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Abstract

By the one-to-many nature of the super-resolution (SR)

problem, a single low-resolution (LR) image can be mapped

to many high-resolution (HR) images. However, learning

based SR algorithms are trained to map an LR image to the

corresponding ground truth (GT) HR image in the training

dataset. The training loss will increase and penalize the

algorithm when the output does not exactly match the GT

target, even when the outputs are mathematically valid can-

didates according to the SR framework. This becomes more

problematic for the blind SR, as diverse unknown blur ker-

nels exacerbate the ill-posedness of the problem. To this

end, we propose a fundamentally different approach for the

SR by introducing the concept of the adaptive target. The

adaptive target is generated from the original GT target by

a transformation to match the output of the SR network. The

adaptive target provides an effective way for the SR algo-

rithm to deal with the ill-posed nature of the SR, by provid-

ing the algorithm with the flexibility of accepting a variety of

valid solutions. Experimental results show the effectiveness

of our algorithm, especially for improving the perceptual

quality of HR outputs.

1. Introduction

The goal of image super-resolution (SR) is to generate

a high-resolution (HR) image from its corresponding low-

resolution (LR) counterpart. To solve this problem, pre-

vious state-of-the-art SR methods have focused on find-

ing the underlying relationship between LR and HR patch

pairs in natural images. Some methods exploited internally

found LR-HR patch pairs across scales within a given image

[6, 12], and other methods learned the mapping functions

with the patch pairs from large external images as external

example-based approaches [5, 41, 38].

For most learning-based approaches, training example

pairs are simulated from a large collection of HR images

in a self-supervised manner. Specifically, a LR image ILR

is simulated from a ground truth (GT) HR image IGT as
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Figure 1. In (blind) SR, many HR patches can result in the

same LR patch. Restricting the solution of an SR network

to just one from the given ground truth can penalize a to-

tally acceptable output. To tackle this issue, we propose an

adaptive target strategy that generates new targets in order

to relax the restriction on the possible solutions.

follows:

ILR = (IGT ∗ k) ↓s, (1)

where k is a blur kernel, ∗ is the convolution operator, and

↓s is the downsampling operator with the scale factor s. The

training set D = {(xi, yi)} consists of the LR input patch xi

from ILR and the HR target patch yi from IGT for the i-th

example. Generally, an SR network f is trained to generate

HR output f(xi) close to the given target yi by minimizing

a loss function as follows:

∑

i

ℓ(yi, f(xi)), (2)

where ℓ is a pixel reconstruction loss.

The SR problem is under-determined as different HR im-

ages can be mapped to the same LR image (Fig. 1). In other

words, the given target yi is not the only solution for the

input xi, as one input LR image can be originated from a

variety of HR images. This becomes more significant when

it comes to the blind SR task where the blur kernel k is un-

known and diverse. A variety of unknown kernels makes the
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relationship between inputs and targets inconsistent, such as

differences in blurriness and pixel shift. As a result, the ill-

posedness of the problem becomes exacerbated, and it is

hardly solvable with conventional SR approaches without

additional constraints. To cope with this, previous blind SR

methods proposed specialized networks that first estimate

the blur kernel and then take advantage of the estimated

kernel information as an additional input for the SR net-

work [8, 49, 2]. As expected, they are inherently sensitive

to inaccurate kernel predictions [44].

In this paper, we propose a fundamentally different way

to evaluate the output of an SR network by allowing more

flexibility on the outputs of the algorithm. As can be seen

in Fig. 1, many HR patches can be mapped to the same LR

patch when downsampled with different kernels. Even if an

SR network has generated an output that is close to one of

the possible HR targets (green boxes), the conventional loss

(Eq. (2)) will increase and penalize the SR network when

only considering the corresponding HR target in the training

data as the GT (blue box). This contrasts with the one-to-

many mapping nature of the SR task.

To this end, we introduce a simple and effective way to

encourage sharp output generation by accepting solutions

other than the one from the training pair. Instead of directly

comparing to the original target yi, our method computes

the loss for a new adaptive target ỹi (red box). Conceptu-

ally, using our alternative target relaxes the typical pixel re-

construction loss by allowing various HR predictions given

an LR input. The adaptive target is made from the orig-

inal target to give the lowest penalty for the current net-

work prediction f(xi) while keeping the original contents

and perceptual impression unchanged. Specifically, we find

an affine transform matrix for every small non-overlapping

piece of yi to those of f(xi) within the range of acceptable

transforms. Then, each of the pieces is transformed to con-

struct the adaptive target (Fig. 2). This process is conducted

during the training on-the-fly with little computational over-

head. For each training iteration, the SR network is trained

using the loss computed with the adapted target.

Different from the previous blind SR methods that use

additional kernel information, we present a novel way to

learn blind SR by allowing diverse network outputs rather

than constraining the solution space with the additional in-

formation. The proposed adaptive loss fully embraces the

inconsistent nature of the blind SR by design, without the

kernel estimation. In a way, we are taking advantage of

the ill-posedness to generate sharper images, and there have

been few investigations on whether the one-to-one paired

training sample is adequate for the SR task [9, 23]. Our

approach outperforms previous blind SR models by a good

margin in terms of peak signal-to-noise ratio (PSNR) and

visual quality. In addition, we found that our loss is also

effective for non-blind SR especially when combined with

adversarial training (GAN) [7] for realistic SR.

In summary, the contributions of this paper are:

• We introduce a simple and effective way to encourage

sharp output generation using proposed adaptive target as

a solution for the one-to-many problem of SR. For blind

SR, our method is fundamentally different from previous

works as our algorithm works in a single-shot manner

without the blur kernel estimation.

• The adaptive target is created on-the-fly during the train-

ing stage with little computational overhead, therefore, it

is applicable to any training dataset without preprocess-

ing. In addition, our framework can be attached to any

deep SR models as a loss function.

• Our method outperforms previous state-of-the-art blind

SR methods in terms of PSNR and visual quality. In non-

blind scenario, our method generates consistent details

when combined with GANs for perceptual SR, achieving

both higher PSNR and LPIPS metrics at the same time.

2. Related Work

Learning-Based Super-Resolution The ability of deep

neural networks (DNN) for solving the SR problem was first

demonstrated by SRCNN [3], which consists of three con-

volutional layers. Most DNN based methods have improved

the performance in terms of PSNR by stacking more convo-

lutional layers and designing complex operation blocks or

connections [15, 17, 22, 11, 48, 47, 21, 31, 27, 28]. The

majority of previous works assume bicubic downsampling.

A number of studies have targeted to improve the percep-

tual quality of SR by adopting GANs [7] as an unsupervised

loss for generating realistic details [18, 33, 30, 39, 37, 46,

32, 24]. Our approach complements GAN based methods

very well by using the proposed adaptive target as supervi-

sion. We verify the performance gain by using our method

together with GANs in Sec. 4.2.

Blind Super-Resolution In another line of study, DNN

based blind SR methods have been proposed to cope with

unknown downsampling kernels [8, 49, 2]. The blind SR

methods employ a two-step approach: 1) blur kernel esti-

mation and 2) non-blind SR using the kernel. As the first

step, they focus on finding accurate kernels using the GT

kernel for supervision as inaccurate kernels lead to artifacts

in the final SR results. This is usually done by designing

suitable deep network structures and loss functions for the

kernel estimation. In the next stage, the estimated kernel

and LR image are used together for SR.

In addition, zero-shot learning based SR methods can be

applied to blind SR. ZSSR [34] trains a small deep SR net-

work using a single test image to exploit the image-specific

internal information. However, it takes time to update the

network with a number of backpropagations. Recently pro-

posed meta-learning [4] based SR methods can also be ap-

plied to blind SR [36, 29]. They train transferable parame-
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Figure 2. The overall process of generating our adaptive target. We transform every non-overlapping piece of an original

target yi (green box) to the corresponding area of the network output f(xi) (blue box), and the transformed areas (purple

box) are rearranged to generate our adaptive target ỹi. Then, the training loss for the SR network f is computed between

f(xi) and ỹi. The new target is designed to give less penalty for the acceptable areas.

ters of an SR network that can quickly adapt to any test im-

age with a few gradient updates. Both the zero-shot learning

and the meta-learning based methods bring new insights for

the SR problem, however, the blur kernel needs to be known

a priori for the adaptation at test time.

Multiple Choice Learning Our method is related to

multiple choice learning (MCL) in the aspect of learning

method. The basic idea of MCL is to learn to produce di-

verse outputs from a single model or ensemble of models

and choose the best one among them [10, 19, 20]. For ex-

ample, Li, Chen, and Koltun [20] trained an object seg-

mentation model f that generates M diverse predictions

〈f1(xi), f2(xi), ..., fM (xi)〉. With the MCL objective, ev-

ery prediction is compared with a single solution as the tar-

get, and the prediction with the minimum loss is used for

backpropagation. The model is encouraged to produce di-

verse outputs through the MCL loss, which is expressed as

follows:
∑

i

min
m

ℓ(yi, fm(xi)). (3)

Compared to MCL, our learning objective described

in Sec. 3 has exactly the opposite purpose. In other words,

we generate a single prediction while having multiple possi-

ble solutions as targets. This can be viewed as an approach

for modeling one-to-many mapping such as SR. With our

objective, the model focuses on giving only one correct an-

swer, even if there are multiple possible answers.

3. Method

The overview of our method is depicted in Fig. 2. Our

method consists of an SR network f and a proposed adap-

tive target generator (ATG). First, we pretrain f using a

pixel reconstruction loss (e.g. Eq. (2)) with the original tar-

get yi from a training set D = {(xi, yi)}. Then, f is further

trained with our adaptive target ỹi generated from the ATG.

Original target

Best match

Search space

𝒇(𝒙𝒊) 𝒚𝒊Texture

Edge

Find

best

match

𝐀 𝐁
Figure 3. A simplified example for finding an adaptive tar-

get by only considering translational transformation. For

every piece of f(xi) (blue box), we search for the best

match (purple box) in the search space (green box). Note

that we assume both targets (original and best match) are

mapped to the same LR patch when downsampled.

We consider the ideal adaptive target ŷi
∗ is the closest

HR image to the SR result f(xi) among possible HR images

(Fig. 1). Formally, it can be expressed as follows:

ŷi
∗ = argmin

ŷi

ℓ(ŷi, f(xi)), s.t. xi = (ŷi ∗ k
m
i ) ↓s, (4)

where ŷi is one of the possible HR images, thus it should

become xi when downsampled with a certain blur kernel

kmi . However, it is mathematically very difficult to solve

for ŷi
∗ as there exist an infinite number of ŷi and kmi pairs.

Therefore, we propose to find an approximated adaptive

target ỹi. In Fig. 3, we demonstrate the concept of the pro-

posed adaptive target by only using the translation of pieces

to build ỹi. For every piece of f(xi), we set the search space

around the corresponding target piece in yi. The search

space should not be too large because the original content

needs to be maintained. We traverse the search space to find

the area with closest match to the current output. The found

areas are then gathered and rearranged to form ỹi.

To allow more flexibility in generating adapative targets,

we generalize the above idea by considering affine trans-
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Layers Size of input channel Output channel

FC-BN1d-ReLU C × (p2 + s2) 2C × (p2 + s2)
FC-BN1d-ReLU 2C × (p2 + s2) 2C × (p2 + s2)
FC-BN1d-ReLU 2C × (p2 + s2) C × (p2 + s2)
FC C × (p2 + s2) 6

Table 1. Network structures of the localization network in

ATG. C is the number of channels of the input image, and

p and s are the sizes of each piece for the SR network output

f(xi) and the original target yi respectively.

formation in this paper. We propose a small neural net-

work called ATG inspired by the spatial transformer net-

work (STN) [13]. ATG transforms yi toward f(xi) through

an affine transformation within acceptable distortion range.

With ATG, we can approximate ŷi
∗ in a feed-forward man-

ner without investigating all possible HRs (in Eq. (4)). For-

mally, our adaptive target is generated as follows:

ỹi = ATG(yi, f(xi)). (5)

Learning conventional SR networks with our adaptive

target ỹi instead of the given target yi makes the networks

produce sharper outputs for SR tasks.

3.1. Adaptive Target Generator (ATG)

The network design of ATG is depicted in Fig. 2. ATG

have a localization network that consists of 4 fully con-

nected layers, each followed by batch normalization and

ReLU activation except for the last layer (Table 1). The

localization network estimates an affine transformation ma-

trix θi that deforms the original target yi to align it with the

current SR network prediction f(xi). Through the transfor-

mation, our new target ỹi with the minimal error compared

to f(xi) is created while keeping the original contents.

The process in ATG works in a patch-wise manner, not

for the entire image. Specifically, the SR network’s output

f(xi) is divided into non-overlapping pieces of size p × p

with stride p, and the original target yi is divided into over-

lapping pieces of size s× s with the same stride p (p < s).

The pieces of yi have a slightly larger size as the search

space. In our experiments, we empirically set p = 7 and

s = 9. The piece pairs are fed into the localization net-

work, and the localization network estimates affine trans-

formation matrices θi,j for transforming every j-th piece of

yi to the corresponding piece of f(xi). To transform each

piece of yi, the sampling grid (green dots in Fig. 2) is gen-

erated from the θi,j and the bilinear sampling is applied for

the transformation (please refer to the details in [13]). All

the transformed pieces of size p × p are then combined to

generate our adaptive target ỹi.

3.2. Learning with Adaptive Target

Pretraining ATG For accurate affine transformation ma-

trix estimation, we pretrain the localization network in ATG

in advance by using a synthetic affine matrix. In this way,

we can provide direct supervision on the resulting affine

matrix. We randomly simulate an affine matrix θSyn com-

bining two basic transformations, translation and rotation,

in random order. Specifically, small amounts of random

translation and random rotation are performed within range

[−1, 1] pixel and [−10, 10] degree respectively to approx-

imately satisfy the condition in Eq. (4), which is xi ≈
(ỹi ∗ kni ) for a certain blur kernel kni . Then, we simulate

the transformed image ỹi
Syn from yi by using θ

Syn
i,j . We

have tested with different combinations of the basic trans-

forms including translation, rotation, scale, and shear, but

simply using translation and rotation shows the best results

as validated in Sec. 4.3.

Now, we have the original image yi, the randomly dis-

torted image ỹi
Syn, and the corresponding transformation

matrices θ
Syn
i,j . The ATG gets yi and ỹi

Syn as input and

estimates affine matrices θi,j . Then, it is pretrained using

losses on the affine matrix and the transformed image as

follows:

∑

i

[

∑

j

ℓ(θi,j , θ
Syn
i,j ) + λℓ(ỹi, ỹ

Syn
i )

]

, (6)

where ℓ is the mean square error (MSE) and λ is a scaling

parameter that we set to 0.01.

Training SR Net with ATG Finally, the pretrained SR

network f is further trained by using our adaptive target ỹi
generated from the ATG as follows:

∑

i

ℓ(ỹi, f(xi)). (7)

For the training, our new target is generated adaptively with

respect to current output at every iteration on-the-fly, and we

do not have to prepare additional training data or go through

pre-processing. Note that using ATG takes additional 15ms

for every iteration on NVIDIA TITAN Xp GPU. Since the

image is divided into pieces and then the transformations

for each piece are obtained, it is locally more accurate than

the single transformation for the entire image. In addition,

this strategy can cover spatially varying blur kernels, which

may be more adequate for real image SR scenarios.

Some examples of our adaptive target are shown in

Fig. 4. We show network outputs f(xi) and correspond-

ing adaptive targets ỹi from the pretrained SR model (2-4

columns) and fully trained SR model using our method (5-

7 columns). The outputs of the pretrained model are still

blurry because the model had difficulty in coping with in-

consistent mappings between inputs and outputs caused by

diverse blur kernels. Before training with ỹi, generated ỹi
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Before training with ỹi After training with ỹi

xi f(xi) ỹi yi f(xi) ỹi yi

1.29e-2 1.50e-2 2.62e-3 7.46e-3

1.80e-2 1.92e-2 5.09e-3 8.29e-3

Figure 4. Some examples of our adaptive target ỹi created

from original target yi. First column shows inputs xi, 2-4

columns show the outputs f(xi) of a pretrained SR model

and their adaptive targets ỹi, and 5-7 columns show those of

final SR model trained by our method. We also show MSE

of each output compared to the adaptive and the original

target. The adaptive targets are not significantly different

from the original targets, and penalize the SR network less.

shows some artifacts at patch boundary but they disappear

as training progresses. Because our ỹi is created from the

near neighborhood, the content does not significantly devi-

ate from the original target yi. After the training, the sharp-

ness of the SR results is significantly increased. We also

show the MSE of each target and the output, and our targets

show lower error as they are designed to less penalize for

the acceptable areas. Therefore, training the SR network

using ỹi avoids the backpropagation of unnecessary errors

that pushes the model to generate exactly the same details as

yi, which is extremely difficult to achieve. At the same time,

our results may have a slightly worse PSNR value because

our method allows slightly different outputs compared to yi.

4. Experiments

We evaluate the effectiveness of our method on two ex-

perimental setups: blind SR with diverse blur kernels and

non-blind SR with bicubic downsampling for upscale fac-

tor 4. For all experiments, we set our SR network f as

pretrained RRDB [39], but any SR networks can be trained

with our adaptive target. For fair comparisons with other

methods [30, 39, 37, 46, 44, 8, 47, 21], we use DIV2K

dataset [1] for training. The dataset contains 800 RGB train-

ing images with 2K resolution and covers a large diversity

of contents ranging from man-made environments to natural

scenes for example-based image SR.

Three metrics are used to quantify the quality of re-

sults. The first two are PSNR and structural similarity index

(SSIM) [40], which are traditionally used for image quality

assessment. They are computed on the pixel domain and are

known to not correlate perfectly with the human visual per-

ception [45]. Therefore, we also use the learned perceptual

image patch similarity (LPIPS) [45], which is designed to

measure the quality of images from the perspective of hu-

man visual perception. Note that lower values are better for

LPIPS, and higher values are better for PSNR and SSIM.

For training, we crop the ground truth images into

patches of size 140 × 140, which is divisible by p, and the

size of the corresponding LR input is 35× 35. Based on the

pretrained SR network f and ATG, we first train only f for

105 iterations using Adam optimizer [16] with learning rate

of 10−4. Then, we finetune the whole networks for another

2× 104 iterations with learning rate of 10−5.

In the actual implementation, we empirically found that

the original details of yi are slightly harmed in the bilinear

sampling process for generating ỹi. Therefore, we trans-

form f(xi) instead of yi and it can be performed simply

using the inverse affine matrix θ−1

i . The loss Eq. (7) is

changed to ℓ(yi, f̃(xi)) and we achieve better results as it

fully exploit the original details. All experiments are per-

formed in this way.1

4.1. Diverse Blur Kernels

Isotropic Gaussian Kernels First, we conduct blind SR

experiments using isotropic Gaussian blur kernels and fol-

low the experimental settings in [8]. The kernel width range

is set to [0.2, 4.0], and we uniformly sample the kernel width

in the above ranges with the step size 0.2 for synthesizing

the training image pairs. The GT images are first blurred

by the selected blur kernels and then downsampled by bicu-

bic interpolation. For testing, we use Gaussian8 testset pro-

posed in [8]. The images in 5 common SR testsets Set5,

Set14, BSDS100 [25], Urban100 [12] and Manga109 [26]

are blurred by 8 selected isotropic Gaussian kernels width

of [1.8, 3.2] with the step size 0.2. For example, there is a

total of 40 test images for the Set5 testset (5 images × 8

kernels). Our results are compared with 2 state-of-the-art

DNN based blind SR methods IKC [8] and KG [2]. In ad-

dition, we also compare with 3 state-of-the-art DNN based

non-blind SR methods SRMD [44], MZSR [36], and USR-

Net [43]. Here, we reproduce the results of the non-blind

SR methods using GT kernel information, to assume there

is no performance drop due to inaccurate kernel prediction,

providing upper bounds.2 IKC and SRMD are trained only

for isotropic Gaussian kernels, while the others can han-

dle anisotropic Gaussian kernels. Specifically, USRNet can

also handle motion kernels and KG is designed to deal with

any blur kernel.

Quantitative results are shown in Table 2 and the values

are averaged for all 8 kernels. Note that we crop every bor-

der by 4 pixels to avoid artifacts occurred on borders for all

results in the paper. KG first estimates the blur kernel for

1Our code is at https://github.com/yhjo09/AdaTarget.
2Please note that SRMD, MZSR, and USRNet hold an advantage as

they use GT kernel information. IKC and KG compute the kernels in their

algorithms, and our method does not require any kernel information.
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Method
Set5 Set14 BSDS100 Urban100 Manga109

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Bicubic 25.85 0.7289 0.4460 24.20 0.6222 0.5468 24.59 0.5940 0.6445 21.68 0.5745 0.5904 22.79 0.7097 0.4427

KG [2] + ZSSR [34] - - - - - - - - - 22.06 0.6223 0.3788 24.75 0.7786 0.2454

IKC [8] 31.62 0.8808 0.2016 28.18 0.7608 0.3207 27.33 0.7161 0.4174 25.31 0.7487 0.2895 28.82 0.8756 0.1664

Ours 31.58 0.8814 0.1932 28.14 0.7626 0.3122 27.43 0.7216 0.4030 25.72 0.7683 0.2518 29.97 0.8955 0.1286

SRMD [44] 31.47 0.8799 0.1898 28.11 0.7628 0.3076 27.32 0.7200 0.4031 25.34 0.7548 0.2682 29.80 0.8925 0.1288

MZSR [36] 25.01 0.7192 0.3851 23.60 0.6140 0.4839 24.13 0.5866 0.5787 21.25 0.5674 0.5071 22.08 0.7031 0.3565

USRNet [43] 32.37 0.8932 0.1786 28.68 0.7799 0.2904 27.66 0.7349 0.3812 26.29 0.7899 0.2287 31.02 0.9119 0.1094

Table 2. Quantitative results on Gaussian8 testset for isotropic Gaussian kernels. The top 4 and the bottom 3 are blind and

non-blind SR methods respectively. Note that it is an unfair comparison with the non-blind methods as they use GT kernel

information. Best values are shown in bold and second best values are underlined. We crop every border by 4px to exclude

border artifacts for all results in the paper. Our method shows better or very comparable performance in all testsets.

σ = 1.8 σ = 3.2

KG [2] + ZSSR [34] IKC [8] Ours USRNet [43] KG [2] + ZSSR [34] IKC [8] Ours USRNet [43] GT

Figure 5. Qualitative results on Gaussian8 testset for isotropic Gaussian kernels. The first 4 columns show the results for

the blur kernel width 1.8, the next 4 columns are for the width 3.2, and the last column shows GT image. Our results better

restore edges and textures by allowing a variety of acceptable output compared to blind SR methods.

the given image, and the SR part is executed using a non-

blind SR method ZSSR [34]. IKC corrects the blur kernel

and the result for 7 iterations and selects the best one among

them. While both methods feedforward test images several

times to output final results, our method works in a single-

shot manner with faster runtime. KG + ZSSR, IKC, and our

method take 458s, 2.72s, and 0.44s respectively on NVIDIA

TITAN Xp GPU for generating a 1920 × 1080 output im-

age. Note that the number of parameters is 0.4M, 9M, and

16.7M respectively. On top of the advantage of the speed,

our method shows mostly better PSNR and SSIM values

while having much better perceptual quality (LPIPS) com-

pared to IKC and KG + ZSSR.

Producing images with good perceptual quality has be-

come important recently, as evidenced by a flow of GAN-

based methods, and our method is able to achieve good

perceptual quality while maintaining the original contents.

Since our method allows for slightly different outputs, the

PSNR and SSIM values computed with the given ground

truth target are expected to drop. However, the drop-off in

these measures is surprisingly small and our method out-

performs others by a good margin in the perceptual quality.

Fig. 5 qualitatively shows that our method generates sharper

and visually pleasing images compared to other methods.

Random Kernels We also conduct blind SR experiments

on random blur kernels by following the experimental set-

tings in [2]. For synthesizing the training images, random

kernels are derived from anisotropic Gaussian kernels with

uniformly selected kernel width in range [0.6, 5] for each

axis independently, which are rotated by a random angle in

[−π, π]. In addition, a small amount of uniform multiplica-

tive noise is applied. For the testing, we use DIV2KRK

testset proposed in [2]. DIV2KRK has 100 images that are

blurred and subsampled with a randomly generated kernel.

Each image is from the original 100 validation images of

DIV2K dataset [1].

Quantitative results are shown in Table 3. Although IKC

is only trained on isotropic Gaussian kernels, it performs

better than KG + ZSSR due to the effective model design

with a larger capacity. The effectiveness of our method is

even more apparent for the random degradation. For the

random kernels, we outperform other blind methods in all

measures without putting efforts on the estimation and the

utilization of kernels. Fig. 6 shows qualitative comparisons

for the random kernel experiments. Our method gener-

ates impressive results regardless of kernel width sizes and
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Blur kernel Bicubic KG [2] + ZSSR [34] IKC [8] Ours SRMD [44] USRNet [43] GT

Figure 6. Qualitative results on DIV2KRK testset for random kernels. Each test image is simulated by different blur kernels

shown on the left. Our results show obvious sharpness and clarity compared to other blind SR results regardless of the kernel

shapes. Also, our results look more realistic in some examples compared to non-blind SR results.

Method
DIV2KRK

PSNR SSIM LPIPS

Bicubic 25.37 0.6812 0.5635

KG [2] + ZSSR [34] 26.80 0.7319 0.4389

IKC [8] 27.69 0.7658 0.3856

Ours 28.42 0.7854 0.3394

SRMD [44] 27.63 0.7623 0.3816

MZSR [36] 24.99 0.6919 0.4096

USRNet [43] 29.80 0.8148 0.3088

Ours (ZSSR) 27.47 0.7561 0.3772

Ours (IKC) 28.33 0.7799 0.3558

Table 3. Quantitative results on DIV2KRK testset for ran-

dom blur kernels. Our method outperforms others in all

metrics except USRNet. The bottom 2 results show that our

method also works well with other SR backbone models.

shapes, restoring sharp edges clearly and without blurriness.

4.2. Bicubic Downsampling

In this section, training images are simulated by bicubic

downsampling and we train two models – one with and the

other without GAN. For the GAN training, we use an adver-

sarial loss [42], the perceptual loss [14], and our adaptive

target loss altogether. For the perceptual loss, our adap-

tive target is used for computing the feature response of

the VGG network [35]. For the test, we use 5 common

SR testsets Set5, Set14, BSDS100 [25], Urban100 [12] and

Manga109 [26].

In Table 4, the first 2 rows show the comparisons of

methods without GAN and the other rows show methods

with GAN. When GANs are not used, our approach shows

a minor effect with a very small drop in PSNR values and

slightly improved SSIM and LPIPS values. This is expected

as the measures are computed only using the given ground

truth but our method allows slightly different outputs, and

also as there are less ambiguities in this fixed blur kernel

scenario compared to the blind case.

However, we observe that our method shows meaning-

ful improvements when combined with GAN for realistic

and perceptual SR. The adversarial loss is an unsupervised

loss that creates arbitrary details for realistic outputs. How-

ever, the arbitrary details that the adversarial loss generates

can conflict with real details from the original training tar-

get when computing the supervised losses (the perceptual

loss and our adaptive loss). Our adaptive target reduces

the conflict as it is created to less penalize the current out-

put by design. As a result, our method achieves the better

or very comparable LPIPS values for all testsets, and this

also shows up with good visual results in Fig. 7. Compared

to our backbone model, ESRGAN, our method restores the

content much better (more clear text), as the network is less

susceptible to errors from off-target details. Our method

also achieves better PSNR and SSIM values by a large mar-

gin at the same time, showing the ability to maintain the

original contents better than other GAN-based methods.

4.3. Analysis

Localization Network Here, we conduct experiments to

analyze the effect of the learned parameters of the localiza-

tion network. We incrementally add a basic transformation

when pretraining the localization network – Tr (translation),

Tr + Rot (rotation), Tr + Rot + Shear, and Tr + Rot + Shear

+ Scale. We apply small amounts of random shearing and

random scaling within range [−10, 10] degree and [0.9, 1.1]
respectively. We also experiment with an enlarged search

space s = 11 using our default transformation setting (Tr

+ Rot). We additionally implement nearest neighbor (NN)

search as a baseline approach for generating the adaptive

target instead of using the localization network (Fig. 3). For

each p × p piece, the NN approach finds the minimal error

area on the corresponding s× s piece in integer pixel step.

The overall experimental process is the same as the ran-
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Method
Set5 Set14 BSDS100 Urban100 Manga109

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

RRDB [39] 32.68 0.8999 0.1690 28.88 0.7891 0.2717 27.82 0.7444 0.3586 27.02 0.8146 0.1955 31.57 0.9185 0.0976

Ours (RRDB) 32.62 0.9004 0.1655 28.80 0.7913 0.2672 27.80 0.7486 0.3505 26.97 0.8161 0.1899 31.42 0.9181 0.0954

SRGAN [18] 29.41 0.8345 0.0817 26.01 0.6932 0.1471 25.18 0.6401 0.1846 - - - - - -

EnhanceNet [33] 28.56 0.8093 0.0997 25.67 0.6759 0.1601 24.93 0.6259 0.2035 23.54 0.6926 0.1638 20.44 0.6703 0.1270

SRFeat [30] 30.05 0.8465 0.0685 26.60 0.7106 0.1299 25.08 0.6574 0.1753 24.52 0.7306 0.1346 28.15 0.8525 0.0670

NatSR [37] 30.99 0.8610 0.0931 27.42 0.7330 0.1737 26.44 0.6831 0.2122 25.46 0.7605 0.1505 29.50 0.8812 0.0732

RankSRGAN [46] 29.66 0.8364 0.0703 26.36 0.7003 0.1356 25.45 0.6484 0.1760 24.47 0.7288 0.1383 27.90 0.8488 0.0760

SPSR [24] 30.40 0.8427 0.0613 26.53 0.7101 0.1308 25.51 0.6576 0.1628 24.80 0.7466 0.1188 28.61 0.8579 0.0671

ESRGAN [39] 30.44 0.8506 0.0736 26.22 0.6967 0.1324 25.42 0.6543 0.1643 24.36 0.7333 0.1236 28.41 0.8591 0.0645

Ours (ESRGAN) 31.55 0.8708 0.0644 27.31 0.7389 0.1299 26.45 0.6914 0.1611 25.78 0.7762 0.1105 29.90 0.8828 0.0549

Table 4. Quantitative results on 5 common SR testsets for bicubic downsampling. The top 2 rows are the methods without

GAN, and the rest are the methods with GAN. Our method achieves better or very comparable scores in all metrics when

combined with GAN for realistic SR.

SRGAN [18] EnhanceNet [33] SRFeat [30] NatSR [37] RankSRGAN [46] SPSR [24] ESRGAN [39] Ours (ESRGAN) GT

Figure 7. Qualitative results for perceptual SR. Our method generates consistent details for text which GAN-based methods

are difficult to restore. Please see supplementary for more results.

Learned transformations
DIV2KRK

PSNR SSIM LPIPS

Integer step Tr (NN search) 27.75 0.7772 0.3195

Tr 28.42 0.7832 0.3469

Tr + Rot (Ours) 28.42 0.7854 0.3394

Tr + Rot (p = 7 and s = 11) 28.27 0.7778 0.3679

Tr + Rot + Shear 28.39 0.7851 0.3402

Tr + Rot + Shear + Scale 28.26 0.7855 0.3382

Table 5. Effect of differently learned localization networks.

dom kernel experiment. We compute PSNR, SSIM, and

LPIPS for the DIV2KRK testset in Table 5. The NN search

approach achieves a better LPIPS value but worse PSNR

value compared to the STN based methods. We infer that

the worse PSNR value comes from the matching which is

not performed in sub-pixel accuracy, while the better LPIPS

value comes from no detail loss induced by sub-pixel sam-

pling. For the STN based methods, the performance gap

is not very significant. We choose the Tr + Rot model as

our default setting, because it shows the better PSNR with

very comparable LPIPS. If the search space becomes large,

it causes difficulty in restoring original contents and shows

degraded quality as an imperfect output is more likely to

match with areas outside the original target location.

Generalization We validate our method with other SR

backbone networks to test the generalization ability – ones

from IKC [8] and ZSSR [34]. The overall experimental pro-

cess is the same as the random kernels experiment. The

quantitative results are shown in the bottom of Table 3, and

we verify that our method increases the performance in all

metrics by a good margin compared to the original models.

5. Conclusion

We proposed a novel way to deal with the ill-posed na-

ture of SR by introducing the adaptive target. Our method

can be applied to existing training data and network archi-

tectures without any modification, and without adding too

much training time. We verified that our results outperform

previous state-of-the-art methods, especially in generating

perceptually pleasing images. For the blind SR, our method

holds another advantage that no additional effort is required

to find accurate blur kernels. In the future, we would like

to extend our work to consider multi-frame for computing a

new target. Additionally, we plan to extend our work for de-

blurring as it inherently possesses the ill-posedness as well.
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