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ABSTRACT

The paper describes a whole-field imaging sensor 
developed on the principles of photoelasticity. The sensor 
produces colored fringe patterns when load is applied on the 
contacting surface. These fringes can be analyzed using 
conventional photoelastic techniques, however, as the loading 
in the present case is not conventional some new strategies 
need to be devised to analyze the load imprint. The loading is 
unconventional in the sense that low modulus photoelastic 
material is deformed under vertical load in the direction of 
light travel to induce the photoelastic effect. The paper 
discusses the efficacy of both RGB calibration and phase 
shifting techniques in sensing applications. The characteristics 
of fringe patterns obtained under vertical and shear loads have
been studied and the results obtained under these conditions 
are discussed with their limitations specifically when this is 
applied for sensing applications. Finally a case study has been 
conducted to analyze a foot image and conclusions drawn 
from this have been presented.

Keywords: Whole-field Sensor, Photoelasticity, RGB Methods, 
Phase unwrapping, Unconventional Loading

INTRODUCTION

Photoelastic materials exhibit temporary birefringence 
when subjected to mechanical stresses. This produces colored 
fringes in the material under white light, which can be 
visualized through suitable optical filters. This characteristic is 

based on the phenomenon possessed by certain non-crystalline 
materials that are ideally isotropic but behave anisotropically 
when loaded [1]. The effect is temporary and persists only 
until specimen is loaded. This has conventionally been used 
for analyzing stress distribution in loaded models, however, 
this effect can potentially be used in sensing applications if the 
fringe information can be precisely quantified in terms of 
stress distribution. The advantage of using this technique is to 
get whole-field visualization of the stress field, which may 
provide load information of the entire field as opposed to 
employing strain gauges, or load cells that only offer discrete 
load information. This property of the material has been used 
in developing a number of discrete signal-based sensors [2-4], 
however, as the fringe patterns contain details of the loading 
conditions this can be exploited for developing a whole-field 
sensor. The same technique can be enhanced for any 
generalized case involving complex fringe patterns under 
different loading conditions for whole-field analysis. This may 
find application in a number of sensing areas including 
biomedical and robotics for example, to assess the footprint of 
diabetic patients or to analyze pressure patterns of disabled 
subjects and thereby enacting prevention strategies by suitable 
footwear or bed design. The technique may also be suitable for 
developing haptic interfaces in robotic applications or human-
computer interface [5]. This will require use of suitable 
photoelastic material that can have a wide dynamic range and 
is sensitive to different loading conditions. These requirements 
make the conventional photoelasticity depart from the existing 
stress analyzing techniques, which may not be applicable in a 
certain class of loading situations. For example, in order to 
obtain imprint of foot loading condition, low modulus material 
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has to be used and loading has to be applied in the direction of 
light travel. This is atypical of conventional photoelasticity, 
where loading is applied across the light travel for pronounced 
photoelastic effect [6]. This paper evaluates the use of 
conventional photoelastic techniques under such loading 
conditions and discusses their limitations and proposes 
alternative approaches that may be necessary for sensing 
applications.  

SENSING ELEMENT AND LOADING CONDITIONS 

The conventional photoelastic techniques are generally 
used for surface stress problems, however, if this technique is 
applied for sensing applications, direction of applied load 
becomes an important factor which needs to be considered 
carefully.  For pronounced photoelastic effect to take place the 
forces need to be applied perpendicular to the direction of 
light travel and thus tangential to the sensing surface. 
However, for forces in the direction parallel to the incident 
light (perpendicular to the surface), which may be required in 
sensing applications, some indirect method of analysis must be 
used (since the photoelastic effect is generated due to material 
deformation), such as contact stress analysis or techniques to 
investigate the effect of load on perpendicular planes. In the 
present case, photoelastic effect is induced due to vertical 
force on the surface of photoelastic material, which means that 
direct photoelastic relationships may not generate accurate 
result.

The arrangement of various elements of the sensing 
module is shown in Figure 1. A 3 mm photoelastic sheet was 
glued to a 15 mm thick polycarbonate sheet using clear 
adhesive of matching elasticity. The photoelastic material used 
in the experiment has a low modulus of elasticity of 4 MPa, 
which is suitable for dynamic or wave propagation studies [7]. 
This makes it ideally suited for the intended sensing 
application. The top surface was coated with a reflective paint 
with appropriate elastic properties to provide a reflective 
backing. This forms the sensing surface where load can be 
applied and fringes can be viewed from the other side i.e. 
through the polycarbonate sheet with suitable filters [8]. The 
polycarbonate sheet served as a strong support for the low 
modulus photoelastic sheet during load application.

Figure 1. Elements of the sensing module

A set of indenters is designed to apply controlled vertical 
and shear loads to the material. Figure 2 shows the design of 
the indenter plate with four indenter heads. The images 
obtained from the sensing plate under vertical and shear force 

are shown in Figure 3. The figures show the fringe pattern 
developed when a force of 8N is vertically applied by an 
indenter of 3.5 mm diameter. It can be seen that the patterns 
are generally symmetrical. When a shear force of 8N is 
introduced to the vertical force the fringes are shifted (adjacent 
figure) in the direction of shear. It is interesting to see that the 
photoelastic effect is appreciable outside the point of 
indentation. It is this property of the photoelastic material to 
automatically magnify the load makes it ideally suited for such 
sensing applications, which can be used for measuring vertical 
as well as shear forces which may exist on the plane.

Figure 2. Loading plate with indenters 

These images are representative of a whole-field sensor 
where the entire area covered can be mapped against the 
stimulating forces, however, these fringes are produced as a 
result of deformation of material so stress concentration at the 
point of application is too large. Also the photoelastic effect 
(colored fringes) under the indenter head is not pronounced 
since load is applied in the direction of the light travel. 
Therefore, no useful stress information can be extracted from 
this region.  

Figure 3. Fringe patterns under (a) vertical, (b) shear loads

PHOTOELASTIC IMAGE ANALYZING TECHNIQUES 

The most commonly used photoelastic techniques are 
RGB calibration [9-11] and phase-shifting [12-14] methods. 
The RGB calibration is a simple technique which provides 
isochromatic (stress) information in terms of fringe order. The 
technique requires generation of a look up table (LUT) and 
extracting fringe order from the table for test points. Under 
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white light stress information is represented in form of colored 
fringe patterns which appear in sequence. The technique 
exploits this fact to generate a LUT with color information 
against fringe order. During analysis the RGB triplet value of 
test point can be compared to the LUT values using least 
square method (equation 1) thus fringe order can be 
determined and stress analysis can be performed. 

2
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2
ms

2
ms )B(B)G(G)R(Re  (1)

where e is the error function, m(RGB)  are measured RGB 

triplet values at the test point and s(RGB) are the stored RGB 

triplet values in the LUT. The technique is not 
computationally intensive, however, only fringe order up to 
three can be determined relatively accurately with some sparse 
errors. The technique is prone to errors for higher fringe orders 
i.e. highly stressed zones with densely packed pixels cannot be 
determined accurately and requires some advanced fringe 
tracking algorithms and special light sources [15]. 

Phase shifting, on the other hand, is the most promising 
multi-image technique providing both isoclinic (direction) and 
isochromatic information. It is based on acquisition of phase 
stepped images of photoelastic model at different orientation 
of optical elements. Intensity equations from these images are 
used for determination of isochromatics and isoclinics. An 
algorithm is required for phase unwrapping of the data 
obtained from these equations. 

Equations (2-3) are used to determine isoclinics and 
isochromatic respectively, and are derived from the intensity 
equations of six phase stepped images. 
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where   is isoclinic value,   is isochromatic value and ni are 

intensity representation of phase stepped images, (n =1, 2…6).
This method works well, however, errors are prominent at the 
point of loading and are difficult to unwrap. 

SENSOR DESIGN

The experimental sensor developed to conduct LUT based 
calibration in RGB photoelasticity is shown in Figure 4. Due 
to the requirements of application, reflection photoelasticity 
was implemented in these experiments. This requires only one 
set of linear and quarter wave plate or one circular polarizer. 
The placing of polarizer, quarter wave plate and spacing 
between scanner bed and the model is slightly exaggerated in 
the figure, but in actual setup they form a compact unit. Load 
applied on the photoelastic material generates colored fringes 

under white light which can be recorded by a digital camera 
for processing.  

Figure 4. Sensor design for RGB calibration method

As the application is based on reflection mode, for phase-
shifting experiments images at different orientations of optical 
elements are required, thus use of partial mirror was made. 
The setup uses a separate light source and a camera oriented 
orthogonally for the ease of operation in this experiment. 
Figure 5 shows a schematic diagram of the design with optical 
filters. Using a partial mirror gives an advantage of a portable 
setup at the cost of light intensity due to partial reflection and 
transmission.
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Figure 5. Sensor for phase shifting experiment with a partial 
mirror.

RGB CALIBRATION METHOD

The RGB calibration technique as discussed above was 
applied to determine the complete fringe order for fringe 
patterns obtained under the indenter load (Fig. 3a). The center 
of pattern was masked due to high stress region under the 
indenter head (theoretically the fringe order in this region is 
greater than three). Figure 6(a) shows the fringe patterns after 
masking with line a-b along which the fringe order was 
determined as shown in Figure 6(b). 
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Figure 6. Fringes under unconventional loading (a) fringes due 
to indenter loading, (b) fringe order along line a-b.

From the fringe order principal stress difference can be 
obtained using equation (4) and stress analysis can be 
performed at every point along the line.
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where N is the fringe order, t is the material thickness, E is the 
modulus of elasticity,  is Poisson’s ratio,  is the wavelength 
of light used and K is the strain optic co-efficient of the 
material.

As can be seen in Fig. 6(b), with the conventional RGB 
method fringe order beyond 1.5 is difficult to track and had a 
limited accuracy in the available range. The main reasons for 
this are (i) due to method itself which allows maximum fringe 
order of three to be determined in addition to the type of light 
source and image acquisition system used (ii) the 
unconventional loading of surface deforms the material to a 
larger extent thereby the color chat of calibration LUT that can 
prepared through conventional loading does not truly represent 
the colors being induced under such deformations; this 
compromises the accuracy of the results obtained, (iii) the 
fringe pattern generated under surface loading through 
indenter are densely packed making the analysis difficult for 
fringe order determination. Thus this technique cannot be 
relied for sensing applications and requires some alternative 
approaches for accurate analysis. 

PHASE-SHIFTING METHOD

In order to study the capabilities of phase shifting method and 
how far it can be implemented to achieve reasonable accuracy 
over the entire region this method was evaluated. Note that the 
technique was applied only to the fringes induced due to the 
vertical load, if the technique is useful for this load it can be 
equally applied to the fringes induced due to shear load. To 
determine whole-field fringe order for the entire region of 
interest (ROI), phase stepped images were acquired at six 
different optical arrangement of circular polariscope to fit into 
equations (2-3) to obtain the isoclinics and isochromatics. The 
central region of fringe pattern has high stress zone from the 
indenter head propagating along the perpendicular direction of 
the surface.

As explained earlier, the experimental setup for sensing 
application necessitated use of reflection photoelasticity with a 
partial mirror for arranging the light source and camera at two 

different orientations to avoid their interference. The 
experiments showed that images acquired under white light 
were of low contrast due to the presence of partial mirror in 
the design. Rotation of optical elements caused further glare 
and ghost images of the light source; significant loss in 
contrast was also observed due to glare from the white light 
source. However, the effect was found to be less prominent 
with the use of monochromatic light. Thus phasemap of 
isoclinics and isochromatics were obtained under 
monochromatic light using the equations (2-3) as shown in 
Figure 7. The isoclinics and isochromatics are influenced by 
model geometry, point of application of load, accuracy of axis 
orientation of filters and the relative retardation as a result of 
the applied load.

Figure 7. Phasemap using monochromatic light (a) isoclinics, 
(b) isochromatics

As can be seen in these figures the phasemap is oval rather 
than circular, this is due to the inaccuracy in orienting the 
filter axis and there are erroneous zones in the phasemap. The 
expected phasemap should have increasing fractional fringe 
order radially inwards but the phasemap obtained from images 
in the figure had reversed phasemap at some locations and 
erroneous output elsewhere. This has been also reported in the 
literature [1]. This was investigated and was found to be due 
to the ambiguity in determination of isoclinic as it fell in range 
of 4/ to 4/ , thus it could represent either 1 or 2
(principal stresses). It is important to note that isoclinic would 
represent only one of the two stresses to determine 
isochromatics and to produce accurate phasemap. 

It has been found that Equation (2) is insensitive to fast or 
slow axis of the model as signs of numerator and denominator 
are canceling out, on the other hand Equation (3) is sensitive 
to the axis and the results can be erroneous and in certain 
zones the phasemap can appear to be reversed. This drawback 
was overcome by modifying the isochromatic equation (3) to 
(4); this equation is insensitive to fast or slow axis of model. 
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Figure 8(a) shows the phasemap obtained after applying 
equation (4) and Fig. 8(b) gives the fractional fringe order 
along line ‘a-b’ under monochromatic light source. The 
limitation of using equation (4) is that fringe order can only 

          
b 
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range between 0 to 0.5 if the positive square root is used or 0.5 
to 1 if negative is used rather than 0 to 1. Thus the advantage 
of identifying fringe order from equations (3) was lost, 
therefore to achieve the complete fringe order direction of 
fringe order is required. 

Figure 8. Phasemap under monochromatic light (a) with 
modified equation, (b) fractional fringe order along a-b.

For fringe patterns induced in these experiments the fringe 
order always increases radially from the edge of ROI towards 
the center, thus complete fringe order can be determined by 
phase unwrapping and can be substituted in equations (4) to 
obtain stress field for the entire model. A robust algorithm is 
required to unwrap the phasemap correctly in addition to the 
integral fringe orders and the trend of fractional fringe order of 
an image. The unwrapped phasemap for Figure 8 (a) is shown 
in Figure 9 with complete fringe order obtained along line ‘c-
d’.

Figure 9. (a) Unwrapped phasemap with, (b) complete fringe 
order along 'c-d'.

Since the stress at the centre of the fringe patterns is too high 
and fractional fringe order obtained from phase shifting is 
unreliable and erroneous in this zone, the complete fringe 
order cannot be accurately unwrapped as can be seen in the 
adjacent line profile (Figure 9b). 

PHOTOELASTIC TECHNIQUES IN SENSING

A case study on an actual foot image was carried out to 
evaluate the use of photoelastic techniques on complex fringe 
patterns and how far these techniques can be implemented in 
terms of quantitative measurements. Figure 10(a) shows 
portion of a foot print obtained under actual foot loading and 
Fig. 10(b) is the phasemap obtained using this technique. 

   

Figure 10. (a) Fringe patterns under foot loading (b) phasemap 

The phasemap obtained here has the same limitations as the 
one obtained in Figure 8 and thus for determining the 
complete fringe order further processing would be required to 
integrate the entire fringe order. However, visual inspection of 
Figure 10(a) shows how complex and random fringe patterns 
appear to be under the actual foot loading compared to the 
patterns with controlled loading under the indenter. This 
makes it difficult to unwrap the phasemap and would 
necessitate manual efforts. Figure 11 shows the fractional and 
complete fringe order profile obtained along line ‘a-b’ from 
the above image. A complete fringe order for the entire image 
can be obtained, however, the process would be tedious and 
still inadequate to provide accurate information on the fringe 
patterns. When RGB calibration technique is applied to the 
foot image it would render exactly similar results as obtained 
for the indenter setup. However, it would be difficult to obtain 
complete stress field for the whole foot, also the results would 
not be accurate due to inconsistent mapping of the RGB 
values between the model and the specimen due to model 
deformation.

Figure 11. (a) Fractional and, (b) complete fringe order along 
line 'a-b'

The results obtained show that conventional photoelastic 
techniques can only determine difference of principal stresses 
over a region of interest under unconventional loading 
conditions. For such loading situations as required in sensing, 
conventional photoelastic techniques have limited 
applications. Equation like Bousinesque [1] representing 
relation between principal stress difference and load are 
limited to a very few conventional setups and cannot be 
generalized, for instance it is only valid under the following 
conditions:

 Only for disc, thus other geometric shapes cannot be 
analyzed.

a  
              

   b    

c                              d

        a

           b
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 Only for diametral compression – if any additional 
load is applied at another point the equation is void. 

 Invalid under high deformation of material.

However, for loading conditions where deformations of 
unknown shape may occur or repeatability of fringe patterns 
may not exist and have complex fringe patterns, mere 
determination of fringe order or stress difference is not 
sufficient for determining the complete stress field. Looking at 
the image from the actual foot loading (Fig. 10) it is evident 
that the image contains qualitative whole-field load 
information which can be extracted in a number of ways; (i) 
color of the image, (ii) geometry of the fringe patterns and, 
(iii) statistical parameter of the pattern from repeated loadings.  
However, these parameters cannot be combined in analytical 
forms using conventional photoelastic techniques. Hence, this 
would require some intelligent processing of the fringe 
patterns. Neural networks have been used as a model-free 
estimator to process photoelastic images in an idealized 
experimental condition that can precisely extract the load 
information from the images [16]. This, however, required a 
large number of images from identical loading conditions for 
training and tests. Whilst this may be the right approach in 
some applications it may not be a practical proposition for 
other applications; thus altogether a new strategy is required 
that can analyze complex images without requiring a large set 
of images. A knowledge-based adaptive system that can learn 
in real time and yet provide accurate results under varying test 
conditions may be the answer to this problem. Techniques like 
neuro-fuzzy and real-time data mining and forecasting models 
[17], which offer alternative approaches to such problems, 
may provide better options under these conditions. 

CONCLUSIONS

In this paper design of a whole-field imaging sensor has been 
presented which can be developed for a number of sensing 
applications in biomedical and robotics areas. Use of 
conventional photoelastic techniques has been tested on fringe 
patterns obtained by surface loading of photoelastic material 
through a hemispherical indenter head. Both RGB calibration 
and phase shifting could only provide fringe order limited to 
the known region of stress. When these techniques were 
applied to obtain stress values for actual foot loading, it has 
been found that RGB method cannot be used to get the whole-
field stress information whereas the phase shifting method is 
limited to obtaining stress field in controlled loading 
conditions due to the complexity of identifying the integral 
fringe orders from the irregular images. The results from the 
case study not only explain the limitations of conventional 
techniques but also identify the complexity of the problem. 
The results further show that although fringe patterns provide 
some qualitative data in terms of high stressed zones but 
determination of complete stress field was not possible with 
either of these techniques. This would require intelligent 
image processing techniques to be employed to extract the 
complete load information from photoelastic images and 
achieve the whole field analysis of the stress field. 
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