
Tactile Animation by Direct Manipulation of Grid Displays
Oliver S. Schneider1,2

oschneid@cs.ubc.ca
Ali Israr1

israr@disneyresearch.com
Karon E. MacLean2

maclean@cs.ubc.ca

1. Disney Research, Pittsburgh, USA 2. University of British Columbia, Vancouver, Canada

(a) Animate (b) Render (c) Display

Object 1

Object 2

Figure 1: Concept sketch for tactile animation. An artist draws an animated sequence in the user interface and the user experi-
ences phantom 2D sensations in-between discrete actuator grids. The animator controls phantom sensations directly, feeling the
sensation in real-time to design expressive sensations for arbitrary vibrotactile arrays.

ABSTRACT

Chairs, wearables, and handhelds have become popular sites
for spatial tactile display. Visual animators, already expert in
using time and space to portray motion, could readily transfer
their skills to produce rich haptic sensations if given the right
tools. We introduce the tactile animation object, a directly
manipulated phantom tactile sensation. This abstraction has
two key benefits: 1) efficient, creative, iterative control of
spatiotemporal sensations, and 2) the potential to support a
variety of tactile grids, including sparse displays. We present
Mango, an editing tool for animators, including its rendering
pipeline and perceptually-optimized interpolation algorithm
for sparse vibrotactile grids. In our evaluation, professional
animators found it easy to create a variety of vibrotactile pat-
terns, with both experts and novices preferring the tactile an-
imation object over controlling actuators individually.

Author Keywords

Haptics; vibrotactile; animation; design.

ACM Classification Keywords

H.5.1. Multimedia Information Systems: Animations; H.5.2.
User Interfaces: Haptic I/O

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST’15, November 08–11, 2015, Charlotte, NC, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN/15/11...$15.00.
DOI: http://dx.doi.org/10.1145/2807442.2807470

INTRODUCTION

Haptic feedback is viewed today as a key ingredient of im-
mersive media experiences. Body-moving devices in theatre
seats, ride vehicles, and gaming platforms can tilt, translate,
and shake the user for increased engagement. Recently, ar-
rays of multiple actuators have been developed to display ex-
pressive, spatial sensations on the skin [4, 13, 17, 30, 37].

Vibrotactile (VT) arrays, which stimulate the skin through
vibration, are common in diverse applications from immer-
sive gaming chairs [13] to wearable vests for mobile aware-
ness [15]. These displays typically employ sparse actuator
arrangements to reduce cost and power requirements, using
perceptual illusions to create continuous sensations [1,12,29].
Unfortunately, adoption of VT arrays is limited by a lack
of authoring tools. Most only support a single actuator [6];
those that accommodate multiple actuators control each sep-
arately [17, 23, 32], cumbersome for non-adjacent actuators.

To remedy this, we propose the tactile animation object,
an abstract, directly manipulable representation of a phan-
tom sensation perceived in-between physical actuators. With
this approach, designers can efficiently and creatively explore
ideas and iterate without worrying about underlying actuator
arrangements. As long as a rendering algorithm can be devel-
oped, this abstraction not only facilitates design, but is com-
patible with a variety of form factors and technologies.

In this paper, we describe the tactile animation object and
implement it in Mango, a tactile animation tool and pipeline
(Figure 1). Our contributions are: 1) A tactile animation in-
terface grounded in user interviews and prior literature. 2)
A rendering pipeline translating tactile animation objects to

http://dx.doi.org/10.1145/2807442.2807470

phantom sensations on sparse, generalized VT arrays, opti-
mized with a perceptual study. 3) An evaluation with profes-
sional animators showing accessibility and expressivity. 4)
An exploration of potential applications for tactile animation.

BACKGROUND

Haptic Entertainment Technologies

Haptic feedback was used in cinema as early as Percepto,
a 1959 multisensory experience for the movie “The Tin-
gler” [11] with theater seats that buzzed the audience at
strategic moments. Current 4D theaters, rides, shows, and
gaming arcades are equipped with sophisticated motion plat-
forms (e.g., D-Box, www.d-box.com) that supplement vi-
sual scenes. Large tactile transducers (such as Buttkickers,
www.thebuttkicker.com) that shake the entire seat using the
sound stream are also common with gaming and music con-
tent. Custom editors (such as D-Box Motion Code Editor)
and software plugins overlay visual and audio content with
haptics, and allow designers to generate, tune and save frame-
by-frame haptics in an allocated track.

In contrast to displacing the entire body, multichannel haptic
devices create percepts of dynamic and localized haptic sen-
sations on the user’s skin [13] and in mid-air [37]. Similar de-
vices have been developed for online social interactions using
custom multi-actuator displays [17,23,35]. All of these tech-
nologies require extensive programming experience, knowl-
edge of hardware and background in haptic sciences to gener-
ate expressive and meaningful haptic content. Without guid-
ing principles or haptic libraries, content generation schemes
are complex, device-specific, and time consuming.

Another class of haptic technology renders high-resolution
spatio-temporal patterns on the skin using a sparse array of
VT actuators. These technologies use parametric models of
sensory illusions in touch, such as phantom tactile sensa-
tions [1], and create illusory vibrations in between two or
more VT actuators. This idea has been used to create a per-
ceived motion flow between two vibrators mounted on the
ends of a handheld device [29] and to create across-the-body
and out-of-the-body illusions on a mobile device using up to
four actuators [20]. The Tactile Brush algorithm [12] com-
bined phantom tactile sensations and apparent tactile motion
to render high-resolution and moving haptic patterns on the
back using a coarse grid of VT actuators, but paths must be
pre-determined (Figure 2a). Other spatio-temporal VT illu-
sions such as the “cutaneous rabbit” [33] and Tau and Kappa
effects [8] can be also used with VT arrays.

Haptic Authoring Tools

As long as designers have considered haptic effects for en-
tertainment media, they have needed compositional tools
[7]. Requirements drawn from previous work on how to
prototype, sketch, or control haptic phenomena using non-
programming methods are summarized in Table 1.

The Hapticon editor [6], Haptic Icon Prototyper [31],
posVibEditor [25], and Immersion’s Haptic Studio
(www.immersion.com) use graphical representations to
edit either waveforms or profiles of dynamic parameters

(such as frequency or torque) over time. Another approach
is predefining a library of haptic patterns to augment media
content. Immersion Corporation’s Touch Effects Studio
lets users enhance a video from a library of tactile icons
supplied on a mobile platform. Vivitouch Studio [32] allows
for haptic prototyping of different effects alongside video
(screen captures from video games) and audio. These tools
focus on low-level control of device features rather than a
semantic space, and control devices with either a spatial or
temporal component, but not both simultaneously.

Several tools have allowed users to author haptic content us-
ing accessible touchscreen interactions. A demonstration-
based editor [10] allowed control of frequency and intensity
by moving graphical objects on a screen. mHIVE [26] con-
trols frequency, intensity, waveform and envelope of two tac-
tors with touchscreen gestures. Both systems were shown to
be intuitive and easy to use for exploration or communication,
but faltered when refining more elaborate sensations. Com-
mercially, Apple’s vibration editor (since iOS 5, 2011) allows
users to create personalized vibratory patterns by touching the
screen, but only produces binary on/off timing information.

Other aids to creating haptic phenomena include haptic
sketching [21] for hands-on exploration of haptic ideas in
early design, and end-user customization of tactile sensa-
tions [28]. Both emphasize exploration and broad manipu-
lation rather than finely controlled end results. HAMLAT [5]
supports authoring of force feedback in static 3D scenes. Lee
and colleagues [18] used a musical metaphor for vibrotactile
authoring. Schneider et al. introduced “FeelCraft” for end
user customization of a library of feel effects [27].

Kim and colleagues offered combined spatial and temporal
control using a tactile video metaphor for dense, regular ar-
rays of tactile pixels (“taxels”), including a feature of sketch-
ing a path on video frames [17] (Figure 2b). While a promis-
ing approach, this tool relies on editing of discrete actua-
tors and frames, with its sketching feature used for input,
not as a manipulation method. As well, it does not gener-
alize to sparse or irregular displays, and was not evaluated
with designers. We suggest that an animation metaphor could
provide an easier interaction model, facilitating key creative
activities such as rapid exploration and iteration, especially
through a continuous timeline (Figure 2c). The control of
multi-actuator outputs has also been explored by TactiPEd
[23] and Cuartielles’ proposed editor [3]. However, these
approaches still require the separate control of different ac-
tuators, rather than a single perceived sensation produced by
the multi-actuator device.

(a) Tactile Brush [12]:
precomputed paths

(b) Tactile Video [17]:
frames of tactile pixels

(c) Tactile Animation:
direct manipulation

Figure 2: Comparison between related systems.

LR Description

LR1 Real-Time Playback [21, 26] Rapid prototyping is essential for working with VT sensations, especially in absence of
objective metrics. Feeling a sensation at design time allows iteration to converge faster to better results. However, too
real-time can cause split attention.

LR2 Load, save, manipulate [14, 24, 26] A persistent object model is essential for sensation editing over longer projects
and sharing with other designers or across devices. Well-defined actions upon a data structure also facilitates features
like undo that support experimentation.

LR3 Library of effects [6, 9, 23, 31, 32] A library of saved sensations is an important feature used in previous haptic
authoring tools, providing inspiration and preventing designers from re-inventing the wheel.

LR4 Device configuration [17–19, 23] Because of the many types of haptic devices, a general tool must be able to under-
stand different devices. Lightweight configuration files are common in the literature, allowing users to select specific
hardware, specify location and type of actuators, and choose a rendering algorithm.

LR5 Multiple channels & combination of effects [6, 23, 25, 31, 32] Being able to display multiple effects simultaneously,
or combine effects via superposition or concatenation, is essential for expanding the design space. This is typically
represented in a timeline, which represents the temporal behaviour of any objects.

LR6 Visual/direct control metaphor [3, 17, 23] Most previous tools consider each actuator separately. When thinking
semantically about a spatial system, a direct view of the device and actuator layout is critical for direct manipulation.

LR7 Audio/visual context [17, 21, 32] Haptic perception depends greatly on additional senses [8]. By providing audio and
visual feedback, these effects can be mitigated and the designer can experience haptic sensations in context.

LR8 User Feedback [26,32] Receiving feedback from users, either by demonstration or A/B testing, is extremely valuable.

Table 1: Literature Requirements (LRs) for a tactile animation authoring tool.

TACTILE ANIMATION AUTHORING TOOL

Our objective is to provide media designers with a familiar
and efficient framework for creating dynamic haptic content.
Mango’s design is based on two sets of requirements: Litera-
ture (“LRs”, Table 1), from prior research on haptic authoring
tools, and Industry (“IRs”) from interviews with five industry
experts in haptic media creation and animation, which con-
firm and expand upon design decisions for other VT tools.

Gathering Design Requirements

We interviewed two industry experts with haptics experience
from a media company (E1-2). E1 uses Max/MSP, Open-
Frameworks, Processing, and Visual Studio to create haptic
media. E2 is a professional media designer and an expert
user of Pro Tools (an industry standard for authoring sound
media). Together, E1 and E2 previously undertook a six-
month training that included generation of dynamic haptic ex-
periences on seats and supporting platforms using audio and
video tools. Our interviews included meetings, recordings,
and sketches of their experience during training.

In addition, we conducted contextual interviews of three in-
dustry animators (A1-3) interacting with non-tactile anima-
tion tools using a think-aloud protocol. A1 and A3 used
Adobe After Effects, while A2 used Maya. A1 and A2 were
tasked with creating an animation of two balls moving; A3
created an animation based on a sound file. These inter-
views yielded rich detail that we compiled into categories,
then compared with our LRs (Table 1). LRs 2-7 also emerged
independently from this stage. We extend the LRs with addi-
tional expert-drawn industry requirements (IRs):

IR1 - Animation window allows users to draw tactile anima-
tion objects, control them in space, and define their motion
paths. The window is overlaid with location and type of hap-
tic actuators, providing visual feedback (LR8).

IR2 - Timeline is a time track for a tactile animation object.
During playback, the animation is played on IR1 showing the
movement of the animation relative to the tactile object. Ob-
ject behaviours are linked to time track to visualize temporal
variations. Time tracks are editable by inserting key frames.

IR3 - Object tools extend LR2, supporting direct manipu-
lation operations on tactile objects such as “new”, “scale”,
“translate”, analogous to object creation and manipulation in
After Effects and Maya.

IR4 - Path tools define motion paths of tactile objects (straight
lines, curves, input-device traces), and store them in a path
library (LR3).

IR5 - Haptic rendering schemes compute output waveforms
for each actuator channel, animated visually in the animation
window. Users select the scheme from a list for connected
hardware, defined in a hardware configuration file (LR4).

IR6 - Global parameter tools allow the user to control the
overall feel of the tactile animation object. Analogous to fil-
ters and effects applied on the object, this includes parameter
setting for frequency, intensity and modulation.

We developed a tool design from these two sets of require-
ments. Our Mango prototype uses Python 2.7 and Tkinter for
the rendering pipeline (Figure 3) and UI (Figure 4), which
communicates with haptic devices via USB.

Framework for Tactile Animation

In this section, we present an animation metaphor that al-
lows users to generate tactile content in the same way as they
would create visual animations and play them real-time on
a VT array. Figure 3 shows the workflow of this authoring
mechanism. Designers create tactile animations on a typical
animation tool as shown in Figure 3a. The animation object is
placed in space, and the designer adjusts its size on the visual

Raster

(b) Vector Sensation

Actuator 1

Actuator 2

Actuator N

… …

Duration

Render

Save Save

Playback

(c) Raster Sensation

Actuator 1

Actuator 2

Actuator N

… …

Duration

Frame

(a) Tactile Animation Objects

No Path

With Path

Device

Configuration

(d) Device

Save

Figure 3: Tactile animation rendering pipeline. Users can: (a) create tactile animation objects; (b) render objects to actuator
parameter profiles (such as amplitude) with our rendering algorithm; (c) rasterize vector sensations into frames; (d) play the
sensation on the device.

outline of the VT array. The designer then adds movements
and special effects to the object using Mango’s toolset, and
plays it to observe its frame-by-frame sequence.

Mango’s rendering engine translates visual animations to tac-
tile animations on the VT array. Knowing the location of vi-
brating points on the sparse array of VT actuators, the ren-
dering engine resolves the animated sequence into individ-
ual actuators using the phenomena of phantom tactile sen-
sations [1, 12]. The phantom sensation is a sensory illusion
elicited by stimulating two or more vibratory elements on the
skin. Instead of feeling the individual vibration points, the
user feels a single sensation in between, whose perceived in-
tensity is defined by the weighted sum of the intensities of the
vibrating elements. Therefore, in each frame, the animated
tactile object is resolved into intensity of actuators on the VT
array (Figure 3b). The rendering engine then calculates raw
waveforms for each VT channel (Figure 3c) that can either be
sent to the VT device to play the animated sequence or ex-
ported as a multichannel datafile for later use. Previous work
has interpolated between only two actuators [20, 29]; how-
ever, a more generalized 3-actuator interpolation algorithm
allows for arbitrary real-time manipulation of the tactile ani-
mation object on grid displays.

To accommodate the animation framework, we define three
datatype models, for use in the current implementation and
future expansion of the Mango tool: Tactile animation ob-
jects, high-level hardware-independent data types for tactile
animation; vector formats, high-level hardware-specific con-
trol common in previous work; and raster formats, low-level
hardware-specific formats for rendering and playback.

Tactile animation objects are high-level specifications of
virtual sensations moving on a 2D VT array (Figure 3a).
High-level parameters, such as location, size, and other se-
mantic qualities, can either be constant or variable. Each tac-
tile object has a start time and a duration. Object type is also
defined for tactile animations that sets pre-defined parameters
and features to animated objects. For example, a moving vir-
tual point can have a position, size, and frequency parameter,
while a “rain” effect can have a position and more semantic
parameters like raindrop frequency or size.

Tactile animation objects are device-independent. Mango
uses a device configuration file (LR4) and the rendering en-
gine to create animated VT patterns on hardware. Animation
objects can be combined in novel ways, organized in groups,
or generate other tactile animations like a particle generator
as in a graphical animation tool, and can have paths that con-
strain motion to a pre-determined trajectory. We prototyped
an early version of the tactile animation object in Mango;
however, the data type is extensible.

Vector formats are similar to those in previous work (e.g.,
[6]). Instead of objected-based definitions, as in tactile an-
imation objects, parameters are defined for individual actu-
ation. (Figure 3b). Parameters include duration, amplitude
envelopes (e.g., fade-ins and fade-outs), frequency, and start
times. Being device-specific, vector formats offer finer sensa-
tion control than tactile animation objects (analogous to pixel-
level editing of sprites). However, creating a single percept
from independent controls can be challenging. This data type
is useful when rendering methods for the hardware are not de-
fined or the user wants to control specific actuator sequence to
animate tactile content, such as using the Tactile Brush [12].

Raster format, analogous to a raster-graphics image or WAV
file, is suitable for playback operations or exporting it to a
device specific format (Figure 3c). A raster format contains
a matrix of actuator intensities; each row defines intensities
of an actuator and columns containing the intensities at each
time instance. Each format also contains a timestamp row
defined by the rendering engine’s framerate. The playback
system parses the raster data, finds the current column, and
pushes these actuator settings to the device. This data type is
also used for real-time feedback during authoring.

Authoring Interface

The authoring interface allows designers to efficiently create
moving tactile content in a familiar environment. Here we
describe user interactions, most of which are through the an-
imation window (1) and timeline (2) (Figure 4).

Animation Window: A user creates a tactile animation object
(3) with a “new object” button (6), then manipulates it in the
animation window (1). The window is overlaid with a faint
trace of the VT hardware (13) for context. Here, we used an
array of 10 VT actuators (Figure 6).

3

10

11

12

14

15

17

16

18

13

LR2,3

LR7

LR6

LR4

LR1

LR7

LR5

1

2

20

19

LR2IR3,4

IR1

IR2

64 5 7 8 9

A

B

B

A

C

Figure 4: Mango graphical user interface. Key components
are labeled and linked to corresponding design requirements.

Object Paths: The animation object (3A) has (x, y) param-
eters describing position, an “r” (radius) parameter, corre-
sponding to the VT output voltage from 0 (minimum) to 1
(maximum). An optional path can be added to an object (7),
or removed (8), along which the motion of the object (3B) is
constrained (12). The path-object (3B) is manipulated in two
ways: moving on path (5), which moves the object from the
beginning (position=0) to the end of the path (position=1), or
moving in space (4), which moves the object and the path to-
gether on the animation window (1). The current Mango im-
plementation only supports straight-line paths, however their
use can be extended in a later version. Also note that curves
can be accomplished through keyframed (x, y) positions.

Timeline: Each animation object (3) is represented in the
timeline (2) as a track (17). The red scrubhead (16) (shown as
a triangle and line) shows and manipulates the current time.
Animation objects can be moved in time by clicking and drag-
ging, and resized to change duration. Individual parameters
can be set on the left, by typing values into text fields (19),
allowing precision. The entire animation can be played and
paused using buttons (14) or the spacebar.

Keyframes: Parameters can be toggled as “keyframeable”
with a small clock button (20). When the value is changed,
a keyframe (18) is automatically created at the current time.
Intermediate values are linearly interpolated.

Vector Sensations: A new vector can be created by selecting
an object (3) then clicking on a button (9). These sensations
control each actuator directly through the parameter values,
controlling that actuator’s voltage from 0 to 1 (same as the
“r” parameter). The corresponding actuator is highlighted in
the animation window (1) when the text field (19) or track
(17C) is selected. Each track is also keyframeable.

Save and Load: Animations can be saved and loaded (10)
to/from JSON files. An audio track can be loaded (11) to the
timeline (15).This allows the user to design a VT experience
for sound files (LR7). Video overlay is left for future work.

Hardware Configuration File: A hardware-specific structure
is defined and stored in a JSON configuration file (LR4). The
file contains: (a) physical width and height of the grid, (b) a
dictionary of actuator types (e.g., voice coils or rumble mo-
tors), each with a list of control parameters (e.g., frequency,
intensity) and allowable values; (c) location and type of each
actuator; (d) supported communication protocols and render-
ing methods; (e) brand information (e.g., USB vendor id and
product id) for device recognition; and (f) default settings.
Physical dimensions are defined in SI units, e.g., meters, Hz.

Playback: Once the animation of the object is defined, the
user can play and stop the animation. During playback, the
animation runs in (1) and the corresponding parameters vary
in (2). Simultaneously, VT stimulations are activated on the
hardware for user feedback. Multiple animation objects and
vector sensations can exist simultaneously. Actuators output
the sum of all the values generated by objects (described later
in the Rendering Algorithm section) and vector sensations.

RENDERING ALGORITHM

Mango’s rendering algorithm defines how high-resolution
haptic feedback is translated to sparse grids of VT actuators.
The rendering algorithm translates animations created in the
animation window to animated VT patterns on the hardware.
Figure 3 shows the rendering pipeline that converts animation
objects to a raster format, which outputs to the hardware.

The rendering algorithm is derived from psychophysical un-
derstanding of VT illusions on the skin and creates percepts of
virtual actuators and their motion in between a set of real ac-
tuators. The precise perceptual model depends on several fac-
tors, such as type of VT actuators (DC vs. voice coil motors),
stimulation site (forearm vs. back) and the spacing of actua-
tors in the array (e.g., [12]). To allow for custom framerates
and real-time feedback, we generalize from the 1D case (in
between two VT actuator along a line) to the 2D case (in be-
tween three or more actuators, previously accomplished with
non-VT sensations [34]). Thorough investigation of the psy-
chophysical model is beyond our present scope, however, we
empirically determine the most effective model among those
documented in the literature for the 1D case with a pairwise
comparison.

A
1

A
3

A
v

A
2

a
3

a
1

a
2

(a) Barycentric coordinates

Linear Ai = ai × Av

Log Ai =
log ai+1

log Amax+1
Av

Power Ai =
√

ai × Av

(b) Candidate interpolation methods

Figure 5: Interpolation models used to determine physical ac-
tuator output (A1−3) from virtual actuator intensity (Av) and
barycentric coordinates (a1−3).

Perceptual Selection of Interpolation Models

The rendering algorithm translates virtual percepts to a phys-
ical actuator grid. We first construct a Delaunay triangulation
for all actuators to automatically define a mesh on the hard-
ware grid. At each instant of rendering, we use barycentric
coordinates of the virtual animation objects relative to a tri-
angle defined by three real actuators (Figure 5a). Barycentric
coordinates are scaled by an interpolation method to deter-
mine real actuator intensity.

We propose three interpolation models for Mango, derived
from prior psychophysical understanding of phantom VT sen-
sations: (i) linear, (ii) logarithmic (“log”), and (iii) Pacinian
power (“power”) (Figure 5b).

In the linear interpolation model, barycentric coordinates are
linearly related to actuation amplitude. In the log model,
these coordinates are scaled logarithmically, as perceived in-
tensity is related to physical vibration amplitude [36]. In the
power model, coordinates are coupled to the power (square of
the amplitude) of vibrating stimulations [36]. Linear and log
interpolation models have been used in the past to express ei-
ther location or intensity respectively (but not both) of virtual
sensations between two vibrators [1, 29]. A Pacinian power
model was used in [12] to account for both location and in-
tensity of virtual sensation between two vibrators.

Pairwise Comparison Study

To determine the preferred model for this VT hardware in
Mango’s rendering pipeline, and to identify relevant factors
(e.g., frequency, amplitude), we performed a pairwise com-
parison of our three candidate interpolation models.

Participants and Apparatus

Eighteen volunteers took part (6 female, between age 20-35).
The VT hardware consisted of 10 high-quality VT actuators
(C2 tactors, Engineering Acoustics, Inc., USA) arranged in
a 3-4-3 layout and mounted on the back of a chair in a pad
21 cm high, 29 cm wide, and 2 cm thick; actuators form
equilateral triangles with edges of 6.35 cm (Figure 6b). The
rendering engine updates at 100 Hz. Through piloting, we
determined that the device’s on-screen visual outline should
mirror the sensations rendered on the physical device. That
is, if participants see an animation object on the right side of
the screen, they prefer to feel it on the right side of the back.
Figure 6a shows the experiment interface, in which an arrow
represents the sensation direction.

(a) Rendering study interface (b) Output device with highlighted actuators

Figure 6: Rendering study setup and user interface.

Methods

We conducted A/B paired comparison tests (two-alternative,
forced-choice) to determine the preferred model out of the
three candidates. In each trial, participants were presented
with two stimuli at a 400 ms interval. Each stimulus is a
“straight-line” VT stimulation on the back using one model.
Participants were asked to select the stimuli that best repre-
sented straight-line motion in a variety of directions.

Two durations (500 and 1500 ms), eight cardinal directions,
and A/B order were crossed with each model pair, and pre-
sented in a random order. For each trial, frequency was ran-
domly selected from 80, 160, 240, and 300 Hz, and intensity
from between 10 and 20 dB above detection threshold. Each
participant performed 96 trials over ∼15min (1728 total).

Results

Each algorithm pair’s data was fit to a logistic regression
model with participant, frequency, intensity, direction, and
duration as factors; direction was grouped into horizontal,
vertical, and diagonal. We performed stepwise regression
(backwards elimination with α = 0.05 and a χ2 test for re-
moving each factor) to iteratively eliminate factors that were
not statistically significant.

Logarithmic vs. Linear. Regression eliminated duration, fre-
quency, intensity, and direction (p > 0.1). The resulting
model has Nagelkerke R2

= 0.135. Using Bonferroni correc-
tion for multiple comparisons, 95% confidence intervals for
each participant were computed. 11 participants were more
likely to prefer Log over Linear (p < 0.05) models; none
were likely to prefer the Linear model.

Logarithmic vs. Pacinian power. All 5 factors were elimi-
nated (p > 0.1). The overall 95% confidence interval of par-
ticipants selecting Log over Power was 37.06% to 87.40%,
overlapping 50%. We therefore detected no significant differ-
ence of preference between Log and Power models.

Pacinian Power vs. Linear. We eliminated intensity, direction
and duration (p > 0.1), with the fitted model’s Nagelkerke
R2
= 0.0970. The confidence interval for each participant-

frequency combination, via Bonferroni corrections, yielded
22 / 72 participant-frequency combinations selecting Power
model over Linear model more than 50% of the time. No one
chose the Linear model more than 50% of the time.

Conclusion: Logarithmic interpolation outperformed linear
and was equivalent to Pacinian power model. We proceeded
with the logarithmic model for Mango’s implementation, as
the power model did not outperform either of the others.

DESIGN EVALUATION

To evaluate Mango’s animation metaphor and expressive ca-
pability, we asked media professionals to create a variety of
designs. Qualitative evaluation was chosen for rich, focused,
early feedback of the animation metaphor and lessons for iter-
ation. A quantitative comparison between tool perspectives is
left until more refined tools are developed. We wanted to es-
tablish whether this is an effective approach before studying
the most effective approach.

Six participants (P1-6, 3 females) were introduced to Mango
driving the VT hardware described previously. P1 had expe-
rience with haptics but not animation beyond video editing;
P2-5 had animation experience but little or no experience with
haptics; P6 had no experience with haptics or animation, but
was familiar with media tools like Adobe Photoshop. P5 was
also involved with the requirement gathering interviews pre-
sented earlier. Each entire session took 40 to 60 minutes.

Each participant was introduced to Mango with a training
task: designing an alerting sensation using either animation
objects or vector sensations (order counterbalanced). Then,
each participant was given three design tasks. 1) Primarily
temporal: create a heartbeat sensation. 2) Primarily spatial:
tell a driver to turn left. 3) Context-based: create a tactile
animation to match a sound file. A 3-second sound effect
of a bomb falling (with a whistle descending in pitch) then
exploding with a boom was chosen, i.e., complex with two
semantic components. The wide array of resulting designs
can be found in the accompanying video. Mean non-training
task time was 5:59 (med 5:38, sd 2:46, range 1:41-13:48).

After each task, participants rated confidence in their design
from 1 (Not confident) to 5 (Very confident), primarily to
stimulate discussion. All designs were rated 3 or higher; P6
wrote “6” for his sound-based design. The animation object
training task was always rated the same or higher than the
corresponding vector training task. While suggestive, these
ratings were self-reported and from a small sample. We thus
did not conduct statistical analysis.

A semi-structured interview followed the design tasks. Par-
ticipants were asked to compare animation objects with vec-
tor sensations, and to walk through the interface to elicit
feedback. Interviews were conducted and analyzed by a
researcher with training and experience in qualitative re-
search, and followed established methodologies: methods of
grounded theory [2] informed by phenomenological proto-
cols [22]. Analysis resulted in four themes.

Theme 1: Animation Metaphor
Participants found the tool easy to use. All six participants
were able to accomplish all five tasks (object alert, vector
alert, heartbeat, turn left, sound). Participants described the
interface as intuitive (P1-5), agreeing that it was an anima-
tion tool: “It’s up to the standards of other animation tools”
(P1), “This is totally animation” (P2), “It felt very much like

Figure 7: Example of P2’s animation for matching a sound.
See the accompanying video for all participant animations.

an animation tool” (P4), “I’m not an expert when it comes to
haptics, but this software seems almost as if it can change the
game of designing haptic vibrations” (P5). Negative feed-
back focused on polish and feature completeness: “gotta
spline [the keyframe interpolation]” (P2), “a couple quirks
but there was nothing difficult to overcome” (P4), “being able
to design your own curve [path] would be really nice” (P5).

Theme 2: Tactile Animation Object vs. Vector Sensations
Participants relied more on animation objects than vector sen-
sations, which were only used twice: P4’s heartbeat task and
P5’s sound task (combined with an animation object). P1
switched from vectors to animation objects early in her heart-
beat task; no other participants used vector sensations.

Animation objects were described as easier to use and
more intuitive, especially to represent location or for non-
animators. “After using the new object I’d probably never
use new vector again” (P2), “easier to find the location of the
heart” (P1), “if I weren’t an animator I think I would only use
[animation objects]” (P4). Vectors were preferred for more
fine-tuned control when motion didn’t matter as much, often
using many keyframes. “You can control multiple [actuators]
at the same time, so you don’t have to create new objects and
then put them everywhere on the screen” (P1), “[Animation
objects] can be more comfortable to use when one doesn’t
work with keyframes” (P3), “If you want precise control over
[actuators], then vector is the way to go” (P4).

Theme 3: Designing-in-action with direct manipulation
Participants used direct manipulation to feel their designs in
real time, dragging animation objects and scrubbing through
the timeline: “I would make the [animation] object and just
play around with it before creating the animation, as a way
to pre-visualize what I was going to do” (P5), “I kind of play
around with it, and randomly come up with the ideas” (P6).

P2 even noted that YouTube did not have real-time video
scrubbing feedback like Mango’s: “I wish I could scrub back
and forth [with YouTube]” (P2). However, continual vibra-
tions were annoying, and participants requested a “mute” fea-
ture: “It would be nice if...it doesn’t go off constantly.” (P3).

More generally, participants used feedback from their expe-
rience or external examples. P1 stopped to think about her
own heartbeat, P2 used a YouTube video of a heartbeat as a
reference, and P3 based her alert on her phone: “It’s typical
to have two beeps for mobile phones” (P3). Correspondingly,
participants were excited when prompted by an audio sensa-
tion: “I was really happy with the bomb one, because I could
really hear it and imagine me watching a TV and then feel
it at the same time” (P1), “The sound part was good, that
would be a fun thing to design for” (P4).

Theme 4: Replication through Copy and Paste
Replication in both space and time was common while using
Mango. Many designs had symmetrical paths to reinforce
sensations (Figure 7). All but P4 requested copy / paste as a
feature. “I could just copy/paste the exact same thing on the
left side and then move it to the right side” (P1), “I have the
timing the way I like it, ideally it’d be cool if I was able to
copy and paste these, so it would be able to repeat” (P5).

DISCUSSION

Here we interpret our design evaluation, explore animation
with other devices, and describe applications and limitations.

Design Evaluation Summary

From our design evaluation, we conclude that tactile ani-
mation is a promising approach for controlling tactile grids.
Direct, continuous manipulation of tactile animation objects
supported embodied design and exploration by animators,
who rapidly iterated on designs to try new ideas. Mango fa-
cilitated the design of a wide variety of animations (see ac-
companying video) and received positive responses. We also
found recommendations for our next iteration: more anima-
tion features, video as well as audio context, and muting.

Possible Extension to Other Device Classes

The animation metaphor is not limited to a back-based pads.
Part of the advantage of an abstracted animation object is that,
as long as a suitable rendering algorithm can be developed,
the metaphor can apply to other devices. In this section, we
illustrate possibilities that we plan to explore in future work.

1D VT Arrays (Figure 8a): 1D VT arrays are common in arm
sleeves, wrist bands, belts, and similar wearables. These de-
vices provide sensations along the path of the array. By con-
straining objects to a linear or circular path, barycentric coor-
dinates collapse into 1D interpolation.

Dense and Sparse VT Grids (Figure 8b): 2D VT grids are
also common, used in chairs, gloves, and the backs of vests.
While we evaluated Mango with a sparse back-mounted ar-
ray, tactile animation naturally supports denser arrays, either
with our rendering algorithm or by using a nearest-neighbour
technique to activate a single actuator.

Object 1

(a)

Object 1

(b)

Object 1

(c)

Figure 8: Tactile animation could define motion with (a) 1D
actuator arrays, (b) dense and sparse VT grids, (c) handhelds.

Handhelds (Figure 8c): Actuators embedded in handheld ob-
jects, such as mobile devices, game controllers, or steering
wheels, shake objects instead of directly stimulating the skin.
Animators might be able to define source locations for vibra-
tions using handheld-based rendering algorithms (e.g., [29]).

3D Surfaces (Figure 9d): Mango currently only supports a 2D
location for its animation objects. However, tactile animation
can be extended to support surfaces of 3D surfaces, such as
vests or jackets that wrap around the user’s body. More work
will need to be done to perfect this interaction style, possibly
using multiple views or a rotatable 3D model with animation
objects constrained to the surface.

Multi-device contexts (Figure 9e): Mango’s rendering algo-
rithm already supports connections to multiple devices si-
multaneously. The editing interface could combine layouts
for different devices, enabling animators to animate the en-
tire user experience (such as a car’s seat and steering wheel).

Non-vibrotactile devices (Figure 9f): While our rendering al-
gorithm is particular to VT arrays, a tactile animation object
can represent manipulable percepts with other actuation tech-
nologies. Ultrasound-based mid-air displays generate a sen-
sation as a focal point with a position and size [37]; this sen-
sation could be manipulated through a tool like Mango. Sim-
ilarly, passive force-feedback sensations (e.g., Hapseat [4]) or
height displays (a grid of pins) could be supported.

Object 1

(d)

Object 1

(e)

Object 1

(f)

Figure 9: Tactile animation could also define motion with (d)
3D surfaces, (e) multi-device contexts, and (f) non-VT de-
vices like mid-air ultrasound.

Interactive Applications

While our goal was to enable animators to create rich content,
the tactile animation object can be linked to alternative input
sources for other interactive experiences.

User gestures. User gestures and motion can be tracked and
mapped to animation objects directly rendered on the haptic
hardware. For example, a user creates patterns on a touch
sensitive tablet that maps touch locations to a grid. Users
could play games or create personalized haptic messages on
the back of a vest. Similarly, a dancer’s movements could
be tracked through accelerometers, drawing animated haptic
content on the body of her audience through actuated theater
seats during a live performance.

Camera feed extraction. Motion from video feeds can be
automatically extracted with computer vision and rendered
on grid displays [16], providing dynamic patterns associated
with actions during sports, movies, and games. Similarly, an-
imation parameters could be extracted and mapped to posi-
tions on a VT grid, creating haptic feedback for non-haptic
media.

Data streams. One main application of haptic grid displays is
to provide users directional, assistive, and navigational cues
during driving cars, walking down the street, or with over-
saturated sensory tasks. Users could associate digital data
streams, such as GPS input, to predefined set of directional
patterns on the back or palm of the hand.

Limitations

While the tactile animation metaphor seems promising and
may apply to many contexts, it is limited by the require-
ment of a suitable rendering algorithm for target hardware.
We have not yet explored other form factors, such as hand-
helds, multi-device scenarios, or non-vibrotactile sensations.
Although we perceptually optimized our algorithm, we did
not conduct a full psychophysical investigation. Further work
needs to be done to identify the limits, thresholds, and pe-
culiarities of this rendering technique. Examples include:
curved trajectories of animation objects (although partici-
pants’ use of curved motion was encouraging, e.g., P5’s turn
left sensation), spatial frequency control (how to superpose
animation objects of differing frequencies), non-triangular
meshes (e.g., quadrilateral interpolation or kernel methods),
and mixed actuator types (such as a chair with both voice coil
and rumble motors, Figure 9e).

CONCLUSION

This paper introduces the tactile animation object, a new ab-
straction for creating rich and expressive haptic media on grid
displays. This animation metaphor allows designers and me-
dia artists to directly manipulate phantom vibrotactile sen-
sations continuously in both space and time. Our rendering
pipeline, which uses a perceptually-guided phantom sensa-
tion algorithm, enables critical real-time feedback for design-
ing. We incorporated these ideas into a prototype, Mango,
with a design grounded in animator requirements and haptic
design guidelines. Professional animators used our tool to
create a variety of designs, giving positive feedback and ex-
citement for future versions. This approach has the potential
to accommodate a large variety of haptic hardware, ranging
from a single shaking element mounted on the seat to an ar-
ray of actuators stimulating multiple points on the skin, and
can export content into formats applicable in the production
pipeline. Tactile animation empowers animators with a new
set of artistic tools for rich, multimodal feedback.

ACKNOWLEDGMENTS

We thank our reviewers and participants for their valuable
feedback. This work was supported by Disney Research, with
additional support provided by NSERC.

REFERENCES

1. D. Alles. 1970. Information Transmission by Phantom
Sensations. IEEE Transactions on Man Machine
Systems 11, 1 (March 1970), 85–91.

2. J. Corbin and A. Strauss. 2008. Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory (3 ed.). Sage Publications. 379 pages.

3. D. Cuartielles, A. Goransson, T. Olsson, and S. Stenslie.
2012. Developing Visual Editors for High-Resolution
Haptic Patterns. In HAID’12 Posters and Demos. 42–44.

4. F. Danieau, J. Fleureau, P. Guillotel, N. Mollet, A.
Lécuyer, and M. Christie. 2012. HapSeat: producing
motion sensation with multiple force-feedback devices
embedded in a seat. In VRST ’12. 69–76.

5. M. Eid, S. Andrews, A. Alamri, and A. El Saddik. 2008.
HAMLAT: A HAML-Based Authoring Tool for Haptic
Application Development. In LNCS 5024 - Haptics:
Perception, Devices and Scenarios. Vol. 5024. 857–866.

6. M.J. Enriquez and K.E. MacLean. 2003. The hapticon
editor: a tool in support of haptic communication
research. In HAPTICS ’03. 356–362.

7. E. Gunther, G. Davenport, and S. O’Modhrain. 2002.
Cutaneous grooves: composing for the sense of touch.
In NIME ’02. 73–79.

8. V. Hayward. 2008. A brief taxonomy of tactile illusions
and demonstrations that can be done in a hardware store.
Brain research bulletin 75, 6 (April 2008), 742–52.

9. S.R. Herring, C.-C. Chang, J. Krantzler, and B.P. Bailey.
2009. Getting inspired! Understanding How and Why
Examples are Used in Creative Design Practice. In CHI
’09. 87–96.

10. K. Hong, J. Lee, and S. Choi. 2013.
Demonstration-based vibrotactile pattern authoring. In
TEI ’13. 219–222.

11. W.A. IJsselsteijn. 2003. Presence in the past: What can
we learn from media history? In Being There -
Concepts, Effects and Measurements of User Presence
in Synthetic Environments. IOS Press, 17–40.

12. A. Israr and I. Poupyrev. 2011. Tactile brush: drawing
on skin with a tactile grid display. In CHI ’11.
2019–2028.

13. A. Israr, I. Poupyrev, C. Ioffreda, J. Cox, N. Gouveia, H.
Bowles, A. Brakis, B. Knight, K. Mitchell, and T.
Williams. 2011. Surround Haptics: Sending Shivers
Down Your Spine. In SIGGRAPH Emerging
Technologies.

14. J. Johnson and A. Henderson. 2002. Conceptual models:
begin by designing what to design. Interactions 9, 1
(Jan. 2002), 25–32.

15. L.A. Jones, M. Nakamura, and B. Lockyer. 2004.
Development of a tactile vest. In HAPTICS ’04. 82–89.

16. M. Kim, S. Lee, and S. Choi. 2014. Saliency-driven
real-time video-to-tactile translation. IEEE Transactions
on Haptics 7, 3 (Jan. 2014), 394–404.

17. Y. Kim, J. Cha, I. Oakley, and J. Ryu. 2009. Exploring
Tactile Movies: An Initial Tactile Glove Design and
Concept Evaluation. IEEE Multimedia PP, 99 (2009), 1.

18. J. Lee and S. Choi. 2012. Evaluation of vibrotactile
pattern design using vibrotactile score. In HAPTICS ’12.
231–238.

19. J. Lee and S. Choi. 2013. Real-time perception-level
translation from audio signals to vibrotactile effects. In
CHI ’13. 2567–2576.

20. J. Lee, Y. Kim, and G. Kim. 2012. Funneling and
saltation effects for tactile interaction with virtual
objects. In CHI ’12. 3141–3148.

21. C. Moussette and R. Banks. 2011. Designing through
making. In TEI ’11. 279–282.

22. C. Moustakas. 1994. Phenomenological Research
Methods. Sage Publications.

23. S.A. Paneels, M. Anastassova, and L. Brunet. 2013.
TactiPEd: Easy Prototyping of Tactile Patterns.
INTERACT ’13 8118 (2013), 228–245.

24. M. Resnick, B. Myers, K. Nakakoji, B. Shneiderman, R.
Pausch, T. Selker, and M. Eisenberg. 2008. Design
principles for tools to support creative thinking. In NSF
Workshop Report on Creativity Support Tools.

25. J. Ryu and S. Choi. 2008. posVibEditor: Graphical
authoring tool of vibrotactile patterns. In HAVE ’08.
120–125.

26. O.S. Schneider and K.E. MacLean. 2014. Improvising
Design with a Haptic Instrument. In HAPTICS ’14.

27. O.S. Schneider, S. Zhao, and A. Israr. 2015. FeelCraft:
User-Crafted Tactile Content. In LNEE 277: Haptic
Interaction. 253–259.

28. H. Seifi, C. Anthonypillai, and K.E. MacLean. 2014.
End-user customization of affective tactile messages: A
qualitative examination of tool parameters. In HAPTICS
’14. 251–256.

29. J. Seo and S. Choi. 2013. Perceptual analysis of
vibrotactile flows on a mobile device. IEEE transactions
on haptics 6, 4 (Jan. 2013), 522–7.

30. R. Sodhi, I. Poupyrev, M. Glisson, and A. Israr. 2013.
AIREAL: Interactive Tactile Experiences in Free Air.
ACM Transactions on Graphics 32, 4 (July 2013).

31. C. Swindells, E. Maksakov, K.E. MacLean, and V.
Chung. 2006. The Role of Prototyping Tools for Haptic
Behavior Design. In HAPTICS ’06. 161–168.

32. C. Swindells, S. Pietarinen, and A. Viitanen. 2014.
Medium fidelity rapid prototyping of vibrotactile haptic,
audio and video effects. In HAPTICS ’14. 515–521.

33. H. Tan, A. Lim, and R. Traylor. 2009. A psychophysical
study of sensory saltation with an open response
paradigm. Proceedings of the ASME Dynamic Systems
and Control Division 69 (2009), 1109–1115. Issue 2.

34. K. Tanie, S. Tachi, K. Komoriya, M. Abe, K. Asaba, and
Y. Tomita. 1980. Information Transmission
Characteristics of Two-Dimensional Electrocutaneous
Phantom Sensation. Transactions of the Society of
Instrument and Control Engineers 16, 5 (1980),
732–739.

35. D. Tsetserukou, A. Neviarouskaya, H. Prendinger, N.
Kawakami, and S. Tachi. 2009. Affective haptics in
emotional communication. In Proc. ACII ’09. 1–6.

36. R.T. Verrillo and G.A. Gescheider. 1992. Perception via
the sense of touch. Tactile aids for the hearing impaired
(1992), 1–36.

37. G. Wilson, T. Carter, S. Subramanian, and S.A.
Brewster. 2014. Perception of ultrasonic haptic feedback
on the hand. In CHI ’14. 1133–1142.

	Introduction
	Background
	Haptic Entertainment Technologies
	Haptic Authoring Tools

	Tactile Animation Authoring Tool
	Gathering Design Requirements
	Framework for Tactile Animation
	Authoring Interface

	Rendering Algorithm
	Perceptual Selection of Interpolation Models
	Pairwise Comparison Study
	Participants and Apparatus
	Methods
	Results

	Design Evaluation
	Discussion
	Design Evaluation Summary
	Possible Extension to Other Device Classes
	Interactive Applications
	Limitations

	Conclusion
	Acknowledgments
	REFERENCES

