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Abstract —Many social image search engines are based on keyword/tag matching. This is because tag based image retrieval
(TBIR) is not only efficient but also effective. The performance of TBIR is highly dependent on the availability and quality of
manual tags. Recent studies have shown that manual tags are often unreliable and inconsistent. In addition, since many users
tend to choose general and ambiguous tags in order to minimize their efforts in choosing appropriate words, tags that are specific
to the visual content of images tend to be missing or noisy, leading to a limited performance of TBIR. To address this challenge,
we study the problem of tag completion where the goal is to automatically fill in the missing tags as well as correct noisy tags for
given images. We represent the image-tag relation by a tag matrix, and search for the optimal tag matrix consistent with both the
observed tags and the visual similarity. We propose a new algorithm for solving this optimization problem. Extensive empirical
studies show that the proposed algorithm is significantly more effective than the state-of-the-art algorithms. Our studies also
verify that the proposed algorithm is computationally efficient and scales well to large databases.

Index Terms —tag completion, matrix completion, tag-based image retrieval, image annotation, image retrieval, metric learning.
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1 INTRODUCTION

With the remarkable growth in the popularity of social
media websites, there have been a proliferation of
digital images on the Internet, which have posed a
great challenge for large-scale image search. Most
image retrieval methods can be classified into two
categories: content based image retrieval [41], [36]
(CBIR) and keyword/tag based image retrieval [32],
[58] (TBIR).

CBIR takes an image as a query, and identifies
the matched images based on the visual similarity
between the query image and gallery images. Various
visual features, including both global features [33]
(e.g., color, texture, and shape) and local features [16]
(e.g., SIFT keypoints), have been studied for CBIR.
Despite the significant efforts, the performance of
available CBIR systems is usually limited [38], due
to the semantic gap between the low-level visual
features used to represent images and the high level
semantic meaning behind images.

To overcome the limitations of CBIR, TBIR rep-
resents the visual content of images by manually
assigned keywords/tags. It allows a user to present
his/her information need as a textual query, and find
the relevant images based on the match between the
textual query and the manual annotations of images.
Compare to CBIR, TBIR is usually more accurate in
identifying relevant images [24] by alleviating the
challenge arising from the semantic gap. TBIR is also
more efficient in retrieving relevant images than CBIR
because it can be formulated as a document retrieval
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problem and therefore can be efficiently implemented
using the inverted index technique [29].

However, the performance of TBIR is highly depen-
dent on the availability and quality of manual tags.
In most cases, the tags are provided by the users
who upload their images to the social media sites
(e.g., Flickr), and are therefore often inconsistent and
unreliable in describing the visual content of images,
as indicated in a recent study on Flickr data [47].
In particular, according to [37], in order to minimize
the effort in selecting appropriate words for given
images, many users tend to describe the visual content
of images by general, ambiguous, and sometimes
inappropriate tags, as explained by the principle of
least effort [25]. As a result, the manually annotated
tags tend to be noisy and incomplete, leading to a
limited performance of TBIR. This was observed in
[44], where, on average, less than 10% of query words
were used as image tags, implying that many useful
tags were missing in the database. In this work, we
address this challenge by automatically filling in the
missing tags and correcting the noisy ones. We refer
to this problem as the tag completion problem.

One way to complete the missing tags is to directly
apply automatic image annotation techniques [52],
[17], [20], [42] to predict additional keywords/tags
based on the visual content of images. Most auto-
matic image annotation algorithms cast the problem
of keyword/tag prediction into a set of binary clas-
sification problems, one for each keyword/tag. The
main shortcoming of this approach is that in order to
train a reliable model for keyword/tag prediction, it
requires a large set of training images with clean and
complete manual annotations. Any missing or noisy
tag could potentially lead to a biased estimation of
prediction models, and consequentially suboptimal
performances. Unfortunately, the annotated tags for
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most Web images are incomplete and noisy, making
it difficult to directly apply the method of automatic
image annotation.

Besides the classification approaches, several ad-
vanced machine learning approaches have been ap-
plied to image annotation, including annotation by
search [54], tag propagation [38], probabilistic rele-
vant component analysis (pRCA) [33], distance metric
learning [19], [46], [49], [28], Tag transfer [15], and
reranking [61]. Similar to the classification based ap-
proaches for image annotation, to achieve good per-
formance, these approaches require a large number of
well annotated images, and therefore are not suitable
for the tag completion problem.

The limitation of current automatic image anno-
tation approaches motivates us to develop a new
computational framework for tag completion. In par-
ticular, we cast tag completion into a problem of
matrix completion: we represent the relation between
tags and images by a tag matrix, where each row cor-
responds to an image and each column corresponds
to a tag. Each entry in the tag matrix is a real number
that represents the relevance of a tag to an image.
Similarly, we represent the partially and noisy tagged
images by an observed tag matrix, where an entry
(i, j) is marked as 1 if and only if image i is annotated
by keyword/tag j. Besides the tag information, we
also compute the visual similarity between images
based on the extracted visual features. We search
for the optimal tag matrix that is consistent with
both the observed tag matrix and the pairwise visual
similarity between images. We present an efficient
learning algorithm for tag completion that scales well
to large databases with millions of images. Our exten-
sive empirical studies verify both the efficiency and
effectiveness of the proposed algorithm in comparison
to the state-of-the-art algorithms for automatic image
annotation.

The rest of this paper is organized as follows. In
Section 2, we overview the related work on automatic
image annotation. Section 3 defines the problem of
tag completion and provides a detailed description
for the proposed framework and algorithm. Section 4
summarizes the experimental results on automatic
image annotation and tag based search. Section 5
concludes this study with suggestions for future work.

2 RELATED WORK

Numerous algorithms have been proposed for au-
tomatic image annotation (see [18] and references
therein). They can roughly be grouped into two major
categories, depending on the type of image repre-
sentations used. The first group of approaches are
based upon global image features [31], such as color
moment, texture histogram, etc. The second group of
approaches adopts the local visual features. [30], [43],
[48] segment image into multiple regions, and repre-
sent each region by a vector of visual features. Other

approaches [22], [56], [45] extend the bag-of-features
or bag-of-words representation, which was originally
developed for object recognition, for automatic image
annotation. More recent work [34], [27] improves the
performance of automatic image annotation by taking
into account the spatial dependence among visual
features. Other than predicting annotated keywords
for the entire image, several algorithms [11] have
been developed to predict annotations for individual
regions within an image. Despite these developments,
the performance of automatic image annotation is far
from being satisfactory. A recent report [38] shows
that the-state-of-the-art methods for automatic im-
age annotation, including Conditional Random Fields
(CRM) [52], inference network approach (infNet)
[17], Nonparametric Density Estimation (NPDE) [7],
and supervised multi-class labeling (SML) [20], are
only able to achieve 16% ∼ 28% for average precision,
and 19% ∼ 33% for average recall, for key benchmark
datasets Corel5k and ESP Game. Another limitation
of most automatic image annotation algorithms is that
they require fully annotated images for training, mak-
ing them unsuitable for the tag completion problem.

Several recent works explore multi-label learning
techniques for image annotation that aim to exploit
the dependence among keywords/tags. Ramanan et
al. [13] proposed a discriminative model for multi-
label learning. Zhang et al. [40] proposed a lazy learn-
ing algorithm for multi-label prediction. Hariharan
et al. [8] proposed max-margin classifier for large
scale multi-label learning. Guo et al. [55] applied the
conditional dependency networks to structured multi-
label learning. An approach for batch-mode image re-
tagging is proposed in [32]. Zha et al. [60] proposed a
graph based multi-label learning approach for image
annotation. Wang et al. [26] proposed a multi-label
learning approach via maximum consistency. Chen
et al. [21] proposed an efficient multi-label learning
based on hypergraph regularization. Bao et al. [9]
proposed a scalable multi-label propagation approach
for image annotation. Liu et al. [59] proposed a con-
strained non-negative matrix factorization method for
multi-label learning. Unlike the existing approaches
for multi-label learning that assume complete and
perfect class assignments, the proposed approach is
able to deal with noisy and incorrect tags assigned to
the images. Although a matrix completion approach
was proposed in [1] for transductive classification,
it differs from the proposed work in that it applies
Euclidean distance to measure the difference between
two training instances while the proposed approach
introduces a distance metric to better capture the
similarity between two instances.

Besides the classification approaches, several recent
works on image annotation are based on distance
metric learning. Monay et al. [19] proposed to an-
notate the image in a latent semantic space. Wu and
Hoi et al. [46], [49], [33] proposed to learn a metric
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Fig. 1. The framework for tag matrix completion and
its application to image search. Given a database of
images with some initially assigned tags, the proposed
algorithm first generates a tag matrix denoting the rela-
tion between the images and initially assigned tags. It
then automatically complete the tag matrix by updating
the relevance score of tags to all the images. The
completed tag matrix will be used for tag based image
search or image similarity search.

to better capture the image similarity. Zhuang et al.
[28] proposed a two-view learning algorithm for tag
re-ranking. Li et al. [53] proposed a neighbor voting
method for social tagging. Similar to the classification
based approaches, these methods require clean and
complete image tags, making them unsuitable for the
tag completion problem.

Finally, our work is closely related to tag refine-
ment [24]. Unlike the proposed work that tries to
complete the missing tags and correct the noisy tags,
tag refinement is only designed to remove noisy tags
that do not reflect the visual content of images.

3 TAG COMPLETION

We first present a framework for tag completion, and
then describe an efficient algorithm for solving the
optimization problem related to the proposed frame-
work.

3.1 A Framework for Tag Completion

Figure 1 illustrates the tag completion task. Given a
binary image-tag matrix (tag matrix for brief), our goal
is to automatically complete the tag matrix with real
numbers, that indicate the probability of assigning the
tags to the images. Given the completed tag matrix,
we can run TBIR to efficiently and accurately identify
the relevant images for textual query.

Let n and m be the number of images and unique
tags, respectively. Let T̂ ∈ R

n×m be the partially
observed tag matrix derived from user annotations,
where T̂i,j is set to one if tag j is assigned to image

i and zero otherwise. We denote by T ∈ R
n×m the

completed tag matrix that needs to be computed. In
order to complete the partially observed tag matrix
T̂ , we further represent the visual content of images
by matrix V ∈ R

n×d, where d is the number of visual
features and each row of V corresponds to the vector
of visual features for an image. Finally, to exploit
the dependence among different tags, we introduce
the tag correlation matrix R ∈ R

m×m, where Ri,j

represents the correlation between tag i and j. Fol-
lowing [10], we compute the correlation score between
two tags i and j as follows

Ri,j =
fi,j

fi + fj − fi,j

where fi and fj are the occurrence of tags i and j, and
fij is the co-occurrence of tags i and j. Note that fi,
fj and fi,j are statistics collected from the partially

observed tag matrix T̂ . Our goal is to reconstruct
the tag matrix T based on the partially observed tag
matrix T̂ , the visual representation of image data V ,
and the tag correlation matrix R. To narrow down the
solution for the complete tag matrix T , we consider
the following three criterions for reconstructing T .

There are three important constraints in the matrix
completion algorithm to avoid trivial solutions.

First, the complete tag matrix T should be similar
to the partially observed matrix T̂ . We add this con-

straint by penalizing the difference between T and T̂
with a Frobensius norm, and we prefer the solution

T with small ‖T − T̂‖2F .
Second, the complete tag matrix T should reflect

the visual content of images represented by the matrix
V , where each image is represented as a row vector
(visual feature vector) in V . However, since the rela-
tionship between tag matrix T and the visual feature
matrix V is unknown, it is difficult to implement
this criterion directly. To address this challenge, we
propose to exploit this criterion by comparing im-
age similarities based on visual content with image
similarities based on the overlap in annotated tags.
More specifically, we compute the visual similarity
between image i and j as v⊤

i vj , where vi and vj

are the ith and jth rows of matrix V . Given the
complete tag matrix T , we can also compute the
similarity between image i and j based on the overlap
between their tags, i.e., t⊤i tj , where ti and tj are
the ith and jth rows of matrix T . If the complete
tag matrix T reflects the visual content of images,
we expect |v⊤

i vj − t⊤i tj |2 to be small for any two
images i and j. As a result, we expect a small value
for

∑n

i,j=1 |v⊤
i vj − t⊤i tj |2 = ‖TT⊤ − V V ⊤‖2F .

Finally, we expect the complete matrix T to be
consistent with the correlation matrix R, and there-
fore a small value for ‖T⊤T − R‖2F . Combining the
three criterions, we have the following optimization
problem for finding the complete tag matrix T .

min
T∈Rn×m

‖TT⊤ − V V
⊤‖2F + λ‖T⊤

T −R‖2F + η‖T − T̂‖2F (1)
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where λ > 0 and η > 0 are parameters whose values
will be decided by cross validation.

There are, however, two problems with the for-
mulation in (1). First, the visual similarity between
images i and j is computed by v⊤

i vj , which as-
sumes that all visual features are equally important
in determining the visual similarity. Since some visual
features may be more important than the others in
deciding the tags for images, we introduce a vector
w = (w1, . . . , wd) ∈ R

d
+, here wi is used to represent

the importance of the ith visual feature. Using the
weight vector w, we modify the visual similarity
measure as v⊤

i Avj , where A = diag(w) is a diagonal
matrix with Ai,i = wi. Second, the complete tag matrix
T computed by (1) may be dense in which most of the
entries in T are non-zero. But, on the other hand, we
generally expect that only a small number of tags will
be assigned to each image, and as a result, a sparse
matrix for T . To address this issue, we introduce
into the objective function an L1 regularizer for T ,
i.e., ‖T ‖1 =

∑n

i=1

∑m

j=1 |Ti,j |. Incorporating these two
modifications into (1), we have the final optimization
problem for tag completion

min
T∈Rn×m,w∈R

d

+

L(T,w) (2)

where

L(T,w) = ‖TT⊤ − V diag(w)V ⊤‖2F
+λ‖T⊤T −R‖2F + η‖T − T̂‖2F + µ‖T ‖1 + γ‖w‖1

Note that in (2) we further introduce an L1 regularizer
for w to generate a sparse solution for w.

3.2 Optimization

To solve the optimization problem in (2), we develop
a subgradient descent based approach (Algorithm 1).
Compared to the other optimization approaches such
as Newton’s method and interior point methods [39],
the subgradient descent approach is advantageous
in that its computational complexity per iteration is
significantly lower, making it suitable for large image
datasets.

The subgradient descent approach is an iterative
method. At each iteration t, given the current solution
Tt and wt, we first compute the subgradients of the
objective function L(T,w). Define

G = TtT
⊤
t − V diag(wt)V

⊤, H = T⊤
t Tt −R

We compute the subgradients as

∇TL(Tt,wt) = 2GTt + 2λTtH + 2η(Tt − T̂ ) + µ∆ (3)

∇wL(Tt,wt) = −2diag(V ⊤GV ) + γδ (4)

where ∆ ∈ R
n×m and δ ∈ R

d are defined as

∆i,j = sgn(Ti,j), δi = sgn(wi)

Here, sgn(z) outputs 1 when z > 0, −1 when z < 0,
and a random number uniformly distributed between

−1 and +1 when z = 0. Given the subgradients, we
update the solution for T and w as follows

Tt+1 = Tt − ηt∇TL(Tt,wt)

wt+1 = πΩ (wt − ηt∇wL(Tt,wt))

where ηt is the step size of iteration t, and Ω = {w ∈
R

d
+} and πΩ(w) projects a vector w into the domain Ω

to ensure that the learned weights are non-negative.
One problem with the above implementation of

the subgradient descent approach is that the imme-
diate solutions T1, T2, . . . , may be dense, leading to a
high computational cost in matrix multiplication. We
address this difficulty by exploring the method de-
veloped for composite function optimization [12]. In
particular, we rewrite L(T,w) as L(T,w) = A(T,w)+
γ‖w‖1 + µ‖T ‖1, where

A(T,w) = ‖TT⊤ − V diag(w)V ⊤‖2F +

λ‖T⊤T −R‖2F + η‖T − T̂‖2F
At each iteration t, we compute the subgradients
∇TA(Tt,wt) and ∇wA(Tt,wt), and update the solu-
tions for T and w according to the theory of composite
function optimization [3]

Tt+1 = argmin
T

1

2
‖T − T̂t+1‖2F + µηt‖T ‖1 (5)

wt+1 = argmin
w

1

2
‖w− ŵt+1‖2F + γηt‖w‖1 (6)

where ηt is the step size for the t-th iteration and T̂t+1

and ŵt+1 are given by

T̂t+1 = Tt − ηt∇TA(Tt,wt), (7)

ŵt+1 = wt − ηt∇wA(Tt,wt) (8)

Using the result in [3], the solutions to (5) and (6) are
given by

Tt+1 = max
(
0, T̂t+1 − µηt1n1m

)
(9)

wt+1 = max (0, ŵt+1 − γηt1d) (10)

where 1d is vector of n dimensions with all its ele-
ments being 1. As indicated in the equations in Eq.
(9) and (10), any entry in Tt (wt+1) which is less than
µηt (γηt respectively) will become zero, leading to
sparse solutions for T and w by using the theory of
composite function optimization.

Our final question is how to decide the step size ηt.
There are common choices: ηt = 1/

√
t or ηt = 1/t.

We set ηt = 1/t, which appears to yield a faster
convergence than ηt = 1/

√
t. Algorithm 1 summarizes

the key steps of the subgradient descent approach.

3.3 Discussion

Although the proposed formulation is non-convex
and therefore cannot guarantee to find the global
optimal, this however is not a serious issue from the
viewpoint of learning theory [5]. This is because as



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JANUARY 2011 5

Algorithm 1 Tag Completion Algorithm (TMC)

1: INPUT:
• Observed tag matrix: T̂ ∈ R

n×m

• Parameters: γ, η, λ, and µ
• Convergence threshold: ε

2: OUTPUT: the complete tag matrix T

3: Compute the tag correlation matrix R = T̂⊤T̂

4: Initialize w1 = 1d, T1 = T̂ , and t = 0
5: repeat
6: Set t = t+ 1 and stepsize ηt = 1/t

7: Compute T̂t+1 and ŵt+1 according to (8)
8: Update the solutions Tt+1 and wt+1 according

to (9) and (10)
9: until convergence: ‖L(Tt,wt) − L(Tt+1,wt+1)‖ ≤

ε‖L(Tt,wt)‖

the empirical error goes down during the process
of optimization, the generalization error will become
the leading term in the prediction error. As a result,
finding the global optima will not have a signifi-
cant impact on the final prediction result. In fact,
[51] shows that only an approximately good solution
would be enough to achieve similar performance as
the exact optimal one. To alleviate the problem of local
optima, we run the algorithm 20 times and choose the
run with the lowest objective function.

The convergence rate for the adopted subgradient
descent method is O(1/

√
t), where t is the number of

iterations. The space requirement for the algorithm is
O(n×m), where n is the number of images and m is
the number of unique tags.

We finally note that since the objective of this work
is to complete the tag matrix for all the images, it
belongs to the category of transductive learning. In
order to turn a transductive learning method into an
inductive one, one common approach is to retrain a
prediction model based on outputs from the transduc-
tion method [2]. A similar approach can be used for
the proposed approach to make predictions for out-
of-samples.

3.4 Tag Based Image Retrieval

Given the complete tag matrix T obtained by solving
the optimization problem in (2), we briefly describe
how to utilize the matrix T for tag based image
retrieval.

We first consider the simplest scenario when the
query consists of a single-tag. Given a query tag j, we
simply rank all the gallery images in the descending
order of their relevance scores to tag j, corresponding
to the jth column in matrix T . Now consider the
general case when a textual query is comprised of
multiple tags. Let q = (q1, . . . , qm)⊤ ∈ {0, 1}m be a
query vector, where qi = 1 if the ith tag appears in
the query and qi = 0 otherwise. A straightforward ap-
proach is to compute the tag based similarity between

the query and the images by Tq. A shortcoming of
this similarity measure is that it does not take into
account the correlation between tags. To address this
limitation, we refine the similarity between the query
and the images by TWq, where W = π[0,1](T

⊤T )
is the tag correlation matrix estimated based on the
complete tag matrix T . Here, π0,1(A) projects every
entry of A into the range between 0 and 1.

4 EXPERIMENTS

We evaluate the quality of the completed tag matrix
on two tasks: automatic image annotation and tag
based image retrieval.

Four benchmark datasets are used in this study:

• Corel dataset [43]. It consists of 4, 993 images, with
each image being annotated by at most five tags.
There are a total of 260 unique keywords used in
this dataset.

• Labelme photo collection. It consists of 2,900 on-
line photos, annotated by 495 non-abstract noun
tags. The maximum number of annotated tags
per image is 48.

• Flickr photo collection. It consists of one million
images that are annotated by more than 10,000
tags. The maximum number of annotated tags
per image is 76. Since most of the tags are only
used by a small number of images, we reduce the
vocabulary to the first 1, 000 most popular tags
used in this dataset, which reduces the database
to 897,500 images.

• TinyImg image collection. It consists of 79,302,017
images collected from the web, annotated by
75,062 non-abstract noun tags. The maximum
number of annotated tags per image is 82. Similar
to the Flickr photo collection, we reduce the
vocabulary to the first 1, 000 most popular tags
in the dataset, which reduces the database size to
997,420 images.

Table 1 summarizes the statistics of the four datasets
used in our study.

For the Corel data, we use the same set of features
as [38], including SIFT local features and a robust
hue descriptor that is extracted densely on multi-scale
grids of interest points. Each local feature descriptor
is quantized to one of 100,000 visual words that are
identified by a k-means clustering algorithm. Given
the quantized local features, we represent each image
by a bag-of-words histogram. For Flickr and Labelme
photo collections, we adopt the compact SIFT feature
representation [57]. It first extracts SIFT features from
an image, and then projects the SIFT features to a
space of 8 dimensions using the Principle Component
Analysis (PCA). We then cluster the projected low
dimensional SIFT features into 100,000 visual words,
and represent the visual content of images by the
histogram of the visual words. For TinyImg dataset,
since the images are of low resolution, we adopt a



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JANUARY 2011 6

TABLE 1
Statistics for the datasets used in the experiments.

Corel Labelme Flickr TinyImg

No. of Images 4,993 2,900 897,500 997,420
Vocabulary Size 260 495 1,000 1,000

No. of Tags per Image (mean/max) 3.4/5 10.5/48 12.7/76 14.4/82
No. of Image per Tag (mean/max) 58.6/1,004 67.1/379 416.5/76,890 575.5/87,120

global SIFT descriptor to represent the visual content
of each image.

To make a fair comparison with other state-of-the-
art methods, we adopt average precision, and average
recall [6] as the evaluation metrics. It computes the
precision and recall for every test image by comparing
the auto-annotations to the ground truth, and then
takes the average of precisions and recalls over all
the test images as the final evaluation result.

For large scale tag-based image retrieval, since it
is very difficult to get the ground truth for evalu-
ating the recall, we adopt the Mean Average Pre-
cision (MAP) as the evaluation metric, which can
be calculated by manually check the correctness of
retrieved images. MAP takes into account the rank of
returned images when computing average precision,
and consequentially heavily penalizes the retrieval
results when the relevant images are returned at low
rank.

4.1 Experiment (I): Automatic Image Annotation

We first evaluate the proposed algorithm for tag com-
pletion by automatic image annotation. We randomly
separate each dataset into two collections. One collec-
tion consisting of 80% of images is used as training
data, and the other collection consisting of 20% of im-
ages is used as testing data. We repeat the experiment
20 times. Each run adopts a new separation of the
collections. We report the result based on the average
over the 20 trials.

To run the proposed algorithm for automatic image
annotation, we simply view test images as special
cases of partially tagged images, i.e., no tag is ob-
served for test images. We thus apply the proposed
algorithm to complete the tag matrix that includes
both training and test images. We then rank the tags
for test images in the descending order based on their
relevance scores in the completed tag matrix, and
return the top ranked tags as the annotations for the
test images.

We compare the proposed tag matrix completion
(TMC) algorithm to the following six state-of-the-art
algorithms for automatic image annotation: (i) Multi-
ple Bernoulli Relevance Models (MBRM) [50] that models
the joint distribution of annotation tags and visual
features by a mixture distribution, (ii) Joint Equal Con-
tribution method (JEC) [4] that finds appropriate anno-
tation words for a test image by a k nearest neighbor
classifier that combines multiple distance measures

derived from different visual features, (iii) Inference
Network method (InfNet) [17] that applies the Bayesian
network to model the relationship between visual fea-
tures and annotation words, (iv) Large scale max-marin
multi-label classification (LM3L) [8], that overcomes the
training bias by incorporating correlation prior, (v)
Tag Propagation method (TagProp) [38] that propagates
the label information from the labeled instances to
the unlabeled instances via a weighted nearest neigh-
bor graph, (vi) social tag relevance by neighbor voting
(TagRel) [53], that explores the tag relevance based on
a neighborhood voting approach. The key parameter
for TagProp is the number of nearest neighbors used
to determine the nearest neighbor graph. We vary this
number from 1 to 10, and set it to be 5 because it
yields the best empirical performance. For the other
baselines, we adopt the same parameter configuration
as described in their original reports. For the proposed
TMC method, we set η = 1, µ = 1, γ = 1, λ = 10,
according to a cross validation procedure. We will
discuss the parameter setting in more details in the
later part of this section.

Table 2 summarizes the average precision/recall
for the first five and ten returned tags for four dif-
ferent datasets. Note that for the Flickr and Tiny-
Img datasets, we only show the results for TagProp,
TagRel, and TMC, because the other baseline methods
are unable to run over such large datasets. We observe
that for all datasets, TMC outperforms the baseline
methods significantly in terms of both precision and
recall. We also observed that as the number of re-
turned tags increases from five to ten, the precision
usually declines while the recall usually improves.
This is called precision-recall tradeoff, a phenomenon
that is well known in information retrieval.

We now examine a more realistic setup of automatic
image annotation in which each training image is
partially annotated. This also allows us to test the
sensitivity of the proposed method to the number
of initially assigned tags. To this end, unlike the
previous experiment where all the training images are
completely labeled, we vary the number of observed
tags for each training image, denoted by n, from 1 to
5 1 to create the scenario of partially tagged images.
We vary the number of predicted tags from 5, 10, 15 to

1. We set the maximum number of observed tags to 5 because
the minimum number of tags assigned to an image is 6 except for
Corel data. For Corel data we choose 4 as the maximum number
of observed tags since the maximum number of annotated tags for
the Corel dataset is 5
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TABLE 2
Average precision and recall for four datasets.

Corel MBRM JEC InfNet LM3L TagProp TagRel TMC

AP@5(%) 24± 1.4 27± 1.3 17 ± 1.1 32± 2.0 33± 2.2 33± 1.8 43± 1.4
AR@5(%) 25± 1.6 32± 1.2 24 ± 1.4 51± 1.8 52± 2.6 52± 1.6 64± 1.2
AP@10(%) 17± 1.5 20± 1.7 10 ± 1.0 25± 1.8 26± 1.2 26± 1.7 34± 1.8
AR@10(%) 28± 1.5 34± 1.4 26 ± 1.7 53± 1.6 54± 2.1 54± 1.8 66± 1.3

Labelme MBRM JEC InfNet LM3L TagProp TagRel TMC

AP@5(%) 23± 2.1 22± 1.1 25 ± 1.4 24± 1.9 28± 2.3 29± 2.0 37± 1.8
AR@5(%) 24± 1.7 24± 1.1 28 ± 1.2 28± 1.8 35± 2.1 35± 1.4 47± 1.4
AP@10(%) 17± 1.8 16± 1.2 17 ± 1.3 19± 1.7 20± 1.8 21± 1.7 25± 1.5
AR@10(%) 27± 1.9 28± 1.6 30 ± 1.1 30± 1.6 37± 1.4 37± 1.3 49± 1.6

Flickr MBRM JEC InfNet LM3L TagProp TagRel TMC

AP@5(%) - - - - 30± 2.6 31± 1.9 39± 1.9
AR@5(%) - - - - 38± 2.1 39± 1.8 57± 1.8
AP@10(%) - - - - 22± 2.1 23± 1.3 31± 1.5
AR@10(%) - - - - 43± 1.5 42± 1.7 59± 1.7

TinyImg MBRM JEC InfNet LM3L TagProp TagRel TMC

AP@5(%) - - - - 27± 2.1 30± 1.8 37± 1.5
AR@5(%) - - - - 31± 2.2 37± 1.4 52± 1.4
AP@10(%) - - - - 19± 1.8 23± 1.5 30± 1.7
AR@10(%) - - - - 34± 2.1 40± 1.3 55± 1.7

20, and measure the MAP results for each number of
predicted tags, as shown in Table 3. We only include
TagProp and TagRel in comparison because the other
methods are unable to handle partially annotated
training images. It is not surprising to observe that
annotation performance of all methods improves with
an increasing number of observed annotations. For
all the cases, TMC outperforms TagProp and TagRel
significantly.

Finally, we examine the sensitivity of the proposed
method to the parameter setup. There are four dif-
ferent parameters that need to be determined in the
proposed algorithm (i.e., λ, η, µ, and γ). In order to un-
derstand how these parameters affect the annotation
performance, we conduct four sets of experiments: (i)
fixing η = 1, µ = 1, γ = 1 and varying λ from 0.1 to
1, 000, (ii) fixing λ = 10, µ = 1, γ = 1 and varying
η from 0.1 to 2, 500, (iii) fixing λ = 10, η = 1, γ = 1
and varying µ from 0.1 to 2, 500, and (iv) fixing
λ = 10, µ = 1, η = 1 and varying γ from 0.1 to
2, 500. We report the results on the Corel dataset with
the number of observed annotations set to 2. The
annotation performance, measured in MAP for the
four sets of experiments is shown in Figure 2. First,
according to the performance with varying λ, we ob-
serve that overall the performance is improved as we
increase λ, but the performance starts to decline when
λ ≥ 100. Second, we observe that the performance
of the algorithm is insensitive to these parameters if
they fall in certain range (λ < 400,η < 500, µ < 1, 000,
γ < 1, 500), and the performance deteriorates signifi-
cantly when they are outside the range. Based on the
above observations, we set λ = 1, µ = 1, η = 1, and
γ = 10 for all the experiments.

We note that these four parameters play different
roles in the learning procedure. Parameters µ and γ
are used to prevent over-fitting, and to generate a
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Fig. 2. Mean Average Precision (MAP) of TMC method
on Corel dataset for image annotation with varying λ, η,
µ and γ. r is the number of observed annotation tags.

sparse solution. Parameter η controls the constraint
on the T by keeping it close to the observations.
Parameter λ determines the trade-off between the first
two terms in the objective function. Since the larger
the λ, the stronger the algorithm is in enforcing the
constraint with respect to the tag correlation, it implies
that the tag correlation information is important to the
tag completion problem.

4.2 Experiment (II): Tag based Image Retrieval

Unlike the experiments for image annotation where
each dataset is divided into a training set and a testing
set, for the experiment of tag-based image retrieval,
we include all the images from the dataset except
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the queries as the gallery images for retrieval. Similar
to the previous experiments, we vary the number of
observed tags from 1 to 4. Similar to the previous ex-
periments, we only compare the proposed algorithm
to TagProp and TagRel because the other approaches
were unable to handle the partially tagged images.
Below, we first present the results for queries with
single-tag, and then the results for queries consisting
of multiple tags.

4.2.1 Results for Single-tag Queries

In this experiment, we restrict ourselves to the queries
that consist of a single-tag. Since every tag can be used
as a query, we have in total 260 queries for the Corel5k
dataset, 495 queries for Labelme dataset, and 1, 000
queries for the the Flickr and TinyImage datasets.
For generating the initial observed tags, we selected
the observed tags by random picking n tags in the
annotated tags. If the total number of annotated tags is
less than n, we ignore the sample. We adopt a simple
rule determining the relevance: an image is relevant
if its annotation contains the query. We note that this
rule has been used in a number of studies on image re-
trieval [14], [33], [35]. Besides the TagProp and TagRel
methods, we also introduce a reference method that
returns a gallery image if its observed tags include the
query word. By comparing to the reference method,
we will be able to determine the improvement made
by the proposed matrix completion method. Table 4
shows the MAP results for the four datasets. We
observe that (i) TagProp, TagRel and TMC perform
significantly better than the reference method, and (ii)
TMC outperforms TagProp and TagRel significantly
for all cases. Figure 4 shows examples of single-tag
queries and the images returned by different methods.

4.2.2 Experimental results for queries with multiple
tags

Similar to the previous experiment, we vary the num-
ber of observed tags from 1 to 4 for this experiment.
To generate queries with multiple tags, we randomly
select 200 images from the Flickr dataset, and use the
annotated tags of the randomly selected images as
the queries. To determine the relevance of returned
images, we manually check for every query the first
20 retrieved images by the proposed method and by
the TagProp method. For all the methods in com-
parison, we follow the method presented in Section
3.3 for calculating the tag-based similarity between
the textual query and the completed tags of gallery
images. For the TagProp method, we fill in the tag
matrix T by applying the label propagation method
in TagProp before computing the tag-based similarity.
Table 5 shows the MAP scores for the first 5, 10,
15, and 20 images that are returned for each query.
For complete comparison, we include two additional
baseline methods:

• the reference method that computes the similarity
between a gallery image and a query based on
the occurrence of query tags in the observed
annotation of the gallery image, and rank images
in the descending order of their similarities;

• the content based image retrieval (CBIR) method
that represents images by a bag-of-words model
using a vocabulary of 10,000 visual words gen-
erated by the k-means clustering algorithm, and
computes the similarity between a query im-
age and a gallery image using the well-known
TF/IDF weighting in text retrieval.

According to Table 5, we first observe a significant
difference in MAP scores between CBIR and TBIR
(i.e. the reference method, TagProp and TMC), which
is consistent with the observations reported in the
previous study [23]. Second, we observe that the
proposed method TMC outperforms all the baseline
methods significantly. Figure 5 shows examples of
queries and images returned by the proposed method
and the baselines.

4.3 Convergence and Computational Efficiency

We evaluate the computational efficiency by the run-
ning time for image annotation. All the algorithms are
run on the Intel(R) Core(TM)2 Duo CPU @3.00GHz
and 6 GB RAM machine. Table 6 summarizes the
running times of both the proposed method and
the baseline methods. Note that for the Flickr and
TinyImg dataset, we only report the running time
for three methods, because the other methods either
have memory issue or take more than several days
to finish. We observe that although both the TagProp
and the TagRel methods are significantly faster than
the proposed method for the small dataset, i.e. Corel
and Labelme datasets, they show comparable running

Fig. 3. Convergence of the proposed tag matrix com-
pletion method on the Flickr dataset. The x axis is the
number of iterations, and y axis is log ‖Lt+1−Lt‖

‖Lt‖
.
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Fig. 4. Illustration of the single-tag based image
search. The word on the left is the query, and images
on its right are the search results. The images dis-
played on the three rows are the results returned by
the proposed TMC method, the TagProp method, and
TagRel method, respectively. The blue outline are the
results for the proposed methods, the white lines are
the results for the baseline methods.

time for the two large datasets, i.e., the flickr and
Tinyimage datasets. Figure 3 shows how the objective
function value is reduced over the iterations. We ob-
serve that the proposed algorithm is able to converge
within 300 iterations when threshold ε is set to 10−5,
and around 1,000 iterations when threshold is 10−5.5

.

Fig. 5. Illustration of the similarity retrieval result based
on multiple tag querying. Each image on the left is
the query image whose annotated tags are used as
the query word. The images to its right, from top to
bottom, are the results returned by the proposed TMC
method, the TagProp method, and the TagRel method,
respectively.

5 CONCLUSIONS

We have proposed a tag matrix completion method
for image tagging and image retrieval. We consider
the image-tag relation as a tag matrix, and aim to
optimize the tag matrix by minimizing the difference
between tag based similarity and visual content based
similarity. The proposed method falls into the cate-
gory of semi-supervised learning in that both tagged
images and untagged images are exploited to find
the optimal tag matrix. We evaluate the proposed
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method for tag completion by performing two sets of
experiments, i.e., automatic image annotation and tag
based image retrieval. Extensive experimental results
on four open benchmark datasets show that the pro-
posed method significantly outperforms several state-
of-the-art methods for automatic image annotation. In
future work, we plan to exploit computationally more
efficient approaches for tag completion based on the
theory of compressed sensing and matrix completion.
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TABLE 3
Performance of automatic image annotation with varying numbers of observed tags on four datasets. r is the

number of observed tags.

Corel MAP@5 MAP@10 MAP@15 MAP@20
TagProp TagRel TMC TagProp TagRel TMC TagProp TagRel TMC TagProp TagRel TMC

r=1 47.95 47.84 49.48 41.85 41.83 45.01 36.60 37.01 39.24 30.98 31.14 33.52
r=2 48.99 49.98 59.36 43.70 44.71 53.00 37.58 38.14 47.48 32.50 33.39 41.13
r=3 57.52 58.27 70.60 52.16 52.48 64.17 46.54 47.38 59.02 41.34 42.31 52.93
r=4 60.23 62.25 74.99 55.07 56.53 67.73 50.07 52.25 62.13 44.41 46.69 55.99

Labelme MAP@5 MAP@10 MAP@15 MAP@20
TagProp TagRel TMC TagProp TagRel TMC TagProp TagRel TMC TagProp TagRel TMC

r=1 50.12 50.33 52.18 43.78 43.81 47.33 41.87 41.67 42.47 35.63 35.12 37.87
r=2 51.56 52.33 62.26 45.22 46.27 55.67 42.21 43.34 50.37 37.83 37.91 44.76
r=3 59.33 61.53 72.28 54.73 54.89 66.36 51.33 52.65 62.87 46.77 45.28 55.72
r=4 62.65 65.78 76.82 57.91 58.18 69.59 56.41 57.27 65.58 50.36 51.27 57.99
r=5 67.14 68.96 80.03 63.36 63.76 72.14 59.18 59.73 68.34 53.12 54.16 60.03

Flickr MAP@5 MAP@10 MAP@15 MAP@20
TagProp TagRel TMC TagProp TagRel TMC TagProp TagRel TMC TagProp TagRel TMC

r=1 61.65 62.09 71.26 61.18 61.54 71.23 60.55 61.16 69.13 57.35 58.01 70.02
r=2 72.33 73.27 78.91 71.83 71.93 78.86 71.54 71.97 78.55 69.10 69.91 76.76
r=3 76.48 77.75 83.83 76.36 77.17 83.59 75.47 76.52 81.37 71.77 72.28 83.72
r=4 78.96 79.98 86.78 78.82 79.08 86.61 77.35 77.87 84.91 76.41 76.27 80.99
n=5 80.87 81.16 88.53 80.45 80.76 88.52 79.99 80.57 86.39 76.74 77.16 86.03

TinyImg MAP@5 MAP@10 MAP@15 MAP@20
TagProp TagRel TMC TagProp TagRel TMC TagProp TagRel TMC TagProp TagRel TMC

r=1 50.11 51.15 61.16 48.32 48.11 58.13 43.32 42.13 49.21 40.23 40.33 45.11
r=2 61.23 62.43 65.21 58.25 58.23 61.58 50.54 50.42 56.34 47.57 47.46 52.25
r=3 65.54 66.22 69.43 63.36 64.43 64.62 58.67 58.15 61.53 53.86 54.75 58.64
r=4 67.65 68.34 71.76 64.76 65.77 67.23 60.22 61.64 65.55 56.35 57.23 61.21
r=5 69.66 70.52 73.54 66.77 67.56 69.74 62.37 62.67 67.37 60.31 61.44 64.61
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TABLE 4
Mean Average Precision (MAP) for TBIR using single-tag queries. The number of observed annotated tags

varies from 1 to 4.

Corel MAP@5 MAP@10
Ref. TagProp TagRel TMC Ref. TagProp TagRel TMC

r=1 79.48 85.61 86.12 89.77 77.09 84.08 85.12 89.54
r=2 84.73 89.41 90.08 95.88 84.89 88.61 89.91 95.51
r=3 86.94 91.53 91.98 97.12 87.03 90.21 91.17 97.64
r=4 87.83 93.11 94.21 98.85 88.09 92.28 92.86 98.12

MAP@15 MAP@20
Ref. TagProp TagRel TMC Ref. TagProp TagRel TMC

r=1 76.59 81.69 82.28 86.85 74.39 78.30 79.18 85.36
r=2 82.27 84.80 85.51 92.54 79.28 82.30 82.81 89.63
r=3 83.72 87.56 88.09 94.74 81.58 85.60 86.31 91.77
r=4 85.90 89.65 90.19 95.39 83.48 86.64 87.09 92.17

Labelme MAP@5 MAP@10
Ref. TagProp TagRel TMC Ref. TagProp TagRel TMC

r=1 71.12 87.11 87.21 90.71 67.23 86.53 87.23 91.51
r=2 76.33 90.23 91.18 96.17 69.43 88.14 91.24 92.33
r=3 77.42 91.13 91.68 97.31 73.52 91.63 92.55 93.25
r=4 80.56 91.42 92.01 98.19 76.67 92.66 92.83 95.63

MAP@15 MAP@20
Ref. TagProp TagRel TMC Ref. TagProp TagRel TMC

r=1 66.44 83.22 83.21 88.22 63.33 75.44 76.78 83.54
r=2 68.57 86.32 86.32 92.53 64.24 76.23 76.75 84.23
r=3 69.86 88.43 88.46 93.75 66.53 77.46 77.46 85.48
r=4 71.54 91.52 90.74 94.46 67.37 79.36 79.47 87.82

Flickr MAP@5 MAP@10
Ref. TagProp TagRel TMC Ref. TagProp TagRel TMC

r=1 73.93 77.78 78.81 84.83 71.30 75.03 76.16 83.59
r=2 79.69 82.52 83.38 90.99 77.36 80.24 82.07 90.61
r=3 81.95 85.46 86.51 92.84 78.90 83.18 83.88 92.12
r=4 84.35 86.46 87.79 94.04 81.35 83.77 84.14 93.57

MAP@15 MAP@20
Ref. TagProp TagRel TMC Ref. TagProp TagRel TMC

r=1 65.74 68.44 69.01 79.67 51.97 54.68 55.14 71.81
r=2 70.24 73.85 74.24 85.13 57.16 59.98 69.62 77.51
r=3 72.61 77.23 78.16 89.14 59.20 63.21 64.17 81.38
r=4 75.57 78.28 79.35 90.00 62.10 65.11 66.62 82.06

TinyImg MAP@5 MAP@10
Ref. TagProp TagRel TMC Ref. TagProp TagRel TMC

r=1 59.32 75.42 76.32 82.23 52.32 72.34 72.23 80.42
r=2 64.65 77.24 77.53 84.45 56.34 74.53 74.89 81.53
r=3 66.64 79.64 78.53 87.56 58.53 76.26 77.12 83.67
r=4 67.24 82.17 81.77 90.26 62.25 79.74 79.99 96.25

MAP@15 MAP@20
Ref. TagProp TagRel TMC Ref. TagProp TagRel TMC

r=1 47.31 68.34 68.77 78.53 44.32 61.32 61.12 72.13
r=2 49.63 70.53 71.87 79.42 49.56 63.65 62.42 74.42
r=3 54.84 72.52 72.79 80.47 51.77 65.24 64.55 77.52
r=4 58.23 74.34 75.98 85.85 53.36 67.77 67.63 80.77
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TABLE 5
Mean Average Precision (MAP) for TBIR using multiple tag queries. r stands for the number of observed tags.

Corel MAP@5 MAP@10
Ref. CBIR TagProp TagRel TMC Ref. CBIR TagProp TagRel TMC

r=1 86.32 67.33 88.32 88.33 93.53 78.23 63.21 84.32 84.23 90.44
r=2 90.42 67.33 92.53 91.46 95.32 82.42 63.21 85.57 84.44 91.25
r=3 92.22 67.33 94.66 93.87 98.16 84.53 63.21 87.76 86.64 92.74
r=4 93.48 67.33 95.47 95.42 99.74 86.23 63.21 90.87 89.57 94.32

MAP@15 MAP@20
Ref. CBIR TagProp TagRel TMC Ref. CBIR TagProp TagRel TMC

r=1 74.32 58.43 79.43 79.12 85.32 70.25 50.35 71.42 71.45 78.32
r=2 76.56 58.43 80.67 81.45 87.45 72.64 50.35 73.66 72.63 81.42
r=3 78.67 58.43 83.36 83.57 89.63 74.38 50.35 74.47 74.26 82.46
r=4 81.64 58.43 85.76 85.32 91.42 75.84 50.35 75.73 75.11 84.37

Labelme MAP@5 MAP@10
Ref. CBIR TagProp TagRel TMC Ref. CBIR TagProp TagRel TMC

r=1 83.12 65.44 86.33 86.32 92.23 79.34 61.24 83.45 82.23 89.42
r=2 83.32 65.44 87.43 87.53 94.42 80.42 61.24 84.65 84.42 91.54
r=3 85.53 65.44 88.54 89.43 96.53 81.45 61.24 85.76 86.64 92.56
r=4 96.64 65.44 91.64 91.45 98.56 83.65 61.24 87.87 87.53 94.77

MAP@15 MAP@20
Ref. CBIR TagProp TagRel TMC Ref. CBIR TagProp TagRel TMC

r=1 75.23 55.43 80.32 81.44 86.32 71.23 41.34 75.32 75.32 79.33
r=2 77.45 55.43 81.44 81.65 87.45 72.45 41.34 76.45 77.45 80.23
r=3 79.67 55.43 82.54 82.53 88.64 73.64 41.34 76.67 78.23 82.45
r=4 81.75 55.43 83.52 84.24 90.23 74.43 41.34 78.86 79.53 84.13

Flickr MAP@5 MAP@10
Ref. CBIR TagProp TagRel TMC Ref. CBIR TagProp TagRel TMC

r=1 81.03 61.89 86.71 87.27 91.28 75.88 52.43 81.62 82.19 86.75
r=2 85.00 61.89 89.79 90.19 95.20 80.05 52.43 83.61 84.34 91.61
r=3 87.16 61.89 91.31 91.98 97.53 83.04 52.43 85.48 85.17 93.28
r=4 88.49 61.89 92.97 93.31 99.53 84.84 52.43 88.21 89.98 95.23

MAP@15 MAP@20
Ref. CBIR TagProp TagRel TMC Ref. CBIR TagProp TagRel TMC

r=1 72.06 41.18 76.72 77.27 82.77 66.35 31.82 70.71 71.11 77.05
r=2 76.39 41.18 78.77 79.35 86.30 71.23 31.82 74.75 75.28 82.41
r=3 78.40 41.18 80.47 81.17 88.82 72.98 31.82 73.95 74.45 83.80
r=4 80.90 41.18 82.47 83.37 90.57 76.65 31.82 77.39 78.25 87.37

TinyImg MAP@5 MAP@10
Ref. CBIR TagProp TagRel TMC Ref. CBIR TagProp TagRel TMC

r=1 67.34 57.43 79.34 80.32 89.34 61.42 50.35 73.53 74.34 84.34
r=2 69.13 57.43 81.41 81.53 91.53 63.57 50.35 74.23 76.54 86.42
r=3 71.54 57.43 83.45 83.17 93.37 64.84 50.35 76.34 77.65 90.45
r=4 73.64 57.43 85.76 84.24 95.54 65.75 50.35 79.64 79.46 93.24

MAP@15 MAP@20
Ref. CBIR TagProp TagRel TMC Ref. CBIR TagProp TagRel TMC

r=1 61.34 39.32 69.34 70.32 78.34 56.32 33.56 62.34 64.23 71.32
r=2 63.23 39.32 70.54 71.25 80.54 57.45 33.56 64.23 65.34 74.36
r=3 65.43 39.32 72.26 73.56 83.65 59.54 33.56 67.45 66.56 76.54
r=4 67.31 39.32 74.67 75.23 85.45 60.34 33.56 68.56 68.34 78.36

TABLE 6
Running time (seconds) of different methods.

TIME MBRM JEC InfNet LM3L TagProp TagRel TMC
Corel 34.18 23.19 33.27 46.79 2.63 4.28 31.89

Labelme 27.33 18.81 22.37 34.41 1.98 2.28 28.18
Flickr - - - - 8,770 7,740 10,630

TinyImg - - - - 3,560 2,710 4,413


