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Abstract— Tactile information is valuable in determining
properties of objects that are inaccessible from visual percep-
tion. In this work, we present a tactile perception strategy that
allows any mobile robot with tactile sensors in its gripper
to measure a set of generic tactile features while grasping
an object. We propose a hybrid velocity-force controller, that
grasps an object safely and reveals at the same time its
deformation properties. As an application, we show that a robot
can use these features to distinguish the open/closed and fill
state of bottles and cans – purely from tactile sensing – from
a small training set. To prove that this is a hard recognition
problem, we also conducted a comperative study with 24 human
test subjects. We found that the recognition rate of the human
subjects were comparable to our robotic gripper.

I. INTRODUCTION

Humans have a remarkable sense of touch that enables

them to explore their environment in the finest detail [8].

Haptic feedback provides subtle cues about the environment

that cannot be obtained from any other perceptual sensors.

Tactile feedback allows us to localize objects in our hand,

determine their rigidity as well as other material properties,

and even their identity. Consider, for example, the task of

choosing fruit. The response of the fruit quickly lets us figure

out whether it is ripe. This is particularly true for fruits

like peaches or avocados whose color is often not a good

indicator of their ripeness.

Tactile sensors provide robots an additional means of

sensing the environment. They range from simple contact

sensors that provide binary information about whether the

robot is in contact with the environment to more complex

arrays of sensors that provide pressure sensing at a resul-

tion comparable to human finger tips. Force-torque sensors

mounted on the wrist of a robot are also often used to

provide tactile information about the environment, but can

only measure forces after an object has been safely grasped.

At the moment, the information provided by contemporary

tactile sensors tends to be lower resolution and covers a

smaller area compared to visual perception, and therefore

requires different algorithms. Furthermore, the sensor must

be actively controlled to explore the environment in contrast

to visual sensors.

Over the past years, several promising approaches have

been developed on the technological or sensor side. Artifi-
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Fig. 1. Left: A mobile manipulation robot grasping a bottle estimates
the internal state of the grasped object from its tactile appearance. Right:

Comparative study on tactile performance with human test subjects.

cial skins that measure orthogonal pressure at spatial and

temporal resolutions comparable to human skins are often

composed of elastic, conductive or resistive polymers, which

change their electrical properties depending on the applied

pressure. They can, in principle, be manufactured to cover

larger parts of a robot at relatively low cost. Several research

groups reported [7], [9], [10] to have successfully wrapped

substantial parts of the surface of their robots using such sen-

sors, for example, to ease human-machine interaction or to

improve the robustness of object manipulation tasks. Tactile

sensing has most often been used for object recognition or

localization.

In this work, we will present a novel approach that uses

the tactile information for estimating the state of the object to

be manipulated, before the object actually is lifted. We gain

this information from the temporal response of the object

to an applied force profile during grasping. It can prove

valuable in observing information about an object that cannot

be gained from perception, e.g. to answer questions like:

is a bottle closed or open, or, is the bottle full or empty.

This information can then be used both for low-level motor

control or higher-level motion planning algorithms with the

aim to make object manipulation more robust. For example,

appropriate gripping force, manipulation speed, or impose

other constraints can be selected, in order to neither spill

liquid nor crush the bottle.

We apply this approach to the particular case of dis-

criminating among different types of liquid containers, like

bottles and cans. We show excellent results in terms of

discriminating among the container classes. Furthermore, we

show that we can estimate the internal state of the object,

indicating whether it is closed or open and empty or full.



We compare the results from these experiments to human-

study experiments, where human subjects were asked to

discriminate among the same set of objects.

A. Related Work

Several studies have shown that humans are very good

at modulating the applied grasp force in relation to the

expected load force [8]. Even during dynamic motions such

as walking or running, humans always apply the minimum

force required to hold an object safely. These coordinative

constraints simplify the control by reducing several degrees-

of-freedom during the manipulation tasks. Tactile perception

hereby plays an essential role: In experiments with humans, it

was shown that the test subjects exerted much more gripping

force than actually was needed when their fingertips are

anesthetized, even if visual feedback was available [14].

Different tactile sensor principles for robots have been

explored in the past, such as pressure-sensitive conduc-

tive polymers [25], piezo-resistive sensors [6], piezo-electric

vibration sensors [15], and capacitive sensors which can

additionally measure sheer force [3] or temperature [2]. A

good survey on the different approaches can be found in [24].

Tactile sensors have been used in the past to explore the

3D shape of objects [1]. Others have used tactile sensors to

detect ridges and bumps in the material [16] by sliding the

robotic finger over an object to estimate the material from

the obtained frequency spectrum [4]. Sensors based on piezo-

electric vibration have been used to determine the hardness or

softness of probed biomaterials [17]. Force-sensitive fingers

have been used to control the robot’s position [5], i.e.,

to continuously keep the finger in physical contact while

moving the object. It has also been shown that tactile sensors

can be used to estimate the 3D pose of objects with known

shapes [18]. Russel et. al. used a tactile sensor matrix for

object classification [21]. Their approach extracts geometric

features like point, line, or area contacts and integrates them

over time to classify the objects into generic classes such as

boxes, spheres, cylinders, etc. Later, Russel [22] showed that

a similar approach can also be used for object classification

using an 8-whisker tactile sensor on a robotic gripper. Recent

work on object recognition [23] used tactile sensing to

gain low-resolution intensity images of an object. These

images were then used in a bag of features approach often

used in perception based recognition to recognize objects

of different shapes and sizes. The authors also presented an

active controller that could determine the next best action to

execute to maximize the information gained.

A few prior works [12], [13] exist on estimating the

friction coefficients such that slippage and crushing are

avoided. Maeno [12] gives a good overview over existing

techniques and describes how their system estimates these

values from the tangetial forces while pushing a tactile sensor

into a surface.

Our approach differs from previous approaches as our aim

of estimation is different. To the best of our knowledge, we

are the first to estimate the state of a container based on

tactile observations. We propose a small set of generic tactile

features that can easily be computed for a gripper that is

equipped with tactile sensors. Another contribution of this

paper is that we provide a human study in which we asked

human subjects to perform the same recognition tasks as the

robot. The results of this study illustrate the difficulty of the

recognition task.

Outline In Section II, we present our approach for the

extraction of a generic set of tactile features. We also describe

the learning algorithm used in our experiments. In Sec-

tion III, we describe the hardware used for our experiments

and the controller designed to minimize impact on delicate

objects. We also present details about the experiments in-

cluding data acquisition and classification results. Section IV

presents the results of the human study experiments. We

conclude in Section V with a discussion of the results and

possibilities for further study.

II. APPROACH

A. Requirements

For our approach, we assume a mobile manipulator with a

force-sensitive gripper. At each point in time, we assume that

the gripper can measure its position p(t) ∈ R, velocity ṗ(t) ∈
R and the force f(t) ∈ R sensed by fingertip sensors. In this

section, we formulate our approach based on the presence of

this set of sensor inputs.

We also assume the existence of a controller that can apply

the required force profile and measure necessary features. An

important requirement for this controller is that it should not

damage the objects but still should be able to grasp the object

firmly. These requirements necessiate the design of a special-

ized controller. In particular, in Section III, we describe the

design of the controller used for our experiments.

B. Feature selection

A critical part of the learning based classification is the

choice of features. We have experimented with different fea-

tures in our studies, and propose now a small set of generic

features that can characterize the deformation properties of

objects being grasped. Consider the schematic drawing in

Fig. 2 of force-distance profiles that we obtain while grasping

objects using our controller described in Section III.

From preliminary experiments, we identified two impor-

tant points in time: the moment the gripper makes first

contact with the object tfirst and the time tsteady after which

the sensor values have converged (and the grasp is stable).

In practice, we require for the first contact detection that

both fingers are in contact with the object, i.e., that the force

measurement of both fingers is above a certain threshold

τ1. With tsteady, we then denote the point in time where the

gripper comes to rest, i.e., its velocity drops below a certain

threshold τ2.

tfirst = arg min
t

|f(t)| < τ1 (1)

tsteady = arg min
t>tfirst

|ṗ(t)| < τ2 (2)



Fig. 2. The set of features chosen for use in the recognition task.

At moment tfirst, we extract the first contact distance

pfirst = p(tfirst). Note that this is a measure of the uncom-

pressed size of the object. The second feature is the distance

between the two fingertips after the gripper has compressed

the object fully. We label this the steady state distance

psteady = p(tsteady). (3)

Note that this distance is a function of both the material and

geometric properties of the object and of the internal state

of the object, i.e. whether the object is open or closed and

full or empty.

Another useful feature is the time that it takes between

making contact with the object and coming to a rest, denoted

by

∆t = tsteady − tfirst. (4)

Two other useful features are the average velocity ∆p/∆t
of compression and the average rate of change of the fingertip

center sensor force ∆f/∆t, which can be computed from the

features from above as follows:

∆p/∆t = (psteady − pfirst)/∆t (5)

∆f/∆t = (fsteady − ffirst)/∆t. (6)

The average velocity ∆p/∆t represents the rate at which

the object gets compressed and can differ based on the

material properties and the geometry of the object. Equiva-

lently, ∆f/∆t could be thought of as representing an average

compression ratio.

We have now defined a set of 6 generic features that can

be easily extracted by the robot while grasping an object,

see Tab. I. We do not claim that this list is complete, but as

we will show in Section III, we were able to recognize the

object class and its internal state from these features alone.

C. Training data

We have gathered data for a large number of different

objects. For each trial, we obtained measurements for our

6-dimensional feature vector a ∈ R
6, i.e.,

a = (pfirst, psteady, fsteady,∆t, ∆p/∆t, ∆f/∆t)T , (7)

and a label c ∈ C containing the object’s class and internal

state. As a result, we get a training database D containing a

set of attribute-class tuples (a, c).

feature description

pfirst the first contact distance
psteady distance after which grasping is complete
fsteady force sensed after grasping has completed
∆t duration of the grasping
∆p/∆t average compression velocity
∆f/∆t average compression ratio

TABLE I

GENERIC SET OF FEATURES THAT CAN BE USED TO CLASSIFY AN

OBJECT BEING GRASPED.

D. Decision tree classifier

Subsequently, we have applied a C4.5 decision tree clas-

sifier on our training data [26]. We have also tried other su-

pervised classifiers, like support vector machines and neural

networks, from which we obtained similar (or slightly worse)

results. The reason for this might be that all algorithms

are able to extract almost the same amount of data from

the training set. The advantage of decision trees over other

classifiers is that the learned concepts can intuitively be

interpreted.

The C4.5 decision tree classifier [20] is an extension of

the ID3 algorithm. In addition to that, C4.5 can deal with

continuous attributes.

Decision tree induction is an iterative process: it starts

by selecting an attribute that most effectively splits the data

according to their data classes. Typically, the information

gain (which is the reduction in entropy) is used as a measure

for selecting the split. The entropy H of a set D is defined

as

H(D) = −
∑

c∈C

p(c) log p(c), (8)

where p(c) is the probability of target class c in the training

set, i.e.,

p(c) =
1

|D|

∑

(a,c)∈D

1. (9)

As all our attributes are continuous, a split s is defined by

a split value svalue for a particular split attribute sattr, i.e., the

training set D is divided into two subsets

D≤ := {(a, c)|asattr
≤ svalue, (a, c) ∈ D} (10)

D> := {(a, c)|asattr
> svalue, (a, c) ∈ D} . (11)

From all possible splits, C4.5 now selects the one with the

highest information gain, i.e.,

s = arg max
s∈S

IG(D, s), (12)

where the information gain (IG) is defined as the reduction

in entropy of the resulting sets compared with the initial set:

IG(D, s) := H(D) − H(D|s), (13)

where the conditional entropy H(D|s) is defined as

H(D|s) = H(D≤)p(≤) + H(D>)p(>). (14)



 0

 25000

 50000

 75000

 100000

 0  25  50  75  100  125  150  175  200

ra
w

 s
en

so
r 

v
al

u
es

applied force [N]

raw sensor values

Fig. 3. Calibration data relating raw sensor values to forces calibrated
using a load cell.

Each split s corresponds to a node of the decision tree

with two children. The same procedure is then repeated

for the resulting subsets D≤ and D>, until the leafs are

homogeneous with respect to the target class, i.e., the entropy

in the dataset of the leaf is zero.

Another important step after training is pruning, to avoid

overfitting to the training data. This is done by replacing

a whole subtree by a leaf node if the expected error rate

(computed on a test dataset hold out during training) in the

subtree is greater than in the single leaf [26].

III. EXPERIMENTS

A. Hardware

The hardware used for the experiments in this paper is part

of the PR2 personal robot. The PR2 is a two-armed robot

with an omni-directional base. It has an extensive sensor

suite useful for mobile manipulation including a tilting laser

scanner mounted on the head, two pairs of stereo cameras,

an additional laser scanner mounted on the base and an IMU

mounted inside the body. Encoders on each joint also provide

continuous joint angle information. Each arm also has an

additional camera mounted on the forearm. The camera is

mounted so that an object grasped by the hand is within its

field of view.

Figure 4 shows the parallel plate gripper mounted on

both arms of the robot. The gripper has a single actuator, a

brushless DC motor with a planetary gearbox and an encoder.

The transmission function between the rotary displacement

of the actuator and the lateral displacement of the two fingers

is known. A separate load cell was used to calibrate the

gripper. It can apply a maximum force of 200 N but is

software limited to 100 N. This was also approximately the

amount of force that a human can apply by pinching his/her

forefinger and thumb together. Each gripper has a capacitive

sensor consisting of 22 individual cells mounted on each

fingertip. A 5 × 3 array is mounted on the parallel gripping

surface itself while 2 sensors are mounted on the tip of the

fingertip and one on the back. Two sensor arrays with 2

sensors each are mounted on each side of the fingertip.

The capactive pressure sensors respond to the normal

forces exerted on them. They were calibrated by using a

load cell to measure the net force applied by the gripper and

comparing it to the net force sensed by the fingertip sensors.

Fig. 4. Left: The experimental setup showing the gripper mounted on
a stand. Right: Some of the bottles and cans used for our experiments.
From left to right: Odwalla fruit juice bottle, water bottle, Naked fruit juice
bottle, Coke can.

The calibration curve for the two fingertip sensors is shown

in Figure 3. Here, the raw sensor values for the fingertip

sensors are computed by adding up the sensor values for the

individual sensors on the grasping face of the sensor. The

calibration data is stored in a lookup table that can be used

to convert raw sensor values to the actual force sensed by

the fingertip sensors.

B. Controller

We explored different controllers for the gripper to achieve

the objective of grasping objects without crushing them. A

pure velocity controller cvelocity(ṗ(t), t) makes the gripper

approach an object slowly, but after it contacts the object,

it increases its force output in order to establish a constant

velocity ṗtarget, and thereby crushes the object.

Another option is to use a force controller cforce(f(t), t).
Such a controller can hold an object in the hand firmly, by

trying to apply a constant force ftarget. With a constant force

controller, the gripper continuously accelerates until contact

is achieved. This can lead to high velocities at impact. As an

example, see Figure 5, where the the gripper was grasping

a very rigid object (here, a wooden block). The significant

impact force applied to the object on contact can easily

damage rigid, but delicate objects, like eggs [19]. Of course,

the applied constant force could be reduced to deal with

such cases. In practice, however, if the commanded force

is below the force required to overcome static friction, the

gripper does not move at all.

Driven by these considerations, we chose to create a

compound controller: first, we close the gripper slowly

around an object using the velocity controller until it makes

contact with the object. Then, we switch seamlessly to the

force controller in order to close gently to measure the

object’s deformability properties. This hybrid controller has

two parameters: both the initial velocity ṗtarget and its probing

force ftarget have influence on the executed grasp.

cgrasping(t) =

{

cvelocity(t, ṗ(t)) while f(t) = 0
cforce(t, f(t)) thereafter

(15)

The result of the hybrid velocity-force controller can be

seen in Figure 6. Here, a wooden block was grasped by

the gripper using the new controller. The peak force acting
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Fig. 5. Measured net fingertip force (N) for grasping a wooden block and
a rubber toy when using a pure force controller. The high impact forces can
destroy delicate, but rigid objects, like eggs.

on the object is significantly lower. Further, this controller

was successful in grasping eggs without crushing them. A

movie showing the comparison between an open-loop effort

controller and the closed-loop grasping controller can be seen

at [19].

C. Experimental setup

Using the controller described in Section III, we proceeded

to get data on different types of objects. We chose to work

with a variety of liquid containers. We chose containers that

contained 2 different brands of juices (Odwalla and Naked),

water bottles and multiple soda cans (Figure 4(right)). The

gripper was mounted on a stand so that it would stay

immobile and could grasp each container at a fixed height

above a planar table surface. The experimental setup for

acquiring the training data is shown in Figure 4 (left).

The acquisition of training samples started with the gripper

fully open. The containers were placed one at a time between

the gripper fingertips. The gripper was then closed using

the hybrid force velocity controller described earlier. As the

gripper closed, it was possible that one of the fingertips

came into contact with the object before the other one.

This was taken into account in the controller, which always

looked for contact on both fingertips before concluding that

the object was in the initial state of grasping. Contact was

determined by using a threshold value on the net force sensed

by each fingertip. On contact, control was switched to a

constant force control. Once the gripper came fully to rest,

the controller waited for a small interval of time before

opening the gripper fully. During each trial, the features

described in Sec. II were extracted and written to a file.

D. Objects and Internal States

The container classes present in the training set are the

following:

1) Odwalla fruit juice bottles

2) Naked fruit juice bottles

3) Soda cans

4) Water bottles

Each of these containers can be in multiple internal states

depending on whether the containers are open or closed

and full or empty. The internal states that we would like

to differentiate are the following:
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Fig. 6. Fingertip distance and fingertip force vs. time plots showing the
reduced impact forces using the hybrid controller. First contact happens at
about tfirst = 6 seconds followed quickly by a steady state at about tsteady

= 6.75 s where fingertip distance stays constant. The probing effort is set to
23 N. Note that the fingertip force does not spike above the desired probing
force on impact.

1) closed and full

2) closed and empty

3) open and full

4) open and empty

E. Data acquisition

We collected data using different numbers of trials for each

of the internal states for each container class. We carried out

a total of 66 trials with 12 Odwalla fruit juice bottles in 4

different internal states, 80 trials with 16 water bottles in

4 different internal states, 42 trials with 12 cans that only

had 3 different internal states, and 41 trials with 10 Naked

fruit juice bottles. Thus, there were a total of 229 trials

for all the different containers and internal states. We used

different instances of each container class in collecting the

data to account for variations within a container class. We

also rotated the containers around between taking measure-

ments to take account of variations in surface properties of

individual containers with changes in orientation with respect

to the gripper fingertips. All this data was collected with the

probing force set at 20 N.

We also collected a subsequent dataset just for the Odwalla

fruit juice bottles using three different probing forces of 17,

20 and 23 N. This involved conducting 24 trials for each

internal state for a total of 96 trials for all the 4 nodes for each

probing force. This data was used to carry out training and

testing for recognizing the internal state given a particular

class of bottle. The intention was to test how the magnitude

of the probing force could affect the recognition rate.

F. Classification results

The two aims for the classification task were: (a) recognize

the different container classes and (b) recognize the internal

state within each class that would indicate whether the

container is full or empty and open or closed.

To test our classifier we used ten-fold cross validation for

each experiment, i.e., first the stratified dataset was divided

into 10 parts. Then we learned the decision tree on 9 parts,

and used it subsequently to classify the test instances from

the remaining part. This was repeated each of the ten folds,



TABLE II

CONFUSION MATRIX FOR RECOGNIZING THE CLASS OF THE CONTAINER,

WITH fTARGET = 20 N. THE RECOGNITION RATE IS 93.9 %.

a b c d
58 1 0 1 a = Odwalla fruit juice bottles
8 40 0 0 b = Naked fruit juice bottles
0 0 41 3 c = Softdrink cans
0 0 1 76 d = Water bottles

such that we ended up with target class predictions for

all instances in the dataset. Finally, the predictions were

compared to the true target class, and the recognition rate

was computed as the ratio between correctly and incorrectly

instances.

Table II shows the confusion matrix for recognizing the

different container classes. Note that the size pfirst of the

different containers is a discriminative attribute for the dif-

ferent containers, yet two sets of containers (Naked and

Odwalla fruit juice juice bottles) have similar sizes. They

can, however, be distinquished by using fsteady, the net force

reported by the fingertip sensors at full compression.

As the results show, our approach had a 93.9 % accuracy

in recognizing the different sets of liquid containers. The

most confusion was in discriminating between the Odwalla

fruit juice bottles and Naked fruit juice bottles. Note that this

recognition could have been easily performed using image

based feature recognition as well. Our approach is not meant

to compete with such approaches but is meant to complement

other approaches and to be used for confirmation of the

hypothesis from perception based approaches.

In the second part of our evaluation, we have measured

the recognition rate of the internal state of a container, given

its class. The different values that the internal state can take

were closed and full, open and full, open and empty, closed

and empty (except for cans that obviously cannot be closed

after being opened).

This part of tactile perception was harder, but still yielded

promising results (see Table III). We found, that the recog-

nition rate strongly depends on the particular container. This

result is not surprising, as obviously feeling the internal state

of a container strongly depends on how well it manifests its

internal state to the outside, i.e., in its tactile appearance.

Interestingly, we found that the Odwalla bottles were sepa-

rable the easiest. Their internal state was estimated correctly

at 94.8%, compared to 58.3% for Naked bottles, 74.4% for

cans and only 32.5% for water bottles. The water bottles are

made of very flimsy plastic and tend to deform unpredictably.

We also found, that the recognition rate was a function

of the parameters of our hybrid controller. While the influ-

ence of the initial grasping velocity ṗtarget was negligable,

we found that choosing a good probing force ftarget could

improve the recognition substantially, see Table IV. This

parameter determines how hard the gripper probes into the

object, and should therefore be carefully selected according

to the object class. In the case of the Odwalla bottle, we

TABLE III

RECOGNITION RATE OF THE INTERNAL STATE, PER CONTAINER CLASS,

WITH fTARGET = 20 N.

Object Class Recognition Rate
Odwalla fruit juice bottles 83.3%
Naked fruit juice bottles 58.3%
Softdrink cans 74.4%
Water bottle 32.5%

TABLE IV

RECOGNITION RATE, DEPENDING ON THE PROBING FORCE PARAMETER

fTARGET , FOR THE ODWALLA FRUIT JUICE BOTTLES.

ftarget Recognition Rate
17 N 69.8%
20 N 83.3%
23 N 94.8%

found, for example, the stronger probing force of ṗtarget =
23N to be more informative than weaker ones. Of course, too

high probing forces can potentially make the gripper crush

the object.

In a combined experiment, where we let the robot estimate

both the container class and the object internal state except

for water bottles (resulting in 11 possible combinations), we

obtained a recognition rate of 63.8%.

The confusion matrix for the specific case of recognizing

the internal state of an Odwalla bottle is shown in Table V.

As the results show, our approach had a 94.8% success rate

in terms of recognizing the internal state within the class

of Odwalla bottles when probing with ftarget = 23 N. It is

interesting to note that the open and full bottle tends to be

compressed for the longest time, i.e., ∆t is large. The steady

state force fsteady differentiates between the open and empty

bottle and the empty and closed bottles while the steady

state distance psteady differentiates the closed and full bottle

very easily. However, when we repeated this experiment with

bottles that had been subjected to repeated compressions,

the recognition rate decreased again to 81 %. This is not

surprising considering that the classifier was trained on data

from fresh bottles while the testing was now done with

bottles that had been subject to repeated stress. A movie

showing the system recognizing the internal state of a set of

bottles using the learned classifier can be found in [?].

IV. HUMAN STUDY

The experimental results show that the robot could do

reasonably well in terms of recognizing both the container

class in the first series of experiments and internal state of

an object in a second series of experiments.

We designed a human study to compare the performance

of the robot to that of humans for the internal state estimation

problem. The study was designed to find out if, using only

tactile feedback, humans could achieve comparable recogni-

tion rates for the task of recognizing the internal state of an

object. Figure 1 (right) shows the experimental setup used for

the human study. Test subjects were asked to recognize, using



TABLE V

CONFUSION MATRIX OF OUR APPROACH FOR RECOGNIZING THE

INTERNAL STATE OF AN ODWALLA FRUIT JUICE BOTTLE FROM THE

TACTILE APPEARANCE USING A ROBOTIC GRIPPER (fTARGET = 23 N).

THE RECOGNITION RATE IS 94.8%.

a b c d
24 0 0 0 a = full closed
0 20 1 3 b = empty open
0 0 24 0 c = full open
1 2 0 21 d = empty closed

TABLE VI

OVERALL CONFUSION MATRIX FOR ALL HUMAN SUBJECTS FOR

RECOGNIZING INTERNAL STATE OF AN ODWALLA FRUIT JUICE BOTTLE.

THE RECOGNITION RATE IS 72.2%.

a b c d
48 8 5 0 a = empty open
5 41 1 3 b = empty closed
16 11 55 2 c = full open
2 8 7 63 d = full closed

only tactile information from squeezing a bottle, the internal

state of the bottle. They were provided the opportunity to

train beforehand until they were confident about their ability

to discriminate between the different internal states of the

bottles. Each test subject was then asked to identify the

internal state of 16 different bottles sequenced in a random

order. The subjects were instructed not to move or pickup

the bottles and could not see the bottles while they were

grasping them. To simulate the two-fingered grasp used by

the gripper, the test subjects were asked to use only their

thumb and index finger for the grasping task. Additionally,

noise-canceling headphones were used to minimize the sound

cues that subjects could pick up. There were a total of 17

test subjects.

Table VI shows the overall confusion matrix for all the

trials together. The average recognition rates for all the

subjects was 75.2%. The highest recognition rate was for

bottles that were full and closed. There was considerable

confusion between the empty/closed and full/open bottles.

Based on a questionnaire filled out by the subjects at the

end of the test, we found that most subjects were using

features similar to the ones chosen for the learning approach.

The two most cited features by the human subjects were the

total compression distance and but also the rate at which

the bottle returns to its original shape. The second feature

is easier for humans to detect than the robot since the

grippers on the robot are not easily back-drivable. The most

successful test subjects cited a different set of features to

discriminate between the bottles. They used high-frequency

feedback from tapping the bottle with their fingers to detect

the presence or absence of liquid in the bottle. At present

the sensors on the robot are inadequate to gain this kind of

information.

V. CONCLUSION

In this paper, we have presented an approach for esti-

mation of the internal state of objects being grasped by a

mobile manipulator by using tactile sensors. We proposed

a set of simple features that can be easily extracted from

tactile sensing and proprioception. In experiments carried

out on real data, we have shown that both the object class

as well as its internal state can be estimated robustly. In

a direct comparison experiment, we have shown that the

robot’s performance is of the same magnitude as human

performance. The robot’s performance improved with an

increase in the magnitude of the probing force used for

detection, presumably since this rendered the features used

for detection more discriminative.

Despite these encouraging results, there are several di-

rections for future research. Detection would clearly benefit

from better sensors, for example with the ability to sense

lateral forces with higher temporal resolution. An interesting

approach that could be examined in the future includes the

use of high-frequency signals and the haptic response from

objects to such signals [11]. Temperature sensors in the

gripper might also provide additional information to aid the

recognition task.
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