a G × E × M perspective, the actual 

dimensionality of the problem space is greater than expec-

tations set by viewing the problem from only one of the 

contributing dimensions. To enable a foundation for pre-

diction, we seek an understanding of important G × E × M 

interactions for crop productivity that can provide predictor 

variables for influential components of the genetic, envi-

ronmental and management dimensions (Hammer et al. 

2006; van Eeuwijk et al. 2019; Cooper et al. 2020; Ham-

mer et al. 2020). We can then use these predictor variables 

to construct testable predictions to identify exploitable 

positive crop productivity outcomes from among the many 

possible G × E × M combinations (Cooper et al. 2002, 2020; 

Messina et al. 2009; Hammer et al. 2014, 2020; van Eeu-

wijk et al. 2019). To apply this foundation for G × E × M 

prediction, Messina et al. (2020a, b) proposed an iterative 

empirical-modelling approach based on a fusion of mecha-

nistic biophysical models, statistical and machine learning 

approaches to explore the genetic, environment and man-

agement dimensions simultaneously. A novel component of 

their iterative empirical-modelling strategy was the use of 

suitably designed crop models, based on the ecophysiologi-

cal principles of crop science, to supervise the simulation-

based exploration of the G × E × M dimensionality for both 

genomic prediction (Technow et al. 2015; Messina et al. 

2018; Diepenbrock et al. 2021) and agronomic prediction 

(Cooper et al. 2020; Hammer et al. 2020).

Building on the early demonstrations of successful appli-

cations of prediction methodology for maize G × E × M inter-

actions in the US corn-belt, there are nascent opportunities 

emerging to consider broader applications for other crops 

and production systems. These developments are stimulat-

ing advances in the integrated approaches to crop modelling, 

phenotyping, machine learning and high-performance com-

puting to harness “Big Data” from combinations of designed 

and on-farm empirical studies to enable prediction-based 

agriculture (Holzworth et al. 2014; Brown et al. 2014; Ram-

irez-Villegas et al. 2020; Casadebaig et al. 2020; Bogard 

et al. 2020; Sinclair et al. 2020; Ersoz et al. 2020; Washburn 

et al. 2020; Stöckle and Kemanian 2020; Cooper et al. 2021).

Climate change and exploring the E dimension: 
non‑stationary Target Population of Environments 
(TPE)

Beyond breeding for the average genetic merit of individu-

als for a TPE (e.g. Hallauer and Fo 1988; Comstock 1996), 

there is a long history of breeding for adaptation to specific 

environment-types encountered within a TPE (e.g. Blum 

1988; Cooper and Hammer 1996; Bänziger and Cooper 

2001; Gaffney et al. 2015). Comstock (1977) introduced the 

concept of a TPE for a breeding program. The TPE concept 

provides the environmental complement to the concept of 

a reference population of genotypes (RPG). Together, the 

RPG and the TPE provide a foundation for consideration of 

trait genetic architecture that takes into consideration G × 

E interactions within the target crop production system. At 

many stages of a breeding program, breeders conduct METs 

to evaluate samples of genotypes, from the RPG, in samples 

of environments, from the TPE. Breeders traditionally sam-

ple the environments of the TPE by distributing their trials 

across locations within a defined geography for a sequence 

of years. In the traditional view of G × E interactions (Com-

stock and Moll 1963), random G × E interactions, associ-

ated with the samples of environments realised in breeding 
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METs, create an additional layer of uncertainty that compli-

cates determining the genetic merit of individuals derived 

from the RPG (breeding value and genotypic value) (e.g. 

Hallauer and Fo 1988; Nyquist and Baker 1991; Comstock 

1996, Fig. 1).

With advances in understanding of the genetic and envi-

ronmental bases of G × E interactions, examples of breeding 

strategies targeting repeatable components of G × E interac-

tions emerged (e.g. Blum 1988; Cooper and Hammer 1996; 

Bänziger and Cooper 2001; Braun et al. 2010; Windhausen 

et al. 2012; Gaffney et al. 2015). For many TPE scenarios, 

the typical sizes of METs and the traditional location-year 

sampling strategy can result in an inadequate representa-

tion of the mixture of environment-types that constitute the 

TPE (Chapman et al. 2000, 2002). Beyond the location-year 

sampling strategy, Comstock (1977, 1996) did not provide 

a formal treatment of how to apply the TPE concept for any 

components of the G × E interactions that could be associ-

ated with specific environmental targets, e.g. drought, tem-

perature extremes, macro- and micro-nutrient availability, 

biotic stresses. However, breeding strategies designed to 

exploit components of genetic variation associated with 

G × E interactions require some level of consideration of 

how to characterise a TPE for the range of environmental 

conditions, particularly where this is not well represented 

by the location-year sampling strategy (Cooper et al. 1995; 

Chapman et al. 2002; Rebetzke et al. 2013). Inevitably, this 

requires decisions on the levels of granularity with which 

environments are distinguished. Approaches taken have 

ranged from coarse-grained to fine-grained characterisation 

of the environmental dimensions of the TPE. For example, 

targeting breeding for broad categories of environment-

types, such as stress (abiotic or biotic) environments, repre-

sents a coarse-grained approach (e.g. Blum 1988; Snowdon 

et al. 2020). Subsequent developments of the original TPE 

concept considered the TPE as a mixture of repeatable envi-

ronment-types (Atlin and Frey 1990; Cooper and DeLacy 

1994; Cooper and Hammer 1996; Podlich and Cooper 1998; 

Chapman et al. 2000, 2002, 2003; Cooper and Podlich 2002; 

Cooper et al. 2005; Lӧffler et al. 2005; Chenu et al. 2011; 

Kholová et al. 2013). The definition of environment-types 

represents an example of a coarse-grained refinement of the 

TPE concept. As a first approximation of the structure of 

the TPE, definition of environment-types provides breed-

ing targets for specific adaptations associated with identi-

fied repeatable sources of G × E interactions. Following 

this coarse-grained definition of the TPE, broad adapta-

tion can be investigated in terms of performance across 

the environment-types (Podlich et al. 1999). Clearly, the 

breeder can decide on the appropriate level of granularity for 

Fig. 1  Schematic representation of the impact of projected influ-

ence of climate change (CC) on changes in the expected frequency 

of occurrence of five environment-types (ETs) and the associated 

changes in the distribution of observed crop grain yield productiv-

ity levels. Following the characterisation of the US corn-belt Target 

Population of Environments (TPE) and methodology reported by 

Cooper et  al. (2014b), the depicted scenario represents a projection 

where there is an increase in frequency of occurrence of flowering 

and grain-filling water-deficit ETs (ET1 and ET2) and a decrease in 

frequency of occurrence of favourable ETs with low levels of water-

deficit (ET4 and ET5). Characterisation of water-deficit is based on 

the water supply/demand ratio, relative to flowering time, estimated 

using a crop growth model
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characterising a TPE, from coarse-grained to fine-grained, 

depending on the level of understanding of the G × E inter-

actions and the resources available to target breeding for 

specific environment-type targets (e.g. Messina et al. 2011, 

2015; Windhausen et al. 2012; Gaffney et al. 2015; Kholová 

et al. 2013, 2014).

Further extensions of the formal TPE framework have 

also considered management as a subset of the environmen-

tal dimension (Messina et al. 2009; Hammer et al. 2014). 

Importantly, the definition of management strategies pro-

vides a range of suitable environmental descriptors to enable 

prediction that targets G × M interactions as a subset of 

the total G × E interactions. Applications towards this more 

fine-grained characterisation of the TPE have been demon-

strated for a range of crops and geographies (e.g. Podlich 

et al. 1999; Chapman et al. 2000, 2012; Löffler et al. 2005; 

Chenu et al. 2011; Messina et al. 2011; Kholová et al. 2013; 

Cooper et al. 2014a; Hammer et al. 2014; Snowdon et al. 

2020).

Building on the concept of a TPE for crop improve-

ment, we consider potential applications for predicting 

G × E × M interactions while accounting for the effects of 

climate change (Chapman et al. 2012). Herein, the TPE for 

any crop improvement program defines the characteristics 

and frequencies of occurrence of the different environment-

types, for the chosen level of granularity for characterisation, 

encountered within the spatial and temporal dimensions of 

the target agricultural systems (e.g. Fig. 1). The concept of 

a TPE applies broadly, from the diverse range of open sys-

tems that are common to field agriculture to the enclosed 

systems of high-value protected agriculture. In the presence 

of repeatable G × E interactions, breeding and trait perfor-

mance prediction can be targeted at genetic differences for 

important repeatable environmental conditions within the 

context of the TPE (e.g. Chapman et al. 2003; Messina et al. 

2011). Where important Genotype-by-Management (G–M) 

technology innovations provide opportunities to improve 

crop productivity for the environment-types of a TPE, the 

same principles applied to predict G × E interactions for 

breeding can be extended to predict G–M technology targets 

within the context of G × E × M interactions (Hammer et al. 

2014, 2020; Cooper et al. 2020; Rotili et al. 2020). For this 

extension, selection would focus on the G–M technology 

combinations, directing coordinated improvement of genet-

ics and management for the environment-types of the TPE.

Early applications of the TPE concept assumed a station-

ary target for a breeding program. However, today we recog-

nise that the consequences of climate change contribute to 

a non-stationary TPE (Fig. 1, Braun et al. 2010, Chapman 

et al. 2012; Lobell et al. 2015; Hammer et al. 2020; Snowdon 

et al. 2020). When the concept of a TPE was first introduced, 

there was no consideration of the effects of climate change 

within the plant breeding literature. Today, motivated by 

research into the effects of climate change, we must accom-

modate both stationary and non-stationary targets within the 

formal treatment of the TPE for a breeding program. The 

non-stationary effects can be quantified in terms of changes 

in frequency of occurrence of the environment-types 

(Fig. 1). Further, we can extend the concept and the formal 

treatment to the broader context of crop improvement, taking 

into consideration G × E × M interactions for non-stationary 

environment-types changing in frequency of occurrence due 

to the effects of climate change (Chapman et al. 2012).

Successful crop improvement for climate resilience will 

require an understanding of the TPE and the environment-

types for which new genotypes and agronomic strategies 

are to be developed. From the perspective of characteris-

ing a TPE, many of the changes associated with the natural 

and anthropogenic effects of climate change require con-

sideration of the challenging non-stationary features of the 

TPE (e.g. Hunt et al. 2019; Choquette et al. 2019; Ham-

mer et al. 2020; Chen et al. 2020; Snowdon et al. 2020). 

Further, without special attention to monitoring the key 

resources of the crop environment (e.g. temperature,  [CO2], 

water, radiation, nutrition), increases in the concentration 

of pollutants (e.g.  O3), or shifts in the incidence and sever-

ity of biotic stresses, many of the changes that can impact 

crop adaptation are likely to be imperceptible in the short 

term to the observer conducting METs for plant breeding or 

agronomic applications (e.g. Choquette et al. 2019). Con-

sider the current rate of change in  [CO2]. Chapman et al. 

(2012) emphasised the increase in  [CO2] from the recent 

pre-industrial era (280 µmol   mol−1) to the time of their 

publication (2012; 392 µmol  mol−1), based on observations 

taken at the Mauna Loa Observatory located in Hawaii. In 

the intervening period, the monitored levels of  [CO2] have 

increased further to 415 µmol  mol−1 (January 2021; www. 

co2now. org). Hammer et al. (2020) considered how such 

increases in  [CO2], combined with temperature increases 

and consequent changes in rainfall patterns, can influence 

the frequency of occurrence of different water–stress envi-

ronment-types for sorghum in Australia. Without specifically 

asking these questions, the modelled changes in water–stress 

environment-types, and any associated G × E interactions, 

could appear as random background environmental variation 

to those responsible for conducting METs for the Australian 

sorghum breeding programs. These and other gradual back-

ground changes in frequencies of environment-types within 

a TPE, in combination with the regional and inter-annual 

variation in their occurrences, can act over multiple breed-

ing program cycles to impact the trait adaptation require-

ments of crops for yield performance (Snowdon et al. 2020). 

Even if the direct effects of changes in  [CO2] on breeding 

outcomes cannot be easily demonstrated (e.g. Ziska et al. 

2004; Ainsworth and McGrath 2010), the indirect effects on 

season length (Hunt et al. 2019) and frequency of occurrence 

http://www.co2now.org
http://www.co2now.org
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of water–stress events and temperature extremes (Hammer 

et al. 2020) can be demonstrated to impact the adaptation 

requirements of crops.

Within the context of the environmental variability 

expected for a TPE, the implementation of management 

strategies provides farmers some scope to reduce the impact 

of the environmental variation on crop productivity, at least 

relative to the expectations for the case where the environ-

mental variability was uncontrolled by suitable agronomic 

management. The management interventions can be evalu-

ated in terms of their influence on the environment-types of 

the TPE and their frequency of occurrence (Chapman et al. 

2012; Lobell et al. 2015; Hammer et al. 2020). For example, 

in dryland and limited-irrigation production systems, reduc-

tions in plant density and adjustments in irrigation quantity 

and timing can both reduce the frequency of occurrence of 

water–stress environment-types within a TPE (e.g. Chapman 

et al. 2000; Chenu et al. 2011; Hammer et al. 2020).

Therefore, we argue that the prediction requirements for 

breeding climate resilient crops can be tackled by extend-

ing the definition of the characteristics of the TPE for a 

breeding program. In addition to defining the target envi-

ronment-types that comprise the TPE, and their frequen-

cies of occurrence in the current situation, there is a need to 

quantify the expected rates of change in their frequencies of 

occurrence that are a consequence of the effects of climate 

change (Fig. 1, Hammer et al. 2020). With an understanding 

of the rates of change in the environment-type targets, and 

an understanding of the trait requirements for adaptation 

and performance in the different environment-types, tacti-

cal and strategic breeding programs can be designed that 

prioritise breeding objectives with knowledge of the pro-

jected changes (Chapman et al. 2012; Hammer et al. 2020; 

Snowdon et al. 2020). Further, with appropriate attention to 

design, results from METs across multiple breeding program 

stages and cycles can be combined to conduct meta-analyses 

and develop robust training data sets to support genomic 

prediction (Cooper et al. 2014a, b). Through adequate sam-

pling of the TPE and appropriate updating of the training 

data sets (e.g. Podlich et al. 2004), the design and conduct 

of METs provide a practical mechanism for addressing some 

aspects of the non-stationary effects of climate change on the 

environment-type composition of the TPE.

Crop improvement and reducing yield‑gaps

Improvements in on-farm crop productivity can be evalu-

ated in terms of the genetic improvement of crop yield 

potential, given the resource inputs of the target agricul-

tural system, and genetic improvement of yield stability to 

reduce the gap between the realised on-farm productivity 

and the expected yield potential (Fig. 2a; van Ittersum et al. 

2013; Fischer et al. 2014). For any given TPE, the concept 

of defining yield potential, achievable yield and yield-gaps 

can be quantified in terms of defining the yield front, given 

the definition of the limiting environmental resources (e.g. 

French and Schultz 1984; Sadras et al. 2015; van Bussel 

et al. 2015; van Oort et al. 2017); e.g. the water-limited yield 

front for maize in the US corn-belt (Fig. 2b; Cooper et al. 

2020). Plant breeders have focused on genetic improvement 

of yield potential and yield stability for a TPE through the 

design of breeding programs (Hallauer and Fo 1988; Com-

stock 1996). There have been significant investments in 

technology development to accelerate rate of genetic gain 

(Voss-Fels et al. 2019) for important traits contributing to 

yield potential and yield stability for the combinations of 

abiotic and biotic stresses that are encountered within the 

TPE. Plant breeders are interested in the potential for G × E 

interactions to change the rank order of genotypes between 

the important environment-types of a TPE (e.g. Fig. 2c). 

Through breeding for yield stability, breeders seek to close 

the yield-gap between the current on-farm yield level and 

the potential yield level by selecting new genotypes with 

new combinations of the alleles for the genes influencing 

the levels of trait expression resulting in yield levels closer 

to the yield potential front. Agronomists have focused on the 

development of crop management strategies that improve the 

effective use of environmental resources (e.g. radiation, tem-

perature, water, nutrition), inputs (e.g. fertiliser, herbicides, 

pesticides and water through irrigation), and farmer manage-

ment decisions (e.g. planting time, plant density, plant spac-

ing configurations and tillage practices). They seek man-

agement strategies that increase the likelihood of achieving 

crop yield targets (e.g. breakeven yield, achievable yield and 

yield potential) for the range of environment-types within 

the TPE for the currently available set of genotypes. Typi-

cally, the breeder and agronomist views are considered sepa-

rately. However, they could be combined into one view (e.g. 

Fig. 2d). With such a combined view, it is possible to explore 

integrated crop improvement strategies that seek to close the 

gap between the current yield levels and the achievable and 

potential yield levels. Such an integrated approach could 

be enabled through selection for combinations of genetic 

and agronomic improvement, ultimately taking advantage 

of favourable G–M combinations that deliver on-farm yield 

productivity closer to the potential for the range of environ-

ments of the TPE (Fig. 3).

From describing G × E × M to predicting (G–M) × E 
interactions

To date, the majority of investigations of G × E × M inter-

actions for crop improvement have involved describing 

the major features within accessible data sets, and testing 

whether significant G × M interactions are present. When 

significant G × M and G × E × M interactions are found to 
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be present, further studies have provided new lists of the 

importance of traits and trait target recommendations for 

plant breeders. In some cases, multiple trait combinations 

are used to define ideotypes as potential new breeding tar-

gets. Occasionally, the new breeding targets are defined in 

combination with new agronomic practices, for example 

selection for genotypes that tolerate the specific abiotic and 

biotic stress consequences associated with growing crops at 

high plant density in combination with recommendations 

for the higher plant density targets and also alternative row 

configuration and fertiliser recommendations (e.g. Hammer 

et al. 2014, 2020; Gaffney et al. 2015). Research undertaken 

to define new breeding and agronomic targets in response 

to G × E × M interactions indicates that the current research 

methods, based on breeding followed by management 

optimisation, are likely to be inefficient or incapable of cre-

ating the proposed new G–M combinations. This may be the 

case for the consequences of climate change.

Many of the predicted changes in the structure of the 

TPE, as a consequence of climate change scenarios, are 

anticipated to impact the relative importance and contribu-

tions of traits to crop yield productivity (e.g. see multiple 

chapters in Yadav et al. 2011; Chapman et al. 2012; Ham-

mer et al. 2020; Snowdon et al. 2020). These situations pre-

empt changes in the trait targets required to sustain genetic 

gain for crop productivity. Similarly, the relative merits of 

alternative management strategies may also be anticipated 

to change with the structure of the TPE as a consequence 

of climate change. Thus, we can anticipate that there is the 

potential for changes in the importance and the features of 

Fig. 2  Schematic representation of an on-farm yield-gap from the 

perspective of an agronomist and a breeder: a Classical view of a 

yield-gap. YP defines the on-farm yield potential that can be expected 

when a suitable genotype is selected and all abiotic and biotic stresses 

are removed from the on-farm environment. Y80% defines the yield 

level at 80% of the Yp. YActual defines the actual on-farm yield that 

was achieved. The yield difference between the  Y80% and YActual 

defines the exploitable yield-gap. b On-farm yield-gap depicted as a 

continuum of differences (as represented in sub-figure (a)), between 

the actual yield and target exploitable yield along the Yield-Evapo-

transpiration yield front. The target exploitable yield is defined in 

the example by the 99% Yield-Evapotranspiration front (Q99, Yield 

potential) and the 80% Yield-Evapotranspiration front (Q80, Achiev-

able yield). c Classical plant breeding view of crossover Genotype-

by-Environment interactions. d Plant breeding view of crossover 

Genotype-by-Environment interactions superimposed on the agrono-

mist view of yield front
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the resulting G × E × M interactions for crop productivity in 

a TPE that is shifting under the influence of the effects of 

climate change. If such a situation unfolds, then describing 

G × E × M interactions will be inadequate for developing the 

required climate resilient crops for the future and for the 

design of suitable crop improvement strategies to deliver 

the required climate resilient crops. An alternative strategy 

is to focus on research methodologies to identify G–M tech-

nology combinations (Hammer et al. 2014; Messina et al. 

2020b). In this case, the prediction targets and the selec-

tion units of the crop improvement strategy would be the 

G–M combinations that result in improved on-farm crop 

productivity. This would represent a shift towards predic-

tion of productive G–M combinations for the current and 

predicted future TPE (Hammer et al. 2020). Thus, instead 

of describing G × E × M interactions the focus would shift to 

predicting G × M interactions for different G–M technology 

combinations and quantifying their performance character-

istics for the environment-types of the TPE, herein defined 

as predicting (G–M) × E interactions, following Messina 

et al. (2020b).

Hammer et al. (2014) proposed focusing prediction on 

identifying G–M technology combinations to enhance crop 

improvement and risk management and demonstrated appli-

cations for sorghum crop improvement in Australia. Simi-

larly, for maize in the US corn-belt, Cooper et al. (2014b) 

advocated G × E × M modelling throughout the breeding 

program cycle to augment the empirical testing footprint 

of METs. Recent examples have demonstrated applications 

of these proposals for sorghum in Australia (Hammer et al. 

2020) and maize in the US corn-belt (Cooper et al. 2020).

Predicting (G–M) × E interactions: an example

A maize example from the US corn-belt, where G × E × M 

interactions for yield under drought are important, is used 

to emphasise important considerations and demonstrate 

opportunities and potential approaches to prediction for crop 

improvement in the presence of G × E × M interactions. We 

consider a subset of the simulated grain yield (GY) and crop 

evapotranspiration (ET) results reported by Cooper et al. 

(2020). Within their larger study, they contrasted G × E × M 

interactions for GY and ET between two major regions 

of the US corn-belt: the Western region, represented by a 

location in Kansas, and the Central region, represented by 

a location in Iowa. As background to the example, these 

two regions of the US corn-belt are expected to have dif-

ferent levels of G × E × M interactions for GY associated 

with differences in ET at the environmental, management, 

and genotypic levels. In the Western region, rainfall is low 

and vapour pressure deficit is high and dryland maize GY 

is strongly water limited. Irrigation and plant density are 

important management strategies used by farmers to avoid 

or minimise yield reductions due to water limitations, i.e. 

to reduce the yield-gap (Figs. 2 and 3). Consequently, in 

the Western region, differing patterns of crop water use and 

ET, associated with differences in genotype and manage-

ment, are expected to have a strong influence on G × E × M 

interactions for GY across locations and years (Gaffney et al. 

2015). In contrast in the Central region, rainfall is higher 

and vapour deficits are lower and water limitations are less 

frequent. Consequently, in the Central region, differences 

in patterns of water use and ET, associated with genotype 

Fig. 3  Schematic representation 

of plant breeding perspective 

on grain yield improvement 

considered in terms of improv-

ing Yield Potential, Effective 

Water Use, and Drought Toler-

ance in relation to enhancing 

the yield front. Breeding for 

yield stability can be consid-

ered in terms of breeding for 

trait combinations that improve 

genotype yield performance and 

reduce the yield-gap along the 

continuum of the yield front. 

Gap analysis and reduction of 

yield-gaps can then be investi-

gated in terms of selection of 

genotypes, management strate-

gies and genotype–management 

technology combinations to 

reduce the gap between actual 

on-farm yields and achievable 

yield levels along the yield front 

continuum
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and management, are expected to have less influence on 

G × E × M interactions for GY across locations and years 

(Gaffney et al. 2015). The simulated ET and GY data subset 

considered here was centred on the same Kansas and Iowa 

locations considered by Cooper et al. (2020). The number 

of locations was expanded by selecting eight additional sur-

rounding locations within each region. Thus, nine locations 

from both Kansas and Iowa were identified. For each loca-

tion, simulated GY and ET data were generated for twenty 

sequential years (1996–2015). For the purposes of the analy-

ses reported here, the focus was on contrasting G × E × M 

interactions between Kansas and Iowa, representing a con-

trast between the Western and Central regions of the US 

corn-belt. Following Cooper et al. (2020), the twelve man-

agement strategies considered were based on the same facto-

rial combination of three plant densities (6, 8 and 10 plants 

 m−2) and four irrigation strategies: no supplementary irriga-

tion (NI), fully irrigated (FI), one 20 mm irrigation at V12 

(V12), weekly irrigation to replace cumulative ET loss in the 

prior week (WI). The GY and ET data were simulated for all 

Location, Management and Year combinations for the same 

488 genotypes using the same crop model considered by 

Cooper et al. (2020). In summary, the simulated genotypes 

were based on all possible combinations of three different 

levels of expression of five traits, which were previously 

identified to influence GY of elite maize hybrids across US 

corn-belt environments (Messina et al. 2018): leaf number 

and leaf size, which together determined potential canopy 

size, canopy radiation use efficiency, canopy level limited 

transpiration, and reproductive resiliency, which determined 

silk exertion rate, anthesis to silking interval and impacted 

kernel set and GY. Two levels of maturity were also consid-

ered for each genotype. One check hybrid with two maturity 

levels was also included.

Analyses of variance of the complete simulated data set 

emphasised the importance of G × E × M interactions for GY 

and the important role of water availability. The contribu-

tions of the different water availability environments and 

the associated crop water use outcomes of the genotype and 

management dimensions for the range of environments were 

represented by the simulated ET trait. Within the full data 

set, there was a strong contrast in the G × E × M interactions 

for the GY results between Kansas and Iowa. Therefore, 

for demonstration purposes here, the simulated GY and ET 

results for the G × E × M combinations were analysed sepa-

rately for Iowa and Kansas to estimate variance components 

and compute best linear unbiased predictors (BLUPs) based 

on the model:

(1)

Tijkl =� + yj + mk + (ym)jk + rl + gi + (gy)ij

+ (gm)ik + (gmy)ijk + �ijkl,

where Tijkl is the simulated trait value (GY or ET) for geno-

type i, in year j, management k and location l, μ is the overall 

mean, yj is the effect of year j, mk is the effect of management 

k, (ym)jk is the interaction effect for year j and management 

k, rl is the effect of location l, where the locations were con-

sidered as nine replicates within each of Kansas and Iowa, 

gi is the effect of genotype i, (gy)ij is the interaction effect of 

genotype i and year j, (gm)ik is the interaction effect of geno-

type i and management k, (gmy)ijk is the interaction effect of 

genotype i, management k and year j, and εijkl is the residual 

effect. All terms, except μ, were assumed to be random, nor-

mally distributed variables. For both Iowa and Kansas, GY 

and ET BLUPs were computed for the 12 management levels 

(M_BLUPs), for the 488 genotypes (G_BLUPs), and for the 

5856 G–M technology combinations (GM_BLUPs).

For both Iowa and Kansas, the location source of variance 

was small for both GY and ET (Table 1). The year source 

of variance was larger for Kansas than Iowa for both GY 

and ET, although these were relatively small compared to 

other sources of variance (Table 1). For Iowa, the genotypic 

component of variance was the largest component for both 

GY and ET (Table 1). In contrast, for Kansas, the manage-

ment component of variance was larger than the genotypic 

and Genotype-by-Management components of variance for 

both GY and ET (Table 1). There were relationships between 

GY and ET for both Kansas and Iowa (Fig. 4). The GY-ET 

relationships differed, depending on both location (Iowa 

(Fig. 4a–c) or Kansas (Fig. 4d–f)) and prediction level: M_

BLUP (Fig. 4a, d), G_BLUP (Fig. 4b, e), or GM_BLUP 

(Fig. 4c, f). For Kansas, the GY Genotype-by-Management 

interaction variance component was larger than the geno-

typic variance component, while smaller for ET (Table 1). 

In contrast, for Iowa the genotypic component was larger 

than the Genotype-by-Management interaction component 

for both GY and ET (Table 1). Notably, the magnitude of 

the ET genotypic variance components was similar for both 

Iowa and Kansas, while the magnitudes contrasted for GY. 

Further, the G_BLUPs for ET were similar between Iowa 

and Kansas (Fig. 5a). The consistency in total water use 

by the genotypes, indicated by the consistent ET (Fig. 5a), 

in combination with the different environmental conditions 

between Iowa and Kansas, resulted in contrasting G_BLUPs 

for GY between Iowa and Kansas (Fig. 5b). The differences 

in environmental conditions between Kansas and Iowa also 

resulted in contrasting GM_BLUPs for ET (Fig. 5c) and GY 

(Fig. 5d). These resulting contrasts in magnitude and struc-

ture of the Genotype-by-Management interactions for ET 

and GY between Kansas and Iowa provide the foundation for 

a suitable case study to consider issues involved in predic-

tion of G × E × M interactions.

Selection for high GY, based on G_BLUPs, identified 

different genotypes depending on whether the selection 

was conducted within Iowa or Kansas (Fig. 5b). Selection 
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for high GY, based on G_BLUPs, in Iowa identified geno-

types with a wide range of GY G_BLUP values in Kansas 

(Fig. 5b). Therefore, based on the simulated influences of 

the five traits on the patterns of water use and their con-

sequences for GY, multiple contrasting trait combinations 

resulted in high ET and high GY for Iowa. However, not 

all of these trait combinations that contributed to high GY 

for Iowa resulted in high GY for Kansas. If selection was 

conducted at the GM_BLUP level, there were contrasting 

G–M technology combinations that contributed to high GY 

for Iowa and Kansas (Fig. 5d). However, when selection 

was conducted for GY at the GM_BLUP level the same 

G–M technology combinations were identified to result in 

the highest GY levels for both Iowa and Kansas (Fig. 5d). 

Table 1  Estimated variance 

components and their standard 

errors for grain yield and 

evapotranspiration based on a 

simulated maize data set

The simulation study was designed to represent a sample of the Genotype, Environment and Management 

dimensions for Iowa, representing the Central region of the US corn-belt, and Kansas, representing the 

Western region of the US corn-belt

Source Iowa Kansas

Grain yield Evapotranspiration Grain yield Evapotranspiration

t  ha−1 mm t  ha−1 mm

Location 0.14 ± 0.070 170.1 ± 85.0 0.05 ± 0.025 34.0 ± 17.0

Year (Y) 0.77 ± 0.252 297.6 ± 101.0 2.72 ± 0.912 1709.6 ± 590.8

Management (M) 1.27 ± 0.543 2813.7 ± 1203.3 6.31 ± 2.718 13,468.4 ± 5774.3

Y × M 0.14 ± 0.013 160.5 ± 15.7 1.13 ± 0.111 1325.0 ± 129.7

Genotype (G) 4.18 ± 0.269 5090.6 ± 327.0 0.68 ± 0.061 4807.0 ± 327.3

G × Y 0.13 ± 0.002 78.9 ± 1.3 0.43 ± 0.007 207.6 ± 3.6

G × M 0.09 ± 0.002 86.9 ± 1.8 2.95 ± 0.058 3454.5 ± 67.2

G × M × Y 0.11 ± 0.001 83.5 ± 0.6 0.44 ± 0.003 355.1 ± 2.0

Residual 0.42 ± 0.001 400.4 ± 0.6 2.04 ± 0.003 773.9 ± 1.1

Fig. 4  Comparison of grain yield and evapotranspiration BLUPs 

for maize Genotype-by-Environment-by-Management (G × E × M) 

interaction case study: a Iowa Management BLUPs (M_BLUPs), b 

Iowa Genotype BLUPs (G_BLUPs), c Iowa Genotype–Management 

Technology BLUPs (GM_BLUPs), d Kansas Management BLUPs 

(M_BLUPs), e Kansas Genotype BLUPs (G_BLUPs), f Kansas Gen-

otype–Management Technology BLUPs (GM_BLUPs)
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Therefore, for both Iowa and Kansas, if water limitations 

were avoided, applying the FI management, the same G–M 

technologies were identified. However, if the FI management 

option was not available then different G–M technology 

combinations resulted in high GY for the Iowa and Kansas 

Locations. Further, the simulated GY results indicate that 

depending on the management strategy selected, the cor-

relation for the GY GM_BLUPs between Iowa and Kansas 

could range from positive (e.g. 10_FI, Fig. 5d) to negative 

(e.g. 10_NI, Fig. 5d). Thus, strong crossover G × E interac-

tions can occur for GY between Iowa and Kansas. How-

ever, with an understanding of the biophysical bases of the 

Fig. 5  Comparison grain yield and evapotranspiration BLUPs 

between Kansas and Iowa for maize Genotype-by-Environment-by-

Management (G × E × M) interaction case study: a Evapotranspiration 

Genotype BLUPs (G_BLUPs) compared between Kansas and Iowa, b 

Grain Yield Genotype BLUPs (G_BLUPs) compared between Kansas 

and Iowa, c Evapotranspiration Genotype–Management Technology 

BLUPs (GM_BLUPs) compared between Kansas and Iowa, d Grain 

Yield Genotype–Management Technology BLUPs (GM_BLUPs) 

compared between Kansas and Iowa
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crossover G × E interactions for GY (e.g. Figs. 4 and 5) it is 

possible to deconvolute the contributing environmental and 

management conditions, here in terms of their impact on 

ET, and identify the contributing genotypic, management 

and environmental discriminating variables. With such an 

understanding of the discriminating variables, suitable geno-

typic and management predictor variables can be defined 

and an informed approach to design and prediction of G–M 

technologies for different target environments can be devel-

oped, using the crop model and GM_BLUPs in this exam-

ple. The example discussed here used simulation results to 

demonstrate the application of the principles. The coordi-

nated application of simulation and empirical studies can 

be undertaken in an iterative empirical-modelling process 

(Cooper et al. 2002; Messina et al. 2009, 2020a, b). Based 

on the understanding of G × E × M interactions for crop 

performance indicators, as quantified in the crop model, a 

comprehensive evaluation of G–M technologies can be first 

conducted using simulation. Promising G–M technologies 

identified by simulation can then be prioritised for empirical 

testing. Such iterative empirical-modelling applications were 

used to guide development of maize hybrids with improved 

yield stability for a wide range of drought environments and 

responsiveness to inputs for favourable environments, based 

on these same principles, for the US corn-belt (Campos et al. 

2004; Barker et al. 2005; Messina et al. 2009, 2011, 2018, 

2020a; Cooper et al. 2014a, 2016, 2020; Gaffney et al. 2015; 

McFadden et al. 2019).

Exploiting (G–M) × E interactions: creating new 
pathways to accelerate crop improvement

Improving our understanding of the importance and influ-

ence of G × E × M interactions for on-farm yield productivity 

can open new opportunities for crop improvement to both 

improve yield potential for the range of environments of a 

TPE and to improve yield stability contributing to reduced 

yield-gaps between improvements in yield potential and on-

farm yield (Fig. 3). Here we can highlight such opportunities 

for two broad crop improvement strategies.

First, within the current dominant crop improvement par-

adigm of first breeding to develop new cultivars followed by 

management optimisation. To date, most considerations of 

G × E × M interactions for crop improvement have operated 

from assumptions based on this serial, breeding followed 

by agronomy, perspective (Beres et  al. 2020; Snowdon 

et al. 2020). For example, with advanced understanding of 

G × E × M interactions, breeders can adjust the design of the 

METs for one or more stages of the breeding program to 

enhance testing under different crop management regimes 

at any stage of the breeding program to create, identify and 

select new genotypes that demonstrate broad or specific 

adaptation to Environment–Management combinations that 

are important within the context of the TPE (Braun et al. 

2010; Chapman et al. 2012; Snowdon et al. 2020). This strat-

egy can be expected to broaden the range of environment-

type contexts that genotypes are tested within, prior to their 

advancement and commercialisation for use by farmers. 

Further, using the same G × E × M understanding, agrono-

mists could consider advanced testing of pre-commercial 

and new-commercial cultivars for optimisation of manage-

ment to minimise the yield-gaps between yield potential and 

on-farm performance of the new cultivars when these are 

available to farmers (Rotili et al. 2020). This would also 

provide advanced access to the appropriate and potential 

future Environment–Management combinations expected 

to be used by farmers. Such advanced knowledge provides 

feedback to breeders to guide design and refinement of the 

MET stages of breeding programs (Messina et al. 2020a). 

Breeders could in turn explore potential sources of novel 

genetic variation for traits contributing to improved perfor-

mance in projected future Environment-Management targets 

(Hammer et al. 2020; Snowdon et al. 2020).

Second, knowledge of G × E × M interactions can also 

open new opportunities for novel crop improvement strat-

egies that target improvement of G–M technology com-

binations as integrated selection targets. Targeting G–M 

technology combinations as the units of selection creates 

opportunities to exploit positive G × M interactions for the 

environment-types of the TPE. To date less attention has 

been given to considering G × E × M interactions and their 

implications for crop improvement from this perspective. 

Here we have proposed that advances in simulation model-

ling (Messina et al. 2009, 2020a, b; Hammer et al. 2019, 

2020; Peng et al. 2020) and prediction methodologies for 

both breeding (Heffner et al. 2009; Cooper et al. 2014b; 

Technow et al. 2015; Voss-Fels et al. 2019; Diepenbrock 

et al. 2021) and agronomy (Hammer et al. 2014, 2020) open 

new opportunities for undertaking such investigations of 

alternative crop improvement strategies. Suitable crop mod-

elling platforms for a wide range of agricultural systems 

are available (Hammer et al. 2010; Holzworth et al. 2014; 

Brown et al. 2014). Key crop production system hallmarks 

that could be examined to justify considering investigations 

to refocus crop improvement strategies to exploit (G–M) × 

E interactions and their understanding include:

• Presence of strong G × E × M interactions for GY, with a 

significant G × M interaction component and identifiable 

G–M technology combinations that can be targeted as a 

unit of selection in a crop improvement strategy.

• Appropriate levels of environmental characterisation can 

be achieved to enable reliable prediction of the preferred 

G–M technology combinations for the expected on-farm 

environments.
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• The different positive levels of G–M technology combi-

nations can be targeted to appropriate on-farm environ-

ments within the range of important environment-types 

of the TPE.

• Farmers have access to the resources required to adopt 

the recommended G–M technology combinations for 

their on-farm environmental conditions.

Here we have argued that if we can understand and pre-

dict the performance properties of G–M technology com-

binations within the context of G × E × M interactions, we 

can potentially open up new crop improvement strategies 

to accelerate improvements in on-farm crop productivity. 

Given the historical contributions of both genetics and 

agronomy to improvements in on-farm crop productivity, 

there is strong justification for investigating the potential 

of applying prediction methods to focus some of our future 

crop improvement investments into the design and evalua-

tion of strategies to explore and exploit G–M technology 

combinations. The predicted effects of climate change on the 

future TPE for crop improvement further motivate the need 

for such investigations (Chapman et al. 2012).

Targeting (G–M) × E interactions: implications for crop 

improvement

As with the presence of G × E interactions, the presence 

of G × E × M interactions has implications for the effective 

design of crop improvement strategies. However, there are 

some important differences. The presence of G × E × M inter-

actions requires specific consideration of the coordinated 

improvement of both crop genetics and crop management 

to improve on-farm crop productivity. An important ques-

tion we have emphasised here is whether the same workable 

G–M technology solutions can be discovered through con-

tinuation of, or the refinement of, the current dominant serial 

crop improvement approach, breeding followed by agro-

nomic optimisation, and alternative crop improvement strat-

egies that are specifically designed to select directly for G–M 

technologies simultaneously at all stages. This question can 

be investigated in terms of the opportunities to improve both 

the yield productivity front, within the context of a TPE, and 

reduce the yield-gap between the on-farm crop productivity 

and the productivity potential defined by the yield produc-

tivity front (Fig. 3). Given the many potential influences of 

climate change on the sustainability of the current levels of 

crop productivity and the projected future needs for global 

food security, seeking answers to this question is becoming 

increasingly urgent. Given the absence of comprehensive 

information on the magnitude and form of G × E × M interac-

tions for yield and quality for many crops, cropping systems 

and TPEs, and the lack of any extensive empirical studies 

comparing such alternative crop improvement strategies, 

simulation methodology provides a viable approach for 

investigation of the appropriate design of crop improvement 

strategies in the presence of G × E × M interactions (Messina 

et al. 2020b; Hammer et al. 2020; Peng et al. 2020). Specific 

areas requiring particular attention in research programs can 

be identified:

• As with all evolving biophysical systems, for agricul-

tural systems, improved performance outcomes are a 

consequence of the interplay between the genetic vari-

ation for traits, the characteristics of the environments 

within which the traits are expressed, and importantly 

the relative rates of change in the variables determining 

the environmental context to which the performance con-

tributions of traits are determined. This interplay of the 

genetic and environmental dimensions can be understood 

as a performance landscape, or response surface (Gavri-

lets 2004; Cooper et al. 2005; Messina et al. 2011; Walsh 

and Lynch 2018). The shape of the performance land-

scape can change in response to changes in the environ-

mental contexts that dominate the TPE and the influences 

of the traits that have been exploited over the history of 

the agricultural system (Messina et al. 2009, 2011; Chap-

man et al. 2012). Quantifying the rates of change of the 

variables involved in the environmental dimension of the 

G × E × M systems, as a consequence of climate change, 

requires increased attention as an integral component of 

characterising the target environments and the TPE of 

crop improvement programs.

• Crop improvement programs should be understood as 

search strategies that can be designed to explore the per-

formance landscapes of the G × E × M systems of agri-

culture (Cooper and Podlich 2002; Messina et al. 2011). 

Their design has an influence of the properties of the 

landscape that can be explored and exploited and thus 

the workable G–M technology solutions that can be dis-

covered (Cooper et al. 2005).

• Greater consideration should be given to undertak-

ing integrated breeding and agronomy METs that are 

designed to test for the presence of G × E × M interac-

tions, to quantify their magnitude and to characterise 

their structure. Such integrated METs would provide 

access to the required data to enable the iterative empir-

ical-modelling approaches discussed here. The implica-

tions of climate change gives increased urgency to this 

requirement.

• Given the potentially high dimensionality of the 

G × E × M factorial it is likely that many workable G–M 

technology solutions will require evaluation (e.g. Fig. 5). 

Therefore, the current research emphasis on defining ide-

otypes as targets for breeding programs should be refor-

mulated to define cohorts of potential workable G–M 

technology solutions for testing in the current dominant 
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environment-type targets and also for the predicted future 

environment-type targets under the projected climate 

change scenarios. The iterative empirical-modelling 

framework discussed here would enable such a broaden-

ing of the design and optimisation of crop improvement 

strategies in the presence of important G × E × M interac-

tions.

• Greater consideration should be given to the design of 

crop improvement strategies that focus on selecting for 

G–M technology targets. Large commercial breeding 

organisations have the resources to undertake such com-

parisons of alternative crop improvement strategies and 

to resource their practical implementation (e.g. Messina 

et al. 2020a). With sufficient experience, and empiri-

cal results obtained from crop improvement programs 

designed to select for G–M technologies, comparisons 

can be made between the rates of improvement in on-

farm crop productivity that can be achieved by directly 

selecting for G–M technologies relative to the current 

rates of improvement that are being achieved (e.g. Fisher 

et al. 2014; Smith et al. 2014; Snowdon et al. 2020) from 

the dominant serial, breeding followed by agronomic 

optimisation, crop improvement methodology.

• Powerful prediction-based crop improvement strategies 

are emerging. Two advantages were emphasised here. 

Firstly, they provide a viable approach to tackle the high 

dimensionality of the G × E × M factorial (Messina et al. 

2020b). Attention should be given to approaches that 

combine empirical studies with the strengths of predic-

tive breeding and predictive agronomy for both tactical 

and strategic applications. Secondly, they provide practi-

cal and affordable pathways to support an upscaling of 

crop improvement programs when the cost of increasing 

the size of the empirical crop improvement program is 

beyond the reach of the program.

• For the complex traits that are the targets of crop 

improvement programs we can anticipate that prediction 

methods based on a fusion of mechanistic crop models 

and machine learning, which both include trait genetics, 

will be required (Messina et al. 2020b; Ersoz et al. 2020; 

Washburn et al. 2020; Diepenbrock et al. 2021).

• Optimisation of prediction-based crop improvement strat-

egies will require a continuous iterative empirical-mod-

elling approach. Within the iterative cycles the empirical 

breeding and agronomy programs will take on a new role. 

They will be embedded within the prediction-based pro-

grams and provide the critical data for design of appro-

priate sequences of training data sets to parameterise, 

evaluate and improve the prediction models.

• Telling the breeder or the agronomist to change their cur-

rent approaches to crop improvement will not, by itself, 

catalyse the required change, even when the methodology 

has been convincingly demonstrated in a robust research 

setting. There is much history in the crop improvement 

literature that shows recommendations by themselves 

will not bring about the needed change. Real impact will 

require a more sustained transdisciplinary effort (Ham-

mer et al. 2019). This will take time and most likely 

generations of crop improvement researchers, with new 

skills introduced over iterative cycles. This long-term 

perspective is consistent with the long history of design, 

testing, learning and implementation that underpins suc-

cessful crop improvement outcomes. For example, the 

maize hybrid breeding methods that we are familiar with 

today were built on such a long history (Duvick 2005a, b; 

Technow et al. 2020) and continue to be refined (Cooper 

et al. 2014b; Messina et al. 2020a).

Whenever research demonstrates opportunities for new 

pathways towards enhanced climate resilient crop produc-

tivity, the translation of an innovation into a truly game-

changing approach, which can accelerate crop improvement 

towards more sustainable crop productivity outcomes in the 

face of climate change, will require a sustained effort to 

integrate the new methodology into the core crop improve-

ment processes over multiple iterative cycles (Vermeulen 

et al. 2018). This long-term perspective should underpin 

any research efforts that seek to deliver crop productivity 

outcomes in the form of climate resilient crops for the future.
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