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Abstract

This paper presents a novel framework for the generic construction of hybrid encryption
schemes which produces more efficient schemes than the ones known before. A previous
framework introduced by Shoup combines a key encapsulation mechanism (KEM) and a
data encryption mechanism (DEM). While it is sufficient to require both components to be
secure against chosen ciphertext attacks (CCA-secure), Kurosawa and Desmedt showed a
particular example of KEM that is not CCA-secure but can be securely combined with a
specific type of CCA-secure DEM to obtain a more efficient, CCA-secure hybrid encryption
scheme. There are also many other efficient hybrid encryption schemes in the literature that
do not fit Shoup’s framework. These facts serve as motivation to seek another framework.

The framework we propose yields more efficient hybrid scheme, and in addition provides
insightful explanation about existing schemes that do not fit into the previous framework.
Moreover, it allows immediate conversion from a class of threshold public-key encryption
to a hybrid one without considerable overhead, which may not be possible in the previous
approach.
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1 Introduction

A fundamental task of cryptography is to protect the secrecy of messages transmitted over
public communication lines. For this purpose we use encryption schemes which use some secret
information (a key) to encode messages in a way that an eavesdropper cannot decode. However,
as networks become more open and accessible, it becomes apparently clear that an adversary may
not be limited to eavesdropping, but may take a more active role. She may try to interact with
honest parties, by, for example, sending ciphertexts to them (possibly related to the ciphertexts
she intends to decrypt) and analyze their response. Such active attacks can be proven to be
much more powerful and hard to combat than passive ones (see for example [7]).

To model this type of attacks, the notion of chosen-ciphertext security was introduced by
Naor and Yung [33] and developed by Rackoff and Simon [35], and Dolev, Dwork, and Naor
[22]. Security against a chosen ciphertext attack (CCA security, in short) means that, even if
the adversary is allowed to query a decryption oracle on ciphertext of her choosing, then she
obtains no useful information about messages encrypted in other ciphertexts. The first CCA-
secure cryptosystems were presented in [33, 35, 22], but they were quite impractical, as they
rely on generic techniques for non-interactive zero-knowledge. In a breakthrough result, Cramer
and Shoup in [16] presented the first truly practical CCA-secure cryptosystem, whose security
was based on the hardness of the decisional Diffie-Hellman problem. This construction was
generalized in [17], using a new cryptographic primitive called projective hash functions.

Public-key encryption schemes often limit the message space to a particular group, which can
be restrictive when one wants to encrypt arbitrary messages. For this purpose hybrid schemes are
devised, composed by the two parts. First a Key Encapsulation Mechanism (KEM) is invoked:
a random group element is encrypted and then mapped via a key derivation function into a
random key. Then a Data Encapsulation Mechanism is performed: the random key is used to
encrypt the message using a symmetric encryption scheme. A formal treatment of this paradigm
can be found in [38, 18] and we refer to it as the KEM/DEM framework.

As mentioned in the literature, it is sufficient that both KEM and DEM are CCA-secure
to obtain CCA-secure hybrid encryption. This indeed looks quite reasonable since, if either
component is not CCA-secure, then the adversary trying to decrypt a target ciphertext may be
able to alter the corresponding part of the ciphertext and use the decryption oracle to get useful
information. Recently in [30], Kurosawa and Desmedt introduced a hybrid encryption scheme
which is a modification of the hybrid scheme presented in [36]. Their scheme is interesting
from a theoretical point of view: when one looks at it as a KEM/DEM scheme, their KEM is
not CCA-secure [27]. Nevertheless, the resulting scheme is CCA-secure and more efficient than
[38, 18] both in computation and bandwidth. Thus the Kurosawa-Desmedt scheme suggests that
requiring both KEM/DEM to be CCA-secure, in order to obtain CCA-secure hybrid encryption,
while being a sufficient condition, may not be a necessary one, and might indeed be an overkill.

Moreover, there are other hybrid encryption schemes in the literature, e.g.,[4, 34] in the
random oracle model, which are very efficient, but do not fit to the CCA-secure KEM/DEM
framework.

Our Contribution. Prompted by the above observation, we set out to investigate another
KEM/DEM framework that yields more efficient hybrid encryption schemes and captures a
wider variety of existing schemes. Our results can be summarized as follows:

• We introduce Tag-KEMs: a form of KEM which also takes as input a tag. Though such
a notion is known in the literature, e.g., [38], we give an extended syntax and show,
somewhat surprisingly, that if one uses a CCA-secure Tag-KEM in a novel way, then it is
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sufficient for the DEM to be secure simply against a passive attacker, to yield CCA-secure
hybrid encryption.

• We present several constructions of CCA-secure Tag-KEMs based on various combination
of assumptions on the tools used to build them. A class of KEM that is strictly less secure
than CCA-secure ones but can yield CCA-secure Tag-KEM is shown. Importantly, we
show that the KEM by Kurosawa and Desmedt belongs to this class, thus providing a
theoretical understanding of their scheme. This answers an open question of [30].

• We show that the Tag-KEM/DEM framework provides a simple way to create threshold
versions of CCA-secure hybrid encryption schemes, which may not be possible in the
KEM/DEM framework.

• Finally, we show how several schemes in the literature can be cast in our Tag-KEM/DEM
framework. Furthermore we show that some of those schemes can actually be simplified
when considered as instances of our framework.

2 Definitions and Building Blocks

This section introduces all the building blocks used in this paper. Among them, the notion of
Tag-KEM (Section 2.1), DEM (Section 2.2), and PKE (Section 2.3) are used in Section 3 to
construct our main result. Other building blocks are used in specific constructions or applications
shown in Section 4 and 5, respectively.

2.1 Key Encapsulation Mechanism with Tags (Tag-KEM)

In Shoup’s model, a KEM consists, similary to public-key encryption, of three algorithms: key
generation, encryption and decryption. The difference is that the encryption algorithm takes
as input only the public key pk and outputs a random one-time key and its encryption. (See
Section 2.4.) The encryption function may also take an arbitrary string (a tag) as an input
associated to every ciphertext. In our model, we divide the encryption function into two functions
in such a way that the first one selects a random key and the second one encrypts the key along
with a given tag. We call a KEM that meets this model a Tag-KEM. Formally:

(pk , sk)← TKEM.Gen(1λ) A probabilistic algorithm that generates public-key pk and
private-key sk . The public-key defines all relative spaces, i.e.,
spaces for tags and encapsulated keys denoted by T and KK .

(ω, dk)← TKEM.Key(pk) A probabilistic algorithm that outputs one-time key dk ∈ KD

and internal state information ω. KD is the key-space of DEM.

ψ ← TKEM.Enc(ω, τ) A probabilistic algorithm that encrypts dk (embedded in ω) into
ψ along with τ , where τ is called a tag.

dk ← TKEM.Decsk (ψ, τ) A decryption algorithm that recovers dk from ψ and τ . For
soundness,TKEM.Decsk (ψ, τ) = dk must hold for any sk , dk , ψ,
and τ , associated by the above three functions. The algorithm
can also output special symbol ⊥ 6∈ KD to present abnormal
termination.

Tag-KEM is a generalization of KEM because if the tag is a fixed string, it is a KEM. Note
that, in the above syntactic definition, τ is not included in ψ and explicitly given to TKEM.Dec.
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Such explicit treatment of τ has some notational advantages when we consider an adversary
who tries to alter the tag without affecting the encapsulation ψ.

The security of a Tag-KEM requires that the adversary should fail to distinguish whether
a given dk is the one embedded in the cipehrtext (ψ, τ) or not, with adaptive access to the
decryption oracle. Let O be the decryption oracle, TKEM.Decsk (·, ·). Let AT be a probabilistic
polynomial-time (ppt) oracle machine that plays the following game.

[GAME.TKEM]

Step 1. (pk , sk)← TKEM.Gen(1λ), (ω, dk1)← TKEM.Key(pk), dk0 ← KD, δ ← {0, 1}.
Step 2. (τ, ρ)← AT

O(pk , dk δ)

Step 3. ψ ← TKEM.Enc(ω, τ)

Step 4. δ̃ ← AT
O(ρ, ψ)

In Step 4, AT is restricted not to ask (ψ, τ) to decryption oracle O. The variable ρ is a state
information of the adversary, and dk δ is set to either dk0 or dk1 according to the value of
δ ∈ {0, 1}. Such convention is used throughout the paper unless otherwise noted. We de-
fine εtkem,AT

=
∣∣∣Pr[δ̃ = δ]− 1

2

∣∣∣ and εtkem = maxAT
(εtkem,AT

) where maximum is taken over all
machines. We say that a Tag-KEM is CCA-secure if εtkem is negligible in λ.

The above security definition simplifies the one presented in [3] in the sense that the adversary
is given the key dk δ at the beginning of the game. It does not affect to the construction but
relevant proofs becomes slightly more involved.

Relation to Tag-based PKEs. Tags associated to PKE or KEM can be found in the lit-
erature (e.g. see [39, 38]), but their syntactic definition and the purpose are different from
ours; A tag is supposed to carry an identity of the encryptor and has to be fixed before the
DEM key is selected. (The encryption function takes a tag as an input and outputs a DEM
key.) Despite their limitations, this particular implementation also fits into our model without
essential modifications. Tag-based PKE is also introduced in [31] with the same syntax as that
of [39, 38] but with a weaker security notion. In their work, the adversary is restricted from
sending the same tag associated to the challenge ciphertext to the decryption oracle. Such a
weak security is sufficient for some cryptographic applications, as shown in [31]. Though it does
not fit into our framework, one of the constructions in [31] is identical as the one presented in
Section 5.3 and indeed achieves our higher level of security. The work in [29] introduces an even
weaker definition where the adversary commits itself to a tag at the beginning of the attack
game. It then shows how to convert such weak security into full CCA-security by using an extra
component such as a strong one-time signature or a message authentication code.

2.2 Data Encapsulation Mechanism (DEM)

A DEM is a symmetric encryption scheme that consists of two algorithms, DEM.Enc and
DEM.Dec associated to a key-space and message space defined by λ. We assume the key space
KD is {0, 1}λ while the message space is {0, 1}∗.
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χ← DEM.Encdk(m) An encryption algorithm that encrypts m into ciphertext χ by using
symmetric-key dk ∈ KD.

m← DEM.Decdk(χ) A corresponding decryption algorithm that recovers message m from
input ciphertext χ. Obvious soundness condition applies.

We only require passive security for DEM. Let AD be a polynomial-time machine that plays
the following game.

[GAME.DEM]

Step 1. (m0,m1, ρ)← AD(1λ).

Step 2. dk ← KD, ξ ← {0, 1}, χ← DEM.Encdk(mξ).

Step 3. ξ̃ ← AD(ρ, χ)

The messages, m0 and m1 must be the same length. Let εdem,AD
=

∣∣∣Pr[ξ̃ = ξ]− 1
2

∣∣∣ and
εdem = maxAD

(εdem,AD
) where maximum is taken over all machines. We say that a DEM is

one-time secure if εdem is negligible in λ. One-time pad is a simple example that fulfills this
security notion.

2.3 Public-Key Encryption (PKE)

A public-key encryption scheme consists of three algorithms, PKE.Gen, PKE.Enc, and PKE.Dec:

(pk , sk)← PKE.Gen(1λ) A probabilistic algorithm that on input the security parameter λ,
generates public and private keys (pk , sk). The public-key defines
the message spaceM.

c← PKE.Encpk (m) A probabilistic algorithm that encrypts a message m ∈ M into a
ciphertext c.

m ← PKE.Decsk (c) An algorithm that decrypts c. It outputs either m ∈M or a special
symbol ⊥ 6∈ M. An obvious soundness condition applies.

Let AE be a polynomial-time oracle machine that plays the following game. By O, we denote
the decryption oracle, PKE.Decsk (·)

[GAME.PKE]

Step 1. (pk , sk)← PKE.Gen(1λ)

Step 2. (m0,m1, ρ)← AE
O(pk)

Step 3. b← {0, 1}, c←PKE.Encpk (mb).

Step 4. b̃← AE
O(ρ, c)

In Step 4, AE is restricted not to ask c to O. In addition, m0 and m1 must be of the same
length. We define εpke,AE

=
∣∣∣Pr[b̃ = b]− 1

2

∣∣∣ and εpke = maxAE
(εpke,AE

) where maximum is taken
over all ppt machines. We say that a PKE is CCA-secure if εpke is negligible in λ.
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2.4 Key Encapsulation Mechanism (KEM)

This section describes the syntax and security definitions for KEM from Shoup [36].

(pk , sk)← KEM.Gen(1λ) A probabilistic algorithm that generates public and private keys
(pk , sk). The public-key defines the key space KK .

(K,φ)← KEM.Encpk () A probabilistic algorithm that generates key K ∈ KK and its en-
cryption φ.

K ← KEM.Decsk (φ) An algorithm that decrypts φ to recover K. As well as PKE,
an obvious soundness condition applies. It may output a special
symbol ⊥ 6∈ KK .

Since we use KEM only as a component to construct Tag-KEM in this paper, we consider
KEM.Enc that outputs K ∈ KK for some specific domain KK rather than the ones adjusted to
a specific DEM key-space.

Let O denote the decryption oracle, KEM.Decsk (·). Let A be a ppt oracle machine that plays
the following game.

[GAME.KEM]

Step 1. (pk , sk)← KEM.Gen(1λ), (K1, φ)← KEM.Encpk (), K0 ← KK , b← {0, 1}.
Step 2. b̃← AO(pk , φ,Kb).

In Step 2, A is restricted not to ask φ to KEM.Dec.
We define εkem,A =

∣∣∣Pr[b̃ = b]− 1
2

∣∣∣ and εkem = maxA(εkem,A) where the maximum is taken
over all machines. We say that a KEM is secure against adaptive chosen ciphertext attacks
(CCA secure) if εkem is negligible in λ.

2.5 Message Authentication Code (MAC)

MAC is a pair of algorithms (MAC.Sign,MAC.Ver) and a key-space KM defined by security
parameter λ. Typically, KM = {0, 1}λ. MAC.Sign takes a mac-key mk ∈ KM and a message τ ∈
{0, 1}∗ and outputs a string σ. We say (σ, τ) is valid with regard to mk if σ = MAC.Signmk(τ).
MAC.Ver takes a triple (mk, σ, τ) and outputs 1 if (σ, τ) is valid with respect to mk, or outputs
0, otherwise.

We require MAC to be secure against one-time chosen message attack; an adversary chooses
an arbitrary message τ and is given its MAC σ created with a MAC key mk randomly chosen
from KM . The adversary outputs (σ′, τ ′) which is different from (σ, τ) as a pair. The adversary
wins if the resulting pair is correct with respect to the same mk. Let GAME.MAC denote this
attack game. We say that MAC is secure against one-time chosen message attack if any ppt
adversary can win GAME.MAC at most with negligible probability, say εmac.

2.6 Key Derivation Function (KDF)

Our construction uses a function, say KDF2, that maps a key K generated by KEM into a
pair of keys (dk,mk) for DEM and MAC. We require its output distribution (dk,mk) to be
indistinguishable from uniform, when the input K is uniformly distributed. We refer Section 8
of [18] for construction.
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Since the input domain depends on a specific choice of KEM, DEM, and MAC, KDF is
defined with regard to the key-space of these schemes. Let KDF2 : KK → KD × KM and
{KDF2}λ be a family of functions indexed by the key-spaces associated to the same security
parameter λ. (Extra keys may also be used as index if needed.) We require that distribution of
KDF2 is indistinguishable from uniform over KD ×KM . Let

D1 = {(dk,mk) |K ← KK , (dk,mk)← KDF2(K)}, and

D0 = {(dk,mk) | (dk,mk)← KD ×KM}

We say that KDF2 is secure if, for polynomial time machine AKDF,

|Pr[b← {0, 1}, (dk,mk)← Db, b̃← AKDF(pk ,KDF2, (dk,mk)) ; b̃ = b]− 1
2
| ≤ εkdf

where εkdf is a negligible function in λ. The probability is taken over the choice of KDF2 which
includes coins of KEM.Gen that determines KK and the choice of (dk,mk), b, and the coins of
AKDF.

In our construction of Tag-KEM, dk and mk are derived from independent application of
KDF2 to two different inputs. Let

U1 = D1, and

U0 = {(dk,mk)|K ← KK , (dk, ∗)← KDF2(K),K ′ ← KK , (∗,mk)← KDF2(K ′)}.

Lemma 2.1 If KDF2 is secure, for all polynomial machine A,
∣∣∣∣Pr[d← {0, 1}, (dk,mk)← Ud, d̃← A(dk,mk) ; d̃ = d]− 1

2

∣∣∣∣ ≤ 2εkdf.

Proof: Consider a hybrid distribution

W = {(dk,mk)|K ← KK , (dk, ∗)← KDF2(K),mk ← KM}.

By hybrid argument, the advantage of distinguishing D1 and W is upper bounded by εkdf. Let
ε′kdf be advantage of distinguishing U1 and U0. Again by hybrid argument, the advantage of
distinguishing U0 and W is at least ε′kdf− εkdf. Then, given a machine that distinguishes U0 and
W with that probability, one can easily construct a machine that distinguishes D0 and D1 with
the same probability. Hence ε′kdf − εkdf ≤ εkdf. This completes the proof.

By simple computation, we have:

Corollary 2.2 If KDF2 is secure, for all polynomial machine A,

|Pr[(dk,mk)← U0, 1← A(dk,mk)]− Pr[(dk,mk)← U1, 1← A(dk,mk)]| ≤ 4εkdf.

2.7 Target Collision-Free and Random Prefix Collision-Free

Target Collision-Free (TCH): Target Collision-Free is a special case of universal one-way;
An adversary is given (H,x) (chosen at random in their domain) and then attempts to find x′

such that H(x) = H(x′). Let Xλ = {X} be a collection of domains and X = {Xλ}λ∈N. Let
Hλ = {H : X → {0, 1}λ | X ∈ Xλ} and H = {Hλ}λ∈N. Note that X is identified by the
description of H. Let ATCH be a machine playing the following game.
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[GAME.TCH]

Step 1. H ← Hλ, x← X.

Step 2. x′ ← ATCH(H,x) such that x′ ∈ X.

ATCH wins if H(x′) = H(x). We define εtch,ATCH
= Pr[ATCH wins. ] in GAME.TCH and εtch =

maxATCH
(εtch,ATCH

) where the maximum is taken over all machines. We say that H is target
collision-free with regard to X if εtch is negligible in λ. For simplicity, we also say that Hλ (or
even H) is target collision-free with regard to Xλ (or X, respectively).

Random Prefix Collision-Free (RPH): Random prefix collision-free is a notion in between
target collision-free and collision-free; An adversary is first given H and finds x and then given
random r and outputs r′ and x′ such that H(r, x) = H(r′, x′). Let Xλ = {X} be a collection
of domains and X = {Xλ}λ∈N. We define Rλ and R in the same way. Then, let Hλ = {H :
X × R → {0, 1}λ | X ∈ Xλ, R ∈ Rλ} and H = {Hλ}λ∈N. Let ARPH be a machine playing the
following game named GAME.RPH.

[GAME.RPH]

Step 1. H ← Hλ

Step 2. (ρ, x)← ARPH(H)

Step 3. r ← R

Step 4. (r′, x′)← ARPH(ρ, r) such that r′ ∈ R and x′ ∈ X.

ATCH wins if H(r′, x′) = H(r, x) and (r′, x′) 6= (r, x). We define εtch,ARPH
and εrph for RPH as

well as those for TCH, and say that H is random prefix collision-free with regard to X and R
if εrph is negligible in λ.

3 Generic Construction of Hybrid PKE

In GAME.TKEM, it is important to see that the same ψ can be asked to the decryption oracle as
long as τ is different. Therefore, to conform to CCA-security, the CCA-secure Tag-KEM must
provide integrity to τ . We exploit this property to protect the DEM component via the tag, so
as to be non-malleable.

Now in our construction of hybrid PKE, we require that Tag-KEM accepts any string as a
tag, i.e., T = {0, 1}∗. First of all, PKE.Gen is the same as TKEM.Gen; Given security parameter
λ, it outputs public-key pk and private-key sk . Encryption and decryption functions are as
follows.

Function: PKE.Encpk (m)

(ω, dk)← TKEM.Key(pk)
χ← DEM.Encdk(m)
ψ ← TKEM.Enc(ω, χ)
Output c = (ψ, χ)

Function: PKE.Decsk (c)

(ψ, χ)← c
dk ← TKEM.Decsk (ψ, χ)
m← DEM.Decdk(χ)
Output m

When the length of the DEM key varies depending on the length of the message, like one-
time pad, the syntax of Tag-KEM will be modified so that TKEM.Enc and TKEM.Dec can take
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the necessary information.

Theorem 3.1 [Tag-KEM/DEM Composition Theorem] If the Tag-KEM is CCA secure and the
DEM is one-time secure then the Hybrid PKE scheme in Section 3 is CCA secure. In particular,
εpke < 2εtkem + εdem.

Proof: We modify PKE.Enc in Step-3 of GAME.PKE so that DEM.Enc takes random key dk×

instead of the legitimate one generated by TKEM.Key. Call this game GAME.PKE’. Let X and
X ′ be events that b̃ = b happens in GAME.PKE and GAME.PKE’, respectively. Then, we claim
that |Pr[X]− Pr[X ′]| ≤ 2 εtkem, which is shown by constructing AT that attacks the underlying
Tag-KEM scheme by using AE . First AT is given public-key pk and passes it to AE . AT then
requests dk δ to the encryption oracle of GAME.TKEM. Given m0 and m1 from AE , AT selects
b ← {0, 1} and computes χ = DEM.Encdkδ

(mb). It then sends χ to TKEM.Enc as a tag and
receives ψ. Ciphertext (ψ, χ) is then sent to AE . Every decryption query from AE is forwarded
to decryption oracle TKEM.Dec. If ⊥ is returned, it is forwarded to AE . Otherwise, AK decrypts
χ by using the key given from oracle TKEM.Dec and pass the resulting message to AE . When
AE outputs b̃ = b, AK outputs δ̃ = 1 meaning that dk δ is the real key. Otherwise, if AE outputs
b̃ 6= b, AK outputs δ̃ = 0 meaning that dk δ is random. Now observe that the view of AE is
identical to that in GAME.PKE when δ = 1, and that in GAME.PKE’ when δ = 0. Accordingly,
Pr[b̃ = b|δ = 1] = Pr[X] and Pr[b̃ = b|δ = 0] = Pr[X ′]. Therefore,

Pr[δ̃ = δ]− 1
2

=
1
2
(Pr[δ̃ = 1|δ = 1]− Pr[δ̃ = 1|δ = 0])

=
1
2
(Pr[b̃ = b|δ = 1]− Pr[b̃ = b|δ = 0])

=
1
2
(Pr[X]− Pr[X ′])

Since
∣∣∣Pr[δ̃ = δ]− 1

2

∣∣∣ ≤ εtkem, we have |Pr[X]− Pr[X ′]| ≤ 2εtkem.

Next, we show that AE playing GAME.PKE’ essentially conducts a passive attack to DEM, i.e.,∣∣Pr[X ′]− 1
2

∣∣ ≤ εdem. It is shown by constructing AD that plays GAME.DEM by using AE . AD

first generates (pk , sk) by using PKE.Gen and gives pk to AE . When m0 and m1 are given
from AE , AD forwards them to encryption oracle of GAME.DEM and receives cipehrtext χ.
It then computes ψ by following TKEM.Key and TKEM.Enc by using χ as a tag, and sends
c = (ψ, χ) to AE . Note that the key chosen by the encryption oracle of GAME.DEM and the
one embedded in ψ are independent and randomly chosen. All decryption queries are correctly
processed by using sk . When AE outputs b̃, AD outputs ξ̃ = b̃. It is now easy to see that, in
this construction, GAME.PKE’ is perfectly simulated and whenever AE wins, so does AD. Hence∣∣Pr[X ′]− 1

2

∣∣ ≤ εdem. The major factors of the running time of AD is that of AE and that for
simulating the decryption oracle which grows linearly in the number of decryption queries.

In summary, we have:

|(Pr[X]− 1
2
)− (Pr[X ′]− 1

2
)| ≤ 2εtkem

εpke − εdem ≤ 2εtkem

εpke ≤ 2εtkem + εdem

where εtkem and εdem are assumed negligible.
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4 Construction of Tag-KEM

This section develops some methods for obtaining Tag-KEM from PKE or KEM. (Note that
KEM is generally obtained from PKE. Hence starting from a KEM is more generic.) Since
some methods are available to convert a weak PKE to a CCA-secure one in various setting, we
assume CCA-secure PKE is available. Construction of KEM directly from weaker components
is studied in [19].

4.1 Based on PKE with Long Plaintext

When CCA-secure PKE is available, the first idea would be to encrypt the tag as a part of the
plaintext together with the DEM key to encapsulate. It indeed works well if there is enough
space in a plaintext. Lengthy tags would be compressed by using a hash function. We show
that a target collision-free hash function (see Section 2.7) is sufficient for this purpose. Formally,
we construct Tag-KEM from PKE as follows. TKEM.Gen is essentially the same as PKE.Gen;
It outputs (pk , sk). It also selects hash function H. (For notational simplicity, we assume that
H is included in pk and sk .) TKEM.Key chooses random dk from KD. It also outputs state
information ω = pk ||dk. The encryption and decryption functions are as follows.

Function: TKEM.Enc(ω, τ)

(pk , dk)← ω
τ ′ = H(τ)
ψ = PKE.Encpk (dk||τ ′)
Output ψ.

Function: TKEM.Decsk (ψ, τ)

dk||τ ′ ← PKE.Dec(sk , ψ)
If τ ′ = H(τ), return dk.
Return ⊥, otherwise.

Let εtch be the success probability of finding a collision of H. (Formal security definitions
and related notations are given in Section 2.7.)

Theorem 4.1 If PKE is CCA-secure and H is target collision-free, the above Tag-KEM is
CCA-secure. In particular, εtkem ≤ εpke + εtch.

Proof is given in Appendix A. One efficient implementation would be to use Rabin-SAEP+
[8] encryption, where the message length is known to be shorter than that of RSA but sufficient
for encrypting a standard DEM key and hashed tag. One can also apply the technique of [25]
to shorten the ciphertext.

4.2 Based on CCA-Secure KEM and MAC

In this section we present a CCA-secure Tag-KEM based on a CCA-secure KEM and a secure
message authentication code (MAC) scheme (see Appendices 2.4 and 2.5 for formal definitions
of these tools).

The idea is to encrypt a random key K using the KEM, and derive from K two keys dk,mk.
The first, dk is the actual encrypted key, while mk is used to MAC the tag. The resulting MAC
is appended to the ciphertext. A decryptor not only checks that the KEM decryption is correct,
but also checks (using the decrypted key mk) that the MAC on the tag is correct. A formal
description follows.
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Construction of Tag-KEM: Let ΠL = (KEM.Gen,KEM.Enc,KEM.Dec) be a KEM. Let
MAC = (MAC.Sign,MAC.Ver) be a MAC. Let KDF2 : KK → KD × KM be a key deriva-
tion function where KD is the key-space of DEM and KM is the key-space of MAC. By using
these components, we construct a Tag-KEM as follows. TKEM.Gen is the same as KEM.Gen;
It outputs (pk , sk).1 TKEM.Key is that, given pk , it computes (K,φ) ← KEM.Encpk () and
(dk,mk) ← KDF2(K). Then it outputs dk and state information ω = (mk, φ). The encryption
and decryption functions are as follows.

Function: TKEM.Enc(ω, τ)

(mk, φ)← ω
σ ← MAC.Signmk(τ)
Output ψ = (φ, σ)

Function: TKEM.Decsk (ψ, τ)

(φ, σ)← ψ
K ← KEM.Decsk (φ)
(dk,mk)← KDF2(K)
If K = ⊥ or MAC.Vermk(σ, τ) 6= 1, out-
put ⊥.
Otherwise, output dk.

Clearly the CCA security of the KEM scheme will prevent an adversary from gaining any
advantage by manipulating the KEM ciphertext. On the other hand the security of the MAC
will prevent an adversary from gaining any advantage by manipulating the MAC.

Applying Theorem 3.1 to the above Tag-KEM yields the same hybrid encryption scheme as
in Shoup’s KEM/DEM framework when the DEM part is implemented by following the encrypt-
then-MAC paradigm. But by looking at that scheme in a different light, we are able to proceed
a step further in refining the assumptions and the efficiency, as shown in the next section.

4.3 Based on weak KEM and MAC

In the previous scheme, there is some redundancy at play. If a KEM is combined with a
MAC as shown in Section 4.2, the MAC will be used to preserve the integrity of ciphertexts.
Accordingly, one may no longer need the KEM’s functionality of verifying ciphertexts. Following
this intuition, in this Section we formally describe a new security notion of KEM that can be
strictly weaker than CCA but sufficient to yield CCA-secure Tag-KEM when combined with
MAC.

Predicate-dependent CCA Security: Let ΠL be a KEM as in Section 4.2. Let P : {0, 1}∗×
{0, 1}∗ → {0, 1} be a poly-time computable predicate. Let VDφ be a restricted decryption oracle
that is specific to challenge φ. It takes (φi, ηi) ∈ {0, 1}∗ × {0, 1}∗ and outputs KEM.Decsk (φi)
if φi 6= φ and P(KEM.Decsk (φi), ηi) = 1. It outputs ⊥, otherwise. Let AL be an adversary
attacking ΠL. We define GAME.LKEM by modifying GAME.KEM so that the decryption oracle
receives ciphertexts accompanied by an arbitrary string and the decryption oracle KEM.Decsk (φ)
is replaced with VD.

[GAME.LKEM]

Step 1. (pk , sk)← KEM.Gen(1λ), (K1, φ)← KEM.Encpk (), K0 ← KK , b← {0, 1}.

Step 2. b̃← A
VDφ(·,·)
L (pk , φ,Kb)

1 If KDF2 requires a key, it is generated in TKEM.Gen and included to pk and sk . See Section 2.6 for details
of KDF.
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We define εlkem,AL
=

∣∣∣Pr[b̃ = b]− 1
2

∣∣∣ and εlkem = maxAL
(εlkem,AL

) where the maximum is taken
over all machines. We say that a KEM is LCCA secure with respect to predicate P if εlkem is
negligible in λ.

The above definition may seem too generic since the useful case shown later is where MAC.Ver
can be used as P. Nevertheless, the generic treatment may be helpful to specify what property
is really needed. Also in some cases, it makes the security analysis slightly simpler like shown
in our analysis of the Kurosawa-Desmedt scheme.

When does LCCA become weaker than CCA? The strength of LCCA security is subject
to the property of P. If P outputs 1 for any input, LCCA is clearly equivalent to CCA. If it
outputs 0 for any input, LCCA is equivalent to a passive attack, i.e., an attack without the
decryption oracle, for which we cannot prove the security of Tag-KEM in Section 4.2. Hence a
very weak (i.e. only passively secure) instance may exist in the class.

Proof of the Tag-KEM in Section 4.2. We prove the security of the construction when the
underlying KEM is LCCA secure with respect to Pmac defined as Pmac(K, (σ, τ)) = MAC.Vermk(σ, τ)
where mk is (dk,mk) ← KDF2(K). Note that, in the Tag-KEM construction shown in Section
4.2, P is not used in TKEM.Dec. Hence the underlying KEM ΠL itself might be insecure against
CCA as mentioned above. However, since P is assumed to be Pmac and it is indeed provided
from outside, LCCA security will be achieved. Namely, the MAC has two different roles in the
construction; one is to authenticate the tag and the other is to work as a predicate as a part
of underlying KEM. As we could have predicted, this is very close to the combination of CCA
KEM and MAC (but not exactly the same). Nevertheless, we have to formally prove the security
to see the MAC plays the different roles without inconsistency.

Theorem 4.2 If ΠL is LCCA secure with respect to Pmac then the Tag-KEM defined in Section
4.2 is CCA secure. In particular, εtkem ≤ 4εlkem + qD εmac + 5εkdf where qD is the maximum
number of decryption queries.

Proof is in Appendix B. We note that the result in this section might be regarded as
theoretical. In practice, proving that a KEM conforms to the new notion could only be slightly
easier than proving the security of resulting scheme as Tag-KEM. And one can expect better
reduction cost by directly proving the security of Tag-KEM by exploiting specific properties.

We finally remark that one can also construct CCA-secure Tag-KEM from RCCA-secure
KEM which is strictly weaker than CCA-secure ones. See Section 5.4 for further discussion.

4.4 Based on KEM with Hash function

We show another approach that might be available when your PKE does not have enough
plaintext length as needed in Section 4.1 and/or increasing ciphertext length as in Section 4.2
is not acceptable.

If a KEM uses a hash function, probably for verifying ciphertexts, the KEM may be converted
to a Tag-KEM simply by including the tag into the hash function input. This approach is correct
if the hash function is involved in the scheme in a ’meaningful’ way and provides ’sufficient’
security. Although a generic construction that follows formal versions of these intuitive terms
can be shown, it does not seem quite useful due to its complexity. Showing that a KEM fits into
the generic framework may not be simpler than directly proving that the resulting Tag-KEM
scheme is secure. Indeed, in all cases we have in mind, the security proof is essentially unchanged
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from that of the original KEM (or PKE). Therefore, we only show two concrete constructions of
Tag-KEM based on well known encryption schemes; OAEP+ [37] and Cramer-Shoup encryption
[16].

In the following, the description of the original schemes are obtained just by dropping the
tag τ .

4.4.1 From OAEP+.

Let f be a one-way trapdoor permutation. OAEP+ encrypts dk with tag τ into ciphertext ψ in
the following way:

r′ = H ′(r||dk ||τ), s = (G(r)⊕ dk)||r′, w = H(s)⊕ r, ψ = f(s||w)

where r and r′ are random and G, H, H ′ are random oracles [4].
Security is argued in the same way as the original one except the case that, for challenge

ciphertext (ψ, τ) the adversary finds another valid ciphertext (ψ, τ ′). Since ψ uniquely identifies
r, r′ and K, (ψ, τ ′) is valid only if H ′(r||dk ||τ) = H ′(r||dk ||τ ′) holds. When H ′ outputs a k1-bit
string, such an event happens with probability at most qH′ 2−k1 where qH′ is the maximum
number of queries to H ′. Based on this observation, we define game GAME.0’ where decryption
oracle returns ⊥ for all queries that differs only in the tag part with the challenge ciphertext.
The rest of the security proof is done in the same way as in the original paper [37] except for
obvious modifications. Accordingly, only qH′ 2−k1 is an extra reduction cost to that of OAEP+.

4.4.2 From Cramer-Shoup Encryption.

A Tag-KEM scheme based on Cramer-Shoup encryption over a multiplicative group, say Gq, of
prime order q is the following. A private-key is (x1, x2, y1, y2, z1, z2) ∈ Zq and the public-key is
g1, g2 ← G2

q , and c = gx1
1 gx2

2 , d = gy1
1 g

y2
2 , h = gz1

1 g
z2
2 . The encryption function yields dk = hr

where r is random, and ciphertext (u1, u2, v) such that

u1 = gr
1, u2 = gr

2, α = H(u1||u2||τ), v = crdαr

where H is a hash function. Decryption first checks if v ?= ux1+αy1
1 ux2+αy2

2 and then recovers
dk = uz1

1 u
z2
2 . Applying Theorem 3.1 results in the hybrid PKE briefly mentioned in [16].

In [18], the security of Cramer-Shoup encryption requires H to be Target Collision-Free (as
defined in Section 2.7) since, without τ , all inputs to the hash function, i.e., u1 and u2, are
chosen randomly by the encryption oracle. In this case, however, τ is chosen by the adversary
after seeing the description of H. Hence we require H to be Random Prefix Collision-Free as
formally defined in Section 2.7.

It holds that (Collision-Free) ⇒ (Random Prefix Collision-Free) ⇒ (Target Collision-Free).
Hence it is reasonable to use cryptographic hash functions like SHA-1 which can be assumed
collision-free. Nevertheless, we stress that random prefix collision-freeness may not necessarily
be equivalent to collision-free because, for example, it is not clear how to perform a birthday
attack in the above game (if the randomness of x affects to the output). Theoretically, we do not
know constructions of random prefix collision-free hash functions from target collision-free or
universal one-way hash functions, thus we resort to strong collision-freeness. The only drawback
is that this requires a longer output (about twice as much because the birthday paradox applies
here), but that does not affect our construction.
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4.5 Based on ID-based PKE

An ID-based encryption scheme is selective-ID secure when it is secure against chosen ciphertext
and chosen ID attacks provided that the target ID is committed at the beginning and the ID
must not be included in any decryption query. It is shown in [14] that selective-ID ID-based
encryption schemes (sIBE in short) can be strengthened to a full CCA-secure PKE by using
strong one-time signature. In [11], Boneh and Katz improved the efficiency of [14] by replacing
the one-time signature with a commitment scheme (using hash function) and a MAC. We show
that the conversion from sIBE to full-CCA PKE also yields a CCA-secure Tag-KEM (without
adopting the result of Section 4.1).

Let (SIG.Gen, SIG.Sign, SIG.Ver) be a strong one-time signature scheme where SIG.Gen is a key
generation algorithm, SIG.Sign is a signature generation algorithm, and SIG.Ver is a signature
verification algorithm. Let sIBE.Enc(pk , ID,m) be the encryption function of an sIBE. Then,
we construct a Tag-KEM scheme as follows: TKEM.Key(pk) simply selects dk randomly. Then
TKEM.Enc encrypts dk and τ into ciphertext ψ = (vk , φ, σ) by computing

(vk , sk)← SIG.Gen(1λ), φ← sIBE.Enc(pk , vk , dk), σ = SIG.Sign(sk , φ||τ).

Decryption is rather trivial; first verify the signature σ using vk and then decrypt the rest of
the parts.

In the above, removing τ from the description results in the original scheme from [14].
Including τ into the message to be signed provides integrity to the tag without affecting the
security of the original scheme. Indeed, the security proof of the above scheme is almost the
same as in [14] with obvious modification. The reduction cost does not change, either.

The length of a ciphertext of the above Tag-KEM is the same as the original CCA-secure
PKE. But the resulting hybrid PKE may yield shorter ciphertext thanks to the one-time secure
DEM that typically yield shorter ciphertext than CCA-secure ones needed to combine with the
original CCA-secure PKE.

One can extend the above Tag-KEM to ID-based one in the same way starting from a 2-level
hierarchical IBE that is selective-ID secure in the second level and fully CCA secure in the first
level. (A given ID is assigned to the first-level ID and vk is assigned to the second-level ID.)
ID-based KEM is also studied in [6]. For efficient implementations of sIBE based on standard
cryptographic assumptions, we refer to [9].

5 Applications

In this section, we show how our framework yields new hybrid encryption schemes, captures
some known schemes, and even finds ways to improve them.

5.1 Threshold Hybrid PKE

Roughly, a threshold (hybrid) PKE is a PKE whose decryption m ← PKE.Decsk (c) is imple-
mented by a multi-party protocol. The private key sk is shared among n decryption servers
and they cooperatively compute m from given c without revealing anything but m (or ⊥ for
invalid c) in the presence of an adversary that can corrupt at most k−1 decryption servers. For
simplicity, we assume that a trusted party generated the key, and shared it among the servers,
though distributed key generation protocols can be used.

Threshold CCA-security is defined as a natural extension of the CCA-security for regular
(non-threshold) PKE as in [39]. The decryption oracle is replaced by n decryption servers and
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the adversary is allowed to corrupt up to k− 1 of them. A corrupted player provides all its view
to the adversary and is completely controlled by the adversary.

Results from general multi-party computation, e.g., [26, 5], imply that any (hybrid) PKE
can be converted to its threshold version in several settings. Since such a generic conversion
suffers from unrealistic complexity, dedicated construction has been pursued starting from [20].
In the standard model, the first CCA-secure threshold PKE is presented in [13] followed by, e.g.,
[1, 28, 2, 10, 12]. However, no efficient threshold hybrid PKE, is known in the standard model, via
a generic construction like KEM/DEM. If a threshold CCA KEM and a threshold CCA DEM
are available, their simple combination would yield a threshold CCA PKE like the standard
KEM/DEM composition. However, an efficient threshold DEM seems difficult to obtain, given
its use of symmetric key techniques such as block ciphers and MAC.

Can we then combine a threshold CCA KEM and a standard, i.e., non-threshold, CCA DEM
to obtain a CCA-secure hybrid PKE? Unfortunately, this also seems quite unlikely. A rough
argument is the following. Assume an adversary that corrupts at least one decryption server.
Given a challenge ciphertext (φ, χ), the adversary creates a random χ′ and sends (φ, χ′) to the
decryption servers. The decryption servers work on φ to decrypt dk. Since the DEM is not
threshold, the key dk must be known in its entirety to the servers (at least to one of them, the
one who performs the DEM decryption). The adversary then will recover dk by corrupting at
least one server, and then will correctly decrypt χ to win the CCA game.

The Tag-KEM/DEM framework offers an attractive way to get around this difficulty. We
exploit the feature that the DEM part needs only be CPA-secure and the session-key can be
securely exposed. Remember that CPA-secure DEM can be implemented by a one-time pad that
leaks the key on decryption. Hence revealing the decryption key dk as a result of decrypting
ψ does not impact security in the Tag-KEM/DEM framework. Accordingly, by replacing Tag-
KEM with its threshold version, we have a threshold Tag-KEM/DEM framework. Namely, the
combination of threshold Tag-KEM and standard one-time secure DEM results in CCA-secure
threshold hybrid PKE.

A formal security definition of threshold Tag-KEM can be derived from the definition of
threshold PKE in [39]. The following composition theorem can be proven by translating the
proof of Theorem 3.1 to the threshold setting.

Theorem 5.1 [Threshold Tag-KEM/DEM Composition Theorem] If the threshold Tag-KEM is
threshold-CCA secure and the DEM is one-time secure then their Tag-KEM/DEM composition
yields a threshold-CCA secure hybrid PKE scheme. In particular, εth-pke < 2εth-tkem+εdem where
εth-pke and εth-tkem are the advantages of threshold PKE and threshold KEM, respectively.

A note on the security model. In the above threshold Tag-KEM/DEM construction, the
adversary can obtain a correct session-key by querying a valid ciphertext to honest decryption
servers. (One-time pad DEM trivially exposes the session-key from a ciphertext and a mes-
sage, though this is not true for arbitrary DEM.) Such information is irrelevant to conform
to the game-based security definition for threshold PKE [39] but becomes an obstacle when a
simulation-based security definition [13] is concerned. Roughly, the simulation-based security
of [13] compares a threshold PKE with an ideal encryption system managed by a trusted party
and states that the threshold PKE is secure if the adversary in the ideal model can be simulated
by using the adversary in the real threshold model. It is claimed in [13] that the simulation-
based security implies the game-based one but the reverse does not hold. According to the
simulation-based security, the adversary in the real threshold model should obtain nothing but
a message when a valid ciphertext is sent to the decryption servers since the ideal encryption
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is defined so. Since the schemes based on the threshold Tag-KEM/DEM composition reveals
the session-key, it does not match to this security notion. Since this problem essentially comes
from the use of a non-threshold DEM, it is highly unlikely that the simulation-based security is
achieved unless the DEM is shared.

Instantiation. Threshold Cramer-Shoup PKE which is CCA-secure against static adversaries
is shown in [13, 1], and the conversion technique in Section 4.4 (or result of Section 4.1 with larger
security parameter) can be used to obtain a threshold Cramer-Shoup Tag-KEM. Accordingly,
by following Theorem 5.1, one can have a secure threshold hybrid PKE scheme in the standard
model. Adaptive security can be achieved as well based on the adaptively secure threshold
Cramer-Shoup encryption of [2].

5.2 Revisiting the Kurosawa-Desmedt Scheme

In [30], Kurosawa and Desmedt introduced a hybrid encryption scheme based on Cramer-Shoup
encryption. The private-key sk = (x1, x2, y1, y2) and public-key pk = (g1, g2, c, d) are a part of
that for Cramer-Shoup encryption as shown in Section 4.4. Encryption of message m ∈ {0, 1}∗
is :

u1 = gr
1, u2 = gr

2, α = H(u1||u2), v = crdαr, (dk,mk)← KDF2(v),

χ = G(dk)⊕m, σ = MAC.Signmk(χ),

where r is random, H is a target collision-free hash function, G is a pseudo-random bit generator,
and MAC.Sign is a MAC generation function. The ciphertext is (u1, u2, χ, σ). In this scheme,
(u1, u2) is considered as the KEM part and (χ, σ) is considered as the CCA-secure DEM part.
Though the combination results in a CCA-secure hybrid PKE, the KEM part is not CCA [27].

Our framework reveals another approach to the analysis of the scheme. That is, we consider
(u1, u2, σ) as the Tag-KEM part and χ as the one-time secure DEM part. The Tag-KEM part is
further decomposed to KEM part, (u1, u2) and MAC, (σ). It is known that this KEM is not CCA
secure [27]. Hence it does not fulfill the requirement stated in Section 4.2. Yet we can prove that
(u1, u2) constitutes an LCCA secure KEM with regard to a predicate Pmac(K = v, η = (χ, σ)).
See Appendix C for a proof. Accordingly, the Kurosawa-Desmedt scheme can be thoroughly
explained by our framework and their design approach is validated.

5.3 Refined Fujisaki-Okamoto Conversion and More

Fujisaki-Okamoto Conversion: We revisit the Fujisaki-Okamoto conversion [23] that pro-
vides secure construction of hybrid encryption in the random oracle model. By fitting their
scheme into our framework, we can see that one of their assumptions can be eliminated and a
refined version is obtained without loss of efficiency.

Let PKE.Encpk (· ; ·) be a public-key encryption function where the last argument denotes the
random coins used in the function. The Fujisaki-Okamoto conversion combines PKE and DEM
by using two random oracles, H and G, as follows:

ψ ← PKE.Encpk (K;H(K||m)), χ← DEM.EncG(K)(m).

The ciphertext is (ψ, χ). The resulting hybrid PKE is CCA-secure if PKE is one-way and DEM
is one-time secure and DEM.Enc is a bijection between ciphertexts and messages for every fixed
key.
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Now one can observe that PKE.Encpk (K;H(K||τ)) works as a Tag-KEM encryption function
that encapsulates the DEM key G(K). Then, according to our framework, we have a slightly
modified hybrid encryption:

ψ ← PKE.Encpk (K;H(K||χ)), χ← DEM.EncG(K)(m)

which does not require DEM.Enc to be a bijection. Details are given in Appendix D.

Bellare-Rogaway Scheme: The scheme shown by Bellare and Rogaway in [4] is a special
case of the Fujisaki-Okamoto construction. The encryption function consists of a one-way per-
mutation f and random oracles H and G;

ψ = f(r), σ = H(r||m), χ = G(r)⊕m

This scheme specifies to use one-time pad for the DEM part. According to our framework, we
can generalize to any one-time secure DEM by modifying the scheme as

ψ = f(r), σ = H(r||χ), χ = DEM.EncG(r)(m).

REACT: REACT-RSA [34] is very similar to the above Bellare-Rogaway scheme;

ψ = f(r), σ = H(r||m||ψ||χ), χ = DEM.EncG(r)(m),

where f is the RSA encryption function. In this case, our framework shows that m can be
removed from the inputs to H. Including m to H would result in slightly better reduction in the
security proof. But removing it yields more benefit in computation when m is very long. Even
ψ can be removed if the decryption function verifies that ψ is in the correct domain. In the case
of RSA, domain checking is done just by comparing the ciphertext to the modulus. Hence by
setting σ = H(r||χ) we have more efficient scheme. Indeed, the resulting scheme is the same as
the modified Bellare-Rogaway scheme shown in this section.

The common factor lying underneath the above-mentioned examples is the Tag-KEM scheme
whose ciphertext is ψ = (f(r), H(r||τ)) where H is a random oracle. Such a scheme also appears
in [31].

Some ISO standard candidates: Finally, as mentioned in Section 4.1, KEM schemes based
on RSA and HIME described in [38] allow to label each ciphertext. This label can be used as a
tag in our framework. Hence the DEM no longer need to provide CCA security when combined
with those KEMs as suggested by our framework.

5.4 Revisiting RCCA-secure PKE

This section revisits RCCA-secure PKE in [15] and show that their construction of CCA-secure
hybrid PKE from RCCA-secure PKE can be improved by following our Tag-KEM/DEM frame-
work.

The notion of RCCA-secure PKE is introduced in [15]. RCCA is a variant of CCA where
the decryption oracle returns a special nonce ’test’ when it receives a ciphertext that yields
one of the questioned message, m0 and m1. Accordingly, even if the adversary can tweak the

16



challenge ciphertext without affecting the embedded plaintext (such a feature is called benign-
malleability [38]), sending it to the decryption oracle will give no advantage to the adversary
in determining which of the questioned messages is hidden there. ’R’ stands for ’replayable’ in
this sense. RCCA-security is a strict relaxation of CCA-security and proven useful for several
cryptographic tasks, though, currently, there is no known instance of RCCA-secure PKE that
is more efficient than known CCA-secure ones.

In [15], it is shown that combining RCCA-secure PKE and CCA-secure symmetric encryption
can yield CCA-secure hybrid PKE. Suppose that a CCA-secure symmetric encryption is made
by combining passively secure DEM and one-time MAC. Then, their construction is summarized
as follows. Given message m, output ciphertext (φ, χ, σ) such that;

φ← PKE.Encpk (dk||mk), χ← DEM.Encdk(m||φ), σ ← MAC.Signmk(χ)

where dk and mk, are chosen randomly from appropriate domains. It is stressed that φ is
encrypted by DEM and this double-encryption structure is essential in their security proof. Due
to this special structure, the construction does not fit into our framework. Below, we show a
slightly more efficient variant that avoids double encryption and fits into our framework.

φ← PKE.Encpk (dk||mk), χ← DEM.Encdk(m), σ ← MAC.Signmk(χ||φ)

Intuitively, applying MAC to φ offsets the benign-malleability of φ. The modified scheme yields
shorter ciphertext and needs less computation.

From the above, we derive a Tag-KEM scheme which is summarized as follows.

(K,φ)← KEM.Encpk (), (dk,mk)← KDF2(K), σ ← MAC.Signmk(τ ||φ)

It can be seen as a variant of the construction shown in Section 4.2; MAC is applied to τ ||φ
rather than to τ . In Appendix E, we give definition of RCCA-security for KEM, which is an
analogue notion of that for PKE, and prove that the above Tag-KEM is CCA-secure if KEM
is RCCA-secure. Hence, according to Theorem 3.1, the modified hybrid PKE is CCA-secure.
This uncovers the redundancy of the double-encryption in the original construction and obtains
a more efficient scheme.

6 Conclusions and Open Problems

We presented a new framework for constructing hybrid encryption by extending the known CCA
KEM/DEM framework. The new Tag-KEM/DEM framework yields better schemes especially
when it comes to ciphertext length and captures a wide variety of schemes. In addition several
schemes can be improved by bringing them in our framework.

Yet there are some situations where the traditional CCA KEM/DEM framework is use-
ful. For instance, schemes that follow the CCA KEM/DEM framework are better suitable for
streaming applications where the receiver does not need to buffer the entire ciphertext. Tag-
KEM/DEM schemes generally require a more flexible access to the ciphertext2. We also note that
some Tag-KEM/DEM schemes provide the streaming feature if needed (The scheme based on
Cramer-Shoup shown in Section 4.4 is an example). It is also known that the CCA KEM/DEM
framework can be extended to establish some limited form of secure channels [32] (where no
forward security is considered) while such extension is not available in Tag-KEM/DEM.

2Note that, however, streaming encryption/decryption does not necessarily allow the receiver to use a partial
plaintext because the CCA DEM usually verifies integrity at the end of decryption.
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Finally, we list some open problems as follows.
(On the Tag-KEM security) Can the security of Tag-KEM be weakened? Although in our
definition of CCA security of Tag-KEM the tag is chosen by the adversary, once the Tag-KEM
is combined with the DEM, the adversary cannot select an arbitrary tag any more since the tag is
a ciphertext encrypted with a random key. Especially, if the DEM provides the strong property
that the ciphertexts are indistinguishable from random strings of the same length, replacing the
ciphertext with a random string offsets the choice of the adversary and target-free hash functions
seem to suffice for the construction. This observation seems to suggest that we could weaken
the security requirement for Tag-KEM in such a way that the tag is chosen randomly rather
than chosen by the adversary. Can Theorem 3.1 hold in such a case?
(On the necessity of stronger hash functions) Is a random prefix collision-free hash function
unavoidable in the construction shown in Section 4.4? This questions is closely related to the
previous one. If the tag is chosen randomly rather than chosen by the adversary, universal
one-way hash functions will suffice.
(More on the Random Prefix Collision-Free) More study is needed about random prefix collision-
free hash functions. It would be interesting to show constructions from other primitives, espe-
cially from one-way permutations (or alternatively the impossibility of a black-box version of
such a construction).
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Appendices

A Proof of Theorem 4.1

Let AT be an adversary against the Tag-KEM presented in Section 4.1. By using AT , we
construct AE that plays GAME.PKE to attack the underlying PKE as follows.

1. Given pk , AE chooses (dk0, dk1)← KK ×KK , δ ← {0, 1}. Then send pk and dk δ to AT .

2. Given τ fromAT , AE sends (dk0||TH(τ), dk1||TH(τ)) to the encryption oracle of GAME.PKE.
It then receives ψ from the encryption oracle and forward it to AT .

3. For every decryption query (ψi, τi) from AT , AE does the following. If ψi = ψ, return
⊥ to AT . Otherwise, send ψi to the decryption oracle of PKE. Given dk i||τ ′i from the
decryption oracle, if τ ′i 6= τi, return ⊥ to AT . Otherwise, return dk i.

4. When AT outputs δ̃ = δ, AE outputs 1. Otherwise, output 0.

Let Col denote an event that TH(τ) = TH(τ ′) happens. Since the target ciphertext ψ is
uniquely decrypted to dk δ||τ , any (ψ, τ ′) other than (ψ, τ) cannot be a valid ciphertext of Tag-
KEM unless Col takes place. Hence ⊥ is a correct answer to any decryption query with ψi = ψ.
All other decryption queries from AT are correctly answered since ψi is correctly decrypted by
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the decryption oracle of GAME.PKE. It is also easy to see that the encryption oracle is simulated
as given.

Now if δ̃ = δ, it means that dk δ is embedded in ψi. On the other hand, if δ̃ 6= δ, dk δ is
independent of ψ, i.e., dk1−δ is embedded in ψ. Thus, AE wins in GAME.PKE with the same
probability as AT wins in GAME.TKEM in the case of ¬Col. Thus we have;

Pr[AT wins|¬Col] = Pr[AE wins]

Pr[AT wins] ≤ Pr[AE wins] + Pr[Col]

εtkem ≤ εpke + εtch,

where εtch is the probability of breaking TH as defined in Section 2.7.

B Proof of Theorem 4.2

The following is the CCA attack against the Tag-KEM in Section 4.3. Let O denote decryption
oracle, TKEM.Decsk (·, ·). Let GAME.0 denote this CCA game.

[GAME.0]

Step 1. (pk , sk) ← KEM.Gen(1λ), (K1, φ) ← KEM.Encpk (), δ ← {0, 1}. If δ = 1, set dk by
(dk, ∗)← KDF2(K1). Otherwise, dk ← KD.

Step 2. (τ, ρ)← AT
O(pk , dk)

Step 3. (∗,mk)← KDF2(K1), σ ← MAC.Signmk(τ).

Step 4. δ̃ ← AT
O(ρ, (φ, σ))

In Step 4, AT is restricted not to send ((φ, σ), τ) to the decryption oracle. It is important to see
that the MAC is always created with the correct mac-key embedded in φ regardless of δ.

The outline of our proof is the same as that of [18]; Defining a series of games, GAME.1,
GAME.2, GAME.3 by modifying GAME.0 and examining fluctuation of probability Pr[X0], · · · ,
Pr[X3] where Xi denotes the event that δ̃ = δ in GAME.i . Our final goal is to upper limit Pr[X0].

The following is the description of each game. Every claim is proven formally after all outline
is shown.

GAME.1: We modify the encryption oracle in such a way that when δ = 0, dk is chosen by
K0 ← KK , (dk, ∗)← KDF2(K0). It is straightforward to show that

|Pr[X0]− Pr[X1]| = 1
2
|Pr[X0 | δ = 0]− Pr[X1 | δ = 0]| ≤ εkdf. (1)

GAME.2: We modify GAME.1 in such a way that the decryption oracle returns ⊥ to all queries
containing φj = φ. We claim that

|Pr[X1]− Pr[X2]| ≤ 2εlkem + qDεmac + 2εkdf. (2)

GAME.3: We modify GAME.2 in such a way that the encryption oracle computes the MAC σ
by using a key derived from Kδ instead of the legitimate key K1. Namely, we replace KDF2(K1)
in Step 3 with KDF2(Kδ) .

22



We claim that
|Pr[X2]− Pr[X3]| ≤ εlkem + 2εkdf, (3)

and
|Pr[X3]− 1

2
| ≤ εlkem. (4)

Conclusion: From (1), (2), (3), and (4), we have

|Pr[X0]− 1
2
| ≤ 4εlkem + qD εmac + 5εkdf

as stated in the theorem.

Proof of (2): Let F2 be an event that the adversary creates at least one query that is rejected
in GAME.2 but accepted in GAME.1. Unless event F2 happens, the view of the adversary is
identical in both games. Hence we have

|Pr[X1]− Pr[X2]| ≤ Pr[F2]. (5)

We first consider F2 in the case of δ = 1. Consider the simulation conducted by machine AL

that launches LCCA attack to KEM by using AT as follows.

Step 1. Given (pk , φ,Kb), AL computes (dk,mk) ← KDF2(Kb) and sends (pk , dk) to
AT .

Step 2. Given τ from AT , compute σ ← MAC.Signmk(τ) and return ψ = (φ, σ).

Step 3. For every decryption query ((φj , σj), τj), simulate the decryption oracle as
follows.

• If φj 6= φ, send φj and ηj = (σj , τj) to the decryption oracle of
GAME.LKEM and receive Kj . (If ⊥ is returned, forward it to AT .) Then
use Kj to simulate the decryption oracle of GAME.2 as prescribed.

• If φj = φ, compute MAC.Vermk(σj , τj). If it is 1, output b̃ = 1 and halt.
Otherwise, return ⊥ to AT and continue simulation.

Step 4. When AT stops, output b̃ = 0.

Remember that Kb is either random (b = 0) or correct (b = 1) with regard to φ. When
b = 1, the decryption oracle checks every MAC with the correct key. Hence AL can detect event
F2 and b̃ = 1 happens. On the other hand, when b = 0, every MAC σj is verified with a random
key associated only to the MAC σ attached to the challenge ciphertext. Therefore, unless MAC
is forged, b̃ = 1 does not happen. If the probability that event b̃ = 1 occurs is meaningfully
different for b = 0 and b = 1, it contradicts to the LCCA security. Now, we consider these two
cases, b = 1 and b = 0, in detail.

1. When b = 1 in GAME.LKEM, both dk and σ are made from correct key embedded in
ψ. This simulates the encryption oracle of GAME.2 at δ = 1. The decryption oracle is
simulated as given until event F2 happens. AT can correctly capture the event when it
happens since mk is correct. Therefore, Pr[F2 | δ = 1] = Pr[b̃ = 1 | b = 1].

23



2. When b = 0, we claim Pr[b̃ = 1 | b = 0] ≤ qDεmac + 2εkdf. Hereafter, we only consider
the case b = 0 where dk and mk are independent of ψ. Let F ′2 be the event that b̃ = 1
happens when b = 0. We modify the simulation by AL in such a way that it chooses dk
and mk just randomly, i.e., (dk,mk) ← KD × KM instead of using KDF2. Let F ′′2 be the
event of b̃ = 1 in this simulation. We claim that |Pr[F ′2]− Pr[F ′′2 ]| ≤ 2εkdf. Observe that
the input to KDF2 in the original simulation is random and independent from all other
views because b = 0. Hence the claim is proven by showing a straightforward reduction
from AT to AKDF, which we omit the details. We also claim that Pr[F ′′2 ] ≤ qDεmac. In
the modified simulation, mk is randomly and independently chosen and bound only to
(σ, τ). Therefore, if AT causes b̃ = 1, (σj , τj) is a correct forgery with regard to (σ, τ).
Unfortunately, (σj , τj) is not verifiable without the key and index j has to be guessed
from {1, . . . , qD}. Therefore, one can be successful in forging a MAC with probability 1/qD
whenever AT causes b̃ = 1. This proves the claim.

Since |Pr[b̃ = 1 | b = 1]− Pr[b̃ = 1 | b = 0]| ≤ 2εlkem, we have

Pr[F2 | δ = 1] ≤ 2εlkem + qDεmac + 2εkdf. (6)

We next consider F2 in the case of δ = 0 where dk is always made from random K0.
Consider the simulation conducted by machine AL that launches LCCA attack to KEM by
using AT almost in the same way as above except that the encryption oracle computes dk by
(dk, ∗) ← KDF2(K0) where K0 is chosen randomly from KK . This means that dk distributes
independently from all other variables. Accordingly, when b = 1, the view of AT in the simulation
is identical to that in GAME.2 at δ = 0. Hence we have Pr[F2 | δ = 0] = Pr[b̃ = 1 | b = 1].
Furthermore, one can show that Pr[b̃ = 1 | b = 0] ≤ qDεmac + 2εkdf in exactly the same way as
above. Accordingly, we have

Pr[F2 | δ = 0] ≤ 2εlkem + qDεmac + 2εkdf. (7)

From (6) and (7), we have the following as claimed.

Pr[F2] =
1
2

(Pr[F2 | δ = 0] + Pr[F2 | δ = 1])

≤ 2εlkem + qDεmac + 2εkdf

Proof of (3): First of all, observe that, when δ = 1 in GAME.2 and GAME.3, the views of AT

are identical since there is no difference between the games. Therefore,

|Pr[X2]− Pr[X3]| =
1
2
|Pr[X2 | δ = 1]− Pr[X3 | δ = 1] + Pr[X2 | δ = 0]− Pr[X3 | δ = 0]|

=
1
2
|Pr[X2 | δ = 0]− Pr[X3 | δ = 0]|

Accordingly, we only need to consider the case where δ = 0, i.e., dk is always made from random
K0.

We construct machine AL, that launches LCCA attack to KEM by using AT . AL works as
follows.
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Step 1. Given (pk , φ,Kb), compute K ′
0 ← KK , (dk, ∗)← KDF2(K ′

0) and send (pk , dk)
to AT .

Step 2. Given τ from AT , generate σ by using Kb as (∗,mk) ← KDF2(Kb), σ ←
MAC.Signmk(τ). Then return (φ, σ).

Step 3. For every decryption query ((φj , σj), τj), simulate the decryption oracle as
follows. If φj = φ, return ⊥. Otherwise, send (φj , (σj , τj)) to the decryption
oracle of GAME.LKEM and receive Kj . Then simulate the decryption oracle
as prescribed by using Kj .

Step 4. When AT outputs δ̃, output it as b̃.

It is important to see that dk is independent of φ regardless of b. Also remember that Kb is
either random (b = 0) or correct (b = 1) with respect to φ. Now, by inspection, one can see that
the following holds.

1. When b = 1 in GAME.LKEM, σ is made from correct key embedded in φ. The decryption
oracle is simulated as given. Hence the view of AT in the simulation by AK is identical to
that in GAME.2 at δ = 0, i.e., Pr[X2 | δ = 0] = Pr[b̃ = 0 | b = 1].

2. Similarly, when b = 0, σ is made from random key independent of that embedded in
φ as well as the case in GAME.3 at δ = 0. The decryption oracle is simulated just as
given. However, the view of AT in the simulation is slightly different from that in GAME.3
at δ = 0 because dk and mk are made from independent sources, K ′

0 and K0, of KDF2

while they are made from a single input to KDF2 in GAME.3 at δ = 0. However, from
Corollary 2.2, we claim that |Pr[X3 | δ = 0] − Pr[b̃ = 0 | b = 0]| ≤ 4 εkdf. (Since K ′

0

and K0 are randomly chosen and used only as inputs to KDF2, the claim is proven by a
straightforward reduction.)

In summary, we have:

|Pr[X2]− Pr[X3]| =
1
2
|Pr[X2 | δ = 0]− Pr[X3 | δ = 0]|

≤ 1
2
|Pr[b̃ = 0 | b = 1]− Pr[b̃ = 0 | b = 0]− 4 εkdf|

≤ εlkem + 2εkdf

Proof of (4): Proof is done by constructing AL playing GAME.LKEM by using AT in GAME.3.
Basically, what AL does is to simulate the encryption oracle by creating σ, and to simulate the
decryption oracle by sending φj and (σj , τj) to the decryption oracle of GAME.LKEM. These sim-
ulations are easy because necessary keys are provided by corresponding oracles of GAME.LKEM.
AL finally outputs δ̃ as AT does. Simulation is perfect since, in GAME.3, AL will not send φj

that is identical to φ to the decryption oracle but simply reject it. Hence the advantage of AL

in GAME.LKEM is the same as that of AT in GAME.3.

C Kurosawa-Desmedt KEM

We define the Kurosawa-Desmedt KEM as follows. Key generation function KEM.Gen is as
illustrated in Section 5.2. It outputs pk = (g1, g2, c, d) and sk = (x1, x2, y1, y2). On input pk ,
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KEM.Enc outputs random source key K and ciphertext φ = (u1, u2) such that

r ← Zq, u1 = gr
1, u2 = gr

2, α = H(u1||u2),K = crdαr.

Given sk and φ, decryption function KEM.Dec outputs K such that

α = H(u1||u2), K = u1
x1+αy1u2

x2+αy2 .

We say φ = (u1, u2) is valid if there exists r ∈ Zq such that u1 = gr
1, u2 = gr. Otherwise, it

is invalid.

Lemma C.1 The above Kurosawa-Desmedt KEM is LCCA-secure with respect to Pmac if H
is TCR and the DDH assumption holds.

We start by describing GAME.LKEM against the Kurosawa-Desmedt KEM.

1. Run KEM.Gen to generate pk = (g1, g2, c, d) and sk = (x1, x2, y1, y2). Choose r∗ ← Zq and
compute

u∗1 = gr∗
1 , u

∗
2 = gr∗

2 , α
∗ = H(u∗1, u

∗
2),K

∗ = cr
∗
dr∗α∗ .

Let φ∗ = (u∗1, u
∗
2) and K1 = K∗. Choose K0 ∈ Gq randomly. Then choose δ ← {0, 1} and

give (pk , φ∗,Kδ) to AL.

2. AL makes query ((u1j , u2j), ηj) to extended oracle VD arbitrarily. LetKj = KEM.Decsk (u1j , u2j).
Oracle VD returns ⊥ if (Kj , ηj) does not satisfy Pmac. Otherwise, it returns Kj (which
might be ⊥ anyway). Eventually AL outputs δ̃ ∈ {0, 1}.

Since the proof is quite similar to that of [30, 24], we only show a sketch of it. From a
viewpoint of AL, there are four unknown variables x1, x2, y1, y2, and two (linear) equations on
them given by (the discrete log of) c and d. Hence there is a freedom of 4− 2 = 2 dimensions.
We consider this probability space on (x1, x2, y1, y2) of the 2 dimensions. Let GAME.0 be the
original game as shown above. We will define a sequence of games GAME.1, · · · . Let Xi be the
event that δ̃ = δ in GAME.i .

GAME.1 is the same as GAME.0, except thatK∗ is computed asK∗ = (u∗1)
x1+y1α∗(u∗2)

x2+y2α∗ .
It is clear that Pr[X1] = Pr[X0] because the value of v∗ does not change.

GAME.2 is the same as GAME.1, except that query (u1j , u2j , ηj) is rejected if α∗ = H(u∗1, u
∗
2) =

H(u1j , u2j). Since H is assumed target collision-free, |Pr[X2]− Pr[X1]| is negligible.

GAME.3 is the same as GAME.2, except that the challenger chooses u∗1, u
∗
2 ∈ Gq at random.

By DDH assumption, Pr[X3]− Pr[X2] is negligible.

GAME.4 is the same as GAME.3, except that the extended decryption oracle returns ⊥ for a
query ((u1j , u2j), ηj) if (u1j , u2j) is invalid.

Suppose that AL queries with invalid (u1j , u2j) at step 2 of GAME.3. Let α′ = H(u1j , u2j)
and Kj = u1j

x1+y1α′u2j
x2+y2α′ . If (u1j , u2j) = (u∗1, u

∗
2), then the query is immediately rejected

by the extended decryption oracle. Suppose that (u1j , u2j) 6= (u∗1, u
∗
2). Note that (u∗1, u

∗
2)

is invalid with overwhelming probability. Then as shown in [18], K∗ and Kj are pair-wise
independently distributed over Gq. Therefore, as well as in the above case, the query is rejected
with overwhelming probability. Consequently, Pr[X3]− Pr[X2] is negligible.

GAME.4 is the same as GAME.3, except that K∗ is chosen at random from Gq. In GAME.3,
(u∗1, u

∗
2) is invalid with overwhelming probability and K∗ is uniformly distributed over Gq. Hence

Pr[X4] − Pr[X3] is negligible. Also in game GAME.4, it is clear that Pr[X4] = 1/2 because the
view of AL is independent of δ. This completes the proof on LCCA security.
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D Details of Refined Fujisaki-Okamoto Conversion

The scheme. Let ΠE = (PKE.Gen,PKE.Enc,PKE.Dec) be a public-key encryption. By R,
we denote a space of random coins used in PKE.Enc. Let H : {0, 1}λ × {0, 1}∗ → R and
G : {0, 1}λ → KD be random oracles. TKEM.Gen is the same as PKE.Gen; Given 1λ, it outputs
key pair (pk , sk). TKEM.Key is that, given pk , it outputs dk ← G(K) where K ← {0, 1}λ and
state information (pk ,K). TKEM.Enc and TKEM.Dec are as follows.

Function: TKEM.Enc((pk ,K), τ)

r ← H(K||τ)
ψ ← PKE.Encpk (K; r)
Output ψ.

Function: TKEM.Decsk (ψ, τ)

K ← PKE.Decsk (ψ)
r ← H(K||τ)
If ψ ← PKE.Encpk (K; r), output G(K).
Output ⊥, otherwise.

Suppose that the PKE is one-way against chosen plaintext attack and γ-uniform. 3 Then
the following holds.

Theorem D.1 The above refined Fujisaki-Okamoto Tag-KEM is CCA secure. Especially,
εtkem ≤ qD γ + qG εow.

Proof: The following is the CCA attack against the Tag-KEM in Section 5.3. By O, we denote
the decryption oracle TKEM.Decsk (·, ·). Let GAME.0 denote this CCA game.

Step 1. (pk , sk)← PKE.Gen(1λ), K1 ← {0, 1}λ, dk1 = G(K1), dk0 ← KD, δ ← {0, 1}.

Step 2. (τ, ρ)← AT
O,H,G(pk , dkδ)

Step 3. ψ ← PKE.Encpk (K1;H(K1||τ))
Step 4. δ̃ ← AT

O,H,G(ρ, ψ)

We define games, GAME.1 and GAME.2, by modifying GAME.0 and examining fluctuation of
probability Pr[X0], · · · , Pr[X2] where Xi denotes the event that δ̃ = δ in GAME.i .

We treat each random oracle as a table that appends an entry every time it is drawn with a fresh
query. Given fresh Kj , oracle G outputs random dkj and append (dkj ,Kj) to its table. Given
freshKj ||τj , oracleH outputs random rj . SinceKj ||τj and rj uniquely determines corresponding
ciphertext, say ψj , we assume that H stores (Kj ||τj , rj , ψj) to the table. When exact reduction
cost is concerned, computation time for the ciphertexts, which is linear in the number of H
oracle queries, should be included in the running time of the simulator.

GAME.1: For every decryption query (ψj , τj), if table of H does not have an entry that contains
both ψj and τj , return ⊥.

3Roughly, a PKE is one-way against chosen plaintext attack if it is infeasible to compute K from PKE.Encpk (K)
except for negligible probability, say εow. Also, a PKE is γ-uniform if, for any K and ψ, randomly chosen r causes
ψ = PKE.Encpk (K; r) with probability less than γ. See [23] for details.
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Since (ψj , τj) is not in the table of H, rj is chosen randomly in GAME.0. With random rj , it
passes the verification test in the decryption with probability at most γ. If at most qD queries
are made, the probability that there is a query that is accepted in GAME.0 but not in GAME.1 is
at most qDγ. The view of the adversary is unchanged unless such a query is made. Accordingly,

|Pr[X0]− Pr[X1]| ≤ qD γ.

GAME.2: If oracle G receives K1 from AT , abort the game.

Let AskG denote the event that G receives K1. By using AT that causes AskG, we construct an
adversary, Aow, that derives K from given ψ and pk . Aow first flips coin j? ← {1, . . . , qG} and
simulates GAME.2 as follows.

• In Step 1, choose dk uniformly from KD. Then give (pk , dk) to AT .

• H and G are simulated just as given. Given j?-th query Kj? to G, output it and halt.

• For every decryption query (ψj , τj), if there is an entry, (Ki||τi, ri, ψi), such that ψj = ψi

and τj = τi, return G(Ki). Otherwise, return ⊥.

• In Step 4, give ψ to AT .

If j?-th query to G is made before the encryption oracle is invoked, the simulation is perfect.
Even if it happens after the encryption oracle is invoked, randomly chosen dk perfectly simulates
the output of the encryption oracle regardless of the choice of δ. Accordingly, Aow perfectly
simulates GAME.2 up to the moment j?-th query to G is made. And once event AskG happens
at j?-th query, the output of Aow is PKE.Dec(sk , ψ).

Running time of Aow is almost the same as that of AT plus computing time of encryption
function qH times. Now we have

|Pr[X1]− Pr[X2]| ≤ qG εow.

Since AT never asks K1 to G in GAME.2, δ is independent from the view of AT due to the true
randomness of G. Hence Pr[X2] = 1

2 .

In conclusion, we have εtkem = |Pr[X0]− 1
2 | ≤ qD γ + qG εow as stated.

E Tag-KEM from RCCA-secure KEM

RCCA security for KEM is defined in the same way as for PKE. That is, we modify GAME.KEM
in Section 2.4 in such a way that decryption oracle O returns ’test’ when the result of decryption
is in {K1,K0}. 4 Call this modified game GAME.RKEM. The scheme is RCCA-secure if any ppt
adversary wins GAME.RKEM only with negligible advantage, say εrkem, as defined in the same

4Notice that when δ = 1, K0 is independent from the transcript between the adversary and the encryption
oracle. Nevertheless, the decryption oracle returns ’test’ if the decryption coincidentally yields K0. Though it is
totally a definitional matter and can be fixed if necessary, we prefer current definition that gives obvious reduction
to RCCA PKE.
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way for CCA security. It is clear that the standard use of RCCA secure PKE is sufficient to
construct RCCA secure KEM.

One can construct a Tag-KEM based on an RCCA-secure KEM in the similar way as shown
in Section 4.2. TKEM.Gen is the same as KEM.Gen. TKEM.Key is that, given pk , it computes
(K,φ) ← KEM.Encpk () and (dk,mk) ← KDF2(K). Then it outputs dk and state information
ω = (mk, φ). TKEM.Enc and TKEM.Dec are as follows.

Function: TKEM.Enc(ω, τ)

(mk, φ)← ω
σ ← MAC.Signmk(τ ||φ)
Output ψ = (φ, σ)

Function: TKEM.Decsk (ψ, τ)

(φ, σ)← ψ
K ← KEM.Decsk (φ)
(dk,mk)← KDF2(K)
If K = ⊥ or MAC.Vermk(σ, τ ||φ) 6= 1,
output ⊥.
Otherwise, output dk.

A difference from the construction in Section 4.2 is that MAC.Sign and MAC.Ver take τ ||φ
instead of τ .

Theorem E.1 If KEM is RCCA-secure, MAC is one-time secure, and KDF is secure, the above
Tag-KEM is CCA-secure. Especially, εtkem ≤ 2εrkem + (qD + 3)εkdf + qD

2 εmac

(Proof.) The attack game to the resulting Tag-KEM scheme is the same as GAME.0 shown in Ap-
pendix B with obvious modification that replaces MAC.Signmk(τ) in Step 3 with MAC.Signmk(τ ||φ).
For completeness, we show the game in the following.

[GAME.0]

Step 1. (pk , sk) ← KEM.Gen(1λ), (K1, φ) ← KEM.Encpk (), δ ← {0, 1}. If δ = 1, set dk by
(dk, ∗)← KDF2(K1). Otherwise, dk ← KD.

Step 2. (τ, ρ)← AT
O(pk , dk)

Step 3. (∗,mk)← KDF2(K1), σ ← MAC.Signmk(τ ||φ).

Step 4. δ̃ ← AT
O(ρ, (φ, σ))

Now we give a sketch of a proof of security which is similar to that in Appendix B. The
idea of the proof is to continuously modify the game so that the relation among (dk,mk, φ)
in the encryption oracle changes. Throughout the modifications, we only consider the case of
δ = 0. (Hence no modification in the case of δ = 1.) By [X], [Y ], we denote that X and Y are
independent. Similarly, [X,Y ] denotes that X and Y are related each other in some way.

• In GAME.0, dk is chosen randomly from KD, and mk and φ are related via K1. Hence
([dk], [mk, φ]).

• In GAME.1, dk is generated by applying KDF to a random input. The relation is un-
changed, i.e., ([dk], [mk, φ]).

• In GAME.2, mk is generated independently. Hence ([dk], [mk], [φ]).
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• In GAME.3, dk and mk are coupled by generating them from a single application of KDF.
Hence ([dk,mk], [φ]).

Now we consider the case of δ = 1 in GAME.3. Since dk, mk and φ are all relative toK1 embedded
in φ, we have ([dk,mk, φ]). Then, GAME.3 is easily reduced to GAME.RKEM. Remember that
in GAME.RKEM, challenge (Kb, φ) is either ([Kb], [φ]) at b = 0 or ([Kb, φ]) at b = 1. Therefor,
by generating dk and mk from Kb, we can create ([dk,mk], [φ]) at b = 0 and ([dk,mk, φ]) at
b = 1. Therefore, distinguishing δ in GAME.3 implies to distinguishing b in GAME.RKEM. In
the following, we show the details where the decryption oracle is also changing in accordance
with the modifications of the encryption oracle.

GAME.1: The encryption oracle is modified in such a way that when δ = 0, dk is generated by
(dk, ∗)← KDF2(Kr) where Kr is chosen randomly from KK .

Since GAME.1 is exactly the same as that in the proof of Theorem 4.2 as shown in Appendix
B, we have

|Pr[X0]− Pr[X1]| = 1
2
|Pr[X0 | δ = 0]− Pr[X1 | δ = 0]| ≤ εkdf. (8)

GAME.2: We modify the encryption oracle in such a way that, when δ = 0, MAC key mk in Step
3 is generated from independently chosen random K0. That is, (∗,mk)← KDF2(K1) in Step 3
is replaced with K0 ← KK , (dk′,mk) ← KDF2(K0). Then mk is used to create σ. (Challenge
DEM key dk returned to the adversary is unchanged. dk′ generated here will be used in the
decryption oracle as shown below.) We also modify the decryption oracle in such a way that,
when the encryption oracle selects δ = 0, every decryption query (φj , σj , τj) made after the
challenge step is handled as follows.

• Kj ← KEM.Decsk (φj)

• If Kj 6∈ {K1,K0}, then proceed as done in GAME.1. Otherwise, verify the MAC by using
mk and return dk′ if the MAC is correct. Otherwise, return ⊥.

Note that the modification affects only if δ = 0. We claim that

|Pr[X1]− Pr[X2]| ≤ εrkem. (9)

GAME.3: We modify the encryption oracle in such a way that, when δ = 0, it generates dk and
mk together by computing (dk,mk) ← KDF2(K0) rather than compute them independently.
Since dk′ is no longer defined, the decryption oracle returns dk when Kj ∈ {K1,K0} and the
MAC is correct. (Or, the description of the decryption oracle is left unchanged by defining
dk′ = dk.)

We claim
|Pr[X2]− Pr[X3]| ≤ εkdf +

qD
2

(εmac + 2εkdf) (10)

and
|Pr[X3]− 1

2
| ≤ εrkem (11)

Conclusion: From (8), (9), (10), and (11), we have

|Pr[X0]− 1
2
| ≤ εkdf + εrkem + 2εkdf +

qD
2

(εmac + 2εkdf) + εrkem

≤ 2εrkem + (qD + 3)εkdf +
qD
2
εmac
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as stated in the theorem.

Proof of (9). In the case of δ = 1, GAME.1 and GAME.2 are identical. Hence we only consider
the case of δ = 0.

We show a reduction from adversary AT playing in GAME.1 (and GAME.2) at δ = 0 to
adversary AK that attacks the underlying RCCA-secure KEM. Specification of AK follows.

Step 1. Forward given pk to AT .

Step 2. Simulate the encryption oracle as follows.

• Given request from AT , compute Kr ← KK , (dk, ∗) ← KDF2(Kr) and
return dk. Then, make a challenge request to the encryption oracle of
GAME.RKEM and receive (φ,Kb). Then compute (dk′,mk)← KDF2(Kb).

• Given τ from AT , compute σ ← MAC.Signmk(τ ||φ) and return (φ, σ).

Step 3. Given decryption query (φj , σj , τj) from AT , send φj to the decryption oracle
of GAME.RKEM. If Kj is returned, proceed as prescribed; Set (dkj ,mkj) ←
KDF2(Kj) and return dkj if MAC.Vermkj (σj , τj ||φj) = 1. Otherwise return
⊥. On the other hand, if ’test’ is returned, verify the MAC by using mk as
MAC.Vermk(σj , τj ||φj)

?= 1. If it holds, return dk′. Otherwise, return ⊥.

Step 4. When AT outputs δ̃, output b̃ = δ̃.

First consider the case of b = 1 in the above simulation. Regarding the simulation of the
encryption oracle, observe that dk is made from independent Kr and mk and φ are related via
Kb in the correct manner as in GAME.1. Hence the view of AT with respect to the encryption
oracle is identical to that in GAME.1 at δ = 0. The decryption oracle also simulates the view of
GAME.1 at δ = 0 perfectly unless ’test’ is returned from the decryption oracle of GAME.RKEM.
Observe that receiving ’test’ means that Kb is embedded in both φj and φ (remember that we
are in the case of b = 1). Hence mk and dk′ derived from Kb are the same as those used in the
real decryption oracle in GAME.1. Eventually, the simulation is perfect even if ’test’ is returned.
Therefore, we have;

Pr[X1 | δ = 0] = Pr[b̃ = 0 | b = 1]. (12)

Next consider the case of b = 0 which is much complicated than the previous case. We
consider the difference from the simulation and GAME.2 at δ = 0 for this case. First observe
that the encryption oracle is perfectly simulated since dk, mk, and φ distributes independently
both in the simulation and GAME.2 at δ = 0. The decryption oracle is also simulated perfectly
since receiving ’test’ means Kj ∈ {K0,K1} and the MAC is verified as prescribed by using mk
defined in the encryption oracle. Accordingly, we have;

Pr[X2 | δ = 0] = Pr[b̃ = 0 | b = 0]. (13)

From (12) and (13), we have

|Pr[X1 | δ = 0]− Pr[X2 | δ = 0]| = |Pr[b̃ = 0 | b = 1]− Pr[b̃ = 0 | b = 0]|
≤ 2εrkem. (14)
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Accordingly,

|Pr[X1]− Pr[X2]| = 1
2
|Pr[X1 | δ = 0]− Pr[X2 | δ = 0]| ≤ εrkem

as claimed in (9).

Proof of (10). We show a reduction from AT playing in GAME.2 to AKDF that attacks KDF
in the sense of distinguishing distribution U0 and U1 described in Section 2.6. Given challenge
(dk,mk) chosen randomly from distribution Ub where b ← {0, 1}, adversary AKDF works as
follows.

Step 1. Generate (pk , sk)← KEM.Gen(1λ) and give (pk , dk) to AT .

Step 2. On receiving τ from AT , compute (K1, φ) ← KEM.Encpk () and σ ←
MAC.Signmk(τ ||φ). Then return (φ, σ) to AT .

Step 3. Decryption oracle is simulated by using the real secret key sk ; On receiving
a query ((φj , σj), τj), decrypt φj into Kj . If Kj = K1, then return dk if
MAC.Vermk(σj , τj ||φj) = 1, or return ⊥, otherwise. If Kj 6= K1, compute
(dkj ,mkj) ← KDF2(Kj) and return dkj if MAC.Vermkj (σj , τj ||φj) = 1, or
return ⊥, otherwise.

Step 4. When AT outputs δ̃, output it as b̃.

We first inspect the simulation in the case of b = 0 where dk and mk are independent each
other. Our concern is the similarity of the simulation and GAME.2 at δ = 0. In the encryption
oracle, φ is randomly generated. Hence dk, mk, and φ are all independent. This is the case in
GAME.2 at δ = 0. With regard to the decryption oracle, let E1 denote an event that Kj = K1

and the MAC is correct. Unless E1 happens, the output of the decryption oracle is correct;
Especially, observe that dkj is correctly related to Kj as well as those returned by the real
decryption oracle in GAME.2. On the other hand, if E1 happens, the simulating decryption
oracle returns dk that is independent of mk while the real decryption oracle in GAME.2 returns
dk′ generated together with mk. Accordingly, the simulation is done just as prescribed for
GAME.2 at δ = 0 unless E1 happens. Hence we have

|Pr[X2 | δ = 0]− Pr[b̃ = 0 | b = 0]| ≤ Pr[E1]. (15)

Leaving Pr[E1] as is for a while, we next inspect the case of b = 1 where dk and mk came
from the same application of KDF2. We consider the similarity of the simulation and GAME.3
at δ = 0. The encryption oracle is perfectly done as prescribed because φ is independently
generated while dk and mk are correctly related as expected in GAME.3 at δ = 0. Unlike the
case of b = 0, the decryption oracle is perfect because it is expected to return the correctly
related dk(= dk′) when Kj = K1 and correct MAC is observed. Accordingly, we have

Pr[X3 | δ = 0] = Pr[b̃ = 0 | b = 1]. (16)

From (15), (16), and Corollary 2.2 in Section 2.6, we have

|Pr[X2 | δ = 0]− Pr[X3 | δ = 0]| ≤ Pr[E1] + Pr[b̃ = 0 | b = 0]− Pr[b̃ = 0 | b = 1]

|Pr[X2]− Pr[X3]| ≤ 2εkdf +
1
2

Pr[E1] (17)
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We now claim that
Pr[E1] ≤ qD(εmac + 2εkdf). (18)

To prove this claim, we first modify the attack game for one-time secure MAC (GAME.MAC
in Section 2.5) in such a way that the MAC key mk is generated by (∗,mk) ← KDF2(K)
where K is chosen randomly from KK . Let GAME.KDF-MAC refer to this modified game. Let
εkdf-mac denote the maximum success probability in GAME.KDF-MAC over all ppt machines. By
a straightforward reduction, we can prove that if there exists an adversary that wins GAME.KDF-
MAC with noticeably better probability than that in GAME.MAC, then there exists an adversary
that successfully break the security of KDF. Namely, |εkdf-mac − εmac| ≤ 2εkdf. Hence we have

εkdf-mac ≤ εmac + 2εkdf. (19)

Now we show a reduction from AT that causes event E1 to an adversary, AKM , that attacks
MAC in GAME.KDF-MAC. It is important to see that MAC key mk is totally independent from
any other variables such as dk and φ in GAME.2 at δ = 0 where E1 is defined. Specification of
AKM follows.

Step 1. Choose j? ← {1, . . . , qD}.
Step 2. Generate (pk , sk) by following KEM.Gen. Then compute Kr ← KK , (dk, ∗)←

KDF2(Kr) and give (pk , dk) to AT . Compute also (K1, φ)← KEM.Encpk ().

Step 3. Given τ from AT , send τ ||φ to the MAC oracle of GAME.KDF-MAC and receive
σ. Then return φ and σ AT .

Step 4. For every decryption query ((φj , σj), τj) except j = j?, simulate the decryption
oracle as follows. Compute Kj ← KEM.Decsk (φj). If Kj = K1, return ⊥.
Otherwise, compute (dkj ,mkj)← KDF2(Kj) and verify MAC.Vermkj (σ, τj ||φj).
If it is correct, return dkj . Otherwise return ⊥.

Step 5. On receiving j?-th decryption query, output σj and τj ||φj and halt.

Observe that dk and φ are created from Kr and K1, respectively, and they are independent
each other. Also observe that hidden mk chosen by the MAC oracle in GAME.KDF-MAC is
generated by applying KDF2 to random and independent K0 just as well as that in GAME.2.
Therefore, these variables distributes as in the case of δ = 0 in GAME.2.

Next we verify the decryption oracle. Assume that E1 first happens at j?-th query. Then,
all queries for j < j? that causes Kj ∈ {K0,K1} should be rejected. This is achieved in the
simulation because:

• Kj = K1 is detectable and rejected immediately.

• Kj = K0 is not detectable in the simulation because K0 is chosen by the MAC oracle.
However, verifying the MAC by using given mk does the job since the MAC is incorrect
as we assume E1 does not happen yet.

Therefore, the decryption oracle is perfectly simulated until E1 happens. If E1 happens at j?-th
query, AKM wins in GAME.KDF-MAC because the query is assumed not to be exactly the same
as the challenge. This concludes the proof of equation (18).

From (17) and (18), we have |Pr[X2] − Pr[X3]| ≤ 2εkdf + qD
2 (εmac + 2εkdf) which concludes

the proof of (10).
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Proof of (11). We show a reduction from AT in GAME.3 to AK that attacks the underlying
RCCA-secure KEM. The reduction is rather straightforward except the case where ’test’ is
returned from the decryption oracle of GAME.RKEM. Specification of AK follows.

Step 1. Given (pk , φ,Kb), compute (dk,mk)← KDF2(Kb). Then give (pk , dk) to AT .

Step 2. Given τ from AT , compute σ ← MAC.Signmk(τ ||φ) and return (φ, σ).

Step 3. Given decryption query ((φj , σj), τj) from AT , send φj to the decryption oracle
of GAME.RKEM. If ’test’ is returned, return dk if MAC.Vermk(σj , τj ||φj) = 1,
otherwise, return ⊥. If Kj is returned, set (dkj ,mkj)← KDF2(Kj) and return
dkj if MAC.Vermkj

(σj , τj ||φj) = 1, otherwise, return ⊥.

Step 4. When AT outputs δ̃, output b̃ = δ̃.

When b = 1, the encryption oracle is simulated so that (dk,mk) and φ are related correctly
as in the case δ = 1 in GAME.3. On the other hand, when b = 0, the encryption oracle generates
(dk,mk) and φ independently just as in the case δ = 0 in GAME.3. Similar observation holds
for the decryption oracle. Accordingly, when b = 1 (and b = 0), the view of AT is that of δ = 1
(and δ = 0, respectively) in GAME.3. Hence

1
2

Pr[X3 | δ = 0] +
1
2

Pr[X3 | δ = 1] =
1
2

Pr[b̃ = b | b = 0] +
1
2

Pr[b̃ = b | b = 1]

Pr[X3] = Pr[b̃ = b]

≤ 1
2

+ εrkem

as claimed in (11).
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