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Abstract—Soldiers and front-line personnel operating in 
tactical environments increasingly make use of handheld devices 
to help with tasks such as face recognition, language translation, 
decision-making, and mission planning. These resource-
constrained edge environments are characterized by dynamic 
context, limited computing resources, high levels of stress, and 
intermittent network connectivity. Cyber-foraging is the leverage 
of external resource-rich surrogates to augment the capabilities 
of resource-limited devices. In cloudlet-based cyber-foraging, 
resource-intensive computation and data is offloaded to cloudlets. 
Forward-deployed, discoverable, virtual-machine-based tactical 
cloudlets can be hosted on vehicles or other platforms to provide 
infrastructure to offload computation, provide forward data 
staging for a mission, perform data filtering to remove 
unnecessary data from streams intended for dismounted users, 
and serve as collection points for data heading for enterprise 
repositories. This paper describes tactical cloudlets and presents 
experimentation results for five different cloudlet provisioning 
mechanisms. The goal is to demonstrate that cyber-foraging in 
tactical environments is possible by moving cloud computing 
concepts and technologies closer to the edge so that tactical 
cloudlets, even if disconnected from the enterprise, can provide 
capabilities that can lead to enhanced situational awareness and 
decision making at the edge. 

Keywords—mobile cloud computing; cloudlets; cloud 
computing; tactical cloudlets; mobile computing; edge computing 

I. INTRODUCTION 

Mobile applications are increasingly used by military 
personnel and others operating in crisis and hostile 
environments in support of their missions. These environments 
are not only at the edge of the network infrastructure, but are 
also resource-constrained due to dynamic context, limited 
computing resources, intermittent network connectivity, and 
high levels of stress. Applications that are useful to military 
personnel include speech and image recognition, natural 
language processing, and situational awareness. These are all 
computation-intensive tasks that take a heavy toll on the 
device’s battery power and computing resources. 

Cyber-foraging is the leverage of external resource-rich 
surrogates to augment the capabilities of resource-limited 
mobile devices [1]. Most existing cyber-foraging solutions rely 
on conventional Internet for connectivity to the cloud or 
strategies that tightly couple mobile clients with servers at 
deployment time. These solutions are not appropriate for 
resource-constrained environments because of their 

dependence on multi-hop networks to the cloud and static 
deployments.  

Cloudlet-based cyber-foraging relies on discoverable, 
generic, forward-deployed servers located in single-hop 
proximity of mobile devices. The goal of this paper is to 
propose tactical cloudlets as a strategy for providing 
infrastructure to support computation offload and data staging  
at the tactical edge. Section II presents a short summary of 
related work in this area. Section III describes cloudlet-based 
cyber-foraging. Section IV describes cloudlet discovery. 
Section V presents five mechanisms for cloudlet provisioning. 
Section VI describes the generic process for application 
execution.  Section VII presents experimental data that shows 
the pros and cons of each cloudlet provisioning mechanism. 
Finally, Section VIII summarizes the potential for tactical 
cloudlets to support operations in resource-constrained edge 
environments, next steps and future work. 

II. RELATED WORK 

Multiple cyber-foraging systems have been developed that 
differ in terms of the strategy that they use to leverage remote 
resources — where to offload, when to offload, and what to 
offload. Where to offload varies between remote clouds and 
local servers located in proximity of mobile devices. When to 
offload varies between a runtime decision or an “always 
offload” strategy. To support runtime offload decisions, one 
strategy is to manually or automatically partition code into 
portions that either run on the mobile device or on a remote 
machine. At runtime an optimization engine — typically 
targeted at optimizing energy efficiency, performance, or 
network usage — decides whether the code should execute 
locally or be offloaded to a remote machine (surrogate). An 
example of such cyber-foraging system is MAUI [2]. 
CloneCloud [3] follows the same code partitioning principle 
but automatically partitions code at the thread level without the 
need for manual code annotation. Other cyber-foraging 
solutions assume that the computation-intensive code exists in 
a remote machine and the cyber-foraging task therefore 
becomes one of service discovery and composition. HPC-as-a-
service [4] is an example of this “always offload” strategy. 
What to offload is what has the most variation, ranging from 
threads [3] to methods [2] to services [4] to full programs [1], 
with many other options in between. Our work is based on 
cloudlets, as described in [1]. Despite all the work in cyber-
foraging, our research has showed that (1) there is emphasis on 



the algorithms to support code offload and state 
synchronization with minimal focus on software architecture 
and quality attributes beyond energy efficiency and 
performance, (2) there is little guidance on how to support 
quality attributes such as survivability, resilience, trust and ease 
of deployment, critical in tactical environments. 

III. CLOUDLET-BASED CYBER-FORAGING 

Cloudlets are discoverable, generic, stateless servers 
located in single-hop proximity of mobile devices, that can 
operate in disconnected mode and are virtual-machine (VM) 
based to promote flexibility, mobility, scalability, and elasticity 
[1]. In our implementation of cloudlets, applications are 
statically partitioned into a very thin client that runs on the 
mobile device and a computation-intensive Server that runs 
inside a Service VM. A reference architecture for cyber-
foraging is presented in Fig. 1. The main elements of the 
architecture are the Mobile Client and the Cloudlet Host. A 
Discovery Service running inside the cloudlet host publishes 
Cloudlet Metadata that is used by the Cloudlet Client to 
determine the appropriate cloudlet for offload and to connect to 
the cloudlet (Section IV). Cloudlet metadata can range from a 
simple IP address and port to connect to the cloudlet server to 
more complex data structures describing cloudlet capabilities. 
Every application is composed of a Cloudlet-Ready Client App 
that corresponds to the client portion and the Client App 
Metadata that contains information that is used by the Cloudlet 
Client and the Cloudlet Server to negotiate and carry out the 
offload process. Once a cloudlet is identified for offload, the 
Cloudlet Client sends the Client App Metadata and 
Provisioning Data to the Cloudlet Server. The provisioning 
data varies depending on the cloudlet provisioning process 
(Section V), and can range from parameters to start a Service 
VM that already resides on the Cloudlet Host, to provisioning 
instructions, to actual server code. The Cloudlet Server then 
configures and starts the corresponding Service VM inside the 
VM Manager according to the defined cloudlet provisioning 
process and data. Once the Service VM is started, the client app 
is notified that it is ready for execution (Section VI). 

IV. CLOUDLET DISCOVERY 

The scenarios in which tactical cloudlets are deployed are 
very dynamic because both the mobile devices and the 
cloudlets can be mobile. Therefore a key feature of a cyber-
foraging solution is for mobile devices to be able to locate 
cloudlets around them. Our implementation of cloudlet 
discovery is based on Zeroconf (Zero Configuration 
Networking) [5]. It uses DNS Service Discovery (DNS-SD) 
along with Multicast DNS so that a client can request a service 
without knowing the IP addresses of the servers that provide 
the service, as shown in Fig. 2. When a cloudlet starts, its 
Discovery Service joins a particular Multicast IP Address as a 
listener. When the Cloudlet Client wants to discover cloudlets, 
it sends a DNS-SD query about cloudlet services (defined as a 
“_cloudlet._tcp” service in our implementation) through 
Multicast DNS to the multicast IP address. The query reaches 
the Discovery Service of any cloudlets in the network through 
Multicast DNS, which reply with a DNS-SD response 
indicating the IP address and port of the Cloudlet Server. 

 
Fig. 1. Reference Architecture for Cloudlet-Based Cyber-Foraging 

 

Fig. 2. Cloudlet Discovery Details 

V. CLOUDLET PROVISIONING 

In addition to cloudlet discovery, a key aspect of cloudlet-
based cyber-foraging is cloudlet provisioning—configuring 
and deploying the Service VM that contains the server code on 
the cloudlet so that it is ready to use by the client running on 
the mobile device.  

A. Optimized VM Synthesis 

In VM synthesis the cloudlet is provisioned from the 
mobile device at runtime. Our original implementation of VM 
synthesis is fully described in [6].  

In our Optimized VM Synthesis implementation the goal 
was to reduce application-ready time – time between the 
cloudlet provisioning request and the notification that the 
server is ready for execution. An application overlay that 
corresponds to the server portion of a client-server application 
is created once offline by starting a VM instance from a base 
VM disk image file (that uses QEMU copy on write 2 (qcow2) 
[7] as the VM disk image file format) and a base memory 



image, installing the server on the base VM image, and 
suspending the VM. When suspended, there are two files that 
are created as part of the application overlay: one corresponds 
to the disk image differences between the suspended VM and 
the base VM (the qcow2 file) and another that corresponds to 
the binary difference between the suspended memory image 
and the base memory image (calculated using VCDIFF [8]). 
These calculated overlays (disk and memory) are compressed 
using LZMA2 with the XZ stream compression format [9] and 
loaded on the mobile device.  

At runtime, as shown in Fig. 3, the Cloudlet Client checks 
if the cloudlet has the Base VM from which the overlay was 
created. If it does, then the compressed application overlay is 
sent in chunks to the Cloudlet Server. Each chunk is placed in a 
queue, decompressed, and appended to a file. This 
optimization, called pipelining, enables overlay decompression 
to be done incrementally as opposed to having to wait until the 
complete overlay is received. In the Synthesize VM step, 
because of another optimization to use qcow2 as the VM file 
image format, the disk overlay that is received already 
corresponds to the changes with respect to the Base VM, which 
means that there is no need for extra processing after 
decompression. For the memory image, the received memory 
overlay is applied to the base memory overlay in order to 
create the complete memory image (the opposite of what was 
done in the memory overlay creation process). The Base VM 
disk image file, the qcow2 file, and the complete memory 
image file are saved as the Service VM, which now corresponds 
to the suspended VM from which the application overlay was 
created. A copy of the Service VM is created and started. All 
the cloudlet provisioning mechanisms create a copy of the 
Service VM (called the Transient Service VM) so that all 
Service VM instances are started from same baseline. Finally, 
the IP address and port to connect to the Service VM are sent 
back to the Cloudlet Client. 

B. Application Virtualization 

In Application Virtualization the cloudlet is also 
provisioned from the mobile device at runtime. Application 
Virtualization uses an approach similar to operating system 
(OS) virtualization, by “tricking" the software into interacting 
with a virtual rather than the actual environment. A runtime 
component intercepts all system calls from an application and 
redirects these to resources inside the virtualized application. 
Virtualized applications are created in advance for server 
portions of applications using tools that package the 
application with all its dependencies. We used CDE (short for 
Code, Data and Environment) as the application virtualizer for 
Linux [10] and Cameyo for Windows [11]. CDE virtualizes 
applications by monitoring their execution and Cameyo by 
monitoring their installation process. Both tools produce 
virtualized applications that are loaded on the mobile device 
and at runtime are sent to the cloudlet to be deployed in a VM 
that matches the OS of the virtualized application. The full 
implementation is described, analyzed, and compared to VM 
synthesis in [12]. 

Cloudlet Client Cloudlet Server

Send Base VM ID

Locate Base VM

Send Compressed Application Overlay in Chunks

Server IP and Port
Start Service VM

Response (FOUND or NOT_FOUND)

If
(FOUND)

Decompress 
Each Chunk as 
it Arrives

Synthesize VM 
(Apply Overlay to 
Base VM) and 
save as Service 
VM

Create Transient 
Service VM (Copy 
of Service VM)

 

Fig. 3. Cloudlet Provisioning Using VM Synthesis 

At runtime, as shown in Fig. 4, the Cloudlet Client checks 
if the cloudlet has a Guest VM that matches the OS required by 
the application. If it does, it sends the virtualized application to 
the Cloudlet Server, which then deploys the application into a 
copy of the matching guest VM. The application is started and 
the IP and port to connect to it are sent back to the Cloudlet 
Client. 

 

Fig. 4. Cloudlet Provisioning Using Application Virtualization 

C. Cached VM 

In Cached VM the cloudlet is pre-provisioned with Service 
VMs that correspond to mission-specific capabilities that 



match the client apps on the mobile device. Each Service VM 
has a unique service identifier.  

At runtime, as shown in Fig. 5, the Cloudlet Client checks 
if the cloudlet has a Service VM that matches the client app. If 
it does, the Cloudlet Server creates a copy of the matching 
Service VM and starts it. When ready, the IP address and port 
to connect to the Service VM are sent back to the Cloudlet 
Client.  

 

Fig. 5. Cloudlet Provisioning Using Cached VM 

D. Cloudlet Push 

In Cloudlet Push, the cloudlet is not only pre-provisioned 
with Service VMs for mission-specific capabilities, but also the 
corresponding mobile client apps.  

At runtime, as shown in Fig. 6, the Cloudlet Client obtains 
a list of available applications on the cloudlet, similar to 
accessing an app store. It then checks if the selected application 
exists for the mobile device’s OS. If so, the cloudlet client 
receives the app and installs it on the mobile device while the 
Cloudlet Server starts the corresponding Service VM.   When 
ready, the IP address and port to connect to the Service VM are 
sent back to the Cloudlet Client. 

E. On-Demand VM Provisioning 

In On-Demand VM Provisioning a commercial cloud 
provisioning tool is used to “assemble” a Service VM. In this 
case the cloudlet has access to all the elements to put together a 
Service VM based on a provisioning script. Our 
implementation uses Puppet [13] and the provisioning script is 
a “manifest” that is written in Puppet’s declarative language.  

At runtime, as shown in Fig. 7, the Cloudlet Client sends a 
provisioning script to the Cloudlet Server, which verifies that it 
can execute the provisioning script. The Cloudlet Server 
creates a transient Service VM as a copy of a Baseline Service 
VM which corresponds to a VM defined by an organization as 
the basic configuration from which all VMs are created. The 
Cloudlet Server then runs the provisioning script that will find 
and install inside the Service VM all the components that make 
up the server capabilities required by the client app. After 
executing the script, the Cloudlet Server starts the newly 

assembled Service VM and sends its IP address and port to the 
Cloudlet Client. 

 

Fig. 6. Cloudlet Provisioning Using Cloudlet Push 

 

Fig. 7. Cloudlet Provisioning Using On-Demand Provisioning 

VI. APPLICATION EXECUTION 

As shown in Fig. 8, after the Cloudlet Client receives the IP 
address and port for the Service VM it passes this information 
on to the Cloudlet-Ready App. The Cloudlet-Ready App then 
opens a socket to the IP address and port and starts the 
interaction with the Service VM. The interaction depicted in 
Fig. 8 is simple request-response. Even though other types of 
interaction could be supported by cloudlets, this is the most 
energy-efficient type of interaction because it limits 
communication between the mobile device and the cloudlet. In 
general, offloading is beneficial when large amounts of 
computation are needed with relatively small amounts of 
communication [14]. Even though not shown in Fig. 8, an 
optional step after the Cloudlet-Ready App is closed is to stop 
the Service VM on the cloudlet to promote elasticity. This 
would release resources on the cloudlet that could be used by 
other mobile devices.  



 

Fig. 8. Application Execution Details 

VII. QUANTITATIVE AND QUALITATIVE COMPARISON OF 

CLOUDLET PROVISIONING MECHANISMS 

To perform a quantitative and qualitative comparison of the 
five different cloudlet provisioning mechanisms, we conducted 
a set of experiments using three computation-intensive 
applications: face recognition (FACE), speech recognition 
(SPEECH), and object recognition (OBJECT). We used a 
Galaxy Nexus with Android 4.3 as a mobile device and a Core 
i7-3960x based server with 32 GB of RAM running Ubuntu 
12.04 as the cloudlet. We created a self-contained wireless 
network (using Wi-Fi 802.11n at 2.4 GHz, 65 Mbps) to be able 
to isolate network traffic effects. Energy was measured using a 
Power Monitor from Monsoon Solutions [15]. The results of 
these experiments are shown in TABLE I.  The first column 
under each mechanism is the size of the payload in MB that is 
sent from the mobile device to the cloudlet for provisioning. 
The second column is application-ready time, measured as the 
time in seconds from the start of the provisioning process until 
the cloudlet responds that it is ready. The third column in the 
energy consumed on the mobile device during application-
ready time.  

TABLE I. shows that the largest amount of energy is 
consumed by VM Synthesis and On-Demand VM Provisioning. 
In VM Synthesis this is due to the large payload. Our 
experiments confirm that payload size is directly proportional 
to energy consumption, as has been stated by many others. In 
On-Demand VM Provisioning, even though the payload is very 
small, the high energy consumption is due to the longer 
application-ready time. The power monitor measures total 
energy consumption and does not distinguish between energy 
consumed during communication and during idle time. 
Application-ready time is also variable, as can also be seen in 
TABLE I. For example, for Windows applications the 
application-ready times are much longer because the 
component installation processes are more complicated. 

For Application Virtualization, although payload size is 
between 8% and 46% of the payload for VM synthesis, it is 
still large for transmission in resource-constrained 
environments. In addition, the size of the payload is very 
variable because it depends on the OS and the number of 
external dependencies of the application that is being 
virtualized. 

 Cached VM and Cloudlet Push consume less energy 
because payload size is smaller, which in turn leads to shorter 
and more consistent application-ready times across 
applications. In Cached VM the payload size is very small 
(Service ID) and application-ready time is the time that it takes 
to start the corresponding Service VM. In Cloudlet Push the 
payload is small (client app from cloudlet to mobile device) 
and the application-ready time is the time that it takes to install 
the app on the mobile device.  

TABLE II. shows a qualitative comparison of the cloudlet 
provisioning mechanisms. For VM Synthesis the advantage is 
that the cloudlet can run any server code that can be installed in 
a VM. In addition, because cloudlet is provisioned by the 
mobile device the cloudlet does not have to be pre-provisioned 
with any mission-specific capabilities. However, as noted 
earlier, the large payload size is a disadvantage for tactical 
environments. In addition, because the VM synthesis process 
requires the exact same base VM from which the overlay was 
created, any changes to the base VM, due to for example 
security patches, would require changes to every application 
overlay that was created with that base VM.  

For Application Virtualization the advantage is also that the 
cloudlet can be provisioned from the mobile device, with an 
advantage over VM synthesis with respect to payload size. In 
addition, the dependency is on the operating system running 
inside the VM which enables portability across OS distribution 
boundaries. However, all server code dependencies have to be 
captured at packaging time which is a challenge for any 
application virtualization tool [12]. 

For Cached VM, in addition to the small payload size, the 
advantage is that it supports server code updates as long as 
service interface remains the same. However, the assumption is 
that the cloudlet is provisioned with Service VMs required by 
client apps or has access to them either at deployment time or 
at runtime (i.e., an enterprise-level Service VM repository). 

For Cloudlet Push, in addition to the small payload size, the 
advantage is that it supports most client mobile devices with 
distribution at runtime. However, similar to Cached VM, the 
assumption is that the cloudlet is provisioned with Service 
VMs in addition to Client Apps. In addition, the cloudlet would 
need to have a client app version that matches mobile client OS 
version. 

Finally, for On-Demand VM Provisioning, in addition to 
small payload size, the advantage is that the Service VM can 
be assembled at runtime which provides the greatest flexibility. 
However, as noted earlier, in addition to longer application-
ready time the constraint is that the cloudlet has all required 
server code components, or access to the components from 
enterprise repositories or code distribution sites. 

VIII. CONCLUSIONS, NEXT STEPS AND FUTURE WORK 

Forward-deployed, discoverable, virtual-machine-based 
tactical cloudlets can be hosted on vehicles or other platforms 
to provide infrastructure to offload computation, provide 
forward data-staging for a mission, perform data filtering to 
remove unnecessary data from streams intended for 
dismounted users, and serve as collection points for data 



heading for enterprise repositories. The forward-deployed, 
single-hop proximity to mobile devices promotes energy 
efficiency as well as lower latency (faster response times). If 
tactical cloudlets are pre-provisioned, there are many 
applications that can function disconnected from the enterprise 
or can synchronize with the enterprise if and when there is 
connectivity. The fact that cloudlets are discoverable enables 
mobile devices to locate mission-specific capabilities as 
personnel and cloudlets move and missions change. Finally, 
virtual machine technology not only simplifies the distribution 
and rapid deployment of capabilities, but also enables the 
leverage of any legacy application that can be packaged inside 
a VM. 

The results of the experiments led us to combine Cached 
VM with Cloudlet Push as the cloudlet provisioning 
mechanism for our current working prototype to enable lower 
energy consumption on the mobile device, place less 
requirements on mobile devices, and simplify provisioning in 
tactical environments. An additional advantage of combining 
both mechanisms is that if the mobile device already has the 
client app it can simply invoke the matching Service VM; if 
not it can obtain the client app from the cloudlet, similar to 
accessing an app store, and then invoke the matching Service 
VM. The tradeoff is that it relies on cloudlets that are pre-
provisioned with server capabilities that might be needed for a 
particular mission, or that the cloudlet is connected to the 
enterprise, even if just at deployment time, to obtain the 
capabilities. We argue that this requirement is not unreasonable 
in tactical edge environments and that it makes cloudlet 
deployment in the field easier and faster while leveraging the 
state of art and best practices from the cloud computing 
industry. A pre-provisioned-VM-based solution also promotes 
resilience and survivability by supporting rapid live VM 
migration in case of cloudlet mobility, discovery of more 
powerful or less-loaded cloudlets, or unavailability due to 
disconnection or disruption. It supports scalability and 
elasticity by starting and stopping VMs as needed based on 
number of active users (which is typically bounded in edge 
environments because group size is known). In addition, the 
request-response nature of many of the operations needed in 
the field also lends itself to an asynchronous form of 
interaction in which the cloudlet can continue processing and 
send results back to a mobile device (directly or by re-routing) 
as network conditions change. Although not part of the 
presented prototype implementation, an added feature would 
be to have “dual-mode” cloudlet-ready apps that exploit 
cloudlets when and if available but rely on a local 
implementation as a fallback mechanism. The local 
implementation could be identical or could be a version that is 
adapted for resource-constrained devices that may not provide 
the same precision or quality of results but would provide some 
result even if a cloudlet is not available. 

We are currently working on a standard packaging of 
Service VMs so that they can be easily installed from the 
cloudlet manager (web-based interface to the Cloudlet Server 
and Service VM repository), an enterprise Service VM 
repository, a thumb drive, or the mobile device connected via 
USB to the cloudlet. We are also adding the following 

capabilities to adapt to cloudlets to the characteristics of 
tactical environments: 

 Optimal cloudlet selection: We are extending the 
cloudlet discovery protocol to use metadata from the 
client app, Service VM, and the cloudlet so that in the 
case that there is more than one cloudlet in range, the 
mobile device can automatically select the cloudlet that 
maximizes a pluggable utility function. This function 
can be based on cloudlet load, signal strength, or any 
other parameter. 

 Manual and automated cloudlet handoff: We are adding 
VM migration capabilities to enable manual and 
automated handoff of data and computation between 
cloudlets that are within range of each other.  Manual 
handoff would enable scenarios in which a user is 
migrating capabilities from a fixed cloudlet to a mobile 
cloudlet to support field operations, as well as 
reintegration back to the fixed cloudlet. Automated 
migration would enable load balancing, similar to what 
is done in cloud data centers for resource optimization. 

 Data synchronization between cloudlets and the 
enterprise: Even though cloudlets can operate fully-
disconnected from the enterprise if they are pre-
provisioned at deployment time, there are situations 
when cloudlet capabilities (Service VMs) need access 
to a master data source located in the enterprise. We 
plan to add support for integration with distributed, 
networked filesystems such as Coda [16] to support 
disconnected operations with opportunistic 
synchronization when connectivity becomes available. 

Our future work is related to security, in particular 
establishing the initial trust between mobile devices and 
cloudlets; that is (1) as a mobile device, is what I discovered 
really a "friendly" cloudlet? and (2) as a cloudlet, did that 
offloading request really come from a "friendly" mobile 
device? The solution presented in this paper relies on the 
underlying network to provide the secure communication 
between the mobile device and the cloudlet. While this may be 
enough in some scenarios, it is not enough for many military 
scenarios. A common solution for establishing trust between 
two nodes is to use a third-party online trusted authority that 
validates the credentials of the requester or a certificate 
repository. However, the characteristics of tactical edge 
environments do not consistently provide access to that third-
party authority or certificate repository because tactical 
cloudlets operate in what is known as DIL environments 
(disconnected, interrupted, low bandwidth). The goal is to 
explore solutions for establishing trusted identities in 
disconnected environments with the advantage/constraint that 
tactical cloudlets are not meant to be long-lived, meaning that 
they are pre-provisioned and eventually deployed to support a 
mission. This constraint may enable us to explore more 
dynamic identity solutions. 
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TABLE I.  EXPERIMENT DATA FOR CLOUDLET PROVISIONING MECHANISMS 

Applications 

Optimized VM 
Synthesisa 

Application 
Virtualization 

Cached VM Cloudlet Push 
On-Demand VM 

Provisioning 

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1)b (2) (3) (1)b (2) (3) 

FACE (Windows) 55 53.4 57.8 14 14.3 10.5 0.00 8.2 10.3 0 7.9 13.8 0 112.7 129.1 

OBJECT (Linux) 332 175.7 333.3 29 21.9 24.5 0.00 11.6 13.5 0 11.7 16.9 0 211.0 244.0 

SPEECH (Windows) 194 85.9 175.5 66 62.5 66.6 0.00 12.2 14.7 0 12.8 18.2 0 237.6 269.2 

SPEECH (Linux) 147 99.0 172.5 68 38.3 54.2 0.00 12.2 14.9 0 12.8 18.2 0 94.1 109.3 

a. Columns under each mechanism are (1) Payload Size (MB), (2) Application-Ready Time (s), and (3) Client Energy (J)    
b.

    Size of payload is less than 1KB  

TABLE II.  QUALITATIVE COMPARISON OF CLOUDLET PROVISIONING MECHANISMS 

 
Optimized VM 

Synthesis 
Application 

Virtualization 
Cached VM Cloudlet Push 

On-Demand VM 
Provisioning 

Cloudlet 
Contentc 

Exact base VM 
VM compatible with 
server code 

Service (VM) repository 
Repository of paired 
VMs (server code) and 
client apps 

 VM provisioning 
software 

 Server code 
components 

Mobile 
Device 

Content 

 Application overlay 
 Client app and 

metadata 

 Virtualized server 
code 

 Client app and 
metadata 

Client app and metadata None 

 VM provisioning 
script 

 Client app and 
metadata 

Payload Application overlay 
Virtualized server 
code 

Service ID Client app and metadata 
VM provisioning 
Script 

Advantages 
Cloudlet can run any 
server code that can be 
installed on a Base VM 

Portability across OS 
distribution 
boundaries 

Supports server code 
updates as long as service 
interface remains the same  

Supports most client 
mobile devices with 
distribution at runtime 

Service VM with 
server code can be 
assembled at runtime  

Constraints 

Requires exact base 
VM which limits 
distributions and 
patches 

All server code 
dependencies have to 
be captured at 
packaging time  

Cloudlet is provisioned with 
service VMs required by 
client apps (or has access to 
them) 

Cloudlet has a client 
app version that 
matches mobile client 
OS version 

Cloudlet has all 
required server code 
components (or access 
to them) 

c. In addition to Cloudlet Server and Metadata 

 


