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Abstract

Dynamic workloads in cloud computing can be managed through live migration of virtual machines from

overloaded or underloaded hosts to other hosts to save energy and/or mitigate performance-related Service Level

Agreement (SLA) violations. The challenging issue is how to detect when a host is overloaded to initiate live migration

actions in time. In this paper, a new approach to make long-term predictions of resource demands of virtual machines

for host overload detection is presented. To take into account the uncertainty of long-term predictions, a probability

distribution model of the prediction error is built. Based on the probability distribution of the prediction error, a

decision-theoretic approach is proposed to make live migration decision that take into account live migration

overheads. Experimental results using the CloudSim simulator and PlanetLab workloads show that the proposed

approach achieves better performance and higher stability compared to other approaches that do not take into

account the uncertainty of long-term predictions and the live migration overhead.
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Introduction

Cloud computing is a promising approach in which

resources are provided as services that can be leased and

released by users through the Internet in an on-demand

fashion [1]. One of the widely used cloud computing ser-

vice models is Infrastructure as a Service (IaaS) [2] where

raw computing resources are provided in the form of Vir-

tual Machines (VMs) to cloud consumers charged for the

resources consumed. Virtualization approaches such as

Xen [3] and VMware [4] allow infrastructure resources

to be shared in an effective manner. VMs also make it

possible to allocate resources dynamically according to

varying demands, providing opportunities for the efficient

use of computing resources, as well as the optimization of

application performance and energy consumption.

One of the main features virtualization technology

offers for dynamic resource allocation is live migration

of VMs [5]. It allows cloud providers to move away VMs
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from overloaded hosts to keep VM performance to SLA

levels and to dynamically consolidate VMs to fewer hosts

to save energy when the load is low. Using live migration

and applying online algorithms that make live migra-

tion decisions, it is possible to manage cloud resources

efficiently by adapting resource allocation to VM loads,

keeping VM performance levels according to SLAs and

lowering energy consumption of the infrastructure.

An important problem in the context of live migration

is to detect when a host is overloaded or underloaded.

Most of the state-of-the-art approaches are based on

monitoring resource usage, and if the actual or the pre-

dicted next value exceeds a specified threshold, then a

host is declared as overloaded. However, live migration

is an expensive action, expressed as VM performance

violations. The problem with existing approaches is that

basing decisions for host overload detection on a single

resource usage value or a few future values can lead to

hasty decisions, unnecessary live migration overhead and

stability issues.

A more promising approach is to base live migra-

tion decisions on resource usage predictions several steps

ahead in the future. This not only increases stability by
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performing migration actions only when the load persists

for several time intervals, but also allows cloud providers

to predict overload states before they happen. On the

other hand, predicting further into the future increases

the prediction error and the uncertainty, thus diminishing

the benefits of long-term prediction. Another important

issue is that live migration actions should only be per-

formed if the penalty of SLA violations is larger than the

penalty of the live migration overhead.

In this paper, a new approach for host overload and

underload detection is presented based on long-term

resource usage predictions that take into account the pre-

diction uncertainty and the live migration overhead. More

specifically, the paper makes the following contributions:

• A novel approach to dynamically allocate resources

to VMs in an IaaS cloud environment is presented. It

combines local and global VM resource allocations.

Local resource allocation means allocating CPU

resource shares to VMs according to the current

load. Global resource allocation means performing

live migration actions when a host is overloaded or

underloaded in order to mitigate VM performance

violations and reduce the number of hosts to save

energy.
• A novel approach based on long-term resource usage

predictions is presented to detect when a host is

overloaded or underloaded. For long-term

predictions, a supervised machine learning approach

based on Gaussian Processes [6] is used.
• To take into account the uncertainty of long-term

predictions for overload detection, a novel

probabilistic model of the prediction error is built

online using the non-parametric kernel density

estimation [7] method.
• To take into account VM live migration overheads, a

novel decision-theoretic approach based on a utility

function is proposed. It performs live migration

actions only when the predicted utility value (penalty)

of SLA violations is greater than the utility value of

live migration overhead.

The proposed approach is experimentally compared to

other approaches: (a) an approach that relies on short-

term predictions, (b) an approach that makes long-term

predictions without taking into account prediction uncer-

tainty, (c) an approach that makes long-term predictions

taking into account prediction uncertainty, but not apply-

ing decision theory for considering live migration over-

head, and (d) a the state-of-the-art approach based on

Local Regression Detection [8] for host overload detec-

tion. Experimental evaluations based on the CloudSim

[9] simulator and PlanetLab [10] workloads show that

the proposed approach achieves better performance and

stability compared to the other approaches.

The paper is organized as follows. “Resource manager

architecture” section presents the overall architecture of

the resource management approach. “VM agent” section

discusses the functionality of the VM agent. “Host

agent” section explains the duties of the host agent: prob-

abilistic and decision-theoretic overload, underload and

not-overload detection. “Global agent” section presents

the global agent, and “VM SLA violation” section dis-

cusses VM SLA violation metrics. In “Experimental eval-

uation” section, the experimental evaluation is presented.

Related work is discussed in “Related work” section. The

last section concludes the paper and outlines areas for

future research.

Resourcemanager architecture

This work focuses on managing an IaaS cloud in which

several VMs run on physical hosts. The overall architec-

ture of the resource manager and its main components

are shown in Fig. 1. There is a VM agent for each VM

that determines the resource shares to be allocated to its

VM in each time interval. There is a host agent for each

host that receives the resource allocation decisions of all

VM agents and determines the final allocations by resolv-

ing any possible conflicts. It also detects when a host is

overloaded or underloaded and transmits this informa-

tion to the global agent. The global agent initiates VM

live migration decisions by moving VMs from overloaded

or underloaded hosts to not-overloaded hosts to mitigate

SLA violations and reduce the number of hosts. In the fol-

lowing sections, a more detailed discussion is provided for

each of the components of the resource manager.

VM agent

The VM agent is responsible for local resource alloca-

tion decisions by dynamically determining the resource

shares to be allocated to its own VM. Allocation decisions

are made in discrete time intervals where in each inter-

val the resource share to be given in the next time interval

is determined. In this work, the time interval is set to

10 seconds to adapt quickly to changing load. The inter-

val is not set to less than 10 seconds, since in long-term

prediction this would increase the number of time steps

to predict into the future, lowering the prediction accu-

racy. This time interval value is also used in previous work

[11] for long-term prediction, where the same reasoning is

used to make it possible to predict further into the future.

Setting a larger time interval can lead to inefficiencies and

SLA violations due to the lack of quick adaptation to the

load variation. This dynamic allocation of resource shares

permits the cloud provider to adapt the resources given to

each VM according to the current load, thus keeping the

required performance level with the minimum resource

costs. Our work focuses on CPU allocation, but in prin-

ciple the approach can be extended to other resources as
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Fig. 1 Resource manager architecture

well. More specifically, for CPU share allocation, the CPU

CAP setting that most modern virtualization technolo-

gies offer is used. The CAP is the maximum CPU capacity

that a VM can use, given as a percentage of the total

capacity, which provides good performance isolation

between VMs.

To estimate the CPU share allocated to each VM, first

the value of the CPU usage for the next time interval

is predicted. Then, the CPU share is calculated as the

predicted CPU usage plus 10% of the CPU capacity, sim-

ilar to previous work [12]. By setting the CPU CAP to

leave 10% room above the required CPU usage allows us

to account for prediction errors and reduces the possi-

bility of performance-related SLA violations. To predict

the next CPU usage value, a time series forecasting tech-

nique, based on the history of previous CPU usage values,

is used. More specifically, a machine learning approach

based on Gaussian Processes [6] is employed. Although

for local resource allocation only a one step ahead predic-

tion is needed, our VM agent predicts several steps ahead

into the future to support overload detection through

long-term prediction.

Host agent

One of the duties of the host agent is to play the role of

an arbitrator. It gets the CPU requirements from all VM

agents, and by resolving any conflicts between them, it

decides about the final CPU allocations for all VMs. Con-

flicts can arise when the CPU requirements of all VMs

exceed the total CPU capacity. If there are no conflicts,

the final CPU allocation is the same as the allocations

requested by the VM agents. If there is a conflict, the host

agent computes the final CPU allocations according to the

following formula:

FinalA =
A

SumA
∗ TotalCapacity (1)

where FinalA is the final allocation, A is the required allo-

cation, SumA is the sum of all VMs’ requested allocations

and TotalCapacity is the total CPU capacity.

Another duty of the host agent, which is the main focus

of this work, is to detect whether the host is overloaded

or underloaded. This information is passed to the global

agent that then initiates live migration actions for mov-

ing VMs away from overloaded or underloaded hosts

according to the global allocation algorithm.

Overload detection

For overload detection, a long-term time series prediction

approach is used. Long-term prediction in the context of

this work means predicting 7 time intervals ahead into

the future. A straightforward way for host overload detec-

tion is as follows. A host is declared as overloaded if

the actual and the predicted total CPU usage of 7 time

intervals ahead into the future exceed an overload thresh-

old. The predicted total CPU usage of a time interval

into the future is estimated by summing up the predicted

CPU usage values of all VMs of the corresponding time

interval. The value of predicting 7 time intervals into the

future is chosen such that it is greater than the estimated
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average live migration time (around 4 time intervals). In

this work, the average live migration time is assumed to

be known and its value of 4 time intervals is estimated

by averaging over all VM live migration times over sev-

eral simulation experiments. In real world scenarios, this

value is not known in advance, but it can be estimated

based on the previous history of live migration times.

Another more fine-grained approach would be to apply

VM live migration modelling [13] for live migration time

prediction based on relevant VM parameters. Based on

this estimated live migration time, the number of time

steps to predict into the future can be set to a value

greater than the migration time. This is done in order to

signal overload states that last longer than the live migra-

tion time. Performing live migration actions for overload

states that last less than the live migration time is use-

less, since in this case the live migration action does not

eliminate the overload state. Having a larger value than

7 time intervals is not really useful either, since this can

lead to skipping some overload states that do not last

long, but that can be eliminated by live migration actions.

Some preliminary experiments have shown that increas-

ing the number of prediction time intervals further into

the future does not increase the stability and performance

of the approach. The overload threshold value is deter-

mined dynamically based on the number of VMs and is

related to the VM SLA violation metric, as explained in

“VM SLA violation” section .

Underload detection

The host agent also detects whether a host is underloaded

in order to apply dynamic consolidation by live migrat-

ing all its VMs to other hosts and turning off the host

to save energy. Here, long-term time series predictions of

CPU usage are also used. The host is declared as under-

loaded if the actual and the predicted total CPU usage

of 7 time intervals ahead into the future are less than an

underload threshold. Again, the value of 7 time intervals

is long enough to skip short-term underload states, but

not too long as to miss any opportunity for consolidation.

The underload threshold value is a constant value, and in

this work it is set to 10% of the CPU capacity, but it can

be configured by the administrator according to his or her

preferences for consolidation aggressiveness.

Not-overload detection

To make live migration decisions, the global agent needs

to know the hosts that are not overloaded in order to use

them as destination hosts for VM live migrations. A host

is declared as not overloaded if the actual and the pre-

dicted total CPU usage of 7 time intervals ahead into the

future is less than the overload threshold. The actual and

the predicted total CPU usage of any time interval is esti-

mated by summing up the actual and predicted CPU usage

of all existing VMs plus the actual and the predicted CPU

usage of the VM to be migrated. The purpose is to check

whether the destination host remains not overloaded after

the VM has been migrated.

Uncertainty in long-term predictions

Overload or underload detection based on long-term pre-

dictions carries with it the uncertainty of correct pre-

dictions, which can lead to erroneous decisions. To take

into account the uncertainty of long-term predictions,

the above detection mechanisms are augmented with the

inclusion of a probabilistic distribution model of the pre-

diction error.

First, the probability density function of the prediction

error for every prediction time interval is estimated. Since

the probability distribution of the prediction error is not

known in advance and different workloads can have dif-

ferent distributions, a non-parametric method to build

the density function online is required. In this work, a

non-parametric method for probability density function

estimation based on kernel density estimation [7] is used.

It estimates the probability density function of the pre-

diction error every time interval based on a history of

previous prediction errors. In this work, the probability

density function of the absolute value of the prediction

error is used. Since there are 7 time interval predictions

into the future, 7 different prediction error probability

density functions are built online.

Probabilistic overload detection

Based on the probability density function of the predic-

tion error, it can be estimated probabilistically, for each

predicted time interval, if the future total CPU usage will

be greater than the overload threshold. In the following,

for convenience, the future total CPU usage is just called

the future CPU usage. This is achieved by Algorithm 1

that returns true or false with some probability whether

the future CPU usage will be greater than the overload

threshold.

First, the algorithm finds the probability that the future

CPU usage will be greater than the overload threshold.

If the predicted CPU usage is greater than the overload

threshold, the difference, called max_error, between the

predicted CPU usage and overload threshold, is found.

For the future CPU usage to be greater than the over-

load threshold, the absolute value of the error (i.e., the

difference between predicted and future value) should

be less than max_error. Based on a cumulative distri-

bution function of the prediction error, the probability

that the prediction error is less than max_error, i.e., the

future CPU usage is greater than the overload threshold,

is found. Since it can happen that the future CPU usage

will be greater than the overload threshold, and also that

the prediction error will be greater than max_error, the
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Algorithm 1: IsUtilizationOver

1 if Pred_Total_Util >= OverThreshold then

2 max_error=Pred_Total_Util - OverThreshold

3 probability=CumulativeProbability(max_error)

4 probability=(probability+1)/2

5 end

6 else

7 max_error=OverThreshold - Pred_Total_Util

8 probability=CumulativeProbability(max_error)

9 probability=(probability+1)/2

10 probability=1-probability

11 end

12 probability=(probability)*100

13 randnum=rand.nextInt(100)

14 if randnum < probability then

15 return true

16 end

17 else

18 return false

19 end

probability that this happens, given as (1-probability)/2, is

added to the calculated probability to yield the final prob-

ability (probability+1)/2. If the predicted CPU usage is less

than the overload threshold, by the same approach, first,

the probability that the future CPU usage will be less than

the overload threshold is found. Then, the probability that

the future CPU usage will be greater than the overload

threshold is given as (1-probability). Finally, the algorithm

returns true with the estimated probability.

Algorithm 1 returns the overload condition probabilisti-

cally only for a single prediction time interval. Therefore,

to declare the host as overloaded, the actual CPU usage

should exceed the overload threshold, and the algorithm

should return true for all 7 prediction time intervals in the

future.

The interpretation of taking into account prediction

uncertainty in overload detection is as follows. Although

CPU prediction can lead to values above the overload

threshold, there is some probability, due to the uncertainty

of prediction, that the CPU utilization will be lower than

the threshold. This means that for some fraction of the

time the host will not be considered as overloaded. This

increases the stability of the approach, as shown by the

lower number of live migrations for the probabilistic over-

load detection approach, compared to other approaches.

Furthermore, when CPU prediction is lower than the

overload threshold, there is some probability that the CPU

utilization will be greater than the threshold. This means

that for some fraction of the time the host will be consid-

ered as overloaded. In summary, we can say that the host

is considered as overloaded or not in proportion to the

uncertainty of prediction, which is the right thing to do,

as supported by our good experimental results compared

to approaches that do not take prediction uncertainty into

account.

Algorithm 2: IsUtilizationNotOver

1 if Pred_Total_Util >= OverThreshold then

2 max_error=Pred_Total_Util - OverThreshold

3 probability=CumulativeProbability(max_error)

4 probability=(probability+1)/2

5 probability=1-probability

6 end

7 else

8 max_error=OverThreshold - Pred_Total_Util

9 probability=CumulativeProbability(max_error)

10 probability=(probability+1)/2

11 end

12 probability=(probability)*100

13 randnum=rand.nextInt(100)

14 if randnum < probability then

15 return true

16 end

17 else

18 return false

19 end

Probabilistic not-overload detection

To take into account the uncertainty of long-term pre-

dictions in detecting whether a host is not overloaded,

Algorithm 2 is proposed. It returns true, with some prob-

ability, if the future CPU usage of some prediction time

interval will be less than the overload threshold. The host

is declared as not overloaded if the actual CPU usage is

less than the overload threshold, and Algorithm 2 returns

true for all 7 prediction time intervals in the future.

Probabilistic underload detection

To detect whether a host is underloaded, Algorithm 3 is

proposed. It returns true, with some probability, if the

future CPU usage of some prediction time interval will

be less than the underload threshold. The host is declared

as underloaded if the actual CPU usage is less than the

underload threshold, and Algorithm 3 returns true for all

7 prediction time intervals into the future.

Decision-theoretic overload detection

The above improvements make it possible to take into

account the uncertainty of long-term predictions in the

detection process, but do not take into account the live

migration overhead. In this section, a further approach,

based on decision theory, is presented that performs live
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Algorithm 3: IsUtilizationUnder

1 if Pred_Total_Util >= UnderThreshold then

2 max_error=Pred_Total_Util - UnderThreshold

3 probability=CumulativeProbability(max_error)

4 probability=(probability+1)/2

5 probability=1-probability

6 end

7 else

8 max_error=UnderThreshold - Pred_Total_Util

9 probability=CumulativeProbability(max_error)

10 probability=(probability+1)/2

11 end

12 probability=(probability)*100

13 randnum=rand.nextInt(100)

14 if randnum < probability then

15 return true

16 end

17 else

18 return false

19 end

migration actions only if SLA violations due to future host

overload states are greater than the penalty of VM live

migration.

Applying decision theory requires us to define a util-

ity function that should be optimized. In this work, the

utility function value represents the penalty of the host

SLA violation or the penalty of live migration overhead.

A SLA is a contract between the cloud provider and the

cloud consumer that defines, among others, the perfor-

mance level the cloud provider should conform to and the

penalty costs of violating it. In this work, a host SLA vio-

lation is defined as the situation when the total CPU usage

of the host exceeds the overload threshold for 4 consecu-

tive time intervals. The penalty of host SLA violation is the

percentage of the CPU capacity that the total CPU usage

exceeds the overload threshold for all 4 consecutive time

intervals. The penalty value can be converted to a mon-

etary value with some conversion function, but here it is

treated as a CPU capacity percentage value.

Since each VM live migration is associated with some

performance degradation, a penalty value for each VM live

migration action can be defined in a SLA contract. More

concretely, a SLA violation penalty value (expressed also

as a percentage of the CPU capacity) for each time interval

during VM live migration is defined. The VM live migra-

tion SLA violation penalty is defined as the sum of all SLA

violation penalties for all time intervals that the VM live

migration lasts.

The proposed decision-theoretic approach tries to min-

imize the host SLA violation penalty (utility value), taking

into account the VM live migration SLA violation penalty.

In the following, the term utility value will be used instead

of host SLA violation penalty. First, the expected utility

value of the future host overload state is estimated. The

expected utility is given by the sum of the expected util-

ity values of all 4 consecutive future time intervals from

interval 4 to interval 7. It is started from time interval 4

instead of time interval 1 in order to capture an overload

state before it happens and eliminates it through VM live

migration that takes, on the average, 4 time intervals.

If the future CPU usage is known, then the utility of a

time interval can be given just as the difference between

future CPU usage and the overload threshold. Since only

the predicted CPU usage is known, the expected utility

value of one time interval can be calculated as follows.

First, the CPU usage interval between the total CPU

capacity and the overload threshold is divided into a fixed

number of levels (5 in this work). Then, the CPU usage

above the overload threshold (i.e., the utility value) of each

level is calculated as shown in Algorithm 4.

Algorithm 4: LevelUsage

1 Interval=100-OverThreshold

2 Delta=Interval/UsageLevels

3 Start=OverThreshold+Level*Delta

4 return ((Start+(Delta/2))-OverThreshold)

In Algorithm 4, Interval is the CPU usage interval width

above the overload threshold, Delta is the CPU usage

interval width of the corresponding level, Level is the level

number (from 0 to 4), whose utility value will be found,

UsageLevels is the total number of levels and Start is the

CPU usage of the start of level interval. The algorithm

returns as the utility value the CPU usage value taken from

themiddle of the level interval. Algorithm 4 is run for each

possible level to find its utility value.

Second, for any time interval, the probability that the

CPU usage of some level will indeed be the future CPU

usage is calculated by Algorithm 5.

Start and Delta are calculated as in Algorithm 4,

Pred_Util is the total predicted CPU usage of the corre-

sponding time interval, CumProbability() represent the

cumulative distribution function used to find the proba-

bility that the prediction error is less than a certain value

and prob represents the probability that the CPU usage of

the corresponding level will be the future CPU usage. The

algorithm considers three possible situations in which the

level interval can be: one in which the interval does not

include the predicted CPU usage and is below it, one in

which the interval includes the predicted CPU usage, and

one in which the interval does not include the predicted

CPU usage and is above it. In each case, based on the

cumulative distribution function of the prediction error,
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Algorithm 5: LevelProbability

1 End=Start+Delta;

2 if Pred_Util > End then

3 prob=(CumProbability(Pred_Util - Start) -

CumProbability(Pred_Util - End))/2
4 end

5 else if (Pred_Util <=End)AND(Pred_Util>=Start)

then

6 prob1=CumProbability(Pred_Util - Start)/2

7 prob2=CumProbability(End - Pred_Util)/2

8 prob=prob1+prob2

9 end

10 else

11 prob=(CumProbability(End - Pred_Util) -

CumProbability(Start - Pred_Util))/2
12 end

13 return prob

the probability that the future CPU usage value will fall

inside the level interval is calculated. Since the probabil-

ity density function of the absolute value of the prediction

error is used, the probability that the prediction error

is less than a certain value but on the other side of the

predicted CPU usage should be excluded from the cal-

culations. Therefore, the estimated probability should be

divided by two.

The expected utility of each time interval into the future

is given by the sum, over all levels, of the product of

the level utility value (the level CPU usage) with the cor-

responding probability of getting that CPU usage value

(level probability). The expected utility of a future host

overload state is given as the sum of the expected utili-

ties of 4 consecutive time intervals into the future starting

from time interval 4. The host is declared as overloaded

and therefore a VM live migration action should be taken

if the expected utility (which is the expected host SLA vio-

lation penalty) of the future overload state is greater than

the live migration SLA violation penalty.

One point that should be stressed is that the above

decision is based on the short-term optimization of the

utility value but does not consider the long-term util-

ity value accumulation that can result from utility values

of overload states that are less than live migration SLA

violation penalties but over time can accumulate to big-

ger values. To address this issue, the utility values of

overload states that are less than the live migration SLA

violation penalty are accumulated, and at each time inter-

val, a check is made. If the accumulated utility value is

greater than the live migration SLA violation penalty,

than a VM live migration action is performed regardless

whether there is no overload state at that time interval.

The same modification is also added to the probabilistic

detection approaches explained in the “Probabilistic over-

load detection”, “Probabilistic not-overload detection” and

“Probabilistic underload detection” sections.

Decision-theoretic not-overload detection

To detect whether the destination host is not overloaded

after a possible VM live migration, a check is made

whether the expected utility of 4 consecutive future time

intervals starting from interval 4 is greater than zero. If it

is zero, then the host will be not overloaded after a VM

live migration and can serve as a destination of the VM.

Decision-theoretic underload detection

To detect whether a host is underloaded, the same

approach of probabilistic underload detection that is pre-

sented in “Probabilistic underload detection” section is

used. The utility value is not used for underload detection,

since it represents a host SLA violation that can happen

only when the host is in the overload state.

Global agent

The global agent makes global resource allocation deci-

sions by live migrating VMs from overloaded or under-

loaded hosts to other hosts to reduce SLA violations and

energy consumption. It gets notifications from the host

agent if a host will be overloaded or underloaded in the

future and performs the appropriate VM live migration

action if it is worth the cost.

The global agent applies the general resource alloca-

tion algorithm used in previous work [8] for global VM

resource allocation and the Power Aware Best Fit Decreas-

ing (PABFD) [8] algorithm for VM placement, with the

following modifications. For overload or underload detec-

tion, our approaches presented above to apply long-term

prediction with uncertainty consideration are used. For

VM selection, the Minimum Migration Time (MMT) [8]

policy is used, but with the modification that only one VM

is selected for migration in each decision round even if

the host can possibly remain overloaded after migration.

This is done to reduce the number of simultaneous VM

live migrations and the associated overhead. For the con-

solidation process, unlike the previous work [8] that con-

siders all hosts excluding overloaded and turned off hosts,

we consider only underloaded hosts that are detected

by the proposed approaches based on long-term predic-

tion. From the list of underloaded hosts, the ones that

have lower average CPU usage of previous history values

are considered first. As VM live migration destinations,

the hosts detected as not overloaded by the presented

approaches with long-term predictions are chosen.

VM SLA violation

Since it is difficult for the cloud provider to measure a per-

formance violation metric outside VMs that depends on



Minarolli et al. Journal of Cloud Computing: Advances, Systems and Applications  (2017) 6:4 Page 8 of 18

the performance metric of various applications, such as

response time or throughput, we defined a general SLA

violation metric that can be easily measured outside VMs.

It is based only on VM resource usage. More specifically,

it is called VM SLA violation and represents the penalty

of the cloud provider for violating the performance of the

VMs of the cloud consumer. The performance of an appli-

cation running inside a VM is at an acceptable level if the

required VM resource usage is less than the resource share

allocated.

Following the previous argument, a VM SLA violation

is defined to happen if the difference between the allo-

cated CPU share and CPU usage of a VM is less than 5%

of the CPU capacity for 4 consecutive time intervals. For

example, if the CPU share allocated to a VM is 35% of

the CPU capacity and the actual CPU usage is more than

30% for 4 consecutive time intervals, then there is a VM

SLA violation. The idea of this definition is that applica-

tion performance gets worse as the required CPU usage is

near to the allocated CPU share. The penalty of a VM SLA

violation is the CPU share by which the actual CPU usage

exceeds the 5% threshold difference from the allocated

CPU, for all 4 consecutive time intervals. Although the

SLA violation penalty is defined in terms of CPU usage, it

can be easily converted to a monetary value by some con-

version function. Thus, one of the goals of the global agent

is to mitigate VM SLA violations by providing sufficient

free CPU capacity through VM live migration, in order to

have the CPU share allocation above the required usage

by more than 5% for each VM.

Having defined the VM SLA violation metric, the over-

load threshold can be defined as follows. It is calculated

dynamically based on the number of VMs. Let us defineN

as the number of VMs on a host. To avoid a VM SLA vio-

lation, each VM should have more than 5% capacity above

CPU usage, so the total free CPU capacity of the host

should be more than N ∗ 5%. Based on this, the overload

threshold is calculated as the total CPU capacity (100%)

minusN ∗5%. This means that the overload threshold rep-

resents the CPU usage level above which some VMs will

have SLA violations.

Experimental evaluation

In this section, an experimental evaluation of the pro-

posed approach is presented. First, the experimental

setup is described. Then, the experimental results are

discussed.

Experimental setup

To conduct controllable and repeatable experiments in

a large cloud infrastructure, the CloudSim [9] simulator

is used. It is a well known simulator that permits the

simulation of dynamic VM resource allocation and energy

consumption in virtualized environments. We have made

several modifications and extensions to CloudSim in

order to integrate the proposed approach and to pro-

vide support for setting the CPU CAP to VMs for local

resource allocation.

A virtualized data center with 100 heterogeneous hosts

is simulated in our experiments. Two types of hosts

are simulated, each with 2 CPU cores. One host has

CPU cores with 2,100 MIPS and the other one has CPU

cores with 2,000 MIPS, while both have 8 GB of RAM.

One host simulates the power model of the HpPro-

LiantMl110G4 Xeon3040 computer, and the other one

simulates the power model of the HpProLiantMl110G5

Xeon3075.

In the beginning of the simulation, on each host, on the

average, 3 VMs (leading to a total of 300 VMs) are sched-

uled. Four types of VMs are used, and each VM requires

one VCPU. Three VMs require a maximum VCPU capac-

ity of 1000 MIPS, while the other one requires 500 MIPS.

Two VMs require 1740 MB of RAM, one requires 870

MB, and the last one requires 613 MB. To test realistic

workloads, the CPU usage data of real VMs running on

the PlanetLab [10] infrastructure are chosen to simulate

VMworkloads. Each VM runs one application (cloudlet in

CloudSim terminology) and the cloudlet length, given as

the total number of instructions, is set to a large value in

order to prohibit cloudlets to finish before the experiment

ends. The experiment is run for 116 time intervals, and the

duration of a time interval is set to 10 seconds. The over-

load detection approach that does not apply prediction

error probability modelling yields the same results every

time it is run with the same workload, while the proba-

bilistic approaches lead to different results. This prevents

running repeated experiments with the same workload in

order to compare the two approaches in a fair manner. For

this reason, a small random value from a normal distribu-

tion with 0 mean and 0.001 standard deviation is added

to the CPU usage value of the PlanetLab workload for

each time interval. This adds enough perturbation for the

experiment to give different results for different runs, as

required.

For long-term time series prediction, the WEKA [14]

machine learning framework with Gaussian Processes for

regression is used through its Java API. A history of pre-

vious CPU usage data with a length of 20 samples is used

for prediction and forecasting model training. To keep

the simulation time to acceptable levels, the forecasting

model is trained every 5 time intervals with new CPU

usage data. For kernel density estimation, the empirical

probability distribution implementing the Variable Kernel

Method with Gaussian Smoothing of the Apache Com-

mons Math 3.6 API [15] is used. A history of previous

prediction errors with a length of 30 samples is used for

probability density function model training, which is done

in each time interval.
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Experimental results

In this section, experimental results of comparing six dif-

ferent approaches are presented. The first one called NO-

Migrations (NOM) is the approach that just allocates CPU

resources locally to VMs, but does not perform live migra-

tion actions. The second one called Short-Term Detection

(SHT-D) detects an overload state if the actual and the

predicted CPU usage values of the next two time inter-

vals in the future are above the overload threshold. Also,

to detect not-overload and underload states, the actual

and predicted CPU values for the next two time intervals

into the future are used. This approach represents detec-

tion based on short-term CPU usage predictions and is

expected to be quite sensitive to short spikes of overload

conditions. The third approach called Long-Term Detec-

tion (LT-D) bases overload, underload and not-overload

detections on long termCPU usage predictions of the next

7 control intervals into the future. The fourth approach

called Long-Term Probabilistic Detection (LT-PD) bases

overload, underload and not-overload detections on long-

term CPU usage predictions of the next 7 control intervals

into the future, but takes into account prediction uncer-

tainty through prediction error probability distribution

modelling. The next approach called Long-Term Decision

Theory Detection (LT-DTD) bases overload, underload

and not-overload detections on long-termCPU usage pre-

dictions of the next 7 control intervals into the future,

but takes into account prediction uncertainty and live

migration overhead by applying decision theory. The last

approach called Local Regression Detection (LR-D) is one

of the approaches used in related work [8] that uses the

local regression technique to predict the resource usage

in the future. We selected it as a representative state-of-

the-art technique, since it achieves the best performance

as shown by the authors [8] compared to other techniques

that use static or adaptive utilization thresholds.

In our evaluation, the following performance metrics

are used:

• VM SLA violation (VSV) as explained in “VM SLA

violation” section represents the penalty of the cloud

provider for each VM. It is important to stress that a

VM SLA violation can also happen because of wrong

local CPU share allocations as a result of wrong CPU

predictions. In the experiments, only a VM SLA

violation, as a result of shortage of CPU capacity due

to overload states of hosts, is shown.
• Energy consumption (E) of the data center for the

whole experimental time measured in KWh.
• Number of VM live migrations (NM) for the whole

experimental time.
• Since there is a trade-off between energy

consumption and SLA violations, another metric that

integrates both VM SLA violations and energy in a

single value is defined. This is called the Utility metric

and is given by the formula below:

Utility =
CVSV

NOM_CVSV
+

Energy

NOM_Energy
(2)

where CVSV is the cumulative VSV value of all VMs

for the whole experimental time, Energy is the energy

consumption, NOM_CVSV is the cumulative VSV

value of the NOM approach, NOM_Energy is the

energy consumption of the NOM approach. Both

NOM_CVSV and NOM_Energy are used as reference

values for the normalization of the respective metrics.

Normalization is performed to permit the integration

of two metrics with different measuring units in a

single utility function. The best approach is the one

that achieves the minimal Utility value.
• Another metric that also has been used in previous

work [8] and can capture both energy and VM SLA

violations is ESV. This metric is given by:

ESV = E ∗ CVSV (3)

where E is energy consumption and CVSV is the

cumulative VSV value of all VMs for the entire

experimental time.

The simulation experiment is run for two different load

levels called LOW and HIGH and three different VM live

migration SLA violation penalties, mp=2%, mp=4% and

mp=6% (MP2,MP4,MP6). For convenience, in the follow-

ing, the term VM live migration SLA violation penalty is

shortened to live migration penalty. By load level we mean

the CPU usage consumed by each VM. The loads LOW

and HIGH are taken by multiplying the PlanetLab CPU

usage values for each time interval with a constant value

of 8 and 14, respectively. Each of the previously given live

migration penalties represents the migration penalty of

one time interval. The experiment is repeated five times

for each combination of approach, load level and migra-

tion penalty, and the results are exposed to a statistical

ANOVA analysis.

In Fig. 2, the cumulative VM SLA violation penalty

(cumulative VSV) for each approach averaged over all

combinations of load levels and migration penalties is

shown. The cumulative VSV value is the sum of VSV

values of all VMs for the whole experimental time. It

is evident from the graph that the LT-DTD and LT-PD

approaches that consider prediction uncertainty achieve

lower VM SLA violation levels than the other approaches,

with statistical significance, as shown by the ANOVA

analysis. On the other hand, we see that LR-D performs

better than SHT-D, but similar to LT-D with no statis-

tically significant difference. This is expected, since both

techniques apply prediction of resource usage into the

future, but without taking prediction uncertainty into
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Fig. 2 Cumulative VSV over all loads and migration penalties

account. This shows that considering long-term predic-

tion uncertainty in decision-making is useful for lower-

ing VM SLA violations. More importantly, the LT-DTD

approach achieves the lowest level of VM SLA violations

compared to the other approaches, confirming the con-

clusion that applying decision theory to take into account

live migration penalty can result in better performance.

For example, the LT-DTD approach decreases the cumu-

lative VSV value relative to the LT-D approach by 27%

and relative to LT-PD by 12%. Furthermore, by comparing

LT-D with SHT-D, applying long-term predictions even

without considering prediction uncertainty can lower VM

SLA violations.

To see the effect the load level has on VM SLA viola-

tions, in Fig. 3 the cumulative VSV value is shown, aver-

aged over all migration penalties, for each approach and

the two load levels. First, it can be observed that for each

approach, increasing the load increases the VM SLA vio-

lations, which is expected since there is more contention

for resources. Again, we can see that for both load lev-

els, the LT-DTD approach achieves the lowest VSV value

compared to the other approaches. More importantly, the

reduction in VSV value by going from high load to low

load is larger for the LT-DTD approach than for the other

approaches. For example, the reduction in VSV value from

high to low load for the LT-D approach is 40%, while for

LT-DTD it is 59%. Furthermore, it can be observed that for

low load both LR-D and LT-D are worse even compared

to the non-migration case, and only for high loads they

show better results, with statistical significance, as indi-

cated by the ANOVA tests. This shows that when the load

is low, it is not worth, at least with respect to VM SLA vio-

lations, to perform live migration actions without taking

into account prediction uncertainty.

Fig. 3 Cumulative VSV over all migration penalties for two load levels

To understand how different approaches behave regard-

ing the migration penalty, Fig. 4 shows the cumulative

VSV value for each approach, averaged over two load

levels and three migration penalties. In general, for all

approaches, increasing the migration penalty results in

increased VM SLA violation values, which is expected

since the migration penalty is part of the VM SLA viola-

tion value calculation. It is evident that LT-DTD is more

robust and does not really follow this trend, as shown by

statistically not significant differences of the cumulative

VSV values between MP2 and MP4. This is because the

Fig. 4 Cumulative VSV over all loads for three migration penalties



Minarolli et al. Journal of Cloud Computing: Advances, Systems and Applications  (2017) 6:4 Page 11 of 18

LT-DTD approach takes into account migration penalties

when making decisions.

In Fig. 5, we show the total number of VM live migra-

tions for each approach, averaged over all combinations

of load levels and migration penalties. It can be observed

that the LT-DTD approach achieves the smallest num-

ber of live migrations with a reduction of 46 and 29%

compared to LT-D and LT-PD, respectively. First, these

results show that by moving from short-term predic-

tion to long-term prediction increases the stability of the

approach, reducing the number of live migrations. More

importantly, taking into account uncertainty of long-term

predictions and live migration penalties increases stability

and reduces the number of live migrations further. Inter-

estingly, it can be observed that the LR-D approach has the

highest number of VM live migrations compared to the

other approaches. This can be explained by the fact that

the LR-D approach takes live migration actions if only one

predicted usage point in the future is above the thresh-

old, while the other approaches check several points into

the future.

In Fig. 6, we show for each approach how the num-

ber of live migrations is affected by the load level. In

general, apart from LT-DTD and LT-D, increasing the

load level increases the number of live migrations, which

can be explained by the fact that more live migrations

are required to deal with increased load. The LT-DTD

approach shows more stability by not increasing the num-

ber of live migrations with increased load, and since this

still results in better VSV values compared to the other

approaches (as shown in Fig. 3), this is a desirable behav-

ior. The LT-D approach shows a slight increase in the

Fig. 5Number of livemigrations over all loads andmigration penalties

Fig. 6 Number of live migrations over all migration penalties for two

load levels

number of live migrations, but this is not statistically

significant, as shown by an ANOVA analysis.

Figure 7 shows for each approach how the number

of live migrations changes by varying the migration

penalty. Unlike other approaches, both LT-DTD and LT-

PD show decreased numbers of livemigrations by increas-

ing the migration penalty. The LT-DTD approach shows a

decreased number of live migrations when moving from

MP2 to MP4, and this can be explained by the fact that

Fig. 7 Number of live migrations over all loads for three migration

penalties
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it takes the migration penalty into account when making

live migration decisions. This behavior has the benefit of

using the migration penalty as a parameter to control the

aggressiveness of the consolidation process. On the other

hand, the decreased number of live migrations for the

LT-DP approach, at least for MP2 to MP6, which is statis-

tically significant, does not have an apparent explanation

since this approach does not take into account the migra-

tion penalty in decision making. The only explanation is

that this behavior is caused because the LT-PD approach

also takes into account utility value accumulation in deci-

sion making the same way as LT-DTD does, as explained

in “Decision-theoretic overload detection” section . To

test this claim and to check whether also the LT-DTD

approach achieves the above behavior due to this this

modification, an experiment has been conducted to mea-

sure the number of live migrations for three migration

penalties with low load. The experiment is run for LT-PD

and LT-DTD, but without taking into account utility value

accumulation.

The results of the experiment are shown in Fig. 8. It is

evident that for LT-PD, increasing the migration penalty

does not change the number of live migrations, support-

ing the claim that the above behavior is caused only by

taking into account utility value accumulation in decision

making. However, for LT-DTD, increasing the migration

penalty decreases the number of live migrations, show-

ing that this behavior is due to the decision-theoretic

approach adopted by it.

Figure 9 shows the energy consumption of the data

center for the whole experimental time for each approach

Fig. 8 Number of migrations for LT-PD, LT-DTD for three migration

penalties

Fig. 9 Energy over all load levels and migration penalties

averaged over all combinations of load levels and migra-

tion penalties. It is evident that the LT-DTD approach

shows a slight increase in energy consumption compared

to the other approaches. For example, it increases energy

consumption by 5 and 0.30% compared to LT-D and

NOM, respectively. Although the LT-DTD approach saves

less energy, the improvement in the VMSLA violation val-

ues outweighs the decrease in energy savings, as shown

by the results of the Utility metric. The LR-D, LT-D and

SHT-D aproaches achieve more energy savings than the

LT-DTD approach at the expense of higher VM SLA

violations, resulting in worse ESV and Utility values.

In Fig. 10, we show for each approach how the energy

consumption is affected by the load level. It can be

observed, as expected, that increasing the load increases

the energy consumption for all approaches. Decreased

energy consumption with a decrease in the load level

can be explained by the fact that low load creates more

opportunities for consolidation and turning off hosts.

From the above argument it can be expected that by

decreasing the load level further, LT-DTD can save energy

compared to NOM. To test this claim, another experiment

is conducted with load lower than LOW load, which is

called Very LOW (VLOW). VLOW is taken by multiply-

ing the PlanetLab CPU usage values for each time interval

by a constant value of 2. The migration penalty is set to

MP4. The experiment is repeated for 5 times for each of

the LT-DTD and NOM approaches.

The average energy consumption and Utility values are

shown in Table 1. The Utility value is shown to understand

if any possible energy savings are achieved at the expense

of VM performance.
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Fig. 10 Energy over all migration penalties for two load levels

The LT-DTD approach achieves energy savings of 22.8%

compared to NOM, with a better Utility value. This shows

that when the load decreases, the LT-DTD approach gives

more priority to the consolidation process, reducing the

number of hosts and saving energy. On the other hand,

when the load increases, it gives more priority to the load

balancing process by saving less energy but lowering the

VM SLA violations.

In Fig. 11, we show for each approach how the

energy consumption is affected by migration penalty. An

ANOVA statistical analysis indicates, for each approach,

no statistically significant differences of energy value

between different migration penalty cases. This shows

that the migration penalty has no significant effect on

energy consumption.

To understand better the trade-off between energy sav-

ings and performance of VMs, in Fig. 12 we present the

Utility for each approach over all load levels and migra-

tion penalties. The Utility is the metric that indicates

improvements in both energy savings and VM SLA vio-

lations and can serve as the metric of measuring the

overall performance. It can be observed that the LT-

DTD approach achieves the lowest Utility value com-

pared to other approaches with statistical significance,

Table 1 Energy and utility for two approaches with MP4 penalty

and VLOW load

Approach Energy (KWh) Utility value

LT-DTD 70.2 0.79

NOM 91 0.88

Fig. 11 Energy over all loads for three migration penalties

as shown by an ANOVA analysis. It improves the Util-

ity by approximately 9.4% and 4.3% compared to LT-D

and LT-PD approaches, respectively. These results show

that although the LT-DTD approach achieves slightly less

energy savings, it improves the SLA violations, thus find-

ing the best performance-energy trade-off. With respect

to the Utility value, the LR-D approach performs better

than the SHT-D approach, but slightly worse than the LT-

D approach. This is because the LR-D approach achieves

Fig. 12 Utility value over all loads and migration penalties
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less energy savings than the LT-D approach with similar

SLA violations, as shown in Figures 2 and 9.

Figure 13 shows for each approach how the Utility is

affected by the load levels. It can be observed that increas-

ing the load increases the Utility value, since both energy

consumption and SLA VM violations are increased. For

each load level, the LT-DTD approach achieves the lowest

Utility value compared to the other approaches. Similar

to the case of the cumulative VSV value, it is also evident

that for high load, the LR-D and LT-D approaches achieve

comparably equal Utility values and show improvements

compared to the NOM case with statistical significance.

Figure 14 shows for each approach the effect that the

migration penalty has on the Utility. In general, for all

approaches it can be observed that increasing the migra-

tion penalty increases the Utility, since it increases the

VM SLA violation penalty. However, similarly to the VSV

value, the LT-DTD approach seems to be more resistant

in increasing the Utility. This can be observed at least for

the case of moving from MP2 to MP4 where there are

no statistically significant differences resulting from the

ANOVA analysis.

In Figs. 15, 16 and 17, the overall ESV value, the ESV

value for two load levels and the ESV value for three

migration penalties, are shown, respectively. For display

convenience, the ESV value in the graphical illustration is

divided by 10.000. It can be observed that the ESV value

shows the same trend as the Utility value. The LT-DTD

approach achieves the lowest ESV value compared to the

other approaches with statistical significance, as shown by

the ANOVA analysis. Similarly to the Utility value, the LR-

D approach performs comparably equal with LT-D and

Fig. 13 Utility value over all migration penalties for two load levels

Fig. 14 Utility value over all loads for three migration penalties

better than NOM and SHT-D with statistical significance,

especially for high loads. Furthermore, regarding the ESV,

the LT-DTD approach seems to be more resistant with

respect to increasing the ESV value with an increased live

migration penalty.

Related work

There are many works in the literature on dynamic

resource allocation in cloud computing, tackling the

Fig. 15 ESV value over all loads and migration penalties
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Fig. 16 ESV value over all migration penalties for two load levels

problem from different angles. Therefore, we cannot pro-

vide an exhaustive treatment of related work, but focus

mainly on the aspects of VM resource demand prediction

and host overload detection.

Several works apply VM live migration to allocate

resources to VMs for overload mitigation or consolida-

tion of VMs to fewer hosts. For example, Wood et al. [16]

propose an approach called Sandpiper for overload detec-

tion and live migration of VMs from overloaded hosts to

Fig. 17 ESV value over all loads for three migration penalties

not overloaded ones. Their overload detection approach

declares a host as overloaded if the past k resource usage

values and the next predicted one exceed a given thresh-

old. They use a greedy algorithm that live migrates heavy

loaded VMs to least loaded hosts.

Similarly, Khanna et al. [17] propose an approach for

dynamic consolidation of VMs based on live migration.

Their approach for host overload detection is also based

on resource usage exceeding a threshold value. Their goal

is to minimize the number of hosts by maximizing the

variance of resource capacity residuals. This is achieved by

ordering VMs in non-decreasing order of their resource

usage and migrating the least loaded VM to the least

residual resource capacity host.

Beloglazov et al. [18] propose energy-aware heuristic

algorithms for dynamic allocation of VMs to hosts based

on live migration. They decide on the overload or under-

load state of a host based on whether the CPU usage is

higher or lower than the overload or underload thresh-

olds, respectively. The authors apply a modified Best-Fit-

Decreasing (BFD) heuristic to pack VMs to fewer hosts,

which takes into account the power increase of hosts.

All the above approaches base host overload or under-

load detection on current or short-term predictions of

resource usage and static usage thresholds, which can

be sensitive to short spikes of load that can cause sta-

bility problems and unnecessary live migrations. In con-

trast, our approach bases overload or underload detection

on long-term predictions of CPU usage by taking into

account prediction uncertainty, which results in stabil-

ity and efficient live migration actions, as shown by the

experimental results.

Several other works apply more sophisticated

approaches than just static usage thresholds. For exam-

ple, Beloglazov and Buyya [8], as a continuation of their

previous work [18], present different heuristics for host

overload and underload detection based on statistical

analysis of historical resource usage data. They propose

to use adaptive usage thresholds based on statistical

parameters of previous data, such as CPU usage Median

Absolute Deviation (MAD) or interquartile range (IQR).

The authors also apply local regression methods for

predicting CPU usage value some time ahead into the

future. Our approach also applies CPU usage prediction,

but additionally considers prediction uncertainty and live

migration penalties in decision making.

Ferreto et al. [19] present an approach called dynamic

consolidation with migration control in which they formu-

late the consolidation problem as a linear programming

problem with constraints that prohibits migrating VMs

with steady workload. As the authors show, this results

in lowering the number of VM migrations with a small

increase in the number of hosts. Their work is comple-

mentary to our work, since it tries to avoid unnecessary
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migrations, but can not provide stability if the data center

is running only variable load VMs.

Gong and Gu [20] propose a dynamic consolidation

approach called Pattern-driven Application Consolidation

(PAC) based on extracting patterns of resource usage

called signatures using signal processing approaches such

as Fast Fourier Transform (FFT) and dynamic time warp-

ing (DTW). Based on extracted signatures, they perform

dynamic placements of VMs to the hosts that have the

highest match between VM resource usage signature and

host free capacity signature. Their work focuses on peri-

odic global consolidation for VM resource usage patterns

that show periodicity. The authors also consider on-

demand VM migrations for instantaneous overloads, but

in contrast to our approach, they base overload detec-

tion on a single resource usage value exceeding a static

threshold.

Andreolini et al. [21] propose an approach for host over-

load detection in which a host is declared as overloaded

when there is a substantial change in the load trend of

the host, as a result of applying the CUSUM algorithm.

Their goal is similar to the goal of our work for provid-

ing a robust and stable approach avoiding unnecessary live

migrations, but their load change point detection requires

past history usage data to be available, at which point the

SLA violations have already happened. In contrast, our

approach applies long-term prediction to avoid violations

before they happen.

Beloglazov and Buyya [22] propose an approach for

host overload detection based onMarkov chains and opti-

mization of inter-migration time with Quality of Service

(QoS) constraints. The goal of their approach is finding

the solution (migration probabilities of each state) of an

optimization problem to maximize inter-migration time

while keeping the Overload Time Fraction (OTF) met-

ric inside certain values. To take into account dynamic

and non-stationary workloads, the authors apply a multi-

size sliding window approach. Similarly, we also propose

an approach for host overload detection, but in con-

trast, we apply long-term prediction techniques taking

into account the VM live migration penalty. Another

difference is that we tackle a different performance met-

ric, i.e., minimization of SLA violations of each VM,

while Beloglazov and Buyya focus on keeping the per-

centage of time that a host is overload inside certain

constraints.

There are several works that apply VM resource demand

prediction techniques for resource allocation in cloud

computing. For example, Gong et al. [23] and later Shen

et al. [11] propose an approach for VM fine-grained

resource allocation based on resource demand predic-

tion. They base their resource demand prediction on two

methods: a) Fast Fourier Transform to find periodicity

or signature of resource demand and b) a state based

approach using Markov chains. Similarly to our approach

for overload detection, they apply these methods for long-

term prediction of host resource conflicts. If they predict

a conflict, they apply a live migration action to resolve it,

taking into account the migration penalty. As the authors

point out, using a multi-stepMarkovmodel to predict fur-

ther into the future lowers the prediction accuracy. This is

exactly the problem we tackle in this paper by taking into

account uncertainty of long-term prediction to deal with

low prediction accuracy.

Islam et al. [24] propose resource prediction approaches

based on machine learning. More specifically, they pro-

pose and experiment with Linear Regression and an Error

Correction Neural Network. They show experimentally

the superiority of the neural network in making more

accurate predictions, but they do not apply their tech-

niques to host overload detection or in general for VM

resource allocation.

Farahnakian et al. [25] propose a prediction technique

based on linear regression to detect if a host is overloaded

or underloaded. They train a model based on past CPU

utilization history and predict the next CPU utilization.

Based on this prediction, they detect if a host is overloaded

or underloaded and apply VM live migration to move

VMs to other hosts. The problem with their approach is

that they base their overload or underload detection tech-

nique on short-term CPU utilization prediction which is

susceptible to oscillatory load. In contrast, we apply long-

term prediction augmented with uncertainty estimation

to provide a more stable approach.

Khatua et al. [26] propose an approach for VM load

prediction several time steps into the future by applying

an Auto-regressive Integrated Moving Average (ARIMA)

model. They apply their approach for horizontal scal-

ing in cloud settings. If an overload situation is detected,

based on some threshold value, then the number of VMs

is increased. Also, their approach does not consider the

uncertainty and prediction errors in their model of long-

term prediction, which is important for increasing the

quality of allocation decisions.

Ashraf et al. [27] propose a load prediction approach for

VM resource allocation and admission control of multi-

tier web applications in cloud computing. Their predic-

tion method is based on a two step procedure. In the first

step, a so called load tracker, based on Exponential Mov-

ing Average (EMA), constructs a representative view of

the load by filtering the noise. In the second step, a load

predictor based on linear regression takes as input the

representative view of the load produced by load tracker

and provides as output the predicted load value in some

interval k in the future. They apply a hybrid reactive-

proactive approach to calculate a weighted utilization.

Through a linear interpolation, the authors mix the mea-

sured and the predicted value, by including a weight factor
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w that depends on the prediction error. In contrast to

their work, our approach to prediction is different. We

apply a long-term prediction method directly to the past

resource utilizations and consider long-term prediction

uncertainty through prediction error probability distribu-

tion. Furthermore, their approach is applied for horizontal

VM scaling and admission control of multi-tier web appli-

cations, while we tackle the problem of host overload

detection and mitigation through VM live migration.

Qiu et al. [28] propose an approach for VM load pre-

diction based on a deep learning prediction model. More

specifically, this model is composed of two layers, the

Deep Belief Network (DBN) and a regression layer. The

DBN is used to extract the high-level workload features

from the past VM resource utilizations, while the regres-

sion layer is used to predict the future load values. The

authors evaluate experimentally only the prediction accu-

racy of the approach, but do not apply it on any VM

resource allocation problem. In contrast, we propose and

evaluate a complete approach for VM resource allocation

problem through long-term resource prediction and VM

live migration.

Conclusion

In this paper, a novel approach for VM resource alloca-

tion in a cloud computing environment has been pre-

sented. It allocates resources locally by changing the CPU

share given to VMs according to the current load. Global

resource allocation is performed by migrating VMs from

overloaded or underloaded hosts to other hosts to reduce

VM SLA violations and energy consumption. For over-

load or underload host detection, long-term predictions

of resource usage are made, based on Gaussian processes

as a machine learning approach for time series forecast-

ing. To take into account the prediction uncertainty, a

probability distribution model of the prediction error is

constructed using the kernel density estimation method.

To consider the VM live migration overhead, a decision-

theoretic approach is applied.

We can draw the following conclusions. First, making

long-term predictions of resource demand can increase

stability and overall performance of a cloud. Second,

making overload detection decisions proportional to

uncertainty of predictions is the right thing to do, as

supported by our experimental results. Third, taking

into account both prediction uncertainty and live migra-

tion overhead by applying decision-theoretic optimization

methods yields the best decisions and improves the per-

formance further.

There are several areas for future work. First, we want

to point out that our approach is based on a long-term

prediction model that relies on historical load patterns.

This means that our prediction model cannot easily pre-

dict sudden and sharp increases of the load (i.e., load

bursts). This issue is out of scope of this paper, but it can

be addressed by focusing on load burst detection tech-

niques ([29–31]). Thus, an interesting area of future work

is combining load burst detection techniques with load

prediction techniques to deal with a large variety of cloud

load patterns. Second, in addition to the currently used

scheme of predicting the next CPU usage value for local

resource allocation, more sophisticated schemes based on

control theory [32, 33], Kalman filters [34] or fuzzy logic

[35, 36] can be explored. Third, a distributed resource

allocation approach should be investigated, where each

host agent makes live migration decisions in coopera-

tion with nearby host agents. A distributed approach

is suitable for large scale cloud infrastructures where

centralized optimization complexity and single point of

failure are important factors to consider. In distributed

approaches, the problem is how local agents with a lim-

ited view should coordinate each other to achieve a

global optimization objective. Finally, investigating long-

term prediction of the usage of multiple resources (e.g.,

CPU, memory and I/O bandwidth) and their interdepen-

dencies in allocation decisions is an interesting area of

future work.
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