
Tactical Cloudlets: Moving Cloud Computing to the
Edge

Grace Lewis, Sebastián Echeverría, Soumya Simanta, Ben Bradshaw, James Root
Carnegie Mellon Software Engineering Institute

Pittsburgh, PA USA
{glewis, secheverria, ssimanta, bwbradshaw, jdroot}@sei.cmu.edu

Abstract—Soldiers and front-line personnel operating in
tactical environments increasingly make use of handheld devices
to help with tasks such as face recognition, language translation,
decision-making, and mission planning. These resource-
constrained edge environments are characterized by dynamic
context, limited computing resources, high levels of stress, and
intermittent network connectivity. Cyber-foraging is the leverage
of external resource-rich surrogates to augment the capabilities
of resource-limited devices. In cloudlet-based cyber-foraging,
resource-intensive computation and data is offloaded to cloudlets.
Forward-deployed, discoverable, virtual-machine-based tactical
cloudlets can be hosted on vehicles or other platforms to provide
infrastructure to offload computation, provide forward data
staging for a mission, perform data filtering to remove
unnecessary data from streams intended for dismounted users,
and serve as collection points for data heading for enterprise
repositories. This paper describes tactical cloudlets and presents
experimentation results for five different cloudlet provisioning
mechanisms. The goal is to demonstrate that cyber-foraging in
tactical environments is possible by moving cloud computing
concepts and technologies closer to the edge so that tactical
cloudlets, even if disconnected from the enterprise, can provide
capabilities that can lead to enhanced situational awareness and
decision making at the edge.

Keywords—mobile cloud computing; cloudlets; cloud
computing; tactical cloudlets; mobile computing; edge computing

I. INTRODUCTION

Mobile applications are increasingly used by military
personnel and others operating in crisis and hostile
environments in support of their missions. These environments
are not only at the edge of the network infrastructure, but are
also resource-constrained due to dynamic context, limited
computing resources, intermittent network connectivity, and
high levels of stress. Applications that are useful to military
personnel include speech and image recognition, natural
language processing, and situational awareness. These are all
computation-intensive tasks that take a heavy toll on the
device’s battery power and computing resources.

Cyber-foraging is the leverage of external resource-rich
surrogates to augment the capabilities of resource-limited
mobile devices [1]. Most existing cyber-foraging solutions rely
on conventional Internet for connectivity to the cloud or
strategies that tightly couple mobile clients with servers at
deployment time. These solutions are not appropriate for
resource-constrained environments because of their

dependence on multi-hop networks to the cloud and static
deployments.

Cloudlet-based cyber-foraging relies on discoverable,
generic, forward-deployed servers located in single-hop
proximity of mobile devices. The goal of this paper is to
propose tactical cloudlets as a strategy for providing
infrastructure to support computation offload and data staging
at the tactical edge. Section II presents a short summary of
related work in this area. Section III describes cloudlet-based
cyber-foraging. Section IV describes cloudlet discovery.
Section V presents five mechanisms for cloudlet provisioning.
Section VI describes the generic process for application
execution. Section VII presents experimental data that shows
the pros and cons of each cloudlet provisioning mechanism.
Finally, Section VIII summarizes the potential for tactical
cloudlets to support operations in resource-constrained edge
environments, next steps and future work.

II. RELATED WORK

Multiple cyber-foraging systems have been developed that
differ in terms of the strategy that they use to leverage remote
resources — where to offload, when to offload, and what to
offload. Where to offload varies between remote clouds and
local servers located in proximity of mobile devices. When to
offload varies between a runtime decision or an “always
offload” strategy. To support runtime offload decisions, one
strategy is to manually or automatically partition code into
portions that either run on the mobile device or on a remote
machine. At runtime an optimization engine — typically
targeted at optimizing energy efficiency, performance, or
network usage — decides whether the code should execute
locally or be offloaded to a remote machine (surrogate). An
example of such cyber-foraging system is MAUI [2].
CloneCloud [3] follows the same code partitioning principle
but automatically partitions code at the thread level without the
need for manual code annotation. Other cyber-foraging
solutions assume that the computation-intensive code exists in
a remote machine and the cyber-foraging task therefore
becomes one of service discovery and composition. HPC-as-a-
service [4] is an example of this “always offload” strategy.
What to offload is what has the most variation, ranging from
threads [3] to methods [2] to services [4] to full programs [1],
with many other options in between. Our work is based on
cloudlets, as described in [1]. Despite all the work in cyber-
foraging, our research has showed that (1) there is emphasis on

the algorithms to support code offload and state
synchronization with minimal focus on software architecture
and quality attributes beyond energy efficiency and
performance, (2) there is little guidance on how to support
quality attributes such as survivability, resilience, trust and ease
of deployment, critical in tactical environments.

III. CLOUDLET-BASED CYBER-FORAGING

Cloudlets are discoverable, generic, stateless servers
located in single-hop proximity of mobile devices, that can
operate in disconnected mode and are virtual-machine (VM)
based to promote flexibility, mobility, scalability, and elasticity
[1]. In our implementation of cloudlets, applications are
statically partitioned into a very thin client that runs on the
mobile device and a computation-intensive Server that runs
inside a Service VM. A reference architecture for cyber-
foraging is presented in Fig. 1. The main elements of the
architecture are the Mobile Client and the Cloudlet Host. A
Discovery Service running inside the cloudlet host publishes
Cloudlet Metadata that is used by the Cloudlet Client to
determine the appropriate cloudlet for offload and to connect to
the cloudlet (Section IV). Cloudlet metadata can range from a
simple IP address and port to connect to the cloudlet server to
more complex data structures describing cloudlet capabilities.
Every application is composed of a Cloudlet-Ready Client App
that corresponds to the client portion and the Client App
Metadata that contains information that is used by the Cloudlet
Client and the Cloudlet Server to negotiate and carry out the
offload process. Once a cloudlet is identified for offload, the
Cloudlet Client sends the Client App Metadata and
Provisioning Data to the Cloudlet Server. The provisioning
data varies depending on the cloudlet provisioning process
(Section V), and can range from parameters to start a Service
VM that already resides on the Cloudlet Host, to provisioning
instructions, to actual server code. The Cloudlet Server then
configures and starts the corresponding Service VM inside the
VM Manager according to the defined cloudlet provisioning
process and data. Once the Service VM is started, the client app
is notified that it is ready for execution (Section VI).

IV. CLOUDLET DISCOVERY

The scenarios in which tactical cloudlets are deployed are
very dynamic because both the mobile devices and the
cloudlets can be mobile. Therefore a key feature of a cyber-
foraging solution is for mobile devices to be able to locate
cloudlets around them. Our implementation of cloudlet
discovery is based on Zeroconf (Zero Configuration
Networking) [5]. It uses DNS Service Discovery (DNS-SD)
along with Multicast DNS so that a client can request a service
without knowing the IP addresses of the servers that provide
the service, as shown in Fig. 2. When a cloudlet starts, its
Discovery Service joins a particular Multicast IP Address as a
listener. When the Cloudlet Client wants to discover cloudlets,
it sends a DNS-SD query about cloudlet services (defined as a
“_cloudlet._tcp” service in our implementation) through
Multicast DNS to the multicast IP address. The query reaches
the Discovery Service of any cloudlets in the network through
Multicast DNS, which reply with a DNS-SD response
indicating the IP address and port of the Cloudlet Server.

Fig. 1. Reference Architecture for Cloudlet-Based Cyber-Foraging

Fig. 2. Cloudlet Discovery Details

V. CLOUDLET PROVISIONING

In addition to cloudlet discovery, a key aspect of cloudlet-
based cyber-foraging is cloudlet provisioning—configuring
and deploying the Service VM that contains the server code on
the cloudlet so that it is ready to use by the client running on
the mobile device.

A. Optimized VM Synthesis

In VM synthesis the cloudlet is provisioned from the
mobile device at runtime. Our original implementation of VM
synthesis is fully described in [6].

In our Optimized VM Synthesis implementation the goal
was to reduce application-ready time – time between the
cloudlet provisioning request and the notification that the
server is ready for execution. An application overlay that
corresponds to the server portion of a client-server application
is created once offline by starting a VM instance from a base
VM disk image file (that uses QEMU copy on write 2 (qcow2)
[7] as the VM disk image file format) and a base memory

image, installing the server on the base VM image, and
suspending the VM. When suspended, there are two files that
are created as part of the application overlay: one corresponds
to the disk image differences between the suspended VM and
the base VM (the qcow2 file) and another that corresponds to
the binary difference between the suspended memory image
and the base memory image (calculated using VCDIFF [8]).
These calculated overlays (disk and memory) are compressed
using LZMA2 with the XZ stream compression format [9] and
loaded on the mobile device.

At runtime, as shown in Fig. 3, the Cloudlet Client checks
if the cloudlet has the Base VM from which the overlay was
created. If it does, then the compressed application overlay is
sent in chunks to the Cloudlet Server. Each chunk is placed in a
queue, decompressed, and appended to a file. This
optimization, called pipelining, enables overlay decompression
to be done incrementally as opposed to having to wait until the
complete overlay is received. In the Synthesize VM step,
because of another optimization to use qcow2 as the VM file
image format, the disk overlay that is received already
corresponds to the changes with respect to the Base VM, which
means that there is no need for extra processing after
decompression. For the memory image, the received memory
overlay is applied to the base memory overlay in order to
create the complete memory image (the opposite of what was
done in the memory overlay creation process). The Base VM
disk image file, the qcow2 file, and the complete memory
image file are saved as the Service VM, which now corresponds
to the suspended VM from which the application overlay was
created. A copy of the Service VM is created and started. All
the cloudlet provisioning mechanisms create a copy of the
Service VM (called the Transient Service VM) so that all
Service VM instances are started from same baseline. Finally,
the IP address and port to connect to the Service VM are sent
back to the Cloudlet Client.

B. Application Virtualization

In Application Virtualization the cloudlet is also
provisioned from the mobile device at runtime. Application
Virtualization uses an approach similar to operating system
(OS) virtualization, by “tricking" the software into interacting
with a virtual rather than the actual environment. A runtime
component intercepts all system calls from an application and
redirects these to resources inside the virtualized application.
Virtualized applications are created in advance for server
portions of applications using tools that package the
application with all its dependencies. We used CDE (short for
Code, Data and Environment) as the application virtualizer for
Linux [10] and Cameyo for Windows [11]. CDE virtualizes
applications by monitoring their execution and Cameyo by
monitoring their installation process. Both tools produce
virtualized applications that are loaded on the mobile device
and at runtime are sent to the cloudlet to be deployed in a VM
that matches the OS of the virtualized application. The full
implementation is described, analyzed, and compared to VM
synthesis in [12].

Cloudlet Client Cloudlet Server

Send Base VM ID

Locate Base VM

Send Compressed Application Overlay in Chunks

Server IP and Port
Start Service VM

Response (FOUND or NOT_FOUND)

If
(FOUND)

Decompress
Each Chunk as
it Arrives

Synthesize VM
(Apply Overlay to
Base VM) and
save as Service
VM

Create Transient
Service VM (Copy
of Service VM)

Fig. 3. Cloudlet Provisioning Using VM Synthesis

At runtime, as shown in Fig. 4, the Cloudlet Client checks
if the cloudlet has a Guest VM that matches the OS required by
the application. If it does, it sends the virtualized application to
the Cloudlet Server, which then deploys the application into a
copy of the matching guest VM. The application is started and
the IP and port to connect to it are sent back to the Cloudlet
Client.

Fig. 4. Cloudlet Provisioning Using Application Virtualization

C. Cached VM

In Cached VM the cloudlet is pre-provisioned with Service
VMs that correspond to mission-specific capabilities that

match the client apps on the mobile device. Each Service VM
has a unique service identifier.

At runtime, as shown in Fig. 5, the Cloudlet Client checks
if the cloudlet has a Service VM that matches the client app. If
it does, the Cloudlet Server creates a copy of the matching
Service VM and starts it. When ready, the IP address and port
to connect to the Service VM are sent back to the Cloudlet
Client.

Fig. 5. Cloudlet Provisioning Using Cached VM

D. Cloudlet Push

In Cloudlet Push, the cloudlet is not only pre-provisioned
with Service VMs for mission-specific capabilities, but also the
corresponding mobile client apps.

At runtime, as shown in Fig. 6, the Cloudlet Client obtains
a list of available applications on the cloudlet, similar to
accessing an app store. It then checks if the selected application
exists for the mobile device’s OS. If so, the cloudlet client
receives the app and installs it on the mobile device while the
Cloudlet Server starts the corresponding Service VM. When
ready, the IP address and port to connect to the Service VM are
sent back to the Cloudlet Client.

E. On-Demand VM Provisioning

In On-Demand VM Provisioning a commercial cloud
provisioning tool is used to “assemble” a Service VM. In this
case the cloudlet has access to all the elements to put together a
Service VM based on a provisioning script. Our
implementation uses Puppet [13] and the provisioning script is
a “manifest” that is written in Puppet’s declarative language.

At runtime, as shown in Fig. 7, the Cloudlet Client sends a
provisioning script to the Cloudlet Server, which verifies that it
can execute the provisioning script. The Cloudlet Server
creates a transient Service VM as a copy of a Baseline Service
VM which corresponds to a VM defined by an organization as
the basic configuration from which all VMs are created. The
Cloudlet Server then runs the provisioning script that will find
and install inside the Service VM all the components that make
up the server capabilities required by the client app. After
executing the script, the Cloudlet Server starts the newly

assembled Service VM and sends its IP address and port to the
Cloudlet Client.

Fig. 6. Cloudlet Provisioning Using Cloudlet Push

Fig. 7. Cloudlet Provisioning Using On-Demand Provisioning

VI. APPLICATION EXECUTION

As shown in Fig. 8, after the Cloudlet Client receives the IP
address and port for the Service VM it passes this information
on to the Cloudlet-Ready App. The Cloudlet-Ready App then
opens a socket to the IP address and port and starts the
interaction with the Service VM. The interaction depicted in
Fig. 8 is simple request-response. Even though other types of
interaction could be supported by cloudlets, this is the most
energy-efficient type of interaction because it limits
communication between the mobile device and the cloudlet. In
general, offloading is beneficial when large amounts of
computation are needed with relatively small amounts of
communication [14]. Even though not shown in Fig. 8, an
optional step after the Cloudlet-Ready App is closed is to stop
the Service VM on the cloudlet to promote elasticity. This
would release resources on the cloudlet that could be used by
other mobile devices.

Fig. 8. Application Execution Details

VII. QUANTITATIVE AND QUALITATIVE COMPARISON OF

CLOUDLET PROVISIONING MECHANISMS

To perform a quantitative and qualitative comparison of the
five different cloudlet provisioning mechanisms, we conducted
a set of experiments using three computation-intensive
applications: face recognition (FACE), speech recognition
(SPEECH), and object recognition (OBJECT). We used a
Galaxy Nexus with Android 4.3 as a mobile device and a Core
i7-3960x based server with 32 GB of RAM running Ubuntu
12.04 as the cloudlet. We created a self-contained wireless
network (using Wi-Fi 802.11n at 2.4 GHz, 65 Mbps) to be able
to isolate network traffic effects. Energy was measured using a
Power Monitor from Monsoon Solutions [15]. The results of
these experiments are shown in TABLE I. The first column
under each mechanism is the size of the payload in MB that is
sent from the mobile device to the cloudlet for provisioning.
The second column is application-ready time, measured as the
time in seconds from the start of the provisioning process until
the cloudlet responds that it is ready. The third column in the
energy consumed on the mobile device during application-
ready time.

TABLE I. shows that the largest amount of energy is
consumed by VM Synthesis and On-Demand VM Provisioning.
In VM Synthesis this is due to the large payload. Our
experiments confirm that payload size is directly proportional
to energy consumption, as has been stated by many others. In
On-Demand VM Provisioning, even though the payload is very
small, the high energy consumption is due to the longer
application-ready time. The power monitor measures total
energy consumption and does not distinguish between energy
consumed during communication and during idle time.
Application-ready time is also variable, as can also be seen in
TABLE I. For example, for Windows applications the
application-ready times are much longer because the
component installation processes are more complicated.

For Application Virtualization, although payload size is
between 8% and 46% of the payload for VM synthesis, it is
still large for transmission in resource-constrained
environments. In addition, the size of the payload is very
variable because it depends on the OS and the number of
external dependencies of the application that is being
virtualized.

 Cached VM and Cloudlet Push consume less energy
because payload size is smaller, which in turn leads to shorter
and more consistent application-ready times across
applications. In Cached VM the payload size is very small
(Service ID) and application-ready time is the time that it takes
to start the corresponding Service VM. In Cloudlet Push the
payload is small (client app from cloudlet to mobile device)
and the application-ready time is the time that it takes to install
the app on the mobile device.

TABLE II. shows a qualitative comparison of the cloudlet
provisioning mechanisms. For VM Synthesis the advantage is
that the cloudlet can run any server code that can be installed in
a VM. In addition, because cloudlet is provisioned by the
mobile device the cloudlet does not have to be pre-provisioned
with any mission-specific capabilities. However, as noted
earlier, the large payload size is a disadvantage for tactical
environments. In addition, because the VM synthesis process
requires the exact same base VM from which the overlay was
created, any changes to the base VM, due to for example
security patches, would require changes to every application
overlay that was created with that base VM.

For Application Virtualization the advantage is also that the
cloudlet can be provisioned from the mobile device, with an
advantage over VM synthesis with respect to payload size. In
addition, the dependency is on the operating system running
inside the VM which enables portability across OS distribution
boundaries. However, all server code dependencies have to be
captured at packaging time which is a challenge for any
application virtualization tool [12].

For Cached VM, in addition to the small payload size, the
advantage is that it supports server code updates as long as
service interface remains the same. However, the assumption is
that the cloudlet is provisioned with Service VMs required by
client apps or has access to them either at deployment time or
at runtime (i.e., an enterprise-level Service VM repository).

For Cloudlet Push, in addition to the small payload size, the
advantage is that it supports most client mobile devices with
distribution at runtime. However, similar to Cached VM, the
assumption is that the cloudlet is provisioned with Service
VMs in addition to Client Apps. In addition, the cloudlet would
need to have a client app version that matches mobile client OS
version.

Finally, for On-Demand VM Provisioning, in addition to
small payload size, the advantage is that the Service VM can
be assembled at runtime which provides the greatest flexibility.
However, as noted earlier, in addition to longer application-
ready time the constraint is that the cloudlet has all required
server code components, or access to the components from
enterprise repositories or code distribution sites.

VIII. CONCLUSIONS, NEXT STEPS AND FUTURE WORK

Forward-deployed, discoverable, virtual-machine-based
tactical cloudlets can be hosted on vehicles or other platforms
to provide infrastructure to offload computation, provide
forward data-staging for a mission, perform data filtering to
remove unnecessary data from streams intended for
dismounted users, and serve as collection points for data

heading for enterprise repositories. The forward-deployed,
single-hop proximity to mobile devices promotes energy
efficiency as well as lower latency (faster response times). If
tactical cloudlets are pre-provisioned, there are many
applications that can function disconnected from the enterprise
or can synchronize with the enterprise if and when there is
connectivity. The fact that cloudlets are discoverable enables
mobile devices to locate mission-specific capabilities as
personnel and cloudlets move and missions change. Finally,
virtual machine technology not only simplifies the distribution
and rapid deployment of capabilities, but also enables the
leverage of any legacy application that can be packaged inside
a VM.

The results of the experiments led us to combine Cached
VM with Cloudlet Push as the cloudlet provisioning
mechanism for our current working prototype to enable lower
energy consumption on the mobile device, place less
requirements on mobile devices, and simplify provisioning in
tactical environments. An additional advantage of combining
both mechanisms is that if the mobile device already has the
client app it can simply invoke the matching Service VM; if
not it can obtain the client app from the cloudlet, similar to
accessing an app store, and then invoke the matching Service
VM. The tradeoff is that it relies on cloudlets that are pre-
provisioned with server capabilities that might be needed for a
particular mission, or that the cloudlet is connected to the
enterprise, even if just at deployment time, to obtain the
capabilities. We argue that this requirement is not unreasonable
in tactical edge environments and that it makes cloudlet
deployment in the field easier and faster while leveraging the
state of art and best practices from the cloud computing
industry. A pre-provisioned-VM-based solution also promotes
resilience and survivability by supporting rapid live VM
migration in case of cloudlet mobility, discovery of more
powerful or less-loaded cloudlets, or unavailability due to
disconnection or disruption. It supports scalability and
elasticity by starting and stopping VMs as needed based on
number of active users (which is typically bounded in edge
environments because group size is known). In addition, the
request-response nature of many of the operations needed in
the field also lends itself to an asynchronous form of
interaction in which the cloudlet can continue processing and
send results back to a mobile device (directly or by re-routing)
as network conditions change. Although not part of the
presented prototype implementation, an added feature would
be to have “dual-mode” cloudlet-ready apps that exploit
cloudlets when and if available but rely on a local
implementation as a fallback mechanism. The local
implementation could be identical or could be a version that is
adapted for resource-constrained devices that may not provide
the same precision or quality of results but would provide some
result even if a cloudlet is not available.

We are currently working on a standard packaging of
Service VMs so that they can be easily installed from the
cloudlet manager (web-based interface to the Cloudlet Server
and Service VM repository), an enterprise Service VM
repository, a thumb drive, or the mobile device connected via
USB to the cloudlet. We are also adding the following

capabilities to adapt to cloudlets to the characteristics of
tactical environments:

 Optimal cloudlet selection: We are extending the
cloudlet discovery protocol to use metadata from the
client app, Service VM, and the cloudlet so that in the
case that there is more than one cloudlet in range, the
mobile device can automatically select the cloudlet that
maximizes a pluggable utility function. This function
can be based on cloudlet load, signal strength, or any
other parameter.

 Manual and automated cloudlet handoff: We are adding
VM migration capabilities to enable manual and
automated handoff of data and computation between
cloudlets that are within range of each other. Manual
handoff would enable scenarios in which a user is
migrating capabilities from a fixed cloudlet to a mobile
cloudlet to support field operations, as well as
reintegration back to the fixed cloudlet. Automated
migration would enable load balancing, similar to what
is done in cloud data centers for resource optimization.

 Data synchronization between cloudlets and the
enterprise: Even though cloudlets can operate fully-
disconnected from the enterprise if they are pre-
provisioned at deployment time, there are situations
when cloudlet capabilities (Service VMs) need access
to a master data source located in the enterprise. We
plan to add support for integration with distributed,
networked filesystems such as Coda [16] to support
disconnected operations with opportunistic
synchronization when connectivity becomes available.

Our future work is related to security, in particular
establishing the initial trust between mobile devices and
cloudlets; that is (1) as a mobile device, is what I discovered
really a "friendly" cloudlet? and (2) as a cloudlet, did that
offloading request really come from a "friendly" mobile
device? The solution presented in this paper relies on the
underlying network to provide the secure communication
between the mobile device and the cloudlet. While this may be
enough in some scenarios, it is not enough for many military
scenarios. A common solution for establishing trust between
two nodes is to use a third-party online trusted authority that
validates the credentials of the requester or a certificate
repository. However, the characteristics of tactical edge
environments do not consistently provide access to that third-
party authority or certificate repository because tactical
cloudlets operate in what is known as DIL environments
(disconnected, interrupted, low bandwidth). The goal is to
explore solutions for establishing trusted identities in
disconnected environments with the advantage/constraint that
tactical cloudlets are not meant to be long-lived, meaning that
they are pre-provisioned and eventually deployed to support a
mission. This constraint may enable us to explore more
dynamic identity solutions.

ACKNOWLEDGMENT

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-C-

0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and
development center. This material has been approved for
public release and unlimited distribution (DM-0001206).

REFERENCES
[1] Satyanarayanan, M., Bahl, P., Cáceres, R., Davies, N. 2009. The Case

for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive
Computing vol.8, no.4, 14–23.

[2] Cuervo, E., Balasubramanian, A., Cho, D.-K., Wolman, A., Saroiu, S.,
Chandra, R., Bahl, P. 2010. MAUI: Making Smartphones Last Longer
with Code Offload. In: Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services (MobiSys '10), pp. 49–
62. ACM, New York.

[3] Chun, B., Ihm, S., Maniatis, P., Naik, M., Patti, A. 2011. CloneCloud:
Elastic Execution between Mobile Device and Cloud. Proceedings of the
6th Conference on Computer Systems (EuroSys '11), pp. 301–314.
ACM, New York.

[4] Duga, N. 2011. Optimality Analysis and Middleware Design for
Heterogeneous Cloud HPC in Mobile Devices. Doctoral Thesis. Addis
Ababa University.

[5] Zeroconf. Zero Configuration Networking (Zeroconf).
http://www.zeroconf.org/ (2014)

[6] Simanta, S, Lewis, G., Morris, E., Ha, K., and Satyanarayanan, M. 2012.
A Reference Architecture for Mobile Code Offload in Hostile
Environments Proceedings of the Joint Working IEEE/IFIP Conference

Software Architecture (WICSA) and European Conference on Software
Architecture (ECSA), pp.282 - 286.

[7] Gnome. The QCOW2 Image Format
https://people.gnome.org/~markmc/qcow-image-format.html (2014)

[8] IETF. 2002. RFC 3284: The VCDIFF Generic Differencing and
Compression Data Format. http://tools.ietf.org/html/rfc3284.

[9] Python Software Foundation. lzma – Compression Using the LZMA
Algorithm. https://docs.python.org/dev/library/lzma.html (2014)

[10] Guo, P.J., Engler, D. 2011. CDE: Using System Call Interposition to
Automatically Create Portable Software Packages. In: Proceedings of
the 2011 USENIX Annual Technical Conference, p. 21. USENIX
Association, Berkeley.

[11] Cameyo User Guide, Version 2.0. 2012.
http://cameyo.com/doc/CameyoManual.pdf

[12] Messinger, D., Lewis, G. 2013. Application Virtualization as a Strategy
for Cyber Foraging in Resource-Constrained Environments (Technical
Report CMU/SEI-2013-TN-007). Pittsburgh: Software Engineering
Institute, Carnegie Mellon University.

[13] Puppet Labs. Puppet Entrprise. http://puppetlabs.com/puppet/puppet-
enterprise (2014)

[14] Kumar, K.., Lu Y.H. 2010. “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43(4), pp. 51-56.

[15] Monsoon Solutions Inc. Power Monitor.
http://www.msoon.com/LabEquipment/PowerMonitor/ (2014)

[16] Carnegie Mellon University. Coda File System.
http://www.coda.cs.cmu.edu/ (2014)

TABLE I. EXPERIMENT DATA FOR CLOUDLET PROVISIONING MECHANISMS

Applications

Optimized VM
Synthesisa

Application
Virtualization

Cached VM Cloudlet Push
On-Demand VM

Provisioning

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1)b (2) (3) (1)b (2) (3)

FACE (Windows) 55 53.4 57.8 14 14.3 10.5 0.00 8.2 10.3 0 7.9 13.8 0 112.7 129.1

OBJECT (Linux) 332 175.7 333.3 29 21.9 24.5 0.00 11.6 13.5 0 11.7 16.9 0 211.0 244.0

SPEECH (Windows) 194 85.9 175.5 66 62.5 66.6 0.00 12.2 14.7 0 12.8 18.2 0 237.6 269.2

SPEECH (Linux) 147 99.0 172.5 68 38.3 54.2 0.00 12.2 14.9 0 12.8 18.2 0 94.1 109.3

a. Columns under each mechanism are (1) Payload Size (MB), (2) Application-Ready Time (s), and (3) Client Energy (J)
b.

 Size of payload is less than 1KB

TABLE II. QUALITATIVE COMPARISON OF CLOUDLET PROVISIONING MECHANISMS

Optimized VM

Synthesis
Application

Virtualization
Cached VM Cloudlet Push

On-Demand VM
Provisioning

Cloudlet
Contentc

Exact base VM
VM compatible with
server code

Service (VM) repository
Repository of paired
VMs (server code) and
client apps

 VM provisioning
software

 Server code
components

Mobile
Device

Content

 Application overlay
 Client app and

metadata

 Virtualized server
code

 Client app and
metadata

Client app and metadata None

 VM provisioning
script

 Client app and
metadata

Payload Application overlay
Virtualized server
code

Service ID Client app and metadata
VM provisioning
Script

Advantages
Cloudlet can run any
server code that can be
installed on a Base VM

Portability across OS
distribution
boundaries

Supports server code
updates as long as service
interface remains the same

Supports most client
mobile devices with
distribution at runtime

Service VM with
server code can be
assembled at runtime

Constraints

Requires exact base
VM which limits
distributions and
patches

All server code
dependencies have to
be captured at
packaging time

Cloudlet is provisioned with
service VMs required by
client apps (or has access to
them)

Cloudlet has a client
app version that
matches mobile client
OS version

Cloudlet has all
required server code
components (or access
to them)

c. In addition to Cloudlet Server and Metadata

