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Abstract—In this paper, we propose a novel optimization-
based real-time residential load management algorithm that
takes into account load uncertainty in order to minimize the
energy payment for each user. Unlike most existing demand side
management algorithms that assume perfect knowledge of users’
energy needs, our design only requires knowing some statistical
estimates of the future load demand. Moreover, we consider real-
time pricing combined with inclining block rate tariffs. In our
problem formulation, we take into account different types of
constraints on the operation of different appliances such as must-
run appliances, controllable appliances that are interruptible, and
controllable appliances that are not interruptible. Our design is
multi-stage. As the demand information of the appliances is grad-
ually revealed over time, the operation schedule of controllable
appliances is updated accordingly. Simulation results confirm
that the proposed energy consumption scheduling algorithm
can benefit both users, by reducing their energy expenses, and
utility companies, by improving the peak-to-average ratio of the
aggregate load demand.

Keywords: Demand side management, energy consumption con-
trol, cost minimization, load uncertainties, smart power grid.

I. LIST OF VARIABLES USED IN THIS PAPER

A Set of appliances
T Number of time slots
γa Nominal power of appliance a
Ea Total required energy of appliance a
βa Operating deadline of appliance a
xa
t State of power consumption of appliance a at time slot t

Ea
t Remaining required energy of appliance a at time slot t

lt Total household power consumption at time slot t
λt(·) Price function at time slot t
mt Price parameter at time slot t
nt Price parameter at time slot t
bt Price parameter at time slot t
Mk,t Set of must-run appliances that are awake at time slot t

and remain awake at time slot k ≥ t
M̂k,t Set of must-run appliances that are asleep at time slot t

and will be awake at time slot k ≥ t
M̃k Set of all must-run appliances that are awake at time slot

k (Mk,t ∪ M̂k,t)
Ck,t Set of controllable appliances that are awake at time slot

t and remain awake at time slot k ≥ t
Ĉk,t Set of controllable appliances that are asleep at time slot

t and will be awake at time slot k ≥ t
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C̃k Set of all controllable appliances that are awake at time

slot k (Ck,t ∪ Ĉk,t)
Nk,t Set of non-interruptible appliances of Ck,t

N̂k,t Set of non-interruptible appliances of Ĉk,t

Ñk Set of all non-interruptible appliances that are awake at

time slot k (Nk,t ∪ N̂k,t)
St Set of all appliances that are sleeping at time slot t
ya
k Auxiliary variable for each non-interruptible appliance a

at each time slot k
M Auxiliary large number used in the problem formulation
νk Auxiliary variable for each time slot k
pat Probability with which appliance a becomes awake at time

slot t
qa Probability that appliance a does not become awake at any

time slot
paτ,t Probability that appliance a becomes awake at time slot

τ > t given that it has not become awake until time slot t
δaτ,t Probability that must-run appliance a which is sleeping at

time slot t will be active in time slot τ > t
Ta Number of time slots required to finish the operation of

appliance a

II. INTRODUCTION

Demand side management (DSM) programs are employed

to better utilize the available power generation capacity and

to circumvent installing new generation and transmission

infrastructures [1]. DSM programs encourage users to shift

their usage of high-power appliances to off-peak hours by

providing economic incentives to consumers. Among different

techniques considered for DSM (e.g., voluntary load manage-

ment [2]–[7], direct load control [8]–[10]), smart pricing is

known as an effective means to encourage users to consume

wisely and more efficiently. By reflecting the hourly changes

in the wholesale electricity price to the demand side, users pay

what the electricity is worth at different times of day and are

consequently more willing to reduce their load at peak hours.

In time differentiating pricing tariffs, the intended operation

period is divided into several time slots, and the price of

electricity varies across different time slots. For example,

the prices may correspond to off-peak, mid-peak, and on-

peak hours. The prices are usually higher in the afternoon

on hot days in the summer and cold days in the winter

[11]. Several time differentiating pricing methods have already

been proposed in the literature. Examples include real-time

pricing (RTP), time-of-use (TOU) pricing, and day-ahead

pricing (DAP) [12]–[16]. These methods mainly differ in how

frequently the utility company changes the pricing tariffs,

which may vary from once or twice a year in TOU pricing

to hourly changes in RTP. The level of success of different

pricing methods depends on various factors such as the amount



of information provided to each user, the effectiveness of the

mapping of the hourly wholesale prices to the retail prices,

and the ability of users to respond to price signals [17].

In general, it is difficult for consumers to follow the real-

time prices and respond to their variations accordingly. This

aspect and some other disadvantages of manual load control

are discussed in [18]. An alternative approach is to equip

users with automated control units that respond to real-time

price signals to improve the level of rationality of users.

Different approaches of the users in responding to price values

are studied in [19], [20]. The necessity of more advanced

methods to avoid efficiency loss in the system due to enhanced

rationality levels of the users has been discussed in [19]. The

effect of load synchronization, i.e., the concentration of a large

portion of energy consumption in low-price hours, has been

studied in [18]. It is shown that load synchronization can be

prevented by using pricing tariffs with inclining block rates

(IBR). For the IBR tariffs, the marginal price increases with the

total consumed power [21]. That is, beyond a predetermined

power consumption threshold, electricity is offered at higher

rates. This provides incentives for the users to distribute their

load across different times of the day. Southern California

Edison and Pacific Gas & Electric in United States, and British

Columbia Hydro in Canada currently use IBR with various

two-level conservation rate structures [22], [23].

Despite its importance, the effect of load uncertainties on

DSM has not been well-studied in the smart grid literature

[6], [11], [19], [20], [24]–[29]. In this paper, we focus on

developing a novel automated optimization-based residential

load scheduling algorithm in a retail electricity market with

load uncertainties. We aim to minimize each user’s electricity

payment by optimally scheduling the operation of its ap-

pliances in real-time, subject to the operational constraints

defined by the users. As in [18], we adopt RTP combined with

IBR to better reflect the fluctuation of the wholesale electricity

prices and to avoid load synchronization.

Our design can be partly compared with [27]. The problem

tackled in this paper is different from that in [27] in two

aspects. First, the work in [27] addresses uncertainty in price

values while we tackle uncertainty in load and users’ energy

consumption needs. Second, the key assumption in [27] is that

the price values are independent from the load level in each

time slot. Here, we relax this assumption. Our work is also

different from the heuristic home automation schemes in [30],

[31], as we use an optimization-based approach with elaborate

mathematical modeling and take into account estimates of the

future load to make better decisions. The contributions of this

paper can be summarized as follows:

• We propose a real-time residential load management

algorithm with load uncertainty for DSM purposes. Our

algorithm is based on solving an optimization problem

that aims to minimize the electricity payment of residen-

tial users. Each appliance sends an admission request to

the energy consumption control unit to start operation.

The operation of each appliance is subject to acceptance

of its request. By running a centralized algorithm, the

control unit determines the optimal operation schedule

of each appliance in each time slot.

• We study operation constraints to model a variety of ap-

pliances including must-run appliances, and interruptible

and non-interruptible controllable appliances. The last

item refers to those appliances whose operation can be

postponed, but once they start operation, they should stay

on until they finish their task.

• Simulation results show that our proposed scheduling

algorithm with load uncertainty reduces the energy pay-

ment of users compared to the case where no scheduling

algorithm is adopted. Our proposed scheme also improves

the overall power system performance by reducing the

peak-to-average ratio (PAR) in aggregate load demand.

The rest of this paper is organized as follows. The system

model is introduced in Section III. The problem formulation

and algorithm description are presented in Section IV. Simula-

tion results are provided in Section V. The paper is concluded

in Section VI.

III. SYSTEM MODEL

In this section, we present a mathematical model for real-

time residential load scheduling when combined RTP and

IBR tariffs are implemented. We assume that price values

are informed by the retailer to end users through a digital

communication infrastructure. Furthermore, we assume that

each user is equipped with a smart meter, which has an energy

consumption control (ECC) unit capable of scheduling and

adjusting the household energy consumption.

Consider a residential unit that participates in a DSM

program. Let A denote the set of all appliances in this

unit. Each appliance a ∈ A can work either as must-run

or controllable. Must-run appliances need to start working

immediately. For example, we can classify TV and personal

computer (PC) as must-run appliances. Clearly, the user should

have the freedom to turn on or turn off the TV whenever

he wants without the interference of the ECC. In contrast,

the operation of controllable appliances can be delayed or

interrupted if necessary. Each controllable appliance can be

either interruptible or non-interruptible. For a controllable

appliance a, if it is non-interruptible, then the ECC may only

delay its operation. However, for interruptible appliances, it is

not only possible to postpone the operation but also to interrupt

the operation when needed and then restore the operation later

on. Plug-in electric vehicle (PEV) and washing machine are

examples of interruptible and non-interruptible controllable

appliances, respectively. We assume that based on the demand

requirements of the user, each appliance can be set as must-

run or controllable. This setting is decided by the user and can

vary from time to time. That is, depending on the preferences

of the user, an appliance can be set as a must-run appliance

in one day and as a controllable appliance in another day.

We divide the intended operation cycle into T time slots.

Each time slot begins with an admission control phase. In this

phase, to start the operation of an appliance, an admission

request is sent to the ECC unit. Once an admission request

is submitted, the state of the appliance changes from sleep

to awake. The appliance remains awake until its operation

is finished. However, the operation of an awake appliance is



Fig. 1. Different operating states of (a) must-run, (b) non-interruptible
controllable, and (c) interruptible controllable appliances.

subject to acceptance of its admission request and specification

of its operation schedule by the ECC unit. The decisions

regarding the admission of the requests and the adjustment

of the operation of different awake appliances are updated

periodically in each admission control phase.

An awake appliance a can be either inactive (with zero

power consumption) or active (operating at nominal power

γa). We note that the power consumption of each appliance

could be different at different cycles of its operation due to

the changes in the amount of current being absorbed. However,

considering the exact load profile of each appliance adds to the

complexity of the model and makes real-time implementation

difficult. To tackle this implementation difficulty, similar to

[24], [25], and [27], we consider an average power consump-

tion γa for each appliance. Different operating states of must-

run and controllable appliances are shown in Fig. 1.

We note that the operation of different appliances is in-

fluenced by the preferences of the user. Different parameters

of our model may be considered to capture different types

of preferences. For example, our model takes into account

the time and the frequency at which each appliance sends

admission requests to the ECC unit. Furthermore, we assume

that the mode of operation of each appliance, i.e., whether

it is must-run or controllable, is not pre-determined. That is,

based on the preference of the user, each appliance can work

either as must-run or controllable. Moreover, for controllable

appliances, the deadline before which the operation of the

appliance has to be finished is also determined based on the

preference of the user. Other aspects of user preferences, such

as the desirable room temperature, can also be considered

to enhance energy consumption scheduling; however, adding

those aspects will also make the design more complex and

less appealing for real-time implementation in practice.

The admission request of each appliance a specifies the total

energy Ea needed to finish the operation of the appliance,

the operating power γa, and whether the appliance is must-

run or controllable. For controllable appliances, the deadline

before which the operation of the appliance has to be finished,

denoted by βa, and whether it is interruptible or not, are the

additional information to be included in the admission request.

For a controllable appliance a, if it is not interruptible, the

ECC may only delay its operation. However, for interruptible

appliances, it is not only possible to postpone the operation

but also to interrupt the operation when needed.

We define binary variable xa
t ∈{0, 1} as the state of power

consumption of appliance a ∈ A at time slot t ∈ {1, . . . , T}.

We set xa
t = 1 if appliance a is admitted to operate in time

slot t (i.e., active), otherwise, we set xa
t = 0 (i.e., inactive).

Let Ea
t denote the amount of energy required to finish the

operation of appliance a while the current time slot is t. Note

that given Ea
t , for each future time slot k > t > 0, we have

Ea
k =

[

Ea
t − γa

k−1
∑

i=t

xa
i

]+

. (1)

For controllable appliances that are non-interruptible, their

operation can be delayed, but once they become active, they

must remain active until the end of their operation. Thus, for

each non-interruptible controllable appliance a, we have

xa
k = 1, ∀ k ∈ {t, . . . , βa}, 0 < Ea

k < Ea. (2)

Let lt ,
∑

a∈A γax
a
t denote the total household power

consumption at time slot t. We consider a pricing function

λt(lt) which represents the price of electricity in each time

slot t as a function of the user’s power consumption in that

time slot. For combined RTP and IBR pricing tariffs, the price

function λt(lt) is defined as [18]:

λt(lt) =

{

mt, if 0 ≤ lt ≤ bt,

nt, if lt > bt,
(3)

where mt, nt, and bt are pre-determined parameters. We have

mt≤nt. Recall from Section II that a combined RTP and IBR

pricing model can effectively avoid load synchronization [18].

IV. PROBLEM FORMULATION AND ALGORITHM

DESCRIPTION

In this section, we consider the problem of efficient power

scheduling such that the electricity payment of each user

is minimized. We assume that only some statistical demand

information are known ahead of time. The exact information

about the list of appliances that are awake in each time slot,

whether they are must-run or controllable, and the deadline by

which the operation of each appliance should be finished is

revealed only gradually over time. We note that different sets

of awake appliances, i.e., must-run and controllable, at future

time slot k > t, can be separated into two disjoint subsets.

The first subset includes those appliances that are awake at

the current time slot t and remain awake at time slot k > t,

i.e., the information about this subset of appliances is known

at the current time slot. The second subset consists of those

appliances that are asleep at the current time slot t and will

be awake at time slot k > t. However, at the current time

slot t, only some statistical information about this subset of

appliances is available. An update is received by the ECC unit

at the beginning of each time slot, and the energy consumption

schedule of each controllable appliance is adapted accordingly.

A. Problem Formulation

The optimum operation schedule can be determined if

the demand information of all appliances is available at the

beginning of the scheduling horizon. However, we assume here



that the demand information of the appliances is not known

and instead only stochastic information regarding the demand

is available a priori. Thus, we formulate a scheduling problem

that minimizes the expected energy payment of the user with

respect to demand uncertainties. In each time slot t, as the

demand information of the appliances is updated, the operation

schedule of each controllable appliance can be rescheduled.

The power scheduling can be identified in real-time as the

solution of the following optimization problem:

minimize
x
a
t , ∀ a ∈ C̃k,

∀ k∈{t, . . . , T}

E

{

Ltλt

(

Lt

)

+

T
∑

k=t+1

Lk,tλk

(

Lk,t

)

}

(4)
subject to xa

k ∈ {0, 1}, ∀ a ∈ C̃k, k ∈ {t, . . . , T},

γa

βa
∑

k=t

xa
k = Ea

t , ∀ a ∈ C̃k,

xa
k = 1, ∀ a∈Ñk, k ∈{t, . . . , βa},

0 < Ea
k < Ea,

where E{·} denotes the expectation,

Lt =
∑

a∈M̃t

γa +
∑

a∈C̃t

γax
a
t , (5)

Lk,t =
∑

a∈Mk,t

γa+
∑

a∈M̂k,t

γa+
∑

a∈Ck,t

γax
a
k+

∑

a∈Ĉk,t

γax
a
k, (6)

x
a
t , (xa

t , . . . , x
a
T ), Ea

k is as in (1), and the definitions of

the different sets of appliances Mk,t, M̂k,t, M̃t, Ck,t, Ĉk,t,
C̃k, and Ñk are presented in Section I. We note that Ea

t is

known at time slot t, must-run appliances are active as long

as they are awake, Ck,t = Ct,t for all k ≥ t, and as the demand

information is known up to time slot t, M̂t,t = Ĉt,t = ∅. The

first term in the objective function in (4) is the payment of the

user in the current time slot t for the known load Lt, while the

second term is the expected cost of energy in the upcoming

time slots. Each appliance can be either on or off. This is

indicated by the first constraint. The second constraint implies

that the operation of each appliance should be finished by its

deadline. The last constraint guarantees that the operation of

non-interruptible appliances will continue after they become

active until they finish their job.

In our stochastic model, it is possible to devise different

objectives and different strategies to schedule the operation of

different appliances. The performances of different scheduling

strategies are different. However, their different performances

may be compared based on their average performance and their

worst case performance for different demand requirements of

the user. Problem (4) in its current form is difficult to solve

as it requires the computation of the expected schedule for

currently sleeping appliances1. To tackle this problem, we

minimize an upper bound of the objective function. We assume

1One option to solve problem (4) is to formulate it as a dynamic program-

ming problem. Considering the amount of information required to describe
the state of each appliance, i.e., whether the appliance is awake or not, the
remaining energy requirements, and the number of time slots remaining to
reach the deadline, we may be faced with a huge state space of outcomes.
Dynamic programming may suffer from the curse of dimensionality [32].

all appliances that become awake in future time slots are must-

run appliances. In this case, the risk of loss for the user is

minimized. That is, from the the user’s electricity payment

point of view, the worst performance of the ECC unit for

different scheduling strategies is minimized.

minimize
x
a
t , ∀ a∈C̃t

Ltλt

(

Lt

)

+

T
∑

k=t+1

E
{

L̄k,tλk

(

L̄k,t

)}

(7)

subject to xa
k ∈ {0, 1}, ∀ a ∈ C̃t, k ∈ {t, . . . , T},

γa

βa
∑

k=t

xa
k = Ea

t , ∀ a ∈ C̃t,

xa
k = 1, ∀ a∈Ñt, k ∈{t, . . . , βa},

0 < Ea
k < Ea,

where

L̄k,t =
∑

a∈Mk,t

γa +
∑

a∈M̂k,t∪ Ĉk,t

γa +
∑

a∈Ck,t

γax
a
k (8)

denotes the load at time slot k > t.

Problem (7) is still difficult to solve in its current form since

the last constraint is conditioned on the value of Ea
k for k ∈

{t+1, . . . , βa}. From (1), for k∈{t+1, . . . , βa}, Ea
k depends

on variable xa
i for i ∈ {t, . . . , k − 1}, which is unknown and

should be determined. However, by introducing an auxiliary

variable yak ∈ {0, 1} for each appliance a ∈ Ñt and at each

time slot k ∈ {t+ 1, . . . , βa}, the problem formulation in (7)

can be re-written in a more tractable form. Here, the auxiliary

variable yak indicates whether the operation of appliance a is

finished (yak = 1) or not (yak = 0) at a particular time slot

k∈{t+1, . . . , βa}. Thus, we can re-write problem (7) as

minimize
x
a
t , ∀ a ∈ C̃t

y
a
t , ∀ a ∈ Ñt

Ltλt

(

Lt

)

+

T
∑

k=t+1

E
{

L̄k,tλk

(

L̄k,t

)}

+M

T
∑

k=t

∑

a∈C̃t

yak (9)

subject to xa
k ∈ {0, 1}, ∀ a ∈ C̃t, k ∈ {t, . . . , T}, (10)

yak ∈ {0, 1}, ∀ a ∈ Ñt, k ∈ {t, . . . , T}, (11)

γa

βa
∑

k=t

xa
k = Ea

t , ∀ a ∈ C̃t, (12)

yak +
Ea

t − γa
∑k−1

i=t xa
i

Ea

≥ ǫ,

∀ a ∈ Ñt, k ∈ {t, . . . , βa}, (13)

xa
k + yak +

Ea
t − γa

∑k−1
i=t xa

i

Ea

≥ 1,

∀ a ∈ Ñt, k ∈ {t, . . . , βa}, (14)

where y
a
t , (yat , . . . , y

a
T ), M is a constant, and 0 < ǫ <

min{ γ1

E1

, . . . ,
γ|A|

E|A|
} is a small constant. We can justify the



new constraints as follows. In (13), when Ea
k = Ea

t −
γa

∑k−1
i=t xa

i = 0, yak becomes 1. However, as long as the

operation is not finished, i.e., Ea
k > 0, since yak appears in the

objective of the minimization problem, we have yak = 0. This

is true, since for any value Ea
k > 0, we have

Ea
k

Ea
> ǫ. In (14),

when Ea
k = Ea, we have yak = 0, and xa

k could be either 0
or 1, when Ea > Ea

k > 0, we have yak = 0 and xa
k has to

be 1. However, when Ea
k = 0, we have yak = 1, and since xa

k

appears in the objective of the minimization problem, it has

to be 0.

For the price function in (3), since mt ≤ nt, for a total load

lt at time slot t, the user’s payment lt × λt(lt) is determined

as the maximum of the two intersecting lines [18]:

lt × λt(lt) = max
{

mtlt, ntlt+(mt−nt)bt
}

. (15)

Thus problem (9) can be reformulated as

minimize
x
a
t , ∀ a ∈ C̃t

y
a
t , ∀ a ∈ Ñt

max

{

mt

(

∑

a∈C̃t

γax
a
t +

∑

a∈M̃t

γa

)

,

nt

(

∑

a∈C̃t

γax
a
t +

∑

a∈M̃t

γa

)

+ (mt − nt)bt

}

+

T
∑

k=t+1

E

{

max

{

mk

(

∑

a∈C̃t

γax
a
k + lk,t

)

,

nk

(

∑

a∈C̃t

γax
a
k+lk,t

)

+(mk−nk)bk

}

}

+M

T
∑

k=t

∑

a∈C̃t

yak (16)

subject to (10)− (14),

where

lk,t ,
∑

a∈Mk,t

γa +
∑

a∈M̂k,t∪ Ĉk,t

γa. (17)

Finally, by introducing another auxiliary variable, νk, for

each time slot k, and by adopting the certainty equivalent

approximation technique, i.e., all uncertainties are fixed at their

expected value [33], we can re-write problem (16) as

minimize
νt,x

a
t , ∀ a ∈ C̃t

y
a
t , ∀ a ∈ Ñt

T
∑

k=t

νk +M

T
∑

k=t

∑

a∈C̃t

yak (18)

subject to (10)− (14),

mt

(

∑

a∈C̃t

γax
a
t +

∑

a∈M̃t

γa

)

≤ νt,

nt

(

∑

a∈C̃t

γax
a
t+
∑

a∈M̃t

γa

)

+(mt − nt)bt ≤ νt,

mk

(

∑

a∈C̃t

γax
a
k + l̂k,t

)

≤ νk,

∀ k∈{t+1, . . . , T},

nk

(

∑

a∈C̃t

γax
a
k+ l̂k,t

)

+(mk−nk)bk ≤ νk,

∀ k∈{t+1, . . . , T},

where νt , (νt, . . . , νT ), and l̂k,t , E
{

lk,t
}

, the estimate of

the power consumption of must-run appliances in an upcoming

time slot k ≥ t will be calculated in the next sub-section. Prob-

lem (18) is a mixed-binary linear program and can be solved

efficiently by using MOSEK [34]. The solution of optimization

problem (18) determines the appropriate scheduling for the

operation of controllable appliances. However, for interruptible

appliances, only the operation schedule of the current time slot

t will be executed, and the schedule of the future time slots

t + 1, . . . , T may change when the optimization problem is

solved again in the next time slot as new information about

the future load becomes available.

B. Load Estimation

In our system model, we assume that the demand infor-

mation of the appliances is not known ahead of time, i.e.,

in (17), the set of awake appliances in the upcoming time

slots k > t that are currently sleeping, M̂k,t ∪ Ĉk,t, is not

known. Instead, only the probability with which each appliance

becomes awake at each time slot t, pat , is known before the

operation cycle begins. Such information can be calculated,

for example, based on the sleep and awake history of each

appliance. For this purpose, we can observe a window of N

consecutive days and mark those days in which appliance a

becomes awake in a particular time slot t. The ratio of the

number of marked days to the total number of observed days

determines the probability with which appliance a becomes

awake in time slot t, pat , P(∆a
t = 1), where ∆a

t is a random

variable that is equal to one if appliance a becomes awake

in time slot t, and equal to zero otherwise. In our model,

each appliance can become awake only once. If an appliance

becomes awake more often, we can simply introduce virtual

appliances to deal with this issue. Therefore, we have

T
∑

t=1

pat + qa = 1, (19)

where qa denotes the probability that appliance a does not

become awake at any time within the DSM’s operation period

[1, T ]. We define paτ,t as the probability that appliance a

becomes awake in time slot τ > t given that it has not become

awake until time slot t. That is,

paτ,t = P(∆a
τ = 1 |∆a

1 = 0, . . . ,∆a
t = 0). (20)

Based on Bayes rule, paτ,t can be calculated as

paτ,t =
P(∆a

1 = 0, . . . ,∆a
t = 0 | ∆a

τ = 1)P(∆a
τ = 1)

P(∆a
1 = 0, . . . ,∆a

t = 0)
. (21)

If appliance a becomes awake at time slot τ > t, it implies

that it has not become awake in previous time slots. Therefore,



Fig. 2. Must-run appliance a ∈ St with Ta = 3 will be active in τ > t if
it starts operation within time interval [max{t+ 1, τ − Ta + 1}, τ ].

P(∆a
1 =0, . . . ,∆a

t =0 | ∆a
τ =1)= 1. On the other hand, we

obtain P(∆a
1 = 0, . . . ,∆a

t = 0) =
∑T

k=t+1 p
a
k + qa based on

(19). We also have P(∆a
τ = 1) = paτ . Therefore, (21) becomes

paτ,t =
paτ

∑T
k=t+1 p

a
k + qa

. (22)

Next, assume that all appliances that become awake in

future time slots are must-run appliances, and must-run ap-

pliances start operation once they become awake, see Sec-

tion IV-A. Let Λa
τ denote the random variable that indicates

whether must-run appliance a is active (Λa
τ = 1) or not active

(Λa
τ = 0) in time slot τ . Also, let δaτ,t denote the probability

that a must-run appliance a which is sleeping in time slot t

will be active in time slot τ > t. By conditioning on the time

slot in which must-run appliance a becomes awake, δaτ,t can

be calculated as

δaτ,t = P(Λa
τ =1 | ∆a

1=0, . . . ,∆a
t =0)

=

T
∑

k=t+1

P(Λa
τ =1 | ∆a

1=0, . . . ,∆a
t =0,∆a

k=1)pak,t, (23)

where pak,t is defined in (20). As illustrated in Fig. 2, a

currently sleeping appliance will be active in time slot τ > t, if

it starts operation within time frame [max{t+1, τ−Ta+1}, τ ],
where Ta , Ea

γa
is defined as the number of time slots

required to finish the operation of appliance a while operating

at power level γa. For simplicity, we assume Ta is integer.

Therefore, P(Λa
τ = 1 | ∆a

1 = 0, . . . ,∆a
t = 0,∆a

k = 1) = 1
if k ∈ [max{t + 1, τ − Ta + 1}, τ ], and P(Λa

τ = 1 | ∆a
1 =

0, . . . ,∆a
t =0,∆a

k=1) = 0 otherwise. Thus, we have

δaτ,t =

τ
∑

k=max{t+1,τ−Ta+1}

pak,t. (24)

Finally, by conditioning on the event of observing a cur-

rently sleeping appliance active in an upcoming time slot τ ,

while the system is at time slot t, the estimate of the power

consumption required in (18) becomes:

l̂τ,t = E {lτ,t} =
∑

a∈Mτ,t

γa +
∑

a∈St

γaδ
a
τ,t, (25)

where St is defined in Section I.

C. Algorithm Description

In this section, we explain the different steps of the proposed

energy consumption scheduling algorithm in presence of load

uncertainty (Algorithm 1) executed at each time slot t.

Algorithm 1 : Energy consumption scheduling algorithm in

presence of load uncertainty executed at the beginning of each

time slot t.
1: Receive admission requests.

2: Label received requests either as must-run or controllable.

3: Activate must-run appliances (start / continue operation).

4: Update paτ,t according to (22).

5: Update δaτ,t according to (24).

6: Update l̂τ,t according to (25).

7: Update Ea
t according to (1).

8: Solve (18) to activate / deactivate controllable appliances.

9: if activated device is non-interruptible

10: Mark it as must-run.

11: end if

Step 1: At the beginning of the admission control phase at

each time slot, all received admission requests are labeled as

either must-run or controllable, c.f. Lines 1 and 2.

Step 2: Activate must-run appliances a ∈ M̃t right away,

c.f. Line 3. That is, start or continue their operation at the

requested power γa. Their operation will not be interrupted,

and they remain must-run until the end of their operation.

Step 3: In Line 4, considering the list of appliances that

have already become awake, update the probabilities at which

other appliances will send an admission request in the upcom-

ing time slots as in (22). Adopt (24) to update the probabilities

with which sleeping devices become active in upcoming time

slots, c.f. Line 5.

Step 4: Use the current information to calculate the ex-

pected load in the upcoming time slots using (25) as indicated

in Line 6. Update the remaining required energy of each

appliance at the beginning of the current time slot, i.e., Ea
t ,

using (1), c.f. Line 7.

Step 5: Next, set the “on” / “off” state of each awake

controllable appliance for the rest of the time slots by solving

optimization problem (18), c.f. Line 8.

Step 6: In Lines 9 to 11, if any non-interruptible control-

lable appliance became active (i.e., it switched from off to on)

in Step 5, remove it from the list of controllable appliances

and add it to list of must-run devices as it should remain on

until it finishes its operation.

V. PERFORMANCE EVALUATION

In this section, we present simulation results and assess

the performance of our proposed DSM algorithm. We run

the simulation multiple times with different patterns for the

times at which the appliances become awake. We then present

the average results. Unless stated otherwise, the simulation

setting is as follows. We assume that the general RTP method

combined with IBR is adopted as described in (3). In our

system model, the retail price parameters, mt, nt, and bt, are

set by the retail energy provider to compensate the cost of

providing energy and to shape the daily energy consumption

of the user. However, these parameters are different from the

load cost profile of the energy provider, as the load cost
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Fig. 3. The pricing parameters used based on the combined RTP and IBR
pricing model in (3). Parameter bt = 3.5 kW is fixed for all time slots.

profile of the energy provider is determined in the wholesale

electricity market. The exact load cost profile of the retailer

is usually not known to the end users. Fig. 3 illustrates the

variation of parameters mt and nt of the price function over

one day. We consider a single household with various must-

run and controllable appliances. Controllable appliances can

be either interruptible or non-interruptible. Non-interruptible

appliances include: electric stove (Ea = 4.5 kWh, γa = 1.5
kW), clothes dryer (Ea=1 kWh, γa=0.5 kW), and vacuum

cleaner (Ea =3 kWh, γa =1.5 kW). Interruptible appliances

include: Refrigerator (Ea = 2.5 kWh, γa = 0.125 kW), air

conditioner (Ea=6 kWh, γa=1.5 kW), dishwasher (Ea=2
kWh, γa = 1 kW), heater (Ea = 4 kWh, γa = 1 kW), water

heater (Ea = 2 kWh, γa = 1 kW), pool pump (Ea = 4 kWh,

γa = 2 kW), and PEV (Ea = 10 kWh, γa = 2.5 kW). Must-

run appliances include: Lightning (Ea = 3 kWh, γa = 0.5
kW), TV (Ea =1 kWh, γa =0.25 kW), PC (Ea =1.5 kWh,

γa=0.25 kW), ironing appliance (Ea=2 kWh, γa=1 kW),

hairdryer (Ea = 1 kWh, γa = 1 kW), and others (Ea = 6
kWh, γa=1.5 kW). The details of the average annual energy

consumption of different appliances and the average monthly

energy consumption of residential users in the US can be

found in [35] and [36]. The time slot at which each appliance

becomes awake is selected randomly from a pre-determined

time interval, e.g. [6:00, 14:00] for electric stove and [16:00,

24:00] for PEV.

A. Performance Gains of Users and Utility Company

To have a baseline to compare with, we consider a system

without ECC deployment, where each appliance a is assumed

to start operation right after it becomes awake at its nominal

power γa. As an upper bound, we also consider a system with

ECC deployment in which all the demand information of the

appliances is available ahead of time. Simulation results for the

average total power consumption for the proposed residential

load control algorithm, the system without ECC deployment,

and the system in which complete demand information is

available ahead of time are depicted in Fig. 4. In our simulation

model, we set bt = 3.5 kW in (3) for all time slots. As

illustrated in Fig. 4, to reduce electricity payment, the ECC

unit shifts the load to time slots with lower prices such as
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Fig. 4. Power consumption for (a) the system without ECC deployment, (b)
the system with ECC deployment, and (c) the system with ECC deployment
in which complete demand information is available ahead of time.

the after midnight hours. However, the high price penalty

for exceeding the bt threshold prevents load synchronization

as discussed in Section II. The simulation results show that

exploiting the use of the ECC unit reduces the average daily

payment of the user from 4.76 Dollars/day to 4.01 Dollars/day.

For the case, where complete information about the demand

of each appliance is available ahead of time, the average daily

payment of the user is 3.92 Dollars/day. To evaluate the PAR,

the user’s daily peak load is divided by his daily average load.

That is, after running the algorithm, at the end of the operation

period, we compute

PAR =
T max{l1, . . . , lT }

∑T
k=1 lk

, (26)

where lk is the total power consumption of the user at time slot

k. The proposed algorithm also helps to reduce the average

PAR of the system from 2.66 to 1.98 (25.5% PAR reduction)

compared to the system without ECC deployment. The PAR

of the system with ECC deployment if complete demand

information is known a priori is 1.89.

B. Computational Complexity

In general, integer linear programs with n integer variables

and m constraints are known to be NP-complete [37]. How-

ever, there exist pseudo-polynomial algorithms for solving m×
n integer programs with fixed m which have an order of com-

plexity of O(n2m+2(mα)(m+1)(2m+1) log(n2(mα2)2m+3)),
where α is the maximum coefficient in the set of constraints

[38]. A complete discussion of the complexity of such al-

gorithms is out of the scope of this paper. To illustrate the

complexity of our proposed algorithm, simulation results for

the average run time of the algorithm, the number of integer

variables, and the number of constraints for different numbers

of appliances and different time granularities are given for one

time slot in Table I. The order of complexity of the algorithm

determines the maximum run-time or the maximum number

of elementary operation required to solve the problem for



TABLE I
PERFORMANCE MEASURES AND COMPLEXITY ANALYSIS OF THE

PROPOSED ALGORITHM.

Average run time of the algorithm (in seconds).

Time granularity |A|=20 |A|=25 |A|=35

1 hour 0.0287 0.0308 0.0350

30 minutes 0.0294 0.0316 0.0422

15 minutes 0.0302 0.0318 0.0988

Average number of integer variables.

Time granularity |A|=20 |A|=25 |A|=35

1 hour 80 156 296

30 minutes 121 230 440

15 minutes 168 316 619

Average number of constraints.

Time granularity |A|=20 |A|=25 |A|=35

1 hour 43 79 139

30 minutes 46 81 142

15 minutes 54 87 145

any input scenarios. In practice, the times at which different

appliances become awake are distributed over the operation

horizon, and it is unlikely that all appliances become awake

at the same time. Thus, at each time slot, the number of

awake appliances required to be scheduled is limited. This

can significantly reduce the average run time of the algorithm

in most practical scenarios. By increasing the time granularity,

the number of integer variables and the number of constraints

are increased, since the number of time slots at which the

operation of each appliance should be scheduled is increased.

However, the effect of this increase is mitigated, since the

times at which different appliances become awake are dis-

tributed over a larger number of time slots, and the number of

awake appliances in each time slot is reduced.

C. The Impact of Price Control Parameter bt

Considering the price function as described in (3), in each

time slot, if the power consumption of the user exceeds a

certain threshold defined as bt, the user will be penalized

by paying a higher price. The choice of parameter bt has a

significant impact on users’ payments and the PAR. To have

a baseline to compare with, similar to [27], we consider a

system in which the effect of IBR is ignored and only the

basic price in each time slot is taken into account to schedule

the operation of different appliances in order to minimize

the electricity payment of the user. Simulation results for the

average payment of the user and the PAR of the system for

different values of parameter bt are shown in Figs. 5 and 6,

respectively. Intuitively, increasing the price parameter bt for

each time slot results in a reduction of the user’s payment

as shown in Fig. 5. Considering the average PAR, for the

system without ECC deployment and the system without IBR

consideration, the PAR does not change as the user does not

respond to changes of parameter bt. For the system with

ECC deployment, for low values of parameter bt, even the

load of must-run appliances in most time slots exceeds this

threshold. Thus, the ECC unit mainly considers the nt price

parameter to schedule the operation of controllable appliances.
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Fig. 6. PAR of the system for different values of parameter bt.

However, by increasing parameter bt, since the load of must-

run appliances lies below threshold bt in some time slots, the

user is encouraged to shift the controllable portion of its load

to avoid paying higher price nt rather than lower price mt,

which initially results in reducing the PAR. Later on, a further

increase of parameter bt reduces the effect of IBR, entails load

synchronization effects, and increases the PAR of the system.

That is, for large values of parameter bt, it is less likely that

the load of the user exceeds this threshold, and the ECC unit

mainly pays attention to the value of the price parameter mt

in order to schedule the operation of controllable appliances.

This results in shifting a large portion of the load to low

price time slots. Therefore, for large values of parameter bt,

the performance of our proposed method approaches the one

without IBR consideration as shown in Fig. 6.

D. The Impact of Adopting Inclining Block Rates

In this section, we examine how changes of the two parame-

ters mt and nt of the price function will affect the performance

of the system. In our simulation model, parameter mt changes

as illustrated in Fig. 3 and we set bt = 3 kW for all time slots.

However, parameter nt is given by

nt = θmt, ∀ t ∈ {1, . . . , T}. (27)

Simulation results for the average daily payment of the user

as well as the average PAR of the system for different values

of parameter θ are depicted in Figs. 7 and 8, respectively.
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Fig. 8. PAR of the system for different values of parameter θ.

Intuitively, when θ is equal to one, i.e., when mt = nt for

all t, the performance of our proposed method is the same

as the one in which the effect of IBR is ignored. However,

by increasing parameter θ, the payment of the user will be

increased, as the user has to pay more every time that its

load exceeds threshold bt as shown in Fig. 7. As indicated in

Fig. 8, increasing parameter θ improves the PAR of the system,

as load synchronization is prevented. That is, to avoid paying

at higher price nt, the ECC unit tries to distribute the load

such that it does not exceed the bt threshold. However, for the

system without IBR consideration, changes of parameter θ do

not affect the PAR.

VI. CONCLUSIONS

In this paper, we proposed an optimal residential load

control algorithm for DSM in presence of load uncertainty. We

formulated an optimization problem to minimize the electricity

payment of the users in situations where only an estimate of

the future demand is available. We focused on a scenario

where real-time pricing is combined with IBRs to balance

residential load to achieve a low PAR. Simulation results

show that the proposed algorithm reduces the energy cost of

users, encouraging them to participate in DSM. Exploiting

IBR with RTP tariffs can help to avoid load synchronization,

and the combination of the general RTP method with our

algorithm reduces the PAR of the total load. The latter provides

incentives for utilities to support implementing the proposed

algorithm.
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