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Abstract. Genetic algorithms play a significant role, as search techniques for handling com-
plex spaces, in many fields such as artificial intelligence, engineering, robotic, etc. Genetic
algorithms are based on the underlying genetic process in biological organisms and on the
natural evolution principles of populations. These algorithms process a population of chromo-
somes, which represent search space solutions, with three operations: selection, crossover and
mutation.

Under its initial formulation, the search space solutions are coded using the binary alphabet.
However, the good properties related with these algorithms do not stem from the use of
this alphabet; other coding types have been considered for the representation issue, such as
real coding, which would seem particularly natural when tackling optimization problems of
parameters with variables in continuous domains. In this paper we review the features of
real-coded genetic algorithms. Different models of genetic operators and some mechanisms
available for studying the behaviour of this type of genetic algorithms are revised and compared.
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Abbreviations: GAs – genetic algorithms; BCGA – binary-coded genetic algorithm; RCGA
– real-coded genetic algorithm

1. Introduction

Genetic algorithms(GAs) are general purpose search algorithms which use
principles inspired by natural genetic populations to evolve solutions to
problems (Holland, 1975; Goldberg, 1989a). The basic idea is to maintain a
population of chromosomes, which represent candidate solutions to the con-
crete problem, that evolves over time through a process of competition and
controlled variation. Each chromosome in the population has an associated
fitnessto determine which chromosomes are used to form new ones in the
competition process, which is calledselection. The new ones are created using
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genetic operators such ascrossoverandmutation. GAs have had a great mea-
sure of success in search and optimization problems. The reason for a great
part of their success is their ability to exploit the information accumulated
about an initially unknown search space in order to bias subsequent searches
into useful subspaces, i.e.,their adaptation. This is their key feature, particu-
larly in large, complex, and poorly understood search spaces, where classical
search tools (enumerative, heuristic,: : : ) are inappropriate, offering a valid
approach to problems requiring efficient and effective search techniques.

Fixed-length and binary coded strings for the representation of the solutions
have dominated GA research since there are theoretical results that show them
to be the most appropriate ones (Goldberg, 1991a), and as they are amenable
to simple implementation. But the GA’s good properties do not stem from
the use of bit strings (Antonisse, 1989; Radcliffe, 1992). For this reason,
the path has been lain toward the use of non-binary representations more
adequate for each particular application problem. One of the most important
ones is thereal number representation, which would seem particularly nat-
ural when optimization problems with variables in continuous search spaces
are tackled. So a chromosome is a vector of floating point numbers whose
size is kept the same as the length of the vector, which is the solution to
the problem. GAs based on real number representation are calledreal-coded
GAs(RCGAs). The use of real coding initially appears in specific applica-
tions, such as in (Lucasius et al., 1989) for chemometric problems, and in
(Davis, 1989) for the use of metaoperators in order to find the most adequate
parameters for a standard GA. Subsequently, RCGAs have been mainly used
for numerical optimization on continuous domains (Wright, 1991; Davis,
1991; Michalewicz, 1992; Eshelman et al., 1993; Mühlenbein et al., 1993;
Herrera et al., 1994; Herrera et al., 1995). Until 1991 specific theoretical stud-
ies about RCGA operation weren’t done and so the use of these algorithms
was controversial; researchers familiar with fundamental GA theory didn’t
understand the great success of RCGAs since this suggested that binary cod-
ing should be more effective than codings based on large alphabets. Later,
tools for the theoretical treatment of RCGAs were proposed (Wright, 1991;
Goldberg, 1991a; Radcliffe, 1991a; Eshelman et al., 1993) and so their
power was corroborated. Other evolution algorithms based on real coding
are theEvolution Strategies(ES) (B̈ack et al., 1991a; B̈ack et al., 1993;
Schwefel, 1995). The similarity between RCGAs and ES allows some of
their genetic operators to be exchanged (see (Mühlenbein et al., 1993)).

The main objective of this paper is to deal with the RCGAs. To do that,
first we study the binary coding and its advantages and drawbacks. Then we
study the main issues related with RCGAs and the tools for the analysis of
the RCGAs.
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We need to highlight that this paper is advisable and interesting for people
working on GAs and people that need a power search procedure for problems
with large, complex, and poorly understood search spaces. RCGAs demon-
strate to be ones of the most appropriate search methods on problems with
these features where continuous variables are implied.

We set up the paper as follows. In Section 2 we attempt to describe the
principal aspects of GAs, thinking of people that are not familiarized with
them. Then, in Section 3 we expose the particular features of binary-coded
GAs (BCGAs) and show the reasons argued for prefering binary alphabet,
which has been the most used through GA history. We also point out the
principal problems that appear when BCGAs are applied. In Section 4 we
attempt the RCGAs, we expose their advantages, we present and compare
the crossover and mutation operators proposed for these algorithms in the
literature, we deal with the application of RCGAs for handling convex spaces,
and finally, we treat the hybridization of RCGAs with other search methods.
In Section 5 we report tools that allow the behaviour of RCGAs to be studied
from a theoretical point of view. In Section 6 some conclusions are pointed
out.

2. Overview of GAs

A GA starts off with a population of randomly generatedchromosomes,
and advances toward better chromosomes by applying genetic operators,
modeled on the genetic processes occurring in nature. The population under-
goes evolution in a form of natural selection. During successive iterations,
calledgenerations, chromosomes in the population are rated for their adap-
tation as solutions, and on the basis of these evaluations, a new population
of chromosomes is formed using a selection mechanism and specific genetic
operators such as crossover and mutation. Anevaluationor fitness function,
f , must be devised for each problem to be solved. Given a particular chromo-
some, a solution, the fitness function returns a single numerical fitness, which
is supposed to be proportional to the utility or adaptation of the solution which
that chromosome represents.

Next, we offer a more detailed description of GAs by considering the
following themes: the structure of a basic GA, the representation issue,
the selection mechanism, the recombination through crossover and mutation
operators and the GAs applications.
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Procedure Genetic Algorithm
begin (1)

t = 0;
initializeP (t);
evaluateP (t);
While (Not termination-condition) do
begin (2)

t = t+ 1;
selectP (t) fromP (t� 1);
recombineP (t);
evaluateP (t);

end (2)
end (1)

Figure 1. Structure of a GA

2.1. Structure of a GA

Although there are many possible variants of the basic GA, the fundamental
underlying mechanism operates on a population of chromosomes or individ-
uals, which representing possible solutions to the problem, and consists of
three operations:
1. evaluation of individual fitness,
2. formation of a gene pool (intermediate population) through selection

mechanism and
3. recombination through crossover and mutation operators.
Figure 1 shows the structure of a basic GA.P (t) denotes the population at

generationt.

2.2. Representation Issue

Representation is a key issue in GA work because GAs directly manipu-
late a coded representation of the problem and because the representation
schema can severely limit the window by which a system observes its world
(Koza, 1992). Fixed-length and binary coded strings for the representation
solution have dominated GA research since there are theoretical results that
show them to be the most effective ones (Goldberg, 1991a), and as they are
amenable to simple implementation. But the GA’s good properties do not
stem from the use of bit strings (Antonisse, 1989; Radcliffe, 1992). This
reason motived in many cases that GA practitioners devised non-binary rep-
resentations, accompanied of genetic operators, more natural for the specific
application problems. Examples of such cases are the following:
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� vectors of floating point numbers, for chemometric problems (Lucasius
et al., 1989), numerical function optimization (Davis, 1991; Wright,
1991; Michalewicz, 1992; Herrera et al., 1994), evolving rule sets for
classification (Corcoran et al., 1994), optimal mutilayer filter design
(Michielssen et al., 1992), tuning fuzzy logic controllers (Herrera et al.,
1995), etc.

� vectors of integer numbers, for function optimization (Bramlette, 1991),
parametric design of aircraft (Bramlette et al., 1991), unsupervised learn-
ing of neural networks (Ichikawa et al., 1993), etc.

� ordered lists, for schedule optimization problems (Syswerda, 1991),
traveling salesman problem (Whitley et al., 1989), job-shop scheduling
problems (Fox et al., 1991)

� lisp expressions, for evolving computer programs for control tasks,
robotic planning and symbolic regression (Koza, 1992).

� two-dimensional matrix of integer numbers, for the linear transportation
problem (Michalewicz, 1991).

2.3. Selection Mechanism

Let’s considerP a population with chromosomesC1; :::; CN . The selection
mechanism produces a intermediate population,P 0, with copies of chromo-
somes inP . The number of copies received for each chromosome depends
on its fitness; chromosomes with higher fitness usually have a greater chance
of contributing copies toP 0. The selection mechanism consists of two steps,
the selection probability calculation and the sampling algorithm.

2.3.1. Selection Probability Calculation
For each chromosomeCi in P the probability,ps(Ci), of including a copy of
such chromosome intoP 0 is calculated. Most well-known selection mecha-
nisms use theproportional selection(Holland, 1975; Goldberg, 1989a) where
ps(Ci), i = 1; :::; N , is calculated as

ps(Ci) =
f(Ci)PN
j=1 f(Cj)

:

In this way, chromosomes with above-average fitness tend to receive more
copies than those with below-average fitness.

A different approach is theranking selection(Baker, 1985); the chromo-
somes are sorted in order of raw fitness, and thenps(Ci), i = 1; :::; N , is
computed according to the rank ofCi by using a non-increasing assignment
function.
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Figure 2. Selection application

Figure 3. Stochastic universal sampling

2.3.2. Sampling Algorithm
It reproduces, based on the selection probabilities computed before, copies of
chromosomes to formP 0. The classical one is thestochastic sampling with
replacement(Holland, 1975; Goldberg, 1989a); the population is mapped
onto a roulette wheel, where each chromosomeCi is represented by a space
that proportionally corresponds tops(Ci). By repeatedly spinning the roulette
wheel, chromosomes are chosen until all available positions inP 0 are filled.
Figure 2 shows an example of the application of a selection mechanism based
onstochastic sampling with replacement.

One of the most efficient sampling algorithms is thestochastic univer-
sal sampling(Baker, 1987). This procedure guarantees that the number of
copies of any chromosome,Ci, is bounded by the floor and by the ceiling
of its expected number of copies, i.e,ps(Ci) �N . This algorithm simulates a
roulette wheel withN equally distributed pointers. A single spin of the wheel
determines the number of copies assigned to every chromosomeCi, which
corresponds with the number of pointers that point to the region associated
with Ci. Figure 3 shows the roulette wheel associated with the selection
process of Figure 2 whenstochastic universal samplingis used.

A wide set of selection mechanisms are reviewed in (Bäck et al., 1991b).
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2.4. Recombination Through Crossover and Mutation

After selection has been carried out, the construction of the intermediate
population is complete and the operators of crossover and mutation are
applied.

2.4.1. Crossover Operator
The crossover operator is a method for sharing information between chro-
mosomes; it combines the features of two parent chromosomes to form two
offspring, with the possibility that good chromosomes may generate better
ones. The crossover operator is not usually applied to all pairs of chromo-
somes in the intermediate population. A random choice is made, where the
likelihood of crossover being applied depends on probability defined by a
crossover rate, the crossover probability,pc. The crossover operator plays a
central role in GAs, in fact it may be considered to be one of the algorithm’s
defining characteristics, and it is one of the components to be borne in mind to
improve the GA behaviour (Liepins et al., 1992). Definitions for this operator
(and the next one) are very dependent on the particular representation chosen.

2.4.2. Mutation Operator
The mutation operator arbitrarily alters one or more components,genes,
of a selected chromosome so as to increase the structural variability of the
population. The role of mutation in GAs is that of restoring lost or unexplored
genetic material into the population to prevent the premature convergence of
GA to suboptimal solutions; it insures that the probability of reaching any
point in the search space is never zero. Each position of every chromosome in
the population undergoes a random change according to a probability defined
by a mutation rate, the mutation probability,pm.

We should point out that after crossover and mutation, an additional selec-
tion strategy, calledelitist strategy, may be adopted (De Jong, 1975): to make
sure that the best performing chromosome always survives intact from one
generation to the next. This is necessary since it is possible that the best
chromosome disappears, thanks to crossover or mutation.

2.5. Applications of GAs

GAs may deal successfully with a wide range of problem areas. Mainly, the
reasons for this success are (Goldberg, 1991c): 1) GAs can solve hard prob-
lems quickly and reliably, 2) GAs are easy to interface to existing simulations
and models, 3) GAs are extensible and 4) GAs are easy to hybridize. All
these reasons may be summed up in only one: GAs arerobust. GAs are more
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powerful in difficult environments where the space usually is large, discon-
tinuous, complex and poorly understood. They are not guaranteed to find the
global optimum solution to a problem, but they are generally good at finding
acceptably good solutions to problems acceptably quickly.

In (Goldberg, 1989a) a wide review of applications realized before 1989
may be looked. During last years, GA applications have enormously grown
in many fields: engineering (Goldberg, 1989a; Davis, 1991), numerical func-
tion and combinatorial optimization (Goldberg, 1989a; Michalewicz, 1992;
Davis, 1991), robotic (Davidor, 1991), classifier systems (Holland et al., 1986;
Booker et al., 1989; Belew et al., 1991; Forrest, 1993), learning (Grefenstette,
1995), pattern recognition (Forrest et al., 1993), neuronal networks (Whitley
et al., 1992; Forrest, 1993), fuzzy systems (Cordon et al., 1995), artificial life
(Belew et al., 1991), etc.

3. Binary-Coded Genetic Algorithms

This section is devoted to BCGAs. First we present the binary coding. We
explain the crossover and mutation operators for this type of coding and show
a simple example of BCGA iteration. The schema theory, that describes the
GA behaviour, is treated. Then we expound the arguments for using the binary
alphabet, and finally, some drawbacks of BCGAs, dued to the binary coding
use, are presented.

3.1. Binary Coding

To represent the elements of a search spaceS = S1 � :::: � Sn by means
of the binary alphabet, a functioncodi : Si ! f0;1gLi , Li 2 N , should be
specified, which codes each element inSi using binary strings of lengthLi.

An elementx = (x1; :::; xn) 2 S (xi 2 Si) is represented by linking
together the codings of each one of its componentscod(x) = cod1(x1) :::
codn(xn).

3.2. Crossover Operator

The classical crossover operator is thesimple crossover(Holland, 1975;
Goldberg, 1989a), in which, given two chromosomesC1 = (c1

1 : : : c
1
L) and

C2 = (c2
1 : : : c

2
L) the offspringH1 = (c1

1; :::; c
1
i ; c

2
i+1; :::; c

2
L) and H2 =

(c2
1; :::; c

2
i ; c

1
i+1; :::; c

1
L) are generated, wherei is a random number belonging

to f1; :::; L� 1g. Figure 4 shows an example of this operator’s application.
Numerous research papers have been directed at finding alternative more

powerful crossover operators for BCGAs. Two of the most important ones
are:
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Figure 4. Simple crossover

Figure 5. Mutation

� n-point crossover(Eshelman et al., 1989): this is a generalization of
the simple crossover;n crossover points are randomly selected and the
segments of the parents, defined by them, are exchanged for generating
the offspring.

� uniform crossover(Syswerda, 1989): the values of each gene in the
offspring are determined by the uniform random choice of the values of
this gene in the parents.

Other types of crossover operators under binary coding are reported in (Eshel-
man et al., 1989).

3.3. Mutation Operator

Given a chromosome, a gene is randomly chosen and its value is swapped;
“1” for “0” and vice versa (Holland, 1975; Goldberg, 1989a). Figure 5 shows
an example of the application of mutation operator.

3.4. Example of BCGA Iteration

Next, we show an example of an iteration of a BCGA during only one gen-
eration for the functionf(x) = x2. The selection operator is the proportional
selection along with the stochastic sampling with replacement. The control
GA parameters arepc = 0:5,pm = 0:001 and the population size is 4. Given
the low value ofpm, no mutation is performed. The coding is based on the
binary code.

EXAMPLE 1. Table 1 shows the GA execution during a generation,t. This
generation may be divided into two step: the selection mechanism application
and the recombination process. We should point out that column 4 shows the
number of copies assigned to each chromosome by the selection mechanism
and that in column 5 the “j” symbol indicates the crossover point chosen for
the crossover operation.
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Table 1. Example of a BCGA iteration

Selection Mechanism Recombination

Population Fitness f(Ci)P
N

j=1
f(Cj)

Copies Population New Fitness

Ci f(Ci) Obtained Intermediate Population

0110 36 0.19 1 01j10 0101 25
0010 4 0.02 0 10j01 1010 100
1001 81 0.43 2 1001 1001 81
1000 64 0.34 1 1000 1000 64

Worst 4 25
Average 46.25 67.5
Best 81 100

A simple generation is sufficient for understanding the GA power; Worst,
Average and Best measures have grown during this generation.

3.5. The Schema Theory

One of the advantages of BCGAs is that their simple formulation is amenable
for a theoretical study. Holland in (Holland, 1975) developed theschema
theory, which presents results that explain the good GA behaviour.

Next we define the concept ofschemain order to present the most important
result of this theory: theschema theorem.

3.5.1. Schema Concept
GAs direct the search in the search space in a global form. The main concept
that describes this orientation is that ofschema. A schema is a similarity pat-
tern that describes a subset of strings with similar features in some positions.
Given an alphabetA, a schema is a string defined over the alphabetA[f?g.
The symbol? is adon’t carethat may be used as a substitute for any symbol
in A. For example, ifA = f0;1g then the schema� = ?11? 010 represents
the chromosomes:

f(0110010); (1110010); (0111010); (1111010)g:

Two useful features of a schema� are the following:
� Order of�, denoted byo(�): the number of fixed symbols in�.
� Defining length of�, denoted by�(�): the difference between the first

and the last fixed symbol in�.
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Now, we present theschema theorem, which assures that BCGAs allocate
their fitness function evaluations in an intelligent way.

3.5.2. Schema Theorem
Let us suppose a binary coding withL being the length of the chromosomes,
f(�) the average fitness of the instances of� in the population,�f the average
fitness of the elements in the population andm(�; t) the number of instances
of � (chromosomes that are contained in�) in the population at generation
t. The expected number of instances of this schema at the next generation,
t+ 1, after applying the selection, simple crossover and mutation operators,
obeys the next expression (Holland, 1975):

m(�; t+ 1) � m(�; t) �
f(�)
�f
� (1� pc �

�(�)

L� 1
) � (1� pm)

o(�):

m(�; t) � f(�)�f is the expected number of instances of� after the selection

mechanism application.(1� pc �
�(�)

L�1) is approximately the probability of
survival of� after the crossover operator application, it is high when�(�) is
low. (1� pm)

o(�) is the probability of survival of� after mutation operator
application, it is high wheno(�) is low. This result motivates theschema
theorem(Holland, 1975):

THEOREM 1.Short, low-order, above-average schemata, called building
blocks, receive exponentially increasing trials in subsequent generations.

An immediate result of this theorem is thebuilding block hypothesis(Gold-
berg, 1989a):

RESULT 1.A BCGA seeks near-optimal performance through the juxtaposi-
tion of building blocks.

This result means that the recombination of the building blocks kept in the
population allows chromosomes near the optimum to be reached. This is a
GA’s key feature, since it predicts good behaviour for these types of algo-
rithms. Example 2 illustrates the schema theorem in detail for the BCGA
iteration in Example 1.

EXAMPLE 2. Table 2 shows the effect of the generationt on four interesting
schemata. These schemata are different according their order, length and
performance (average fitness of instances). Column 2 shows the number of
instances of schemata before genetic process is applied and column 3 shows
the schema average fitness of schemata in this stage. The following columns
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Table 2. Schemata proccessing

� m(�; t) f(�) m(�; t+ 1) f(�)

1 ? ?? 2 72.5 3+ 81.66
01? ? 1 36 1 25
1 ? ?1 1 81 1 81
0 ? ?0 2 20 0�

represent the same information but after applying selection and crossover. A
plus sign in column 4 indicates that the generation has caused the number
of instances of schema to increase as compared to the number of instances
shown in column 2. The minus sign is defined in the same way.

1 ? ?? is a short (�(1 ? ??) = 0), low-order (o(1 ? ??) = 1) and above-
average schema (f(1 ? ??) = 72:5 and �f = 46:25), so it has received the
exponentially increasing of instances predicted by the schema theorem. 01??

is a below-average schema that keep the same number of instances because
it is short and low-order; the effect of crossover is not significant if schemata
show these features. 1? ?1 may be easily disrupted i.e., it is amenable to lose
instances due crossover, however it might keep its number of instances since
it is above-average. The case of 0? ?0 is different, this schema has lost its
instances.

3.6. Arguments for Using the Binary Alphabet

There have mainly been two arguments for using the binary alphabet. First,
this alphabet maximizes the level ofimplicit parallelism (a GA’s essential
property) (Goldberg, 1991a). Later, we shall see that there are a number of
counter-arguments to this. Second, the alphabetic characters associated with
a higher cardinal alphabet are not as well represented in a finite population
which forces the use of larger population sizes (Reeves, 1993) and thus
efficiency may decrease. This is a great problem when the evaluation of the
fitness function is very expensive. So, in this case, low cardinal alphabets
have to be used.

3.6.1. Binary Coding Favours on the Implicit Parallelism Property
An important interpretation of the schema theorem is suggested in (Holland,
1975): GAs process schemata instead of chromosomes. Although GAs super-
ficially seem to process only the particular individual binary chromosomes
actually present in the current population, they actually process, inparallel, a
large amount of useful information concerning unseen schemata. This impor-
tant property is calledimplicit parallelismand is one of the most important
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Table 3. Binary and octal coded elements

Binary Octal Fitness

000 0 22
011 3 8
101 5 11
111 7 3

underlying fundamentals of the genetic search. The following results asso-
ciate the maximum level of implicit parallelism with the binary alphabet
(Goldberg, 1991a):

THEOREM 2.For a given information content, strings coded with smaller
alphabets are representatives of larger numbers of similarity subsets (sche-
mata) than strings coded with larger alphabets.

An important result derived from this theorem is Result 2.

RESULT 2.The binary alphabet offers the maximum number of schemata
per bit of information.

Since implicit parallelism property means that GAs process schemata rather
than individual chromosomes, and according to Result 2, it is possible to
deduce that the binary alphabet maximizes the implicit parallelism level,
because it allows the sampling of the maximum number of schemata per
chromosome in the population. Therefore, the maximum efficiency level
is achieved. The influence of this property on the search process may be
observed in the next example (Goldberg, 1991a).

EXAMPLE 3. Let us suppose that four elements were coded using the bina-
ry and octal alphabets, as is shown in Table 3. When looking at the octal
coded elements, no relation between these elements and their fitness may be
induced. However, when analyzing the binary coding, each element belongs
to different subsets of elements related to it through similarities in the values
of specific positions. Common properties of the promising elements may be
found through these similarities. In particular, we would be able to explain
the goodness of the first element (000) since it has 00 on its left side, or 0 in
the medium position, as happens in element 101. The BCGA shall recombine
the similarities (schemata) of the elements with the best fitness for producing
better elements.
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Example 3 offers a clearly explanation of why binary coding favours on the
implicit parallelism property. However, there are different arguments against
this fact that will be presented in Subsection 3.7.3.

3.6.2. Low Cardinal Alphabets
There are many problems in which the number of fitness evaluations is limited.
Therefore, the use of small population sizes is required. In (Reeves, 1993)
is attempted the specification of the minimum population size to ensure an
initial population (generated at random) with the suitable property to avoid
subsequent poor behaviour. For Reeves this property lies in the following
principle:

“Every possible point in the search space should be reachable from the
initial population by crossover only”

Given an alphabetA (jAj = q), a population sizeN and a chromosome
lengthL, this principle may only be achieved if at least for each positioni

(i = 1; :::; L) and for each symbols 2 A there is a chromosome in the initial
population such thati hass. Reeves calculated the probability,p�(q;N;L),
that this happens, as follows:

p�(q;N;L) = (
q!S(N; q)

qN
)L;

whereS(N; q) is the Stirling number of the second kind, which is generated
by the recursion

S(N+1; q) = S(N; q�1)+qS(N; q), N � 1, q � 2 andS(N;1) = 1, 8N:

If a particular bound,�, for the previous probability is fixed, the relationship
betweenq andN may be studied. More specifically, given a value forq, the
minimum value ofN that allows the bound� to be kept may be calculated. In
this way, for any alphabet we may determinate the minimum population size
needed for keeping a determinate level of efficiency represented by�. For
different values ofL, 20;40; :::;200, and different values ofq, 2;3; :::;8, the
minimum value ofN , Nmin, such asp�(q;Nmin; L) > �, was determinated
by Reeves, with� = 0:95, 0:99 and 0:999. The results showed that, the
higherq is the higherNmin has to be for keeping the same bound ofp�.

The main conclusion of this is that for a given problem, the GA’s compu-
tational effort using an alphabet withq > 2 (power of two) for obtaining a
particular solution shall be higher than usingq = 2, since a greater popu-
lation size should be kept. This is intuitively reasonable, for example, eight
chromosomes are needed in order to represent all the possible values of an
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alphabet withq = 8 in a positioni, whereas ifq = 2, with the combination
of only two strings (000 and 111), the same information is represented, since
the crossover operator shall be able to generate values that are not explicitly
represented in the initial population.

In (Tate et al., 1993) a measure calledexpected allele coveragewas defined
with the same function asp�, i.e., given an alphabetA (jAj = q), to determine
the degree in which a population size,N , is adequate. Studies based on
this measure showed that complex codings may require larger population
sizes than the binary coding for achieving a desired expected allele coverage.
Clearly, this result is like to the one obtained by Reeves. For compensating the
problems associated with poor expected allele coverages Tate et al. proposed
to adjust the mutation probability. They showed that problems requiring
non-binary coding may benefit from mutation probabilities much higher than
those generally used with binary coding, which are very small (Goldberg,
1989a).

3.7. Drawbacks of Binary Coding

The binary representation meets certain difficulties when dealing withcon-
tinuous search spaceswith large dimensions and a great numerical precision
is required. A problem occurs when a variable may only have a finite number
(which is not a power of 2) of discrete valid values. In this case, some of the
binary codes areredundant. In the following these two issues are considered
together with different arguments against the binary coding favours on the
implicit parallelism property expounded in the Subsection 3.6.1.

3.7.1. Problems in Continuous Search Spaces
Two types of binary coding were mainly considered for representing a para-
meterxi belonging to a continuous intervalSi = [ai; bi]: the binary code
(Holland, 1975; Goldberg, 1989a) andthe Gray code(Caruana et al., 1988).

Prior to the codification, a transformation from the interval[ai; bi] to the
setf0; :::;2Lig (Li is the number of bits in the coding) is carried out. Then,
the resultant elements are coded using one of the aforesaid codings. This
transformation implies a discretization of the interval[ai; bi], which has the
following associate precision,�:

� =
bi � ai

2Li � 1
:

A string (c1; :::; cLi), ci 2 f0;1g, coded under the binary code represents the
integerv 2 f0; :::;2Li � 1g,
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Table 4. Comparison of binary and Gray codings

Integers Binary Gray

0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

v =
LiX
j=1

cj2(Li�j):

The Hamming distances of the Gray codings of two consecutive integers differ
in one. Given a binary coded string(c1; :::; cLi ) the conversion formula for
obtaining the corresponding Gray coded string(g1; :::; gLi ) is the following:

gk =

�
c1 if k = 1
ck+1 � ck if k > 1

where� denotes addition module 2. The inverse conversion is defined by
means of the following expression.

ck =
kX
j=1

gj ;

where the sum is done in module 2. Table 4 shows the coding of integers 0 to
15 using binary and Gray codings.

TheLi parameter determines the search space magnitude. Also, it delimits
the precision of the returned solution (� depends onLi). This may produce
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000 001 010 011 100 101 110 111

Figure 6. Fitness function with Hamming cliff

difficulties when problems with large dimensions and requirements of great
numerical precision are dealt with. In (Michalewicz, 1992) an example of
such a problem was reported:

EXAMPLE 4. For 100 variables with domains in the range[�500;500],
where the precision of six digits after the decimal point is required, the length
of the binary solution vector is 3000. This, in turn, generates a search space
of about 101000.

The BCGA’s performance in these problems may be poor (Schraudolph et al.,
1992). During the first stages, the algorithm wastes great efforts evaluating the
less significant digits of the binary coded parameters. However, their optimum
values shall depend on the most significant digits, therefore, whereas these
ones don’t converge, their manipulation shall be useless. When convergence
of the most significant digits is achieved, it is not necessary to waste more
efforts on them. This ideal behaviour is not achieved in the BCGAs, since
these algorithms handle all the digits in a similar way; often, the less significant
digits converge towards an arbitrary value in the first stages. This causes the
next search not to be efficient and thus the precision reached is not suitable.

One direction followed by BCGA research for achieving precision lies in
executing the algorithm repeatedly, in such a way that the initial population of
an execution� shall be made up by therecodingof the elements that belong
to the final population generated in the execution� � 1. The recoding is used
for mapping these elements in a smaller search space, which is identified
as a zone that is near the global optimum. Since during each run the action
interval of the parameters is limited, the precision shall be more refined.
Two techniques based on this idea for refining precision have been proposed:
ARGOT (Shaefer, 1987), dynamic parameter encoding (Schraudolph et al.,
1992) and delta coding (Whitley et al., 1991).
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An effect that appears using the binary alphabet for representing elements
in continuous domains is the so-calledHamming cliff. It is produced when
the binary codings of two adjacent values differs in each one of their bits,
for example, the strings 01111 and 10000 represent the values 31 and 32,
respectively, and the values of each one of their positions are different. The
Hamming cliff may produce problems under some conditions, such as the
convergence towards no global optimums. Figure 6 is an example of this
(Goldberg, 1991a). As is shown in this figure, the elements placed in the
left half have an above average fitness sincef(0 ? ?) > f(1 ? ?). A GA is
fairly likely to converge initially to 011. The global optimum 100 is near to
the element 011, however the Hamming distance between them is too high
(three changes for accessing from 011 to 100 are required). This access is
improbable when using the mutation operator (it is ofO(p3

m)). Therefore,
convergence is likely to be produced towards the element 011. This problem
may be solved by using the Gray code (Caruana et al., 1988), but doing so
introduces higher order nonlinearities with respect to recombination, which
causes the degree of implicit parallelism to be reduced (Goldberg, 1989b).

3.7.2. Redundance
When the binary alphabet is assumed for coding a parameter belonging to a
finite discrete set with a cardinal different from a power of two, some codes
may beredundant, e.g., their decodings correspond to values that don’t belong
to the domain of the parameter.

For example, consider a parameterxi 2 Si whereSi is a finite discrete set
with jSij = 10. Using the binary alphabet, a minimum of four bits are needed
for coding the elements inSi. If codes 0000 to 1001 are selected for coding
its elements, then, what do the codes 1010 to 1111 represent?

The existence of redundant codes states a problem since it may not be guar-
anteed that after the application of the crossover and mutation operators the
codes generated are not redundant. Mechanisms to limit these types of codes
in the population are needed. In (Beasley et al., 1993) the following possibil-
ities are reviewed: 1) discard the redundant codes generated or 2) assign low
fitness to the chromosomes with redundantcodes or 3) associate the redundant
codes with valid ones. Solutions 1) and 2) may produce a loss of important
genetic materials simply because they link together redundant codes, which
may induce poor GA behaviour. There are different mechanisms for carrying
out the latter possibility, includingfixed remappingandrandom remapping.
With the former, each redundant code has a specific valid associated code to
it. It is a very simple mechanism, but has the disadvantage that some values
in the domain are represented by two different strings whereas the others only
use one. With random remapping, each redundant code is associated with a
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valid code in a random way. This avoids the representational bias problem
(Eshelman et al., 1989), but also causes less information to be passed on
from parents to offspring. There is a hybrid alternative calledprobabilistic
remappingin which every code (redundant or valid) is remapped to one of
two valid codes in a probabilistic way, such that each valid code is equally
likely to be represented.

3.7.3. Criticisms Against the Binary Coding Favours on the Implicit
Parallelism Property

In the following we present three criticisms against the related advantage.

Schemata May Bear No Significance

Let S be a search space withjSj = 2L andBL being the set of binary
strings of lengthL. Then there are 2L! possible representations ofS using
BL associated with the set

� = f�j� : S ! BL; � is injectiveg:

In (Liepins et al., 1990) theoretical results are presented that show the impor-
tance of selecting good representations (� functions) and that these good
representations are problem dependent. Knowing the best representation for
a problem is tantamount to knowing how to solve the proper problem; in
general the GA user cannot be expected to supply it. If a representation is
randomly selected from�, perhaps the schemata shall bear no significance
(Radcliffe, 1992) i.e., schemata don’t relate chromosomes to correlated per-
formance. Under these circumstances it should be clear that gathering infor-
mation about the performance of any subset of the chromosomes (schemata)
provides no information about the performance of the remaining ones. All
schemata of the same order will tend to have roughly identical average fitness,
and the evolutionary mechanism of the GA cannot distinguish among them
(Tate et al., 1993) and so the search may not be effective.

A particular case related with the non-significance of schemata is the so-
calleddeception(Goldberg, 1989a). It follows from the schema theorem that
the number of instances of a schema is expected to increase in the next
generation if it is above-average and is not disrupted by crossover. Therefore,
such schemata indicate the area within the search space that the GA explores
and hence it is important that at some stage, these schemata contain the global
optimum. Deception occurs when this is not true, since there are certain
schemata that guide the search toward some solution that is not globally
competitive. It is due since the schemata that have the global optimum don’t
bear significance and so they may not proliferate during the genetic process.
Example 5 shows a problem where deception is present (Goldberg et al.,
1989).
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Table 5. Problem with deception

Chromosomes Fitness

000 28
001 26
010 22
100 14
110 0
011 0
101 0
111 30

EXAMPLE 5. Let us consider the problem shown in Table 5. For this problem
the following relationships are hold:

f(0 ? ?) > f(1 ? ?) f(00?) > f(11?), f(01?), f(10?)
f(?0?) > f(?1?) f(0 ? 0) > f(1 ? 1), f(0 ? 1), f(1 ? 0)
f(? ? 0) > f(? ? 1) f(?00) > f(?11), f(?01), f(?10)

Although chromosome 111 is the global optimum we may predice that a
BCGA will have some difficulties in converging to it since almost none
of the schema that contains this chromosome relates other chromosomes to
correlated high performance. Moreover, there are many schemata that direct
the search toward the chromosome 000 because they keep a good level of
high performance correlation between their instances.

Inappropriate Schemata

A space with 2L elements has 22
L

subsets. If a representation based on an
alphabet withk elements is used, there shall be a maximum of(k+1)n subsets
that may be considered schemata. Subsets of the space may be built that group
together promising chromosomes that share properties from which their good
behaviour may be deduced. However, it is possible that these subsets don’t
form a schema, are not even contained in any schemata (except the most
general one?:::?) (Radcliffe, 1992). For example, coding the integers 0 to
15 using four digits, the representatives of 7 and 8 (0111 and 1000) share
membership of no schema except?:::?.

Not only schemata obey the schema Theorem

The maximum implicit parallelism degree reached by the binary alphabet is
supported only if attention is restricted to classical schemata. This restriction
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is inappropriate since other schema definition under different coding types
may be found allowing such a property to be also fulfilled (Antonisse, 1989;
Radcliffe, 1991a; Vose, 1991).

4. Real-Coded Genetic Algorithms

In this section we treat the RCGA issues. We begin with the real coding study
where different real coding models are presented. The advantages of the real
representation are discussed. Then, mutation and crossover operators, that
have appeared in the literature for working under real coding, are reviewed.
An empirical comparison of some RCGAs built with different genetic operator
configurations, is done. Mechanisms for tackling populations with elements
belonging to constrained continuous spaces are described, and finally, some
approaches for hybridization between RCGAs and other search methods are
considered.

4.1. Real Coding

As has already been pointed out, it would seem particularly natural to represent
the genes directly as real numbers for optimization problems of parameters
with variables in continuous domains. Then a chromosome is a vector of
floating point numbers, the precision of which will be restricted to that of
the computer with which the algorithm is carried out. The size of the chro-
mosomes is kept the same as the length of the vector which is the solution
to the problem; in this way,each gene represents a variable of the problem.
The values of the genes are forced to remain in the interval established by
the variables which they represent, so the genetic operators must observe this
requirement.

There are some representation models which are discarded from the previ-
ous one,one gene-one variable. In (Voigt, 1992) and (Voigt, 1993) a coding
type is described under which each problem parameter has associated a num-
ber ofm decision genes belonging to the interval[0;1]. The chromosomes
are formed by the link of the values of the decision genes in each parame-
ter. For each parameter, the decoding process is carried out using a function
g : [0;1]m ! [0;1], and a lineal transformation from the interval [0,1] to
the corresponding parameter domain. As an example of such a function the
authors presented the following:

8d = (d1; :::; dm) 2 [0;1]m g(d) =
1

2m�1 � 1

mX
j=1

dj2j�1:
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Whenm > 1, this coding type breaks the one-to-one correspondencebetween
genotype and phenotype, since two different genotypes may induce the same
phenotype. So, it is impossible to find inferences from phenotype to genotype,
i.e., the mapping from genotype to phenotype is notisomorphic. The idea
followed by the authors is to emphasize the complexity of development from
genotype to a mature phenotype occurring in nature. There are no one-gene,
one-trait relationships in natural evolved systems. The phenotype varies as a
complex, non-linear function of the interaction between underlying genetic
structures and current environmental conditions. Nature follows the universal
effects ofpleiotropyandpolygeny. Pleiotropy is the fact that a single gene may
simultaneously affect several phenotype traits. Polygeny is the effect when
a single phenotypic characteristic may be determined by the simultaneous
interaction of many genes (Fogel, 1994). The model in (Voigt, 1992) and
(Voigt, 1993) is an attempt to include this last effect in the GA’s behaviour.

During the 1960s, a research line of algorithms based on natural evolu-
tion, calledEvolution Strategies(ES) (B̈ack et al., 1991a; B̈ack et al., 1993;
Schwefel, 1995), was developed in Germany. The use of real representation
is one of their main features. At first, mutation was the only recombination
operator and the population was made up by only one element. Later, their
study was extended by considering other recombination operators and pop-
ulations with larger sizes. The chromosomes used by the ES are made up
by a pair of float-valued vectors(x; �), wherex 2 S (search space) and�
is a vector of standard deviations employed by the mutation operator. The
mutation is executed by replacingx by x+N(0; �), N(0; �) being a vector
of independent random Gaussian numbers with a mean of zero and stan-
dard deviations�. One author (M̈uhlenbein et al., 1993) proposed genetic
operators for RCGAs by extending existing operators for ES. In this paper,
we study only the aspects related to the RCGAs, however we need to point
out that the similarity between these algorithms facilitates the exchange of
genetic operators between them.

4.2. Real Coding Advantages

The use of real parameters makes it possible to use large domains (even
unknown domains) for the variables, which is difficult to achieve in binary
implementations where increasing the domain would mean sacrificing preci-
sion, assuming a fixed length for the chromosomes. Another advantage when
using real parameters is their capacity to exploit thegradualityof the func-
tions with continuous variables, where the concept of graduality refers to the
fact that slight changes in the variables correspond to slight changes in the
function. In this line, a highlighted advantage of the RCGAs is the capacity
for thelocal tuningof the solutions. There are genetic operators such asnon-
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uniform mutation(Michalewicz, 1992) that allows the tuning to be produced
in a more suitable and faster way than in the BCGAs, where the tuning is
difficult because of the Hamming cliff effect.

Using real coding the representation of the solutions is very close to the
natural formulation of many problems, e.g., there are no differences between
thegenotype(coding) and thephenotype(search space). Therefore, the coding
and decoding processes that are needed in the BCGAs are avoided, thus
increasing the GA’s speed. In (Radcliffe, 1992) it is suggested that a distinction
between genotype and phenotype is not necessary for evolution. Thus, it is
not justified that the definition of the genetic operators should be made upon
the representation chosen. On the contrary, the author argued that whenever
possible,genetic operators and the analogues of schemata should be directly
defined in the space for phenotypes. The genetic operators and the schema
concepts presented in the literature for RCGAs agree with the Radcliffe’s
idea.

For Antonisse (Antonisse, 1989) binary coding is purposefully simple,
while much of the work in the artificial intelligence community has been to
develop highly expressive relatively complex representations. He presented
a new schema interpretation that overturns the theoretical suitability of the
binary alphabet in favour of the high cardinal alphabets. Further, for pointing
out the importance of the expressiveness in the coding, he wrote:

“ : : :This interpretation aligns theory with the intuition that the more
expressive a language is the more powerful an apparatus for adaptation
it provides, and encourages exploration of alternative encoding schemes
in GA research.”

Clearly, since with the use of real coding the genotype and phenotype are
similar, the expressiveness level reached is very high.

Along with these ideas, the relationship between the GAs and thedomain
knowledgeneed to be discussed. For Davis (Davis, 1989) most real-world
problems may not be handled using binary representations and an operator
set consisting only of binary crossover and binary mutation. The reason is
that nearly every real-world domain has associated domain knowledge that is
of use when one is considering a transformation of a solution in the domain.
Davis believes that the real-world knowledge should be incorporated into
the GA, by adding it to the decoding process or expanding the operator set.
Real coding allows the domain knowledge to be easily integrated into the
RCGAs for the case of problems with non-trivial restrictions, as we shall see
below.
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4.3. Crossover Operators

Let us assume thatC1 = (c1
1 : : : c

1
n) andC2 = (c2

1 : : : c
2
n) are two chromo-

somes that have been selected to apply the crossover operator to them. Below,
the effects of different crossover operators for RCGAs are shown.

We should point out that since each crossover operator generate a different
offspring number, a selection mechanism for deciding the ones that shall be
included in the population is sometimes needed. This selection mechanism
shall be calledoffspring selection mechanism.

Flat crossover(Radcliffe, 1991a)
An offspring,H = (h1; :::; hi; :::; hn), is generated, wherehi is a randomly

(uniformly) chosen value of the interval[c1
i ; c

2
i ].

Simple crossover(Wright, 1991; Michalewicz, 1992)
A position i 2 f1;2; :::; n � 1g is randomly chosen and the two new

chromosomes are built

H1 = (c1
1; c

1
2; :::; c

1
i ; c

2
i+1; :::; c

2
n)

H2 = (c2
1; c

2
2; :::; c

2
i ; c

1
i+1; :::; c

1
n)

Arithmetical crossover (Michalewicz, 1992)
Two offspring,Hk = (hk1; :::; h

k
i ; :::; h

k
n) k = 1;2; are generated, where

h1
i = �c1

i + (1� �)c2
i andh2

i = �c2
i + (1� �)c1

i . � is a constant (uniform
arithmetical crossover) or varies with regard to the number of generations
made (non-uniform arithmetical crossover).

BLX-� crossover(Eshelman et al., 1993)
An offspring is generated:H = (h1; :::; hi; :::; hn), wherehi is a randomly

(uniformly) chosen number of the interval[cmin�I ��; cmax+I ��], cmax =
max(c1

i ; c
2
i ), cmin = min(c1

i ; c
2
i ), I = cmax � cmin. The BLX-0.0 crossover

is equal to the flat crossover.

Linear crossover(Wright, 1991)
Three offspring,Hk = (hk1; :::; h

k
i ; :::; h

k
n) k = 1;2;3; are built, where

h1
i =

1
2c

1
i +

1
2c

2
i , h

2
i =

3
2c

1
i �

1
2c

2
i andh3

i = �
1
2c

1
i +

3
2c

2
i .

With this type of crossover an offspring selection mechanism is applied,
which chooses the two most promising offspring of the three to substitute
their parents in the population.

Discrete crossover(Mühlenbein et al., 1993)
hi is a randomly (uniformly) chosen value from the setfc1

i ; c
2
i g
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α i βia bi iα i βi’ ’

Exploration ExplorationExploitation

Relaxed Exploitation

Figure 7. Action interval for a gene

Extended line crossover(Mühlenbein et al., 1993)
hi = c1

i + �(c2
i � c1

i ) and� is a randomly (uniformly) chosen value in the
interval[�0:25;1:25].

Extended intermediate crossover(Mühlenbein et al., 1993)
hi = c1

i + �i(c
2
i � c1

i ) and�i is a randomly (uniformly) chosen value in
the interval[�0:25;1:25]. This operator is equal to the BLX-0.25.

Wright’s heuristic crossover (Wright, 1990)
Let’s suppose thatC1 is the parent with the best fitness. Thenhi = r � (c1

i �

c2
i ) + c1

i andr is a random number belonging to[0;1].

Linear BGA crossover(Schlierkamp-Voosen, 1994)
Under the same consideration as above,hi = c1

i � rangi �  � �, where

� =
c2
i�c

1
i

kC1�C2k
.

The “�” sign is chosen with a probability of 0.9. Usually,rangi is 0:5 �
(bi � ai) and =

P15
k=0�k2

�k where�i 2 f0;1g is randomly generated
with p(�i = 1) = 1

16. This operator is based onMühlenbein’s mutation
(Mühlenbein et al., 1993).

Fuzzy Connectives Based Crossover (FCB)(Herrera et al., 1994)
In short, the interval of action of the genei [ai; bi] may be divided into

three regions[ai; �i], [�i; �i], and[�i; bi], where good descendents may be
obtained; even considering a region[�0i; �

0
i] with �0i � �i and�0i � �i would

seem reasonable. Figure 7 shows this graphically.
The intervals described above may be classified asexplorationor exploita-

tion zones. The interval with both genes being the extremes is an exploitation
zone, the two intervals that remain on both sides are exploration zones and the
region with extremes�0i and�0i could be considered as arelaxed exploitation
zone.

We shall now go on to put forward a set of crossover operators that allow
descendents to be obtained in the previous intervals. The variety of descen-
dents in the interval of action guarantees thepopulation diversity, and prevents
the fast search space reduction, i.e., thepremature convergence.

In order to do so, we shall use four functionsF , S, M andL defined from
[a; b]� [a; b] in [a; b], a; b 2 <, and which fulfill:
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(P1) 8c; c0 2 [a; b] F (c; c0) � minfc; c0g,
(P2) 8c; c0 2 [a; b] S(c; c0) � maxfc; c0g,
(P3) 8c; c0 2 [a; b] minfc; c0g �M(c; c0) � maxfc; c0g,
(P4) 8c; c0 2 [a; b] F (c; c0) � L(c; c0) � S(c; c0),
(P5)F , S, M , y L are monotone and non-decreasing.

Let us assume thatQ 2 fF; S;M;Lg and thatC1 = (c1
1 : : : c

1
n) andC2 =

(c2
1 : : : c

2
n)are two chromosomes that have been selected to apply the crossover

operator to them. We may generate the chromosomeH = (h1; :::; hi; :::; hn)
as

hi = Q(c1
i ; c

2
i ); i = 1; :::; n:

T-norms, t-conorms, averaging functions and generalized compensation oper-
ators (Mizumoto, 1989a; Mizumoto, 1989b) may be used to obtainF , S, M
andL operators. We shall associateF to a t-normT , S to a t-conormG,
M with an averaging operatorP , andL with a generalized compensation
operatorĈ. In order to do so, we need a set of linear transformations to be
able to apply these operators under the gene definition intervals.

Complying with a set of fuzzy connectives, (T;G; P; Ĉ), a set of associated
functionsF , S, M andL is built, which are described below:

If c; c0 2 [a; b] then

F (c; c0) = a+ (b� a) � T (s; s0)

S(c; c0) = a+ (b� a) �G(s; s0)

M(c; c0) = a+ (b� a) � P (s; s0)

L(c; c0) = a+ (b� a) � Ĉ(s; s0)

wheres = c�a
b�a

y s0 = c0�a
b�a

.
These operators have the property of being continuous non-decreasing

functions.
Making use of the previously proposed crossover operators, different RCGAs

may be built, which are differentiated according to how they carry out the
following two steps:
1. Generation of offspring using the different operators defined.
2. Selection of offspring resulting from the crossover which will form part

of the population.
The proposal in (Herrera et al., 1994) was the following: For each pair of
chromosomes from a total of1

2�pc�N , four offspring are generated, the result
of applying specific functionsF , S, M , andL to them. All four offspring
will form part of the population, in such a way that two of them substitute
their parents and the other two substitute two chromosomes belonging to the
remaining 1

2 of the population that should undergo crossover. In this way,
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we include in the population two elements with exploration properties, one
element with exploitation and another with relaxed exploitation. Thus, the
exploration/exploitation relationship established shall bias the diversity.

We should point out that in (Karlin, 1968) a general crossover model for
RCGAs was proposed callednonrandom mating scheme. The basic idea
is to combine the two parents in a deterministic form; the offspring is a
summation of its two parents scaled by two weighting matrices satisfying
certain conditions of boundedness. The arithmetical and linear crossovers are
two instances of these types of crossover models. In (Qi et al., 1994b) these
models are generalized by allowing the weighting matrices to be formed
by random values, i.e. a stochastic strategy. This new model includes the
following crossover types:

1. thediscreteone when the scaling matrices are diagonal containing only
zeros and ones, and they add up to the identity matrix.

2. BLX-� and the two extended ones, when the weighting matrices are still
diagonal but may contain elements other than zeros and ones and the two
matrices may not add up to the identity matrix.

The effect of the crossover operators may be studied from two points of
view: the gene level and the chromosome level. From the gene level, most
crossover operators presented use the exploitation interval, which seems intu-
itively natural. However, studies made on BLX-� (Eshelman et al., 1993) and
FCB crossover (Herrera et al., 1994) confirm the suitability of considering
relaxed exploitation intervals as well. For the case of BLX-� in the absence
of selection pressure all values� < 0:0 will demonstrate a tendency for the
population to converge towards values in the centre of their ranges, produc-
ing low diversity levels in the population and inducing a possible premature
convergence toward non optimal solutions. Only when� = 0:5 a balanced
relationship between the convergence (exploitation) and divergence (explo-
ration) is reached, since the probability that an offspring shall lie outside
its parents becomes equal to the probability that it shall lie between its par-
ents. Other types of crossover operators, besides BLX-� (� > 0:0) and FCB
crossover, handle genes that don’t belong to the interval made up by the parent
genes, such as the linear and the two extended crossovers.

For each crossover operator presented earlier, Table 6 has a figure showing
its effect on a genei. Without any loss of generality, it is supposed thatc1

i � c2
i

andf(C1) � f(C2).
From the chromosome level the effect of the crossover may be considered

in a geometric way. Let us suppose two parentsX andY , we shall denote
Hxy the hypercube defined by the component ofX andY . We may observe
that the discrete and simple crossover generate a corner ofHxy, the extended
intermediate crossover may generate any point within a slightly larger hyper-
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Table 6. Crossover operators for RCGAs

Arithmetical

ci
21

3
λ= 2

3
λ=

2
1λ=

a bci i i
1

BLX-�
ci
2

α I α I

a bci i i
1

I

Linear
ci
2a bci i i

1

Discrete
ci
2a bci i i

1

Extended

ci
2

1
4

Ι 1
4

Ι

a bci i i
1

Ι

Wright’s heuristic

i
1c

i
1c-c2

i

a bi ic2
i

Linear BGA
i
1c ci

2

Λ.rangi Λ.rangi

a bi i

FCB

α i βia bi iα i βi’ ’

L

F SM

cube thanHxy, and the extended line and the linear crossover generate a point
on the line defined byX andY .

Finally, we consider the case of heuristic and linear BGA crossovers. Both
include the goodness of the parents for generating the offspring. The heuristic
one does it for determining suitable directions of the search process, it pro-
duces offspring in the exploration zone which is located at the side of the best
parent. The linear BGA operator simulates the behaviour of Mühlenbein’s
mutation for generating offspring near to the best parent, it may generate
them in exploitation or exploration zones, however the probability of visiting
ones in the second type is very high.

4.4. Mutation Operators

Let us supposeC = (c1; :::; ci; :::; cn) a chromosome andci 2 [ai; bi] a gene
to be mutated. Next, the gene,c0i, resulting from the application of different
mutation operators is shown.
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Random mutation (Michalewicz, 1992)
c0i is a random (uniform) number from the domain[ai; bi].

Non-uniform mutation (Michalewicz, 1992)
If this operator is applied in a generationt, andgmax is the maximum

number of generations then

c0i =

�
ci +4(t; bi � ci) if � = 0
ci �4(t; ci � ai) if � = 1

with � being a random number which may have a value of zero or one, and

4(t; y) = y(1� r
(1� t

gmax
)b);

wherer is a random number from the interval[0;1] and b is a parameter
chosen by the user, which determines the degree of dependencyon the number
of iterations. This function gives a value in the range[0; y] such that the
probability of returning a number close to zero increases as the algorithm
advances. The size of the gene generation interval shall be lower with the
passing of generations. This property causes this operator to make a uniform
search in the initial space whent is small, and very locally at a later stage,
favouring local tuning.

Real Number Creep(Davis, 1991)
When a continuous function is optimized with local maximums and min-

imums and, at a given moment in time, a chromosome is obtained which
is situated in a good local maximum, it would be interesting to generate
other chromosomes around this chromosome in order to come close to the
the peak point of such a maximum. In order to do this, we may slide the
chromosome into a value which increases or decreases it by a small random
quantity. The maximum slide allowed is determined by a parameter defined
by the user. Different instances of this operator have been presented, such
as the Guaranteed-Big-Creep and the Guaranteed-Little-Creep (Davis, 1989)
and the small creep and the large creep (Kelly et al., 1991). The difference
between these operators lies in the value of the maximum slide allowed.

Mühlenbein’s mutation (Mühlenbein et al., 1993)

c0i = ci � rangi � ;

whererangi defines the mutation range and it is normally set to 0:1�(bi�ai).
The+ or� sign is chosen with a probability of 0.5 and

 =
15X
k=0

�k2
�k;
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Figure 8. Discrete modal mutation

�i 2 f0;1g is randomly generated withp(�i = 1) = 1
16.

Values in the interval[ci � rangi; ci + rangi] are generated using this
operator, with the probability of generating a neighbourhood ofci being
very high. The minimum possible proximity is produced with a precision of
rangi � 2�15.

The following operators are a generalization of the previous one. They only
differ by how is computed.

Discrete modal mutation(Voigt et al., 1994)

 =
�X
k=0

�kB
k
m;

with � = b
log(rangmin)

log(Bm)
c. Bm > 1 is a parameter called the base of the

mutation andrangmin is the lower limit of the relative mutation range.
Figure 8 shows the possible change produced by this operator. NVS and

PVS denote negative and positive very small mutations, respectively and
NVL and PVL negative and positive very large mutations respectively.
Continuous modal mutation (Voigt et al., 1994)

 =
�X
k=0

�k�(B
k
m);

with �(zk) being a triangular probability distribution withB
k
m�B

k�1
m

2 � zk �

B
k+1
m �Bkm

2 . Figure 9 shows the effects of this operator.

4.5. Experiments

Minimization experiments on the functions in Table 7 have been carried out.
f1 andf2 were proposed in (De Jong, 1975) andf3 in(Törn et al., 1989). We
have consideredn = 25 and the RCGAs shown in Table 8. Table 9 shows the
connectives used by each one of FCB crossovers considered in Table 8.
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Figure 9. Continuous modal mutation

Table 7. Test functions

Definition Intervals Optimum

f1(~x) =
Pn

i=1
x2
i �5:12� xi � 5:12 f�1 (0; : : : ; 0) = 0

f2(~x) =
Pn�1

i=1
(100� (xi+1 � x2

i)
2 + (xi � 1)2) �5:12� xi � 5:12 f�2 (1; : : : ; 1) = 0

f3(~x) =
1

4000

Pn

i=1
x2
i �

Qn

i=1
cos
�
xip
i

�
+ 1 �600:0� xi � 600:0 f�3 (0; : : : ; 0) = 0

Table 8. Real-Coded Genetic Algorithms

Algorithms Mutation Crossover

RCGA1 Random Simple

RCGA2 Non-uniform (b = 5) Simple

RCGA3 Random Arithmetical (� = 0:5)

RCGA4 Non-uniform (b = 5) Arithmetical (� = 0:5)

RCGA5-� Non-uniform (b = 5) BLX-� (� = 0; :15; :3; :5)

RCGA6 Non-uniform (b = 5) Linear

RCGA7 Mühlenbein Discrete

RCGA8 Mühlenbein Extended line

RCGA9 Mühlenbein Extended intermediate

RCGA10 Modal Discrete Extended intermediate

(Bm = 2, rangmin = 1:0e� 05)

RCGA11 Modal Continuous Extended intermediate

(Bm = 2, rangmin = 1:0e� 05)

RCGA12 Non-uniform (b = 5) Wright’s heuristic

RCGA13 Mühlenbein Linear BGA

RCGA14-Log Non-Uniform Logical FCB ( = 0:5)

RCGA14-Ham Non-Uniform Hamacher FCB ( = 0:5)

RCGA14-Alg Non-Uniform Algebraic FCB ( = 0:5)

RCGA14-Ein Non-Uniform Einstein FCB ( = 0:5)
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Table 9. Fuzzy Connectives used by the FCB crossovers

FCB cros. t-norm t-conorm Averaging Fun. Gen. Comp. Op.

T (x; y) G(x; y) P (x; y) ( 2 [0;1]) Ĉ(x; y)

Logical min(x; y) max(x; y) (1�  )x+  y T 1� �G 

Hamacher xy
x+y�xy

x+y�2xy
1�xy

1
y�y �xy+x 

xy
+1

P (T;G)

Algebraic xy x+ y � xy x1� y P (T;G)

Einstein xy
1+(1�x)(1�y)

x+y
1+xy

2
1+( 2�x

x
)1� (

2�y
y

) 
P (T;G)

A binary-coded GA (BCGA) has also been included, which is based on
a two point crossover. For this purpose, we used the GENESIS program
(Grefenstette, 1990). The number of binary genes assigned to each variable
is 11 forf1 andf2 and 31 forf3 Therefore, the precision,�, is approximately
10�6.

We carried out our experiments using the following parameters: the popula-
tion size is 61 individuals, the crossover probabilitypc = 0:6, the probability
of mutationpm = 0:005, the parameterb used by the non-uniform muta-
tion is 5, the selection procedure was linear ranking (Baker, 1985) and elitist
selection (De Jong, 1975) and the sampling model was stochastic universal
sampling (Baker, 1987). We executed all the algorithms 5 times, each one
with 5000 generations. For each function a table is presented. From left to
right the average values are shown for the best ones found in 100, 500, 1000
and 5000 generations, theOnlinemeasure (De Jong, 1975) (average of the fit-
ness of all the elements appearing throughout the GA’s execution), theOffline
measure (De Jong, 1975) (average of the fitness of the best elements found
in each generation) and finally the last generation in which the best element
was found. The results are presented in Tables 10, 11 and 12.

Next, we analyse the results obtained.

4.5.1. Analysis of the Results
Looking back over the results, we may observe that BCGA shows no good
behaviour. As it is expected, BCGA doesn’t show an efficient progress on
continuous search spaces.

The comparison between RCGA1 and RCGA2 on the one hand and RCGA3
and RCGA4 on the other allows the following conclusions to be obtained
between the random mutation (RM) and the non-uniform mutation (NUM).
1. With RM, good elements are reached in the initial stage of the GA (100

and sometime 500 generations). Since the whole definition interval is
used for generating genes, theexplorationlevel is high and very different
zones are visited amongst them, with some having good elements.
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Table 10. Results forf1 (global optimumf�1 = 0)

Algorithms 100 500 1000 5000 Online Offline Last Gen.

BCGA 9.1e+00 2.1e-01 2.2e+02 4.1e-05 1.3e+01 9.3e-01 4981

RCGA1 3.3e+00 1.1e-01 2.2e-02 8.2e-04 2.5e+00 5.4e-01 4826

RCGA2 5.8e+00 7.0e-02 1.1e-02 5.6e-15 1.1e+00 7.0e-01 4999

RCGA3 1.4e+00 8.2e-02 7.8e-03 1.3e-04 2.0e+00 1.8e-01 4468

RCGA4 1.4e+00 4.3e-02 3.4e-03 1.5e-13 4.5e-01 1.5e-01 4988

RCGA5-0.0 8.4e-01 2.1e-02 9.0e-04 1.7e-16 4.6e-01 1.4e-01 4999

RCGA5-0.15 5.0e-01 6.1e-03 2.2e-04 3.9e-18 4.9e-01 1.6e-01 4998

RCGA5-0.3 1.6e-01 2.9e-03 2.0e-04 1.5e-19 5.3e-01 1.7e-01 4999

RCGA5-0.5 6.2e-02 4.3e-07 2.4e-08 4.2e-23 6.5e-01 2.3e-01 4999

RCGA6 7.6e-01 3.0e-03 3.6e-04 1.4e-17 5.2e-01 1.3e-01 5000

RCGA7 3.4e+00 5.3e-04 3.6e-08 2.2e-09 6.0e-01 4.3e-01 1450

RCGA8 3.0e+00 7.3e-03 6.9e-06 2.0e-12 3.6e-01 2.4e-01 4842

RCGA9 5.1e-01 6.7e-05 3.3e-09 1.5e-13 2.9e-01 1.8e-01 4686

RCGA10 6.0e-02 5.4e-07 2.9e-08 4.1e-09 3.6e-01 1.5e-01 4776

RCGA11 3.1e-01 3.2e-05 1.8e-09 1.9e-13 3.1e-01 1.8e-01 4260

RCGA12 1.6e+01 3.2e-01 3.0e-02 1.4e-13 4.5e+00 1.3e+00 4999

RCGA13 4.8e+00 1.9e-02 1.9e-03 1.0e-05 3.2e+00 9.0e-01 4981

RCGA14-Log 1.8e+00 4.2e-02 1.8e-03 6.6e-17 5.6e-01 2.1e-01 4999

RCGA14-Ham 9.3e+00 8.5e-01 2.0e-01 4.1e-04 4.1e+01 7.2e-01 4975

RCGA14-Alg 1.9e+01 9.1e+00 4.6e+00 2.6e-02 9.1e+01 2.8e+00 4983

RCGA14-Ein 1.7e+01 1.3e+01 5.5e+00 4.4e-02 1.3e+02 3.0e+00 4976

2. NUM presents good results in subsequent stages (as from 1000 gen-
erations). With the passing of time, NUM reduces the gene generation
interval in smaller zones around the gene to be mutated. The further the
GA’s execution advances the smaller the changes in the gene are. This
produces a local tuning on the solutions, e.g., zones near to the best found
solution are visited, which may be considered good enough for thinking
that the optimal solution is close to them.

3. Worse results are obtained by RM in the final stages of the GA. Since the
gene generation interval doesn’t change throughout the GA’s execution,
during these stages, large changes in solutions close to the optimum may
be produced, in such a way that a loss of good solutions may occur.

In most functions, the algorithms based on Mühlenbein’s mutation (RCGA7,
RCGA8 and RCGA9) obtain good results in 100, 500 and 1000 generations,
keeping low values for theOnlineandOfflinemeasures as well. On the other
hand, it may be observed how premature convergence is achieved in subse-
quent generations by seeing the last generations in which the best element
was reached. With this mutation type, the probability of generating a gene
close to the gene to be mutated is very high, in this way the local tuning may
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Table 11. Results forf2 (global optimumf�2 = 0)

Algorithms 100 500 1000 5000 Online Offline Last Gen.

BCGA 2.1e+03 1.1e+02 3.6e+05 1.9e+01 1.3e+04 6.1e+02 4990

RCGA1 1.3e+03 1.1e+02 7.0e+01 5.5e+01 3.4e+03 4.3e+02 4917

RCGA2 1.3e+03 1.2e+02 7.7e+01 1.9e+01 1.0e+03 4.6e+02 4999

RCGA3 1.3e+02 4.1e+01 3.4e+01 2.3e+01 2.9e+03 1.2e+02 4868

RCGA4 1.8e+02 4.2e+01 2.3e+01 2.1e+01 4.8e+02 1.0e+02 4985

RCGA5-0.0 1.3e+02 3.7e+01 3.5e+01 3.1e+01 5.1e+02 1.2e+02 4999

RCGA5-0.15 1.8e+02 6.6e+01 5.3e+01 3.1e+01 5.6e+02 1.4e+02 4999

RCGA5-0.3 1.5e+02 6.1e+01 3.4e+01 2.0e+01 6.2e+02 1.6e+02 4999

RCGA5-0.5 9.9e+01 4.5e+01 4.2e+01 3.9e+01 8.1e+02 2.2e+02 4999

RCGA6 9.1e+01 2.5e+01 2.2e+01 2.0e+01 6.2e+02 1.0e+02 5000

RCGA7 1.3e+03 1.3e+02 3.8e+01 1.1e+01 5.9e+02 3.2e+02 4998

RCGA8 3.1e+02 8.9e+01 5.4e+01 3.1e+01 3.1e+02 1.4e+02 4999

RCGA9 1.8e+02 7.6e+01 4.9e+01 3.8e+01 3.3e+02 1.7e+02 5000

RCGA10 1.5e+02 4.5e+01 3.1e+01 2.9e+01 3.2e+02 1.5e+02 4999

RCGA11 1.9e+02 9.1e+01 6.6e+01 4.8e+01 3.7e+02 1.8e+02 4999

RCGA12 2.9e+03 1.4e+02 4.4e+01 1.5e+01 2.1e+03 7.6e+02 4999

RCGA13 2.8e+03 7.6e+01 2.8e+01 2.2e+01 3.4e+03 8.5e+02 4971

RCGA14-Log 3.8e+02 7.2e+01 5.5e+01 2.7e+01 5.8e+02 1.5e+02 4997

RCGA14-Ham 1.3e+03 1.4e+02 4.8e+01 4.0e-01 1.4e+04 2.1e+02 4986

RCGA14-Alg 3.7e+03 1.9e+03 8.0e+02 6.0e+01 7.9e+04 6.5e+02 4982

RCGA14-Ein 4.3e+03 1.3e+03 6.6e+02 7.0e+01 1.4e+05 5.8e+02 4985

be processed at early GA’s stages. However, the algorithms based on NUM
generate high diversity levels during these stages, which supports the fact
that later local tuning is carried out near to the optimum zones, producing
a suitable convergence (see how with NUM, improvements appear until the
final generation). Modal discrete and modal continuous mutation operators
(RCGA10 and RCGA11 respectively) don’t improve Mühlenbein’s mutation
(compare the results of RCGA10 and RCGA11 to RCGA9).

Generally, BLX-� crossover (RCGA5 family) allows the best final results
to be obtained. It may be observed that the higher the� is, the better the
results are. As� grows, the exploration level is higher, since the relaxed
exploitation zones spread over exploration zones, increasing the diversity
levels in the population. This allow good zones to be reached. Considering
the final results for� = 0:5 it seems natural that under this case an efficient
exploration and exploitation relationshipwas induced. This relationship is
not kept under the extreme case� = 0, since the exploration property is not
presented. If� = 0, then there are no tendencies to visit new zones in the
space, since the exploitation of the ones known is carried out. Therefore, the
probability of premature convergence is very high.
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Table 12. Results forf3 (global optimumf�3 = 0)

Algorithms 100 500 1000 5000 Online Offline Last Gen.

BCGA 3.3e+01 1.7e+00 7.5e+02 7.8e-02 4.5e+01 3.6e+00 4988

RCGA1 1.2e+01 1.4e+00 1.1e+00 3.7e-01 9.4e+00 2.6e+00 4821

RCGA2 2.1e+01 1.2e+00 1.0e+00 1.7e-02 4.3e+00 2.7e+00 4992

RCGA3 6.1e+00 1.3e+00 1.0e+00 1.1e-01 7.4e+00 1.1e+00 4471

RCGA4 5.3e+00 1.1e+00 9.4e-01 8.4e-03 1.9e+00 7.7e-01 4983

RCGA5-0.0 4.0e+00 1.0e+00 2.6e-01 7.4e-03 1.9e+00 6.9e-01 4983

RCGA5-0.15 2.9e+00 8.5e-01 1.5e-01 3.2e-02 2.0e+00 7.1e-01 4975

RCGA5-0.3 1.5e+00 7.8e-01 1.4e-01 4.7e-02 2.1e+00 7.4e-01 4955

RCGA5-0.5 1.2e+00 2.1e-02 2.0e-02 3.9e-03 2.4e+00 8.2e-01 3351

RCGA6 3.8e+00 9.3e-01 3.3e-01 3.4e-02 2.1e+00 6.5e-01 4991

RCGA7 1.3e+01 2.7e-01 3.9e-02 3.9e-02 2.3e+00 1.6e+00 1292

RCGA8 1.1e+01 8.7e-01 2.3e-02 2.0e-02 1.4e+00 9.4e-01 4674

RCGA9 2.8e+00 7.4e-02 2.5e-02 2.5e-02 1.2e+00 7.1e-01 4581

RCGA10 1.7e+00 4.8e-02 2.2e-02 2.2e-02 1.2e+00 6.7e-01 4329

RCGA11 2.0e+00 5.3e-02 1.4e-02 1.4e-02 1.2e+00 6.9e-01 4771

RCGA12 5.3e+01 1.2e+00 3.3e-01 2.1e-02 6.8e+00 4.2e+00 4982

RCGA13 1.7e+01 1.1e+00 8.5e-01 8.1e-02 1.2e+01 3.4e+00 4945

RCGA14-Log 7.3e+00 1.1e+00 7.7e-01 1.1e-02 2.3e+00 1.0e+00 4980

RCGA14-Ham 3.5e+01 3.4e+00 1.7e+00 2.3e-01 1.4e+02 3.2e+00 4984

RCGA14-Alg 7.3e+01 3.3e+01 1.1e+01 9.1e-01 3.1e+02 1.0e+01 4981

RCGA14-Ein 5.9e+01 3.6e+01 1.3e+01 1.0e+00 4.3e+02 9.7e+00 4983

Linear crossover (RCGA6) shows a good behaviour. The generation of
one offspring in the exploitation zone and two in the exploration zone, along
with the choice of the two most promising ones, guarantees the exploration
and favours exploitation when generating good elements. In the first stages,
the two explorative elements shall be used, thereby inducing diversity. In the
final stages, the importance falls on the exploitative elements, under which the
convergence is produced. We observe that the process of choosing the most
promising elementsexploits the knowledge about the zones visited, since
it considers the fitness of the offspring for selecting the best. The principal
drawbacks of this model with respect to the remaining ones is that it needs
too many fitness function evaluations.

Simple and discrete crossover (RCGA2 and RCGA7) offer acceptable
results as well. At the beginning, they biased diversity (observe the high
final Online measure) since they exchange genes that are very different.
When diversity disappears by means of the selection process, this interchange
favours convergence.
The heuristic and linear BGA crossovers (RCGA12 and RCGA13 respec-
tively) didn’t show good behaviour. Perhaps this is due to theoverexploitation
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of the search space, which induced a premature convergence towards good
zones that are found in no final GA’s stages. In this way, we should point
out that in (Wright, 1990) it was adviced the convenience of applying the
heuristic crossover operators in advanced stages of the GAs.

Most algorithms in RCGA14 family returned low results; the replacement
in the population of two parents by a set of four offspring produces too much
diversity and thus slow convergence. To sum up, the exploration property
related to this offspring selection mechanism leads to a high diversity level
during the GA execution; theOnline measure in this family is greater than
in the remaining executed algorithms. The increase in theOnline measure
in RCGA14 family from the RCGA14-Log algorithm to the RCGA14-Ein
one suggests that diversity is greater using t-norm and t-conorm operators
distant from the logical ones. This may be explained through the following
order relation between the fuzzy connectives used in the definition of the FCB
crossovers.

TEin � TAlg � THam � TLog � GLog � GHam � GAlg � GEin

Among the FBC crossovers the logical crossover provides the lowest diver-
sity levels. It is one of the best crossover operators compared. In this case, the
combination of logical fuzzy connectives and the offspring selection mecha-
nism considered offer a good exploration/exploitation relationship. The FCB
crossovers may be used as tools to model the population diversity and so to
avoid one of the most important problems with the GA: thepremature con-
vergence. Then, for a particular problem, it should be the user who can select
the more suitable family of operators and also design new offspring selection
mechanisms for establishing the best exploitation/exploration relationship for
solving the problem. For example, the linear crossover may be considered as
an instance of FCB crossover, where a t-norm, a t-conorm and an averaging
function are used and the offspring selection mechanisms chooses the two
most promising offspring.

4.5.2. Final Remarks about Experiments
Our final remarks about the previous experiments are the following:
1. Most RCGAs are best than BCGA.
2. Non-uniform mutation is very appropriate for RCGAs.
3. BLX-� (in particular� = 0:5), logical FCB and linear crossovers have

raised as the best crossover operators for RCGAs. An interesting property
of all these crossover operators is that they consider the exploration
intervals for obtaining offspring genes.
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4.6. Handling Convex Spaces

The design of tools for handling non-trivial restrictions is easier using real
coding. In (Michalewicz, 1992) an RCGA called GENOCOP is presented
for solving optimization problems on continuous convex spaces,Sc, defined
through a continuous spaceS along with an inequalities setR. The genetic
operators used by GENOCOP assure that the chromosomes generated by
them, considering those parents belonging to the space, belong to the space
as well, i.e these operators areclosed. This property is not guaranteed in the
BCGAs because of the restrictions introduced byR.

The operators used by GENOCOP are non-uniform, i.e., their action depends
on the age of the population in which they are applied. Further, they are
dynamic, i.e., the interval of possible values of a componenti of a vector
X = (x1; ::; xn) 2 Sc, [axi ; b

x
i ], is dynamic since the boundsaxi y bxi depend

on the remaining values of the vectorX and the set of inequalitiesR.
Using the properties fulfilled in a convex continuous spaceSc
i) 8x1; x2 2 Sc 8� 2 [0;1] �x1 + (1� �)x2 2 Sc and
ii) 8x 2 Sc and any linel such thatx 2 l, l intersects the boundaries ofSc

at precisely two points,axl andbxl 2 Sc,
the operators in GENOCOP are defined as follows:

Mutation Operators
Together with the random and non-uniform mutations, the following muta-

tion operator is used:
� Boundary mutation

For a genei in a chromosomeC a value infaCi ; b
C
i g is randomly chosen.

Crossover Operators
Together with the arithmetical crossover the following crossover operators

are used:
� Modified simple crossover

ForC1 = (c1
1; c

1
2; :::; c

1
n) andC2 = (c2

1; c
2
2; :::; c

2
n) two chromosomes to

be crossed, a positioni 2 f1; :::; n� 1g is randomly chosen and the two
offspring are generated as follows:

H1 = (c1
1; :::; c

1
i ; �c

2
i+1 + (1� �)c1

i+1; :::; �c
2
n + (1� �)c1

n)

H2 = (c2
1; :::; c

2
i ; �c

1
i+1 + (1� �)c2

i+1; :::; �c
1
n + (1� �)c2

n)

where� 2 [0;1].
This operator is a generalization of the simple crossover for working
with convex spaces.
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� Single arithmetical crossover
Given a positioni 2 f1; :::; ng then

H1 = (c1
1; :::; !c

1
i + (1� !)c2

i ; :::; !c
1
n + (1� !)c2

n)

H2 = (c2
1; :::; !c

2
i + (1� !)c1

i ; :::; !c
2
n + (1� !)c1

n)

are generated, where! is a random number belonging to the following
range:

! 2

8<
:
[max(�; �);min(; �)] if c1

i > c2
i

[0;0] if c1
i = c2

i

[max(; �);min(�; �)] if c1
i < c2

i

where

� =
b
C2
i
�c2

i

c1
i
�c2

i

� =
a
C1
i
�c1

i

c2
i
�c1

i

 =
b
C1
i �c1

i

c2
i�c

1
i

� =
a
C2
i �c2

i

c1
i�c

2
i

GENOCOP begins with an initial population made up by elements belong-
ing toSc and applies all the previous operators, with individual probabilities,
having into account the dynamic ranges of the variables. Since these operators
are closed, all elements appeared in subsequent populations shall be inSc.

4.7. Hybrid Real-Coded Genetic Algorithms

Different versions of hybrid RCGAs (HRCGAs) have been presented in the
literature. Most approaches attempted to synthesize an RCGA along with a
hill climbing method. One of these approaches isBUGS(Iba et al., 1992). In
BUGS, each chromosome is a direction instead of a position, as happens in
a conventional RCGA. The algorithm keeps a population of structures called
bugs. Eachbugsis characterized by three elements:

bugsi(t) =

8<
:

Positionxi(t) = (xi1(t); :::; x
i
n(t))

Directiondxi(t) = (dxi1(t); :::; dx
i
n(t))

Energyei(t)

wherexi(t) 2 S, t is a given generation, and the energyei(t) of thebugsi is
defined as

ei(t) =
�uX
k=0

f(xi(t� k));
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e.g., the cumulative sum of the fitness of the positions in thebugsi over the
previous�u time steps generations, where�u is an input parameter.

In a generationt, the positions of thebugsare updated as follows:

xi(t+ 1) = xi(t) + dxi(t):

Eachbug may be considered to be a recording of the execution of a hill
climbing procedure. The energy of abugsmeans the goodness of the results
obtained by its associated hill climbing procedure in the last�u generations.
The evolution of thebugsis driven by the values of their energies, in such
a way that during the selection the onlybugsthat survive shall be the ones
that offer the best results. The crossover and mutation operators act on the
direction vectors of thebugs. The general process is the following:
P1. Generate an initial population at random

Pop(0) = fbugs1(0); :::; bugsN (0)g:

Accept�u.
t := 1.

P2. Fori = 1; :::N Do xi(t+ 1) := xi(t) + dxi(t).
P3. Fori = 1; :::N Do ei(t) := ei(t� 1) + (xi(t)).
P4. If t is a multiple of�u Then

P4.1. n:=1.
P4.2. Select two parentsbugsi(t) andbugsj(t) using a probability dis-

tribution over the energies of allbugsin Pop(t) so thatbugswith
higher energy are selected more frequently.

P4.3. With probabilitypc apply the crossover operator to thedxi(t) and
dxj(t) forming two offspringbugsn(t + 1) andbugsn+1(t + 1) in
Pop(t+ 1).

P4.4. Apply the mutation operator todxi(t) anddxj(t) with probability
pm.

P4.5.n := n+ 2.
P4.6. Ifn < N Then Go to P4.2.

P5. If t is not a multiple of�u Then
P5.1.Pop(t+ 1) := Pop(t).
P5.2.t := t+ j.
P5.3. Go to P2.

P6. Fori = 1; :::N Do ei(t) = 0.
P6.1.t := t+ 1.
P6.2. Go to P2.
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Another attempt was theGA-Simplex(Renders et al., 1994). The basic idea
was to increase the local tuning of the RCGA by using a crossover operator
calledsimplex crossover, which simulates the behaviour of a hill climbing
method calledSimplex.

5. Tools for the Analysis of the RCGAs

Some authors attempted to generalize the schema theorem for the real coding
case using previously a proper schema definition: Wright’s Schemata (Wright,
1991), Formae (Radcliffe, 1991a; Radcliffe, 1991b) and the interval-schemata
(Eshelman et al., 1993). Others presented mechanisms under which the behav-
iour of the RCGAs may be explained or predicted, such asvirtual alphabet the-
ory (Goldberg, 1991a), theexpected progress(Mühlenbein et al., 1993), and
the study of RCGAs from astochastic processpoint of view (Qi et al., 1994a;
Qi et al., 1994b).

5.1. Wright’s Schemata

In (Wright, 1991) Wright studied the meaning of the classic binary-coded
schemata for continuous functions in terms of real parameters. For a parameter
i with domain[ai; bi], a binary-coded schema� of which all ? symbols are
continuous at the right end of the string corresponds to a connected interval
of real numbersI� � [ai; bi]. These types of schemata are calledconnected
schemata. Any simple parameter schema of which?’s are not all continuous
at the right end corresponds to a disconnected union of intervals. According
to Wright, for most fitness functions, theconnected schemataare the most
meaningful in that they capturelocality informationabout the function.
With this idea in mind, Wright defined a schema,�, for handling real coding
as

� =
nY
i=1

(�i; �i);

with ai � �i � �i � bi. Under this definition Wright generalizes the schema
theorem for the case of an RCGA, based on simple crossover and real number
creep operators.

5.2. Formae

In (Radcliffe, 1991a) the notion of implicit parallelism is extended (and the
associated schema theorem) to general non-string representations through
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the introduction of arbitraryequivalence relations. In doing so, it provides
a framework within which arbitrary genetic operators may usefully be ana-
lyzed. Schemata are generalized toformaewhich are equivalence classes
induced by equivalence relations over the search space. The aim is to maxi-
mize the predictive power of the schema theorem (and thus its ability to guide
the search effectively) by allowing the developer of a GA for some particular
problem to code knowledge about the search space by specifying families of
formae (through the introduction of equivalence relations) that might reason-
ably be assumed to group together solutions with related performance and
developing operators which manipulate these to good effect. Therefore, the
author presents design principles for building useful equivalence relations,
chromosome representations and crossover operators. Two of these principles
are related to the crossover operator:

� Respect: Crossing two instances of any forma should produce another
instance of that forma.

� Proper assortment: Given instances of two compatible formae (e.g., the
ones where there are a chromosome being an instance of both), it should
be possible to cross them to produce a child which is an instance of both
formae.

In (Radcliffe, 1991b) four different types of formae in conjunction with oper-
ators for their effective manipulation are discussed. The first is related to
the standard schemata, the second to the o-schemata introduced in (Gold-
berg, 1989a) to manage permutation problems, the other two are theedge
formaedefined to deal with chromosomes that represent edges (Whitley et
al., 1989) and thelocality formaewhich relate chromosomes on the basis of
their closeness to each other and are applied to problems with continuous
parameters.

In (Radcliffe, 1991a) the formae to manipulate real coding are discussed
again. Two properties are considered to be captured by formae: locality and
periodicity. The author presents two types of equivalence relations to induce
formae describing these properties. The formae induced by the first type
are like Wright’s schemata. If these equivalence relations are to be used,
then the crossover operator should be constructed which both respects and
properly assorts the formae they induce. Simple crossover (Wright, 1991;
Michalewicz, 1992) would respect them, but fails properly to assort them. A
more suitable crossover operator is the flat crossover which fulfills both prin-
ciples. A GA using this might be expected to perform well on a real-valued
problem for which locality is the appropriate kind of equivalence to impose
on solutions, using the implicit parallelism which derives from each chromo-
some’s being an instance of many locality formae. But a serious problem with
this recombination operator is that, even with no fitness differences between
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any strings, the population will rapidly converge, at the centre of the range of
each parameter. To help counteract this, Radcliffe also suggestedend point
mutationso as to reintroduce extreme values into the gene pool. Also, equiv-
alence relations capturing periodicity are presented but no crossover operator
exists that fulfills both of these principles. The author emphasizes that this
is not a failure of the forma analysis, which has simply shown that general
periodicities are extremely hard for a GA to be sensitive to.

5.3. Interval-Schemata

All computer solution methods require discretization. Given that computers
have limited precision, any real-coded value may be mapped onto an integer.
So in (Eshelman et al., 1993), it is suggested that the RCGAs may be more
properly called integer-coded GAs (ICGAs).

For Eshelman et al. the real difference between a BCGA and an ICGA is
that ICGA creates new individuals by operating on strings of integers rather
than bit strings, since other differences such as the precision reached may
be equalized. Obviously, every crossover operator presented for RCGAs is
useful for ICGAs.

Analyzing the crossover operators for RCGAs it may be observed that they
exploit the parameter intervals determined by the parents rather than the pat-
terns of symbols they share. The classic binary-coded schemata were devel-
oped for strings of symbols, which is too restrictive for analyzing RCGAs.
Something analogous is needed for RCGAs that manipulate intervals rather
than bit values. From this idea the concept ofinterval-schemataarises. An
interval-schemata, �, is defined as:

� =
nY
i=1

(�i; �i);

with �i; �i 2 f0; :::;2Lig and�i � �i.
The similarity may be observed between this definition and Wright’s

schemata and the formae induced by the equivalence relations capturing
locality.

Let us consider a parameteri with rangef0; :::;2Lig. For this parameter

there are 2Li+1
�1connected schemata, however there are2

Li (2Li+1)
2 interval-

schematawhich represent a greater quantity. This disadvantage implies that
some intervals may not be represented by means of aconnected intervalsuch
as [7, 10]. This problem doesn’t appear wheninterval-schemataare used.

An important issue now is to study how the crossover operators preserve
and exploreinterval-schemata. For a particular parameter, operators like
the arithmetical and the BLX-0.0 crossover ones produce offspring that are
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members of the same interval-schemata in which the parents are common
members (this is reconciled with Radcliffe’s respect principle). However,
these operators differ as to how many new interval-schemata are potentially
reachable in a single crossover event. The arithmetical crossover is strongly
biased towards certain interval-schemata over others. BLX-0.0, on the other
hand, is much less biased in this respect, although it does have a bias towards
points near the centre of the interval.

The BCGAs and the RCGAs are instances of two very general GA types:
the so-calledsymbol-processingGAs (SPGAs) andinterval-processingGAs
(IPGAs), respectively. The way an IPGA processes interval-schemata is anal-
ogous to the way an SPGA processes symbol-schemata. For example, long
interval-schemata correspond roughly to low order symbol-schemata. Both
are characterized as not being very specific. As the search progresses, an
SPGA shall progressively focus its search on higher order schemata whereas
an IPGA shall progressively focus on shorter interval-schemata. In the for-
mer case, the SPGA has narrowed the search space down to certain partitions,
whereas in the latter case the IPGA has narrowed the search to certain con-
tiguous regions. As these values narrow, the search becomes more and more
focused, taking its samples from smaller and smaller regions. So an IPGA
exploits thelocal continuitiesof the function.

5.4. Virtual Alphabets Theory

The virtual alphabettheory (Goldberg, 1991a) postulates that because of
selection, the available values of each gene are reduced in the initial gener-
ations, leaving only those belonging to some subsets of the initial domain
associated with above-average fitness. Thus, virtually the RCGA uses low
cardinality alphabets, the size of which is computed by the algorithm by
means ofadaptation.

5.4.1. Preliminary Definitions
Let us supposeS = S1 � ::: � Sn a search space,f : S ! < an associated
fitness function andd(x), x 2 S, a probability density function. Given an
index setI � f1; :::; ng, the marginal density function,dI(xI), for the vari-
ables associated withI is calculated as:

dI(xI) =

Z
SI0

d(x)dSI0 ;

whereI 0 = f1; :::; ng � I.
A mean slice, �fI , or the expected value off with respect tod and the free

variablesxi (i 2 I) is defined as
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�fI(xI) =

Z
SI0

dI0(xI0)f(x)dSI0 ;

wheredSI0 =
Q
j2I0 dxj andSI0 =

Q
j2I0 Sj . If jIj = 0 then �fI is reduced

to �f , e.g., the expected value off with respect tod. If jIj = 1, the slice shall
be one-dimensional and shall be denoted as�fj, with j being the only element
of I. For example,�f1(x1) is the expected value off with respect tod for the
single free variablex1.

Thus, essentially a set of functions, that are the averages off with respect
to any number of variables, is generated. In discrete GAs, this is the role
played by schema fitness averages.

A point slice, �fpI (xI), with respect to the pointx = p is defined as the
function obtained by settingxj = pj j 62 I and allowing the other variables
to be varied freely. Aglobal slice, �f�I (xI), is obtained when the point selected
is the global optimum (p = x�).

5.4.2. The Action of Selection
In (Goldberg et al., 1991b) it was shown that the number of generations,� �f ,
required for above-average elements to dominate in the population may be
calculated as

� �f = log2 log2N;

whereN is the population size. For example forN = 109, � �f shall be
approximately 5. The size of a typical population is from 30 to 1,000 elements,
so� �f shall be equal to a value of three to four generations.

5.4.3. Virtual Characters and Alphabets
From the previous result, we may deduce that in first generations, the popu-
lation tends to keep elements inS with higher fitness than�f . From then, each
problem parameteri shall dispose of values,vi, such as�fi(vi) > �f . These
values form subsets ofSi called virtual characters, which build avirtual
alphabet.

There is one consideration that we must take into account: the effects of
selection along with crossover on virtual character processing. Using simple
crossover, these effects are similar to the ones shown by GAs based on low
cardinal alphabets. Figure 10 shows an example for a problem with two
variables (n = 2).

We may observe that the intersection of the virtual characters of two
variables delimits the zones that shall provide elements for the GA popu-
lation. This situation could be changed by the effect of mutation. However,
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for mutation steps that are small with respect to the virtual character width,
the errors made by assuming no change during the recombinative phase are
small.

5.4.4. Blocking
Blocking is produced when the global optimum includes some parameter
value,x�i 2 Si, that doesn’t belong to any virtual character handled by the
RCGA forSi. In this way, there shall be inaccessible parameter values of the
global optimum, since the search is centered on the parameter values which
belong to existing virtual characters. Figure 11 shows an example of this
problem.

This figure shows�f , �fi(xi), and �f�i (xi) for a particular parameteri in
a problem with fitness functionf . Each one of the dark zones is a virtual
character. In the first generation, the search process shall limit the values of
the i parameter, dealing only with the ones belonging to the existing virtual
characters. Sincex�i doesn’t belong to any of these characters, it is ignored.
Under these circumstances, it is said that the global optimum is blocked.
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Blocking problems could be solved by using other mutation and crossover
operators. The effect of these operators may be studied through the virtual
alphabet theory. Goldberg studied two operators: random mutation and arith-
metical crossover. Firstly, it may be thought that the former operator may
solve the problem, because each point in the search space may be reached.
However, this operator is very disruptive and can only be used with low
probability. For a chromosomeC to survive after mutation, the perturbations
in C should produce a point at or above the current average fitness. There is
reason to think that this shall not happen; the virtual characters are located
where they are because the feature or features associated with that interval
are of sufficient breadth and height to stick out above the crowd. It is very
difficult to obtain an above-average point leading towards the optimum, not
included in the virtual characters kept by the RCGA. In other words, the line
search for random mutation to the global optimum is likely to fail because
good features that are not close to already-represented virtual characters are
like looking for aneedle in a haystack(Goldberg, 1991a) with respect to that
search. For the arithmetical crossover the conclusions were similar.

5.5. Expected Progress

In (Mühlenbein et al., 1993) a measure was presented calledexpected progress,
in order to compare the behaviour of different mutation operator models for
RCGAs. Given an arbitrary point with distance� to the optimum, the expected
progress is defined as the expected improvement ofx by successful mutation
in Euclidean distance. This measure is defined by probability theory as an
integral over the domain of successful mutations. The integrand is given by
progress(y) � probability(y).

This approach is opposite to standard GA analysis, which starts off with
the schema theorem, in which mutation and crossover are only considered as
disruptions. Now these operators are evaluated according to the probability
of generating better solutions.

The authors calculated the expected progress for three mutation operator
types: M̈uhlengein’s mutation, random mutation and normal distributed muta-
tion (similar to the one used in theEvolution Strategies). One of the main
conclusions obtained was that the expected progress for Mühlengein’s muta-
tion is 4-6 times lower than the expected progress for the normal distributed
mutation with optimal�, which is believed to be the optimal progress rate
for search methods that do not use derivatives of the function (Mühlenbein et
al., 1993).
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5.6. RCGA as Stochastic Process

In (Qi et al., 1994a; Qi et al., 1994b) a general class of RCGA was analyzed,
formulated as a discrete-time stochastic process (DTSP) of which states lay
in amulti-dimensional Euclideanspace. The study was carried out supposing
large population sizes, this allows an easy mathematical treatment of the
model to be made and important properties about the collective behaviour of
the population as a whole to be obtained.

The use of a large population allows the authors to model the DTSP through
a sequence of probability density functions,�k(�) (k 2 N ), characterizing
the distribution of the entire population, i.e., the frequency of occurrence of
the elements in the search space appearing in the population. They derived
time-recursive relationships for the population distribution. This is done by
letting the population sizeN go to infinity and deriving the consequent
limiting behaviour of the selection, crossover and mutation on the population
distribution. Clearly, as the population size gets large, member points tend
to cover the entire search space continuously; thus, the behaviour of the
algorithm may be summarized by how dense the points are in the search
space. First, Qi et al. studied the effect of the selection along with the mutation
on�k(�), then the ones for the crossover alone and finally the ones for all the
operators together.

5.6.1. RCGA Model Studied
The properties of the RCGA class analyzed are:
1. Stochastic sampling with replacement selection.
2. Uniform crossover; after two parents are chosen, each corresponding

pair of coordinates exchange their values independently, with the same
probability,pu. One of the two resulting vectors is arbitrarily discarded.

3. The mutation operator perturbs a chromosome following a common
conditional probability density function�k(XjY ), symmetric inY around
X.

5.6.2. Selection and Mutation
In (Qi et al., 1994a) time-recursive formulae describing the behaviour of
�k(�) are derived, considering only the action of the selection and mutation
operators. The results show how these operators play opposite roles: selection
tends to squeeze�k(�) around the global maximum of the fitness function,
whereas mutation spreads the distribution. The join effect of these operators
may be observed in Figure 12, where mutation follows a Gaussian zero-mean
distribution and the fitness function is unimodal.

The authors pointed out the importance of selection through two results.
The first one ensures under some continuity and connection around the global



312 F. HERRERA ET AL.

Mut. Mut.Sel. Sel.

θf

π π π π π
0 2

2 10
10’ ’

Optimum

Figure 12. Effects of the selection and mutation on�k(�)

optimum conditions and supposing that�0(x
�) 6= 0 (�0 is the density function

of the initial population andx� the global optimum), the convergence of
�k(x) towards�(x � x�)3 whenk ! 1, with �(�) being Dirac’s function.
The second one shows how selection alone increases the concentration of
points in regions with current fitness above the population average:

LEMMA 1. LetBk being the set of above-average vectors at generationk:

Bk = fx 2 S : f(x) � Espkg;

whereEspk =
R
S �k(y)f(y)dy is the expected fitness at generationk, then

the probability after selection of a member of the population to be inBk is
non-decreasing over time.

This result, which may be considered to be the continuous-space analog of
schema theorem (Holland, 1975), shows how the selection process regards
population members with above-average fitness.

For delimiting convergenceconditions under the effects of the selection and
mutation the authors presented a theorem establishing thatselection coupled
with mutation can find the global optimum with a sequence of populations hav-
ing increasing average fitness, as long as the mutation noise is small enough.
However, from a practical point of view (finite populations), we have to use
a mutation noise as large as possible to guarantee sufficient coverage of the
search space, in order to do so, we should find a sequence of mutation densities
with the largest variance among those that guarantee convergence. Along this
line, the authors derived sufficient conditions to obtain monotonically increas-
ing average fitness, using only selection and mutation, for functions fulfilling
the Lipschitz condition (8x; y 2 S jf(x)�f(y)j � Ljjx�yjj; 0 < L <1).
Basically, these conditions were fixed on the mutation densities. The study
was restricted to mutation densities that are spherically symmetrical, in
particular, conditions on a measure calledaverage radiusof the mutation
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(�r(k; x) =
R
S jjy � xjj�k(y � x)dy) were obtained. It was interesting that

these conditions were also expressed according to the statistics associated
with the entire population. This suggests anadaptive mutation scheme, e.g.,
applying different mutation densities during the GA’s generations, which
shall be computed with information on each current population. This allows
sufficient coverage and convergence to be reached throughout the GA’s run.

5.6.3. Crossover Alone
In (Qi et al., 1994b) the effects of the crossover operator isolated from the
remaining operators were analyzed. Two theorems were introduced. The first
predicts the effects of the application of these operators on�k(�), whereas, the
second postulates some asymptotic properties fulfilled after their application
on a large number of generations. Next, we present this one.

THEOREM 3.Repeated applications of the crossover operator lead to asymp-
totic independence among the coordinates with the marginal densities of each
coordinate being unchanged.

lim
k!1

�k(x1; :::; xn) =
nY
i=1

�0(xi);

where�0(xi) represents the marginal density function of the componentxi.

Theorem 3 states that the crossover operatorexploitsthe search space, break-
ing the correlations (epistasis) among its coordinates. The principal conse-
quence of this effect is that all the cross central moments among the coordi-
nates of the population vector shall converge to zero under repeated crossover.

Finally, the authors combined large sample results for selection and muta-
tion with that for crossover in order to analyze the behaviour of the RCGA
model. First, the selection and crossover union was studied, then, the three
operators. The joint effects of selection and crossover provided a formal
justification for the role of crossover during the global search: a particular
region of the search space is sampled more often if any of the hyperplanes
containing this region processes a higher average fitness. The intersection of
the hyperplanes with this property allows good solutions to be achieved, from
which more samples should be generated.

6. Conclusions

In this paper we have reviewed several issues relating to one of the most
important alternatives to binary coding:the real coding. We have presented
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and compared the genetic operators described in the literature for GAs based
on this type of coding. Tools that allow the behaviour of these algorithms to
be studied have also been explained.

The most important feature of the RCGAs is their capacity to exploit local
continuities, and the corresponding one of the BCGAs is their capacity to
exploit the discrete similarities. Goldberg (Goldberg, 1991a) and Eshelman
(Eshelman et al., 1993) leave to the user the decision for choosing one of
these codings, suggesting that each one of them has suitable properties for
different types of fitness functions. On the other hand, other authors such
as Michalewicz (Janikow, et al., 1991; Michalewicz, 1992) defend the use
of real coding, showing their advantages with respect to the efficiency and
precision reached as compared to the binary one.

The experiments carried out highlight certain genetic operators as the most
suitable ones for building RCGAs, such as the non-uniform mutation and
the BLX-�, logical FCB and linear crossover operators. We should point
out that these crossover operators may generate genes outside of the interval
defined by the parent genes, which confirms the importance of considering
the exploration and relaxed exploitation intervals for designing crossover
operators for RCGAs.

Recent theoretical work on RCGAs may be found in (Eshelman et al., 1996;
Hart, 1996, 1997; M̈uhlenbein et al., 1996b; Nomura, 1997a, b; Salomon,
1996a, b; Surrey et al., 1996), research on alternative genetic operators in
(Arabas et al., 1995; Deb et al., 1995a, b; Eshelman et al., 1997; Herrera et
al., 1996a, c, 1997a; Nomura et al., 1995, 1996; Ono et al., 1997; Sefrioui
et al., 1996; Voigt et al., 1995) and innovative RCGA approaches in (Deb et
al., 1997; Herrera et al., 1996b, 1997b, c; Hinterding, 1995; Hinterding et al.,
1996; Mühlenbein et al., 1996a; Tsutsui et al., 1997; Yang et al., 1996, 1997).
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