
This is an author produced version of :

Article:

Tackling the Bus Turnaround Overhead in Real-Time SDRAM Controllers

L. Ecco and R. Ernst, "Tackling the Bus Turnaround Overhead in Real-Time SDRAM Controllers,"

in IEEE Transactions on Computers, vol. 66, no. 11, pp. 1961-1974, Nov. 1 2017.

https://doi.org/10.1109/TC.2017.2714672

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including

reprinting/republishing this material for advertising or promotional purposes, collecting new collected works for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, AUGUST 2016 1

Tackling the Bus Turnaround Overhead in
Real-Time SDRAM Controllers

Leonardo Ecco and Rolf Ernst

Abstract—Synchronous dynamic random access memories (SDRAMs) are widely employed in multi- and many-core platforms due to

their high-density and low-cost. Nevertheless, their benefits come at the price of a complex two-stage access protocol, which reflects

their bank-based structure and an internal level of explicitly managed caching. In scenarios in which requestors demand real-time

guarantees, these features pose a predictability challenge and, in order to tackle it, several SDRAM controllers have been proposed. In

this context, recent research shows that a combination of bank privatization and open-row policy (exploiting the caching over the

boundary of a single request) represents an effective way to tackle the problem. However, such approach uncovered a new challenge:

the data bus turnaround overhead. In SDRAMs, a single data bus is shared by read and write operations. Alternating read and write

operations is, consequently, highly undesirable, as the data bus must remain idle during a turnaround. Therefore, in this article, we

propose a SDRAM controller that reorders read and write commands, which minimizes data bus turnarounds. Moreover, we compare

our approach analytically and experimentally with existing real-time SDRAM controllers both from the worst-case latency and power

consumption perspectives.

Index Terms—real-time and embedded systems, memory control and access, Dynamic random access memory (DRAM)

✦

1 INTRODUCTION AND RELATED WORK

SDRAM memories are widely employed in multi- and
many-core platforms, e.g. [1] and [2], due to their high-

density and low-cost. However, their benefits come at the
price of a complex two-stage access protocol, which reflects
their bank-based structure and an internal level of explicitly
managed caching. As a consequence, the execution time of a
request depends on the history of previous requests, which
poses a challenge from the real-time perspective. In order to
tackle such challenge, several SDRAM controllers have been
proposed [3], [4], [5], [6], [7].

The classical approach to build real-time SDRAM con-
trollers relies on a combination of bank-interleaved address
mapping and close-row policy. The former refers to a single
request accessing more than one SDRAM bank, while the
latter refers to the internal level of caching being flushed
between consecutive requests. Extensive work has been
done on strategies to select the appropriate parameters for
this approach [3], [8], [9]. More specifically, on selecting the
number of banks over which a single request is distributed
and how the caching can be exploited within the bound-
ary of a single request. After the parameters are defined,
bandwidth guarantees can be extracted with the approaches
from [10], which makes the strategy attractive for streaming
applications with well defined requirements.

From the real-time perspective, the combination of bank-
interleaved address mapping and close-row policy is very ef-
fective in scenarios in which the SDRAM data bus is narrow
and/or the SDRAM requests have a large granularity. How-
ever, if that is not the case, its ability to effectively exploit

• Leonardo Ecco and Rolf Ernst are with the Technische Universitaet
Braunschweig, Germany.
E-mail: {ecco,ernst}@ida.ing.tu-bs.de

Manuscript received August 1, 2016; revised December 5, 2016.

the SDRAM is compromised [11]. For instance, consider
the many-core platforms from [1] and [2], which contain
processors that rely on caches and that share 4 SDRAM
controllers, each managing a 64-bit wide SDRAM module.
In such case, a single read or write command to one of the
SDRAM banks transfers 64 bytes of data (a common cache
line size) and, hence, there is no need to employ interleaving
or to exploit the internal level caching for a single request.

To address the aforementioned scenario, researchers pro-
posed using a combination of bank privatization and open-
row policy [6], [7], [11]. The former refers to granting a
real-time task exclusive access to one or more banks. The
latter refers to not flushing the internal level of caching
between successive requests. Consequently, the locality of
the caching is potentially exploited over the boundary of all
requests performed by a task.

Nevertheless, with the new approach, a new challenge
was uncovered: the data bus turnaround time. In SDRAMs,
a single data bus is shared for read and for write operations.
Hence, SDRAM controllers must enforce a minimum timing
interval between the execution of a read and of a write
command (or vice-versa). Such intervals are known as bus
turnaround times and are required in order to change the
OCT (On-Chip Termination) of SDRAM chips from input to
output or from output to input.

As detailed in [12], the faster a SDRAM device is, the
larger the corresponding data bus turnaround times are.
Hence, the turnarounds pose a challenge that, if not dealt
with, lead to poor SDRAM utilisation. In traditional real-
time SDRAM controllers, which were discussed in the be-
ginning of this section, such challenge is mitigated because
each incoming request is translated into a statically com-
puted bundle of several read (or write) commands that does
not cause a turnaround.

In COTS SDRAM controllers, which are optimized for

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, AUGUST 2016 2

0

10

20

30

40

50

60

70

8
0
0
E

8
0
0
D

1
0
6
6
G

1
0
6
6
F

1
0
6
6
E

1
3
3
3
J

1
3
3
3
H

1
3
3
3
G

1
3
3
3
F

1
6
0
0
K

1
6
0
0
J

1
6
0
0
H

1
6
0
0
G

1
8
6
6
M

1
8
6
6
L

1
8
6
6
K

1
8
6
6
J

2
1
3
3
N

2
1
3
3
M

2
1
3
3
L

2
1
3
3
K

D
e
la

y
 (

d
a
ta

 b
u
s
 c

y
c
le

s
)

Seq.1) W-R-W-R

Seq.2) W-W-R-R

Fig. 1. Minimum distance between the first and the last command of
two command sequences in all DDR3 SDRAM devices. The number in
each device name represents the speed bin, which is measured in mega
transfers per second. The letter represents the device grade.

average performance and rely on the open-row policy, the bus
turnaround times are mitigated by buffering pending write
requests until their number reaches a certain threshold,
after which they are served in a batch [13]. Such approach,
however, was analyzed in [14] and has been shown as
ineffective from the real-time perspective. The reason being
that, in order to compute the worst-case latency of a read
request, designers must assume a system backlogged with
write requests, which leads to pessimistic timing bounds.

In existing open-row real-time SDRAM controllers, the
turnarounds are either simply accounted for in the timing
analysis [6] or are mitigated using multi-rank SDRAM mod-
ules [7], [11]. The former demands designers to assume an
alternating pattern of interfering reads and writes in order
to compute guarantees, which leads to poor timing bounds.
The latter is not cost efficient, as multi-rank modules are
expensive. Furthermore, blindly alternating between the
ranks is not a scalable solution [15].

Consequently, in [12], we proposed a real-time SDRAM
controller that bundles read and write commands, i.e. mini-
mizes the number of bus turnaround events, thus efficiently
tackling the problem in the single-rank domain. To clarify
the benefits of read/write bundling, consider Fig. 1, which
depicts the minimum distance between the first and the
last commands of two different command sequences. Se-
quence 1 contains an alternating pattern of writes and reads
which requires three bus turnarounds. Sequence 2 contains
a bundled pattern, which only requires one bus turnaround.
Notice that the bundled pattern is clearly better, being up to
35 cycles faster than the alternating one (for DDR3-2133N).

This article is an extended version of [12]. Its main
contributions in comparison with the original work are:

1) The evaluation performed in [12] was limited to
an analytical comparison, i.e. a comparison of la-
tency bounds, with a state-of-the art real-time open-
row SDRAM controller [6]. In this article, we also
consider a real-time close-row SDRAM controller [5].
Moreover, we use cycle-accurate simulators to as-
sess how tightly the corresponding timing analyses
predict the worst-case behavior of an application.

2) In our original work, our computation of the worst-
case latency of read and write commands relied on a
subjective not-too-late assumption (better discussed

in Sections 3.3.1 and 4.2). With regard to it, we
improve the original work on three fronts: firstly, we
pinpoint the portion of the analysis that is affected
by the assumption. Secondly, we show how a small
modification in the analysis computes a worst-case
bound without the aforementioned assumption. Fi-
nally, we also discuss a small architecture modifica-
tion to handle read and write commands that arrive
too late.

3) We perform a comparison of power consumption
trends between the real-time SDRAM controllers
under consideration in this article. To our knowl-
edge, this work is the first to compare open and close-
row controllers from the power perspective.

In order to avoid confusion and emphasize the contri-
bution of this article, we also mention that we published a
technical report [16] that proposes a multi-generation DDR
SDRAM controller that implements read/write bundling. In
comparison with this article, the technical report does not
consider close-row real-time controllers, does not evaluate
power consumption and data bus utilisation and omits a
discussion about the not-too-late assumption and about how
data bus turnarounds are addressed by the related work.

The rest of this article is structured as follows: in Sec-
tion 2, we present the background on SDRAM systems.
Then, in Section 3, we describe our SDRAM controller,
followed by a timing analysis of it in Section 4. Finally,
in Section 5, we present an evaluation of our approach,
followed by the conclusion in Section 6.

2 BACKGROUND ON DRAM SYSTEMS

In this section, we firstly describe SDRAM memories and
their timing constraints and then we discuss the advantages
and drawbacks of open-row real-time SDRAM controllers.
For all intents and purposes, we employ the word SDRAM
to refer to DDR2 [17] or DDR3 SDRAM devices [18]. DDR4
SDRAMs [19], which are not yet market dominant, intro-
duced new architectural features. A proper discussion of
such features is out of the scope of this article.

2.1 Naming Conventions

Double data rate (DDR) SDRAMs are identified by a string
that uses the following pattern: DDRx-(speed bin)(grade). The
x stands for the generation, e.g. DDR2 or DDR3. The speed
bin is measured in MT/s (mega transfers per second), which
corresponds to 2 times the frequency of the data bus mea-
sured in MHz (because of the double data rate). For instance,
a DDR3-800E device is able to perform at most 800 MT/s
and its data bus frequency is equal to 400 MHz.

Finally, the grade, i.e. the letter appended to the end
of the string, is used to distinguish between devices that
belong to the same speed bin, but that have different timing
constraints. The closer to ‘A’ the grade is, the smaller the
timing constraints of the device are and, hence, the faster
the device can execute SDRAM commands. For instance,
a DDR3-800D can execute SDRAM commands faster than
a DDR3-800E, even though both belong to the 800 MT/s
speed bin.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, AUGUST 2016 3

2.2 SDRAM Organization, Commands and Constraints

We depict a SDRAM module and the logical structure of a
SDRAM chip in Fig. 2. A SDRAM module is a printed circuit
board that contains one or more ranks. A rank is comprised
of a set of SDRAM chips that share a clock, a command bus
and a chip-select signal. Each rank is treated by the SDRAM
controller as a single SDRAM chip with a larger number of
data bus pins. For instance, in the figure, eight 8-bit data bus
chips are used to form a 64-bit wide rank.

... R
o

w

D
e

co
d

e
r

Row Buffer

Bank 0

Col. Decoder

columns

ro
w

s

Bank nB -1

C
o

m
m

a
n

d

D
e

co
d

e
r

Cmd.

Bus

SDRAM Chip
8-bits

Data

Bus

Addr.

Bus

SDRAM

 Chip 0

SDRAM

 Chip 6

SDRAM

 Chip 7

...

Cmd. and

Addr. Buses

64-bits
Data Bus

SDRAM Rank

SDRAM Module

Fig. 2. SDRAM System Organization.

We discuss the logical structure of SDRAM chips.
SDRAM chips are divided into banks. We refer to the
number of banks in a SDRAM chip as nB. In this paper,
we consider DDR2 and DDR3 SDRAMs with nB=8 banks.
Each bank contains a matrix-like structure and a row buffer
(which is highlighted in the figure). The matrix-like struc-
tures are not visible to the memory controller. All data
exchanges are instead performed through the corresponding
row buffer, which represents the internal level of caching
mentioned in the introduction.

There are four commands used to move data into/from a
row buffer: activate, precharge, read and write. The activate (A)
command loads a matrix row into the corresponding row
buffer, which is known in the literature as opening a row.
The precharge (P) command writes the contents of a row
buffer back into the corresponding matrix, which is known
in the literature as closing a row. The read (R) and write (W)
commands are used to retrieve or forward words from
or into a row buffer. We use the acronym CAS (Column
Address Strobe) to refer to both read and write commands.

CAS commands operate in bursts, which means that
each of them transfers more than one word. The exact
amount of words transferred by a CAS command is de-
termined by the the burst length (BL) parameter. Both
DDR2 and DDR3 support BL=8, which is the configuration
employed in this article. A single CAS command occupies
the data bus for tBURST = BL/2 = 4 cycles and transfers
BL ·WBUS bits, where WBUS represents the width of the
data bus.

We discuss timing constraints. There are several timing
constraints that dictate how many cycles apart consecutive
commands must be. We enumerate them for one DDR2 and
one DDR3 devices in Table 1. Notice that there are three
different types of constraints: the ones that refer to the min-
imum distance between commands issued to the same bank
(exclusively intra-bank constraints), the ones that refer to the
minimum distance between commands issued to different
banks (exclusively inter-bank constraints), and the ones that
refer to the minimum distance between commands issued to
any bank (inter- and intra-bank constraints). The constraints

TABLE 1
Timing constraints for DDR2 and DDR3 devices (available in [17]

and [18]), considering a row size of 2KB.

JEDEC DDR2 and DDR3 Specification (data bus cycles)
Constraint Description DDR2- DDR3-

800C 1866M
Exclusively intra-bank constraints (same bank)

tRCD A to R or W delay 4 13
tRP P to A delay 4 13
tRC A to A delay 22 45
tRAS A to P delay 18 32
tWL W to data bus transfer delay 3 9
tRL R to data bus transfer delay 4 13
tRTP R to P delay 3 7
tWR End of a W operation to P delay 6 14

Exclusively inter-bank constraints (different banks)
tRRD A to A delay 4 6
tFAW Four activate window 18 33

Inter- and intra-bank constraints (any bank)
tWtoR W to R delay 10 20
tRtoW R to W delay 6 10
tWTR End of W data transfer to R delay 3 7
tRTW R to W delay 6 10
tBURST Data bus transfer 4 4
tCCD R to R or W to W delay 4 4

that refer to data bus turnarounds fall into the last category.
For the interested reader, we provide a graphical depiction
of the constraints in Appendix A.

We discuss data bus turnarounds. The DDR2 and
DDR3 standards [17], [18] specify two constraints that refer
to data bus turnarounds: tRTW and tWTR. The former estab-
lishes the minimum distance between a read followed by a
write. The latter establishes the minimum distance between
the end of the data transfer of a write command and a read.
To avoid confusion and have constraints with symmetric
meanings and notations, we employ the notation tRtoW to
refer to the minimum distance between a read followed by a
write, and tWtoR to refer to the minimum distance between
a write followed by a read. Given the textual definition,
notice that tRtoW is equal to tRTW , while tWtoR amounts
to tWL + tBURST + tWTR.

Finally, we discuss refreshes. SDRAMs must be refreshed
every tREFI = 7.8µs in order to prevent the capacitors that
store data from being discharged. This is accomplished with
the refresh (R) command. The amount of cycles required for a
refresh to complete (referred to as tRFC) varies according to
the SDRAM device, e.g. tRFC = 36 cycles for a DDR3-800E.

2.3 Open-Row Real-Time SDRAM Controllers

As discussed in the introduction, this paper concentrates
on open-row real-time SDRAM controllers. Such controllers
only precharge row buffers if a refresh must be executed or
if an incoming request needs to access a row currently not
present in the corresponding row buffer. Incoming requests
are then translated into either a CAS command, in case of
a row buffer hit, or into a precharge-activate-CAS command
sequence, in case of a row buffer miss.

With regard to traditional real-time controllers, which
rely on a combination of bank-interleaved address mapping
and close-row policy, open-row SDRAM controllers have two
main advantages: firstly, they do not require narrow data

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, AUGUST 2016 4

buses and/or large request granularities to be effective. And
secondly, they potentially consume less power, as they avoid
power-hungry closing and opening of rows.

However, also with regard to traditional real-time con-
trollers, they have two main drawbacks: firstly, they demand
a bank privatization setup to be effective, as it prevents dif-
ferent real-time tasks from destroying the row buffer locality
of each other. And secondly, due to the bank privatization,
they potentially suffer from poor memory utilisation, as a
task might not need all the storage provided by a bank.

Finally, it is worth highlighting that in case data ex-
change between real-time tasks is necessary, one or more
banks can be designated for such purpose, i.e. they can
be shared. Such strategy has been discussed in [11] and is
out of the scope of this article. Moreover, assigning tasks
to SDRAM banks can be achieved with a software virtual
addressing layer, as discussed in [20].

3 SDRAM CONTROLLER ARCHITECTURE

In this section, we firstly provide an architectural overview
of our SDRAM controller and then we discuss in detail the
blocks responsible for command scheduling. Before we start
our discussion, however, we highlight that our controller
supports a single request granularity. Supporting different
granularities, which would be necessary for instance if a
DMA engine competes for the SDRAM with cache-relying
processors, is out of the scope of this article (as it constitutes
an orthogonal challenge already investigated in [11]).

3.1 Architectural Overview

We depict the architecture of our SDRAM controller in
Fig. 3. Notice that the architecture is comprised of 6 types of
blocks: bank address mapping, bank request queues, bank
schedulers, command registers, data buffers and channel
scheduler. Incoming requests go firstly through the bank
address mapping block, which decodes their addresses and
forwards them to the proper bank request queue. Requests
are then removed one at a time from the queues by the
corresponding bank scheduler, whose job is to process
them. Processing a request means translating it into a set
of SDRAM commands, which are then forwarded to the
command registers. Each bank scheduler has its own com-
mand register and each command register stores a single
command (the oldest outstanding command).

Finally, the channel scheduler, which implements the
read/write bundling mechanism, arbitrates between differ-
ent command registers and sends the selected command to
the SDRAM module, i.e. executes it. In the rest of this sec-
tion, we discuss in detail the SDRAM controller blocks that
are responsible for SDRAM command scheduling (depicted
in gray in the figure).

3.2 Bank Schedulers and Command Registers

The function of bank schedulers is to translate a mem-
ory request into a set of SDRAM commands that fulfill
such request. If the bank scheduler employs the open-row
buffer policy, which is the case considered in this article, a
request is translated into either a CAS command or into
a precharge-activate-CAS sequence, depending on whether

Bank 1

Scheduler

Bank nB-2

Scheduler

Bank nB-1

Scheduler
...

Bank 0

Request

Queue

Bank 1

Request

Queue

Bank nB-2

Request

Queue

Bank nB-1

Request

Queue

Bank Address Mapping

...

Caching and Interconnect fabric

Processor

1

Processor

i-2

Processor

i-1
...

SDRAM

Controller

READ

Data

Buffer

WRITE

Data

Buffer

Processor

0

Bank 0

Scheduler

Channel Scheduler

Command Bus Data Bus

Command

Registers

Fig. 3. Logical architecture of our SDRAM controller. The blocks respon-
sible for SDRAM command scheduling are highlighted in gray.

it hits or misses at the row buffer. The function of the
command registers is to serve as an intermediate level of
buffering that decouples the implementation of the channel
scheduler from the bank schedulers. There is one command
register for each bank scheduler. The channel scheduler
removes commands from the registers when the commands
are executed (sent to the SDRAM module). This allows the
bank scheduler whose register was emptied to insert a new
command (after the pertinent constraints no longer pose a
violation), and so on.

A bank scheduler must only place a command in its
register if such command can be immediately executed by
the channel scheduler without violating any exclusively intra-
bank timing constraints, i.e. timing constraints that rule the
minimum distance between commands issued to the same
bank and to the same bank only. For instance, if the channel
scheduler executes an activate from a command register,
then the corresponding bank scheduler must wait at least
tRCD cycles before inserting a write into the aforementioned
command register.

3.3 Channel Scheduler

The channel scheduler has two functions: firstly, to regu-
larly refresh the SDRAM module and, secondly, to arbitrate
between and execute commands from the command regis-
ters. Because the refresh logic is trivial, in this subsection,
we focus on the (non-refresh) command scheduling. As
we already discussed, commands placed in the command
registers can be immediately executed without violating
any exclusively intra-bank constraints. Hence, the channel
scheduler only needs to prevent the exclusively inter-bank
and the intra- and inter-bank timing constraints.

We depict a block diagram of the channel scheduler
in Fig. 4. Notice that commands are arbitrated in two
layers. Firstly, they are arbitrated inside their own type
arbiters, i.e. CAS commands are routed to the CAS Arbiter
and activate and precharge commands go to the Activate and
Precharge Arbiters, respectively. Then, in the second layer
of arbitration, i.e. the Command Bus Arbiter, a command
that won the arbitration in its type arbiter competes with

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, AUGUST 2016 5

interfering commands from other types. We now discuss
each of the aforementioned arbiters individually.

Bank 0

Scheduler

Bank nB-1

Scheduler

...

...

C
o

m
m

a
n

d

B
u

s A
rb

ite
r

CAS

Arbiter

Activate

Arbiter

Precharge

Arbiter

D
E

M
U

X

D
E

M
U

X

...
...

Channel Scheduler

...

Command

Register

Command

Register

Fig. 4. SDRAM Channel Scheduler. The refresh logic is omitted for the
sake of simplicity.

3.3.1 CAS Arbiter

The CAS Arbiter implements the bundling of read and write
commands. For that purpose, it relies on the concept of
scheduling rounds, which can last several cycles. More-
over, it schedules commands according to three rules: 1) in
each round, at most one CAS command from each of the
command registers is executed. 2) In the beginning of each
round, the CAS Arbiter selects (if existing) CAS commands
that match the type of the last CAS command from the
previous round. For instance, in Fig. 5, the CAS Arbiter
starts round i+ 1 serving write commands, because round i
finished with a write command. And 3), in each round, at
most one sweep of read commands and one sweep of write
commands is performed. Hence, if a CAS command which
is not blocked by the first rule arrives too late, e.g. a read com-
mand arrives after the end of the sweep of read commands,
such command is postponed until the next round.

We make two important observations about the rules.
Firstly, they enforce that at most one turnaround happens
in each scheduling round. And secondly, the not-too-late as-
sumption mentioned in the introduction refers to assuming
(in the timing analysis) that any CAS command that is not
blocked by the first rule will also not be postponed until the
next round due to the third rule.

W

Command

Registers

R

W

R

cr0

cr1

cr2

cr3

Round i+1

Data

bus

R

R

DATA DATA

W

W

DATA DATA

W

W

R

R

DATA DATA DATA DATA

Round i ...

R

R

DATA DATA

...

R

R

...
...

Data from Round i Data from Round (i+1)
time

New round

starts

New round

starts

New round

starts

Fig. 5. Example of read/write bundling in a system with nB=4 banks. In
the figure, we consider that two command registers provide a continuous
stream of writes and two other command registers provide a continuous
stream of reads. Notice that at most one data bus turnaround is required
in each round. Notice also that the turnaround causes an idle bubble in
the data bus.

To implement bundling, the CAS Arbiter requires a state-
ful architecture. The state is comprised of a vector of served
flags, that keep track of which command registers have
already been served in the current round, and a bundling-
type register, that defines which type (read or write) of CAS

commands have currently priority. To clarify how the state
is used to perform scheduling, we depict a diagram showing
the operation of the CAS Arbiter in Fig. 6. In the figure, it
is important to notice that the demultiplexing layer from
the channel scheduler (see Fig. 4) enforces that only read
or write commands arrive at the input of the CAS Arbiter.
Therefore, the activate and precharge commands contained in
the registers of banks 0, 1 and 7 do not arrive at the input of
the CAS Arbiter (their boxes are empty).

We discuss each step performed by the CAS Arbiter.
Firstly, the CAS Arbiter masks out the command registers
that have already been served in the round. This is per-
formed using the served flags vector. Secondly, the arbiter
performs CAS masking, which masks out pending CAS
commands that do not match the bundling-type register. In
the figure, the bundling-type is write consequently, the read
command from bank 5 is masked out. Thirdly, a round-
robin arbiter selects the next CAS command to be exe-
cuted. Finally, in the last step (called the timing constraints
checker), the selected CAS command is simply held until it
causes no timing violations. For CAS commands, there are 4
constraints that need to be accounted for: tCCD , tBURST ,
tRtoW and tWtoR. So, for instance, if the last command
executed in the round was a read but the next command
that the CAS arbiter wants to execute is a write, the timing
constraints checker holds the pending write for tRtoW cycles.

We describe how the CAS Arbiter state is updated. We
firstly discuss the served flags vector. Every time a CAS is
selected and executed by the Command Bus Arbiter, the
corresponding bit in the served flags vector is set. Further-
more, the vector is cleared every time a new round starts.
A new round starts either when all bits of the vector are
set, or when all unset bits of the vector belong to command
registers that do not have a pending CAS command.

We discuss the bundling-type register. The bundling-type
register defines which type of CAS operation has priority:
reads or writes. Its value is flipped (from read to write, or from
write to read) if four conditions are simultaneously satisfied.
Firstly, there is at least one command register that has a
pending CAS command whose type does not match the
value of the bundling-type register. Secondly, the served flag
of the command from the first condition is unset. Thirdly,
the output of the CAS Masking step is null. And finally,
no flipping of the bundling-type register has taken place in
the current scheduling round. These four conditions enforce
that, in each round, at most one data bus turnaround is
required, as shown in Fig. 5.

3.3.2 Activate Arbiter

There are two timing constraints that dictate how far apart
activate commands to different banks must be from each
other: tRRD and tFAW . The tRRD dictates the minimum
distance between consecutive activate commands to different
banks. The tFAW is a bit more complex. It establishes a
time window in which at most 4 activate commands can be
executed. As long as tRRD and tFAW are not violated, the
Activate Arbiter simply forwards the oldest pending activate
command to the Command Bus Arbiter.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, AUGUST 2016 6

0 1 2 3

CAS

Masking

Timing

Constraints

Checker

&

Served flags

W

Bundling-type

R
o

u
n

d

R
o

b
in

command

registers

CAS Arbiter
CAS Arbiter State P

A

W

W

0

1

2

3

W

R

W

P

4

5

6

7

0 1 2 3
W R W
4 5 6 7

0 0 1 1 0 0 0 0
4 5 6 7

0 1 2 3
W W
4 5 6 7 0 1 2 3

W
4 5 6 7

X

X

X

CAS Arbiter

Inputs

W

W

0

1

2

3

W

R

W

4

5

6

7

D
E

M
U

X

..
.

D
E

M
U

X

Demultiplexing

Layer

Fig. 6. CAS Arbiter operation for a system with nB=8. For the sake of simplicity, the logic that updates the CAS Arbiter state (served flags vector
and bundling-type register) has been omitted.

3.3.3 Precharge Arbiter

There are no inter-bank timing constraints between precharge
commands to different banks. For instance, a precharge com-
mand to bank 0 can be executed one cycle after a precharge
command to bank 1. Hence, the precharge Arbiter simply
forwards the oldest pending precharge to the Command Bus
Arbiter.

3.3.4 Command Bus Arbiter

The command bus can only carry one command per cycle
and, hence, needs to be arbitrated. Given that the exclusively
intra-bank timing constraints are handled by the bank sched-
uler and that inter-bank timing constraints are handled by
the type arbiters, this stage of arbitration only needs to select
between the output of the type arbiters. For that purpose,
it prioritizes the output of the CAS Arbiter. If no pending
CAS is available, the oldest non-CAS (precharge or activate)
is given priority. (Here we highlight that in [12], activates
had priority over precharges, which brought no benefit).

4 TIMING ANALYSIS

In this section, we describe how to calculate the worst-case
cumulative SDRAM latency of a task (LSDRAM

Task) using our
SDRAM controller, i.e. the maximum amount of time that
a task spends idle while waiting for its SDRAM requests to
be served. A task, for the sake of this article, is a processor
executing a computer program.

We structure our analysis into four parts: firstly, in Sec-
tion 4.1, we describe our processor, bank scheduler and bank
address mapping assumptions. Secondly, in Section 4.2, we
compute the worst-case latencies of individual commands.
Then, in Section 4.3, we combine the worst-case latencies
of individual commands with the delays introduced by the
bank scheduler in order to calculate the worst-case latencies
of SDRAM requests. Finally, in Section 4.4, we compute
LSDRAM
Task , i.e. the sum of the worst-case latencies of all

SDRAM requests.

4.1 Assumptions

Our timing analysis demands no knowledge about the
behavior of interfering tasks on the system. Moreover, it
relies on the following assumptions: 1) the processor run-
ning the task under analysis (u.a.) relies on caches and only
accesses the SDRAM to retrieve or forward cache lines.
2) The processor is fully timing compositional [21], which

means that it uses in-order execution and stalls at every read
request. 3) The write-buffer between the cache and SDRAM
is disabled and, hence, the processor also stalls at write
requests1. In the ARMv8-A architecture [22], for instance,
this is achieved by disabling the early write acknowledgment
feature. 4) No multi-threading/context switches occur due
to task scheduling. This enforces that no cache related effects
change the number of cache misses experienced by the
task u.a.. 5) The task u.a. has exclusive access to one of
the banks (bank privatization) and the corresponding bank
scheduler employs the open-row policy. 6) Our lemmas and
equations do assume the not-too-late behavior mentioned in
Section 3.3.1. However, after we present them, we also show
how a simple trick can be used to compute a bound that
does not rely on such behavior.

4.2 Worst-case Latency of a Command

In this subsection, we calculate the worst-case latency be-
tween the insertion of a command into a register and its
execution by the channel scheduler. For that purpose, we
assume that each command suffers maximum interference
within its type arbiter. For instance, when calculating the
worst-case latency of an activate, we assume all interfering
command registers also have pending activate commands.

We make the following observations about our discus-
sion: firstly, to avoid confusion, we refer to the command
register that holds the command u.a. as cr. Secondly, we
refer to each of the nB-1 interfering command registers as
icri, where i is an index. Thirdly, to save space, the figures in
this subsection are depicted with nB=4 banks, even though
DDR3 devices have nB=8 banks. Fourthly, because different
commands are subject to different timing constraints and
have different priorities inside the channel scheduler, we
calculate the worst-case latency individually for read, activate
and precharge. The case for a write command is similar in a
symmetrical fashion to the one for a read command and,
hence, only discussed in Appendix B.

Finally, for CAS commands, i.e. read or write commands,
we further distinguish between two types of worst-case
latency: 1) the one experienced if the CAS u.a. succeeds,
i.e. follows, a CAS command in cr (SC). And 2) the one
experienced if the CAS u.a. succeeds a non-CAS command

1. Notice that the presence of a write-buffer allows a processor to keep
executing while a write request is being processed, potentially hiding
the latency of a write request. Consequently, making a no write-buffer
assumption is conservative.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, AUGUST 2016 7

in cr (SNC). As it will become clear, this distinction allows
us to properly analyze the round-oriented operation of the
CAS Arbiter. We summarize the notations used for worst-
case latencies of commands in Table 2.

TABLE 2
Notation used for worst-case latencies of SDRAM commands.

.

Worst-case SDRAM Computed

Latency Notation Command u.a. Succeeding a according to

LR
SC R R or W

Theorem 1
LR
SNC R A

LW
SC W R or W Theorem 5

LW
SNC W A (Appendix B)

LA A P Theorem 2

LP P P or R or W Theorem 3

We now calculate the worst-case latency of a read. For
that purpose, we firstly describe an expression that com-
putes the latency of a read as a function of tDELAY, i.e. the
distance between the insertion of the read u.a. into cr and
the execution of the previous CAS command that occupied
cr. We refer to such expression as LR(tDELAY). Both LR

SC and
LR
SNC are then computed using it with different parameters.

We depict a scenario that induces the worst-case latency
of a read in Fig. 7. The intuition is that the read u.a. is poten-
tially blocked twice by each interfering command register
(depending on how small tDELAY is). Moreover, we assume
that data bus turnarounds happen as often as possible,
i.e. one at every scheduling round. With that in mind, we
state Lemma 1.

tcurr-round

Command

Registers

Round i-1

R R

W

Round i

cr

icr
0

icr
1

icr
2

read u.a.

inserted

read u.a.

executed

tRtoW

t
CCD

CMD CMD Insertion of CMD in command register Execution of CMD

R

R

R

W W

W W

W

t
CCD

t
CCD

R

tWtoR

t
CCD

t
CCD

Previous read

executed

tDELAY

New round starts

tprev-round

time

LR(tDELAY)

Fig. 7. Worst-case latency of a read command that succeeds a CAS
command in cr for a system with nB=4 banks.

Lemma 1. The worst-case latency of a read (that is inserted
into cr tDELAY cycles after the previous CAS that occupied cr is
executed) is calculated with Eq. 1.

LR(tDELAY) = max{tprev-round−tDELAY, 0}+tcurr-round (1)

where:

tprev-round = (nB − 2) · tCCD + tRtoW (2)

tcurr-round = (nB − 1) · tCCD + tWtoR (3)

Proof. It is trivial to observe that, in order to maximize
LR(tDELAY), the previous CAS that occupied cr should be
the first to be served in its scheduling round and that the

read u.a. should be the last to be served in its scheduling
round. Moreover, to enforce one turnaround in each of
the scheduling rounds, the previous CAS in cr must also
be a read. Consequently, the rest of this proof consists in
addressing the correctness of Eq. 1.

The worst-case latency of a read command is given by
the sum of the blocking experienced by it in two distinct
and consecutive rounds of the CAS Arbiter (see Figure 7):
firstly, in round i− 1, i.e. the round in which the previous
read that occupied cr is executed, and then in round i, i.e. the
round in which the read u.a. is executed.

We firstly discuss the blocking in round i− 1. In
round i− 1, the amount of blocking experienced by the
read u.a. amounts to max{tprev-round − tDELAY, 0} cycles. The
tprev-round portion is computed according to Eq. 2 and rep-
resents an upper bound on the time required for round i− 1
to finish because: 1) all icrs provide an interfering CAS, and
2) one data bus turnaround is required. The tprev-round is
then subtracted by the tDELAY, which can be inferred from
our assumption of a processor stalls at every request.

We discuss the blocking in round i. In round i, i.e. the
round in which the read u.a. is executed, the blocking
suffered by the read u.a. amounts to tcurr-round, which is
calculated according to Eq. 3. Again, the equation computes
an upper bound on the blocking experienced by the read u.a.
in round i because: 1) all icrs provide an interfering CAS
command. And 2) a turnaround is required. This concludes,
by construction, the proof of correctness of Eq. 1.

From the definition of LR(tDELAY), we can derive Theo-
rem 1.

Theorem 1. The worst-case latency of a read is given by Eq. 4 if
it succeeds a CAS, and by Eq. 5 if it succeeds a non-CAS.

LR
SC = LR(tRL + tBURST) (4)

LR
SNC = LR(tRL + tBURST + tRP + tRCD) (5)

Proof. Both Eqs. 4 and 5 use the function from Lemma 1
with different values of tDELAY. For the calculation of LR

SC ,
i.e. the worst-case latency of a read that succeeds a CAS in cr,
we know tDELAY is at least tRL + tBURST cycles (as depicted
in Fig. 8a), because of our assumption of a processor that
tolerates at most one outstanding request. However, for
the calculation of LR

SNC , we know there is an activate and
a precharge before consecutive CAS commands. Hence, we
add the corresponding latencies, as depicted in Fig. 8b.

R

read u.a.

inserted

Previous read

executed tDELAY

R

DATA

Command

bus

Data

bus

tBURST tRL
time

(a) For computing LR
SC .

R

read u.a.

inserted

Previous read

executed tDELAY

R

DATA

Command

bus

Data

bus

tBURST tRL
time

(b) For computing LR
SNC .

Fig. 8. Graphical depiction of tDELAY. (Proof aid for Theorem 1).

We now discuss the not-too-late assumption. For that
purpose, consider the example from Fig. 7 and the equation
from Lemma 1. Notice that if tDELAY is sufficiently large,
the equation will only account for the blocking experienced

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, AUGUST 2016 8

in a single scheduling round (given by tcurr-round). How-
ever, this only remains accurate if the third operational rule
from the CAS Arbiter (see Section 3.3.1) is never invoked.

In theory, it is possible to carefully handcraft a scenario
in which the third rule must be used by the CAS Arbiter.
This is demonstrated in Fig. 9. In practice, cycle-accurate
simulations have proven such scenario to be quite unlikely.
Hence, it can be safely ignored, given that the end-result
of our analysis is computed over all requests from a task,
from which the vast majority will not experience the too
late behavior of a read command. (Alternatively, one could
employ FCFS instead of round-robin in the CAS Arbiter and
modify its second rule of operation so that if a CAS arrives
too late, then its type determines how the new scheduling
round starts, e.g., in Fig. 9, round i would start executing the
read u.a.. This would have minimum impact in Lemma 1).

Assuming no modifications in the CAS Arbiter, a bound
independent of the not-too-late assumption can be calculated
by enforcing that the LR(tDELAY) function is only used with
tDELAY = 1, i.e. enforcing that LR

SNC = LR
SC = LR(1). The

number one is used instead of zero because, in order to
construct the scenario, we must assume that the read u.a.
is inserted into cr one cycle after the decision to end the
sweep of read commands is made.

tcurr-round

Command

Registers

Round i-1

R

R W

Round i

cr

icr0

icr1

icr2

read u.a.

inserted

read u.a.

executed

tRtoW

tCCD

CMD CMD Insertion of CMD in command register Execution of CMD

R

W

New round starts

tprev-round

time

LR(tDELAY = 1)

New round starts

W ...

R W

R W

tCCD
W W

W W

tCCD

tCCD

tCCD

W

W

W

tCCD

tWtoR

tCCD

Fig. 9. An example of a read arriving too late for scheduling.

We now discuss the worst-case latency of activates and
precharges. For that purpose, we firstly state Lemma 2, which
captures the effect of the lower priority of activates and
precharges with regard to CAS commands.

Lemma 2. Given a sequence of n precharge and/or activate
commands that can be immediately executed without violating
timing constraints and that can only postpone each other for
one cycle due to command bus contention, the maximum timing
interval (in cycles) required to execute such sequence is given by
Eq. 6.

αPA(n) = n+

⌈

n

tBURST − 1

⌉

(6)

Proof. Activate and precharge commands have lower prior-
ity than CAS commands. However, any two consecutive
CAS commands must be executed at least tBURST cycles
apart (or by even more cycles if a data bus turnaround is
required). Hence, in any interval of tBURST cycles, at least
tBURST − 1 cycles will be free for the execution of activates
and precharges. Eq. 6 comes directly from such observation
(for the interested reader, a graphical depiction is available
in Appendix D).

We now compute the worst-case latency of an activate
command.

Theorem 2. The worst-case latency of a activate command is
calculated using Eq. 7.

LA = (tFAW − 4 · tRRD) + max{exp1, exp2} (7)

where:

exp1 = (nB − 1) · tRRD + (nB − 1) ·∆A (8)

exp2 = exp1 + (tFAW − (4 · tRRD + 3 ·∆A)) ·K (9)

∆A = αPA(1)− 1 (10)

K =

⌊

(nB − 1)

4

⌋

(11)

Proof. In order to assist our proof, we depict an example
of the worst-case latency of an activate in Fig. 10. Notice
that the figure has three main features: (1) it considers
that four activates are executed as-late-as-possible before the
insertion of the activate u.a.. (2) When the activate u.a. is
inserted into cr, each of the nB − 1 interfering banks has
an older pending activate. (3) After activate command(s)
from interfering bank(s) are executed, such bank(s) provide
higher-priority CAS commands.

We now discuss why such features lead to the worst-
case. The first feature forces us to account for a residual
latency (consequence of tFAW). The second feature comes
from the observation that a CAS or precharge command in
an interfering bank can only postpone the activate u.a. by
one cycle (due to data bus contention), while an activate
in an interfering bank can postpone the activate u.a. by at
least tRRD cycles. The last feature enforces that activates
are blocked as often as possible by higher-priority CAS
commands (by as often, we mean as long as the second
feature is not compromised).

That being said, we now prove the correctness of the
equation that computes LA, which has two main terms. The
leftmost term accounts for the residual latency mentioned
in the first condition. The rightmost term (max operator)
accounts for the remaining latencies by selecting the largest
value between two expressions. The first one (exp1) con-
siders that tFAW is hidden by the occurrences of tRRD

and the blocking due to higher-priority CAS commands
(which is not the case in Fig. 10). The second one (exp2)
considers that tFAW is not hidden and basically just replaces
(4 · tRRD + 3 ·∆A) by tFAW in exp1 for each of the K times
in which the tFAW constraint is activated.

residual latency

αPA(1)

𝒕𝑹𝑹𝑫

Command

Registers

cr

icr
0

icr
1

icr
2

time Insertion of CMD in command register CMD Execution of CMD CMD

A …

icr
3

A

A

A

… …

𝒕𝑭𝑨𝑾

A

A

A

A

A

C

𝒕𝑭𝑨𝑾

A

ΔA

activate

u.a. exec. LA

A … …
A

A

𝑡𝑅𝑅𝐷 𝑡𝑅𝑅𝐷 𝑡𝑅𝑅𝐷

𝒕𝑹𝑹𝑫

C

A

A

C

𝒕𝑹𝑹𝑫

𝒕𝑹𝑹𝑫

C

4 ⋅ 𝑡𝑅𝑅𝐷 + 3 ⋅ ΔA

activate

u.a. inserted

four as-late-as-possible activates

𝑡𝑅𝑅𝐷

ΔA ΔA ΔA

αPA(1) αPA(1) αPA(1)

Fig. 10. Worst-case latency of an activate command in a hypothetical
system in which nB=5. The letter C refers to a CAS command.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, AUGUST 2016 9

Finally, we compute the worst-case latency of precharge
commands with Theorem 3.

Theorem 3. The worst-case latency of a precharge command is
calculated using Eq. 12.

LP = αPA(nB) (12)

Proof. Precharge commands can be executed back-to-back
(one per cycle). In the worst-case, the precharge u.a. is
blocked once by older non-CAS commands in interfering
banks. Moreover, interfering non-CAS commands can be
blocked higher-priority CAS commands once every tBURST

cycles. Consequently, we compute LP by invoking αPA

with nB as argument. Notice that we employ nB (instead of
the nB−1 interfering non-CAS commands) as an argument
to the αPA(n) function, as we also account for one cycle
required to execute the precharge u.a..

4.3 Worst-case Latency of a Request

We define the worst-case latency of a request as the time be-
tween the request arriving at the SDRAM controller and the
corresponding data transfer being completed. This latency
is influenced by three factors: 1) The latencies imposed by
the bank scheduler, which enforce that a command is only
inserted into the corresponding command register if it can
be immediately executed without violating any intra-bank
timing constraints. 2) The commands required to fulfill the
request and their corresponding worst-case latencies, which
were calculated in the previous subsection. 3) The cycles
required to perform the data transfer.

Because of the open-row policy, the commands required
to fulfill a request depend on whether it hits or misses at
the row buffer and whether it is a read or a write. Hence,
we classify requests into four different types, as described
in Table 3. For instance, a read request that does not target
a currently opened row is referred to as a Read Miss (RM),
it requires a P-A-R command sequence to be fulfilled and
its worst-case latency is given by LRM

Req . In this subsection,
we compute the worst-case latency for read misses and read
hits (the case for write misses and write hits is similar and,
hence, is only provided in Appendix C).

TABLE 3
Request classification.

Type Command Sequence Mnemonic Latency
Read Miss P-A-R RM LRM

Req

Read Hit R RH LRH
Req

Write Miss P-A-W WM LWM
Req

Write Hit W WH LWH
Req

We discuss LRM
Req . For ease of comprehension, we depict

the factors that contribute to LRM
Req in Figure 11a. Notice that,

in the figure, there is a number below every latency that
contributes to LRM

Req . These numbers correlate each latency
with one of the factors described in the beginning of this
section. For instance, LP , LA and LR

SNC are command
latencies (factor 2) and, hence, have a 2 below them. Also,
observe that, in the worst case, the request u.a. arrives
exactly after the previous request was served. This is a direct
result of our timing compositional processor assumption.

Finally, notice that we use a pattern of white and gray to
depict the previous request. Such color scheme is employed
to represent that the previous request can be either a read
or a write request (and, hence, the letter C, which stands for
CAS, is used inside the command box).

We firstly describe tResidual. To fulfill a RM request, the
bank scheduler firstly needs to precharge the row buffer.
However, in order to enforce that no tWR or tRAS violations
occur (see Table 1), the bank scheduler needs to delay the
insertion of the required precharge into the command register
by tResidual cycles. To calculate tResidual , we consider both
the case in which the previous request was a read and the
case in which the previous request was a write, as displayed
in Eqs. 13, 14 and 15.

tResidual = max{tprev-R
Residual, t

prev-W
Residual} (13)

where:

tprev-R
Residual = max{tRAS − (tRCD + tRL+ tBURST), 0} (14)

tprev-W
Residual = tWR (15)

If the previous request was a read, then tResidual is a
consequence of the tRAS constraint and is given by Eq. 14,
which comes directly from the semantics of the used con-
straints. If the previous request was a write, then tResidual

is given by Eq. 15, which simply corresponds to the write
recovery time.

We highlight that in order to compute the latency of the
request u.a. independently from the previous request, we
conservatively employ the max function in Eq. 13 to select
between the largest of the two cases. In the next subsection,
when we combine the latencies of all requests to extract
guarantees for a task, we describe a correction term that
compensates for this overly conservative assumption).

We now discuss the computation of LRM
Req . As we already

discussed, there are three factors contributing to LRM
Req . In

order to compute LRM
Req , we simply add all three factors.

This is formalized with Lemma 3.

Lemma 3. The worst-case latency of a RM request is given by
Eq. 16. In the equation, the leftmost, the middle and the rightmost
portions compute the influence of factors 1, 2 and 3, respectively.

LRM
Req = (tResidual + tRP + tRCD)+

(LP + LA + LR
SNC) + (tRL + tBURST) (16)

Proof. Eq. 16 is trivial, as it simply sums the command
latencies, the bank scheduler delays and the time required
to perform a data transfer.

We compute LRH
Req . A RH request only requires a read

command and, hence, its worst-case latency is simpler, as
depicted in Figure 11b. As soon as the request arrives,
the bank scheduler inserts the read u.a. into the command
register. The read u.a. is executed after at most LR

SC cycles
and the data transfer is completed after tRL+tBURST cycles.
Notice that, because no precharge is required, the tResidual

latency does not need to be taken into account. Moreover, a
possible data bus turnaround is already accounted for inside
LR
SC . These observations trivially yield Lemma 4.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, AUGUST 2016 10

LRM Req

tRL tResidual

P A R

RM Req.

arrives

CMD

CMD

Insertion of CMD in command register

Execution of CMD

P A

LA

R

DATA

RM Req.

served

tBURST tRP tRCD LR
LP

2 3 3 1 2 2
Already accounts

 for tWtoR

Bank b

C

Data

Bus

DATA

tRL or tWL

tBURST

Previous Request
time

1 1
SNC

(a) LRM
Req

tRL
Bank b

C

Data

Bus

DATA

Previous Request

tRL or tWL

R
tBURST

RH Req. arrives

CMD

CMD

Insertion of CMD in command register

Execution of CMD

R

DATA

RH Req. served

tBURST

Already accounts

 for tWtoR

LRH Req

2 3 3

time

LR
SC

(b) LRH
Req

Fig. 11. Decomposition of LRM
Req and LRH

Req . Notice that for the calculation of LRM
Req we employ LR

SNC , while for LRH
Req we employ LR

SC .

TABLE 4
Information required to calculate LSDRAM

Task
. The second portion of the

table is derived from the first portion and is only employed to calculate
the correction term for the overly conservative computation of tResidual

(see Eq. 13 in Section 4.3).

Notation Description

NRM
Task

Number of Read Misses from the task

NRH
Task

Number of Read Hits from the task

NWM
Task

Number of Write Misses from the task

NWH
Task

Number of Write Hits from the task

Notation Description Value

NMisses
Task

Number of Misses from the task NRM
Task

+NWM
Task

NReads
Task

Number of Reads from the task NRM
Task

+NRH
Task

NWrites
Task

Number of Writes from the task NWM
Task

+NWH
Task

Lemma 4. The worst-case latency of a RH request is given by
Eq. 17. In the Equation, the leftmost and the rightmost portions
compute the influence of factors 2 and 3, respectively.

LRH
Req = (LR

SC) + (tRL + tBURST) (17)

4.4 Worst-case Cumulative SDRAM Latency of a Task

We define the worst-case cumulative SDRAM latency of a
task (LSDRAM

Task) as the maximum amount of time that a task
spends idle waiting for its SDRAM requests to be served.
For that purpose, we assume that we know the pattern
of SDRAM requests performed by a task that leads to its
worst-case latency. By pattern, we mean the information
enumerated in Table 4. Because computing such pattern is
out of the scope of this article (we refer the interested reader
to [23]), we extract the pattern from execution traces. We
highlight that the same assumption has been made in [11],
[12], which also employed a trace-based approach.

In order to compute LSDRAM
Task , we firstly multiply the

numbers from the first portion of Table 4 by the correspond-
ing request latencies. Then, we correct the overly conserva-
tive result (which is a consequence of Eq. 13 in Section 4.3)
with a correction term. We formalize the computation of
LSDRAM
Task in Theorem 4.

Theorem 4. The worst-case cumulative SDRAM latency of a
task is given by Eq. 18.

LSDRAM
Task = LReqs

Task − tCorrection
Residual (18)

where:

LReqs
Task = (NRM

Task · LRM
Req) + (NRH

Task · LRH
Req)

+ (NWM
Task · LWM

Req) + (NWH
Task · LWH

Req) (19)

tCorrection
Residual =

{

0 if NMisses
Task ≤ NWrites

Task ;

aux otherwise.
(20)

aux = (NMisses
Task −NWrites

Task) · (tprev-W
Residual − tprev-R

Residual) (21)

Proof. The first term of Eq. 18, i.e. LReqs
Task, is a direct conse-

quence of our assumption of a processor that stalls at every
request. Hence, what remains to be proven is whether the
second term, i.e. the correction term tCorrection

Residual , is valid.
For that purpose, we firstly highlight that tResidual is

always given by tprev-W
Residual, i.e. tprev-R

Residual is always smaller.

Moreover, we also highlight that to calculate LReqs
Task, the term

tResidual is summed NMisses
Task times, i.e. one time for every

RM or WM request. In other words, when computing LReqs
Task,

we assume that every RM or WM request is preceded by a
write (WH or WM) request.

If there are more write requests than requests that
miss in the row buffer, such assumption is valid and,
hence, tCorrection

Residual = 0. However, if there are less write
requests than requests that miss in the row buffer, we

know that when computing LReqs
Task, we incorrectly assumed

tResidual = tprev-W
Residual for exactly (NMisses

Task −NWrites
Task) re-

quests. In such case, we correct the overly conservative
computation with tCorrection

Residual = aux, where aux is given by
Eq. 21.

Notice that, for the sake of simplicity, our theorem pur-
posely disregards the effect that refreshes have in LDRAM

Task .
This is because, as discussed in [24], the effect of refreshes
is negligible in comparison with other command delays,
provided that the execution time of the task u.a is not too
short. For tasks that fall into the short scenario, a software
approach for predictable refreshes is available at [25].

5 EVALUATION

In this section, we compare our approach with two different
real-time SDRAM controllers:

• the controller from Wu et al. [6].
• the Analyzable Memory Controller (AMC) [5].

The SDRAM controller from Wu et al. also uses the open-
row policy and its analysis assumes that the task under

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, AUGUST 2016 11

consideration has exclusive access to one of the banks,
i.e. it considers bank privatization. Its main difference in
comparison with ours is that older CAS commands always
have priority over newer ones, regardless of whether they
force a bus turnaround or not.

The AMC employs close-row policy and originally relied
on a interleaved address mapping. However, with a 64-bit
data bus (the scenario considered in this evaluation), an
interleaved address mapping is not useful when SDRAM
requests have the size of a cache line. Hence, in order to
perform a comparison with our approach, we adopt the
strategy employed in [6]: we implement AMC with a bank
privatization setup in which each incoming request ulti-
mately is translated into a static command group containing
an activate-(CAS with Auto-Precharge) sequence. The oldest
pending command group, regardless of whether it forces a
bus turnaround or not, is given priority.

We discuss the evaluation. Our evaluation is based
on SDRAM request traces obtained using the Gem5 plat-
form [26]. The traces are then employed to calculate an-
alytical timing bounds, i.e. worst-case cumulative laten-
cies (LSDRAM

Task), which rely on the first five assumptions
from Section 4.12. Moreover, the traces are also used as
stimuli for cycle accurate simulators of our controller and
the other two controllers under consideration in this section.
From the simulators, we obtain the following information:
1) the observed cumulative worst-case latency of each appli-
cation, which we compare with the corresponding analytical
bound, 2) the data bus utilisation that each controller is
able to maintain, which allows us to compare scheduling
efficiency, and 3) SDRAM command traces, which serve as
input for a power estimation tool (DRAMPower [27]).

5.1 Application Traces

In our evaluation, we employ a total of eight applications
from Mibench [28], a number that matches the quantity of
SDRAM banks present in the modules under consideration.
In order to collect the traces, the applications are executed in
Gem5 in isolation with a 1 GHz timing compositional ARM
processor (see Section 4.1) that relies on a 64-kb L1-cache
with a line size of 64 bytes. The ratio of request types (see
Table 4) exhibited by each application is depicted in Fig. 12.
Notice that the profile of the applications varies greatly in
terms of row buffer hit ratio and number of write requests.

0%
20%
40%

60%
80%

100%

gsm
jpegenc

dijkstra

fft tiffdither

tiff2bw

m
adplay

blowfish

read misses
write misses

read hits
write hits

Fig. 12. Percentage of request types by each application.

2. The sixth assumption (not-too-late behavior) is only relevant for our
controller. We compute analytical bounds with and without it.

We make one important remark about the collected
traces. Because the number of requests of each application
varies drastically, we summarize the traces. More specifically,
we generate artificial traces, each containing 5000 requests,
but respecting the proportions depicted in Fig. 12. Moreover,
when executing the traces in simulation, we eliminate time
intervals between successive requests, i.e. for each appli-
cation, we inject a new request as soon as the previous
one is served3. We perform these steps because equalizing
the number of requests and eliminating inter-request time
maximizes the interference that each application can exert
on each other during simulation.

5.2 SDRAM Modules

For our evaluation, we consider four SDRAM modules man-
ufactured by Micron [29], which are enumerated in Table 5.
All modules have 64-bit wide data buses and and were se-
lected according to their commercial availability at the time
of writing. The data sheets for the selected modules, which
contain the electrical parameters used by the DRAMPower
tool, can be retrieved using the corresponding Part Numbers.

TABLE 5
Specification of SDRAM Modules from Micron [29].

DDR Model Capacity Part Number Die Vdd
Gen. Rev.
DDR2 800C 1 GB MT8HTF12864A(I)Z-80E G 1.80 V
DDR3 1333H 1 GB MT8KTF25664AZ-1G4 K 1.35 V
DDR3 1600K 1 GB MT8KTF12864AZ-1G6 J 1.35 V
DDR3 1866M 2 GB MT4KTF25664AZ-1G9 P 1.35 V

5.3 Comparison of Worst-case Performance

We now compare the analytical bounds and the latencies ob-
served in simulation for every combination of SDRAM mod-
ule and SDRAM controller investigated in this article.
For our controller, we compute two different analytical
bounds: one that relies on the not-too-late assumption and
one that does not (see Sections 3.3.1 and 4.2). For the other
controllers, we employ the timing analyses presented in
the corresponding papers. As for the observed latencies,
we perform the following procedure: for each combination
of SDRAM controller and SDRAM module, we execute all
eight application traces simultaneously in the correspond-
ing controller simulator and measure the delays that each
trace experiences.

We present the results in Figs. 13a, 13b, 13c and 13d.
In the figures, solid colors are used to represent analyti-
cal bounds, while pattern fills represent latencies observed
in simulation. Moreover, for each application, results are
normalized to the analytical bound for AMC. From the
analytical perspective, we observe the following trends:

1) For the open-row controllers, applications that have
a larger number of row buffer hits have smaller

3. Notice that such setup (of injecting a request as soon as the SDRAM
controller acknowledges the service of the previous request) limits the
gains that could be achieved with a write-buffer. As a matter of fact,
modifying the SDRAM controller simulators in order to perform early
acknowledgment of write requests (see Section 4.1) brought negligible
changes in the simulation results.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, AUGUST 2016 12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

gsm
jpegenc

dijkstra

fft tiffdither

tiff2bw

m
adplay

blowfish

N
o
rm

a
li
z
e
d
 l
a
te

n
c
ie

s

(a) DDR2-800C.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

gsm
jpegenc

dijkstra

fft tiffdither

tiff2bw

m
adplay

blowfish

N
o
rm

a
li
z
e
d
 l
a
te

n
c
ie

s

(b) DDR3-1333H.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

gsm
jpegenc

dijkstra

fft tiffdither

tiff2bw

m
adplay

blowfish

N
o
rm

a
li
z
e
d
 l
a
te

n
c
ie

s

(c) DDR3-1600K.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

gsm
jpegenc

dijkstra

fft tiffdither

tiff2bw

m
adplay

blowfish

N
o
rm

a
li
z
e
d
 l
a
te

n
c
ie

s

(d) DDR3-1866M.

Our analytical bound (without not-too-late)
Our analytical bound (with not-too-late)

Simulation result for our controller

Analytical bound for Wu et al.
Simulation result for Wu et al.

Analytical bound for AMC

Simulation result for AMC

Fig. 13. Comparison of worst-case cumulative latencies. For every application, the results are normalized to the analytical bound obtained for AMC.
Hence, the smaller the bar, the better the result. For our controller, we compute bounds both assuming and not assuming the not-too-late behavior.

timing bounds than the ones with a low number
of row buffer hits. Moreover, the advantage of open-
row controllers over close-row ones is larger in high-
speed modules, e.g. compare the results obtained for
DDR2-800C with the ones for DDR3-1866M. (For the
DDR2-800C, our controller provides worse bounds
than AMC for most of the applications). This is
because in high-speed modules, the overhead for
closing and opening rows is larger (see Table 1).

2) The advantage of our controller is better high-
lighted in high-speed modules. This is because, in
the worst-case scenario, a CAS command in our
controller can be potentially blocked twice by other
CAS commands in each of the interfering banks
(see Fig. 9), while in the other controllers, a CAS
command can only be blocked once by CAS com-
mands in interfering banks. Consequently, in order
for the CAS command reordering to pay-off, the
overhead for data bus turnarounds must be large,
which is the case in high-speed modules such as the
DDR3-1866M (moreover, we also provide results for
a DDR3-2133N module in Appendix E).

3) As expected, the bounds provided by our controller
are better is we assume the subjective not-too-late
behavior. This is because if such assumption is
made, a portion of the interference suffered by a
CAS command is hidden by tDELAY .

From the perspective of latencies observed in simulation,
we observe the following trends:

1) The observed latencies for AMC vary according
to the number of write requests in the application
under analysis. The larger the number of write

requests, the larger is the probability that the appli-
cation forces a bus turnaround (hence, experiencing
a larger delay). Such effect would be hidden in
systems with narrow data buses because of the static
bundling of reads and writes (see Section 2.3).

2) For some applications and the DDR2-800C module,
the AMC actually provides better observed latencies
than open-row controllers. This is because for slower
SDRAM devices, the overhead to close and open
rows is smaller (see Table 1). For faster modules,
e.g. DDR3-1866M, such overhead increases and,
hence, the open-row controllers have an advantage.

3) When comparing the observed latencies of open-row
controllers, our controller displays a small advan-
tage over the one from Wu et al.. The advantage is
not larger because, in order for read/write bundling
to improve performance over Wu et al., there must
be two or more pending write commands in one
scheduling round. Because the number of write
requests is limited (see Fig. 12), such scenario does
not correspond to the common case.

5.4 Data Bus Utilisation

From the simulations performed in the last subsection,
we extract SDRAM command traces. Each command trace
contains commands from requests belonging to all eight
applications. Scrutinizing the quantity and time stamp of
all commands in a trace, we can compute the average data
bus utilisation that each controller can maintain. We depict
the results in Figs. 14a, 14b, 14c and Fig. 14d.

Notice that the figures measure time in data bus clock
cycles (and not in nanoseconds). Hence, even though using

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, AUGUST 2016 13

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

D
a
ta

 B
u
s
 U

ti
li
s
a
ti

o
n
 (

%
)

Time (data bus clock cycles)

(a) DDR2-800C.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

D
a
ta

 B
u
s
 U

ti
li
s
a
ti

o
n
 (

%
)

Time (data bus clock cycles)

(b) DDR3-1333H.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

D
a
ta

 B
u
s
 U

ti
li
s
a
ti

o
n
 (

%
)

Time (data bus clock cycles)

(c) DDR3-1600K.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

D
a
ta

 B
u
s
 U

ti
li
s
a
ti

o
n
 (

%
)

Time (data bus clock cycles)

(d) DDR3-1866M.

Our controller Wu et al. AMC

Fig. 14. Comparison of data bus utilisations. The higher the utilisation, the more efficient the SDRAM controller. The drop to 0% of utilisation marks
the moment in which all requests from the workload were served.

a DDR2-800C takes less data bus cycles than a DDR3-1866M
to serve the same set of requests, the latter takes less
nanoseconds, as it has a clock period of only 1.07 ns, while
the former has a period of 2.5 ns.

We observe the following trends:

1) For SDRAMs with higher operating frequencies, it
becomes harder to keep high data bus utilisations,
e.g. compare Fig. 14a and Fig. 14d. This is because
the timing constraints are larger for them.

2) For DDR2-800C, AMC actually performs better than
the controller from Wu et al.. As a matter of fact, its
utilisation mostly overlaps with the one displayed
by our controller. Again, this is because the over-
head to close and open rows is smaller for devices
with reduced operating frequency.

3) For the remaining modules, AMC performs worse
than the controller from Wu et al.. Moreover, re-
gardless of the SDRAM module, our controller con-
sistently maintains higher utilization than the other
two investigated controllers.

5.5 Power Consumption

Finally, using the same command traces employed in the
last subsection, we compute a power consumption estimate
using the DRAMPower tool [27]. The results are depicted in
Fig. 15 and represent the total amount of energy (in micro
joules) required to serve all requests.

We observe the following trends:

1) Regardless of the controller, DDR2-800C has by
far the worst power consumption. This is because
DDR2 memories are simply not as energy efficient
as DDR3. Moreover, they have an operating voltage

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

DDR2-800C

DDR3-1333H

DDR3-1600K

DDR3-1866M

m
ic

ro
Jo

u
le

s

Ours Wu et al. AMC

Fig. 15. Power consumption.

of 1.8 V (see Table 5), against 1.35 V of the DDR3
investigated modules.

2) For all SDRAM modules, the AMC consumes more
power than open-row controllers. This is because
closing and opening rows is an energy-costly op-
eration.

3) For all SDRAM modules, our controller provides a
small power consumption reduction over the con-
troller from Wu et al.. This is because it serves the
requests of a workload faster (see Figs. 14a, 14b, 14c
and Fig. 14d). Hence, the amount of static power
dissipated is smaller.

6 CONCLUSION

In this article, we propose a real-time SDRAM controller that
bundles read and write commands. We describe the con-
troller architecture and provide a detailed timing analysis
of it. We compare our approach analytically and experimen-
tally with other two controllers: the open-row one from Wu
et al. [6] and the close-row AMC [5]. The main results of our
evaluation are:

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, AUGUST 2016 14

• As the clock speed of SDRAM devices increases,
the penalty for data bus turnarounds becomes more
significant and, consequently, can limit data bus utili-
sation. Such challenge is addressed by our controller.

• In scenarios with high operating frequencies, i.e. all
investigated modules with the exception of DDR2-
800C, the close-row controller performs worse than
the open-row controllers both from the analytical and
simulation perspectives.

• Considering only open-row controllers, the advantage
of our controller over Wu et al. is better highlighted
in high-speed modules such as DDR3-1866M (and
DDR3-2133N, available in Appendix E).

• Finally, close-row controllers consume more power
than open-row ones. Moreover, when comparing only
open-row controllers, ours provide a small reduction
in power consumption.

ACKNOWLEDGMENTS

This work was partially funded within the EMC2 project
by the German Federal Ministry of Education and Research
with funding ID 01—S14002O and by the ARTEMIS Joint
Undertaking under grant agreement n.◦ 621429. The respon-
sibility for the content remains with the authors.

REFERENCES

[1] Mellanox Technologies, “Tile-gx36 processor - product brief,”
2015-2016. [Online]. Available: http://www. mellanox. com

[2] ——, “Tile-gx72 processor - product brief,” 2015-2016. [Online].
Available: http://www. mellanox. com

[3] B. Akesson et al., “Predator: A Predictable SDRAM Memory Con-
troller,” in Int’l Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS). ACM Press New York, NY, USA, Sep.
2007, pp. 251–256.

[4] J. Reineke et al., “Pret dram controller: bank privatization for
predictability and temporal isolation,” in Proceedings of the seventh
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis, ser. CODES+ISSS ’11. New York, NY,
USA: ACM, 2011, pp. 99–108.

[5] M. Paolieri et al., “An analyzable memory controller for hard real-
time cmps,” Embedded Systems Letters, IEEE, vol. 1, no. 4, pp. 86–90,
Dec 2009.

[6] Z. P. Wu et al., “Worst case analysis of dram latency in multi-
requestor systems,” in Real-Time Systems Symposium (RTSS), 2013
IEEE 34th, Dec 2013, pp. 372–383.

[7] Y. Krishnapillai et al., “A rank-switching, open-row dram
controller for time-predictable systems,” in Real-Time Systems
(ECRTS), 2014 26th Euromicro Conference on, July 2014, pp. 27–38.

[8] B. Akesson et al., “Automatic generation of efficient predictable
memory patterns,” in Embedded and Real-Time Computing Systems
and Applications (RTCSA), 2011 IEEE 17th International Conference
on, vol. 1, Aug 2011, pp. 177–184.

[9] S. Goossens et al., “Memory-map selection for firm real-time
sdram controller,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, march 2012, pp. 828 –831.

[10] H. Shah et al., “Bounding sdram interference: Detailed analysis
vs. latency-rate analysis,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2013, March 2013, pp. 308–313.

[11] Z. P. Wu et al., “A composable worst case latency analysis for
multi-rank dram devices under open row policy,” Real-Time Sys-
tems, pp. 1–47, 2016.

[12] L. Ecco and R. Ernst, “Improved dram timing bounds for real-time
dram controllers with read/write bundling,” in Real-Time Systems
Symposium (RTSS), 2015 IEEE, Dec 2015, pp. 53–64.

[13] N. Chatterjee et al., “Staged reads: Mitigating the impact of dram
writes on dram reads,” in High Performance Computer Architecture
(HPCA), 2012 IEEE 18th International Symposium on, Feb 2012, pp.
1–12.

[14] H. Yun et al., “Parallelism-aware memory interference delay analy-
sis for cots multicore systems,” in Real-Time Systems (ECRTS), 2015
27th Euromicro Conference on, July 2015, pp. 184–195.

[15] L. Ecco et al., “Minimizing DRAM rank switching overhead for im-
proved timing bounds and performance,” in Euromicro Conference
on Real-Time Systems (ECRTS) 2016, July 2016.

[16] L. Ecco and R. Ernst, “Technical report: Designing high-
performance real-time sdram controllers for many-core systems
(revision 1.0),” Braunschweig, 2017.

[17] JESD79-2F: DDR2 SDRAM Specification, JEDEC, Arlington, Va,
USA, Nov. 2009.

[18] JESD79-3F: DDR3 SDRAM Specification, JEDEC, Arlington, Va,
USA, Jul. 2012.

[19] JESD79-4: DDR4 SDRAM Specification, JEDEC, Arlington, Va, USA,
Sep. 2012.

[20] L. Liu et al., “A software memory partition approach for eliminat-
ing bank-level interference in multicore systems,” in Proceedings
of the 21st International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’12. New York, NY, USA: ACM,
2012, pp. 367–376.

[21] R. Wilhelm et al., “Memory hierarchies, pipelines, and buses for
future architectures in time-critical embedded systems,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 28, no. 7, pp. 966–978, July 2009.

[22] ARM R© Holdings, “ARM Cortex-A Series: Programmer’s Guide
for ARMv8-A (version 1.0),” March 2015. [Online]. Available:
https://static.docs.arm.com/den0024/a/DEN0024.pdf

[23] R. Bourgade et al., “Accurate analysis of memory latencies for
wcet estimation,” in 16th International Conference on Real-Time and
Network Systems (RTNS 2008), 2008.

[24] H. Kim et al., “Bounding memory interference delay in cots-based
multi-core systems,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2014 IEEE 20th, April 2014, pp.
145–154.

[25] B. Bhat and F. Mueller, “Making dram refresh predictable,” Real-
Time Systems, vol. 47, no. 5, pp. 430–453, 2011.

[26] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[27] K. Chandrasekar et al., “Drampower: Open-source dram
power and energy estimation tool.” [Online]. Available:
http://www.drampower.info

[28] M. Guthaus et al., “Mibench: A free, commercially representative
embedded benchmark suite,” in Workload Characterization, 2001.
WWC-4. 2001 IEEE International Workshop on, Dec 2001, pp. 3–14.

[29] Micron Technology, Inc. [Online]. Available:
http://www.micron.com

Leonardo Ecco Leonardo Ecco received a
bachelor degree in computer science from the
Federal University of Santa Catarina, Brazil, in
2007, and a master degree in computer science
from the University of Campinas (Unicamp),
Brazil, in 2010. He is currently working towards
a Ph.D. degree at the Institute of Computer and
Network Engineering in the Technische Univer-
sitaet Braunschweig, Germany, focusing on real-
time SDRAM controllers.

Rolf Ernst Rolf Ernst received a Diploma de-
gree in computer science and the Dr. Ing. de-
gree in electrical engineering from the University
of Erlangen-Nuremberg, Erlangen, Germany, in
1981 and 1987, respectively. From 1988 to 1989,
he was with Bell Laboratories, Allentown, PA.
Since 1990, he has been a professor of electri-
cal engineering with the Technische Universitaet
Braunschweig, Braunschweig, Germany. His re-
search activities include embedded system de-
sign and design automation.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, AUGUST 2016 15

APPENDIX A

GRAPHICAL DEPICTION OF TIMING CONSTRAINTS

We illustrate the constraints (with the exception of tFAW)
in Figs. 16a and 16b. The commands for banks i and j are
depicted in different axes simply for clarity. In SDRAMs,
there is only one command bus shared by all banks, and
it supports at most one command per cycle. Notice that
different banks enjoy a certain degree of parallelism, i.e. it
is possible to execute a command for bank i while bank j is
transferring data.

tRRD

tWL

Bank i

(write)
A W P

Bank j

(read)

Data

Bus

A

DATA DATA

tRCD tBURST tWR tRP
A

t
WTR

 tRL

Request 2

Request 1

R

tRC
tRAS

t
WtoR

 = t
WL

+ t
BURST

+ t
WTR

time

(a) Write request to bank i followed by read request to bank j.

Request 1

Bank i

(read)
A R P

Bank j

(write)

Data

Bus

A

DATA DATA

tRRD

tRCD tBURST tRP
A

tRL

W

t
RtoW

tRTP

tWL

Request 2

tRC
tRAS

time

(b) Read request to bank i followed by write request to
bank j.

Fig. 16. SDRAM timing constraints. Write and read requests are de-
picted in gray and white, respectively. In the figures, the minimum
distances between read and write commands are highlighted.

We illustrate the tFAW constraint in Fig. 17.

A
tRRD

t
FAW

time

A
tRRD

A
tRRD

A
tRRD

A

Bank i Bank j Bank k Bank l Bank m

Fig. 17. The tFAW constraint. Notice that tFAW > 4 · tRRD .

APPENDIX B

WORST-CASE LATENCY OF WRITE COMMANDS

The worst-case latency of a write command is symmetrical to
the one of a read command. Hence, we simply state Lemma 5
and Theorem 5 and omit proofs.

Lemma 5. The worst-case latency of a write (that is inserted
into cr tDELAY cycles after the previous CAS that occupied cr is
executed) is calculated with Eq. 22.

LW (tDELAY) = max{tprev-round−tDELAY, 0}+tcurr-round (22)

where:

tprev-round = (nB − 2) · tCCD + tWtoR (23)

tcurr-round = (nB − 1) · tCCD + tRtoW (24)

Theorem 5. The worst-case latency of a write is given by Eq. 25
if it succeeds a CAS, and by Eq. 26 if it succeeds a non-CAS.

LW
SC = LW (tWL + tBURST) (25)

LW
SNC = LW (tWL + tBURST + tRP + tRCD) (26)

Similarly to the case for read commands, Theorem 5
relies on the subjective not-too-late assumption discussed
in Sections 3.3.1 and 4.2. However, an analytical bound
independent from such assumption can be computed by
simply enforcing that LW

SNC = LW
SC = LW (1).

APPENDIX C

WORST-CASE LATENCY OF WRITE REQUESTS

The worst-case latency of write requests is symmetrical to
the ones of read requests. Hence, we simply state Lem-
mas 6 and 7 and omit a proofs.

Lemma 6. The worst-case latency of a WM request is given by
Eq. 27.

LWM
Req = (tResidual + tRP + tRCD)+

(LP + LA + LW
SNC) + (tWL + tBURST) (27)

Lemma 7. The worst-case latency of a WH request is given by
Eq. 28.

LWH
Req = (LW

SC) + (tWL + tBURST) (28)

APPENDIX D

THE αPA(n) FUNCTION

As discussed in Lemma 2, we bound the interference that
higher-priority CAS commands have in non-CAS com-
mands with the αPA(n) function. For ease of understand-
ing, we provide a graphical depiction of the outcome
obtained invoking such function with n=4 in Fig. 18.
Notice that, in the figure, we consider a total of nB=5
banks, i.e. nB=n+1, so that the fifth bank can provide higher-
priority CAS commands.

Command

Registers

cr0

cr
1

P

A

P

cr
2

time

t0 t1 t2 t3 t4 t5 t6

Insertion of CMD in

command register
CMD Execution of CMD CMD

cr
3

cr
4

P

C C

P

A

P

P

αPA(4)=6

Fig. 18. Example of the outcome of the αPA(n) function in a scenario in
which tBURST = tCCD = 4 and in which nB=5. In the figure, the letter
C refers to a CAS command.

Notice that the sequence of n=4 commands under con-
sideration contains only one activate command. This is be-
cause if there were for instance two consecutive activates,
they would be able to postpone each other by more than
one cycle (actually by tRRD), a scenario that is not covered
by Lemma 2.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, AUGUST 2016 16

APPENDIX E

COMPARISON USING A DDR3-2133N MODULE

We present a comparison of worst-case cumulative SDRAM
latencies and data bus utilisation for a DDR3-2133N module
in Figs. 19a and 19b, respectively. Notice that we do not
provide power data. This is because although DDR3-2133N
is described in the DDR3 standard [18], Micron does not
manufacture DDR3-2133N devices (and, hence, does not
provide a datasheet with their electrical characteristics).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

gsm
jpegenc

dijkstra

fft tiffdither

tiff2bw

m
adplay

blowfish

N
o
rm

a
li
z
e
d
 l
a
te

n
c
ie

s

(a) Worst-case (and experimental) cumulative SDRAM latencies. The
same color scheme as from Fig. 13 is employed.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

D
a
ta

 B
u
s
 U

ti
li
s
a
ti

o
n
 (

%
)

Time (data bus clock cycles)

(b) Data bus utilisation. The same color scheme as from
Fig. 14 is employed.

Fig. 19. Comparison using a DDR3-2133N module.

