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Abstract. This paper presents a novel framework for generic construc-
tion of hybrid encryption schemes secure against chosen ciphertext at-
tack. Our new framework yields new and more efficient CCA-secure
schemes, and provides insightful explanations about existing schemes
that do not fit into the previous frameworks. This could result in finding
future improvements. Moreover, it allows immediate conversion from a
class of threshold public-key encryption to a hybrid one without consid-
erable overhead, which is not possible in the previous approaches.

Finally we present an improved security proof of the Kurosawa-
Desmedt scheme, which removes the original need for information-
theoretic key derivation and message authentication functions. We show
that the scheme can be instantiated with any computationally secure
such functions, thus extending the applicability of their paradigm, and
improving its efficiency.

1 Introduction

A fundamental task of cryptography is to protect the secrecy of messages trans-
mitted over public communication lines. For this purpose we use encryption
schemes which use some secret information (a key) to encode a message in a
way that an eavesdropper cannot decode it. However, as networks become more
open and accessible, it becomes apparently clear that an adversary may not
be limited to eavesdropping, but may take a more active role. She may try to
interact with honest parties, by, for example, sending ciphertexts to them (possi-
bly related to the ciphertexts she intends to decrypt) and analyze their response.
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Such active attacks can be proven to be much more powerful and hard to combat
than passive ones (see for example [6]).

To model this type of attacks, the notion of chosen-ciphertext security was
introduced by Naor and Yung [22] and developed by Rackoff and Simon [24],
and Dolev, Dwork, and Naor [17]. Security against a chosen ciphertext attack
(CCA security, in short) means that, even if the adversary is allowed to query
a decryption oracle on ciphertexts of her choosing, then she obtains no infor-
mation about messages encrypted in other ciphertexts. The first CCA-secure
cryptosystems were presented in [22, 24, 17], but they were quite impractical, as
they rely on generic techniques for non-interactive zero-knowledge. In a break-
through result, Cramer and Shoup in [12] presented the first truly practical
CCA-secure cryptosystem, whose security is based on the hardness of the deci-
sional Diffie-Hellman problem. This construction was generalized in [13], using
a new cryptographic primitive called projective hash functions.

Public-key encryption schemes often limit the message space to a particular
group, which can be restrictive when one wants to encrypt arbitrary messages.
For this purpose hybrid schemes are devised, composed by two parts. First a
Key Encapsulation Mechanism (KEM) is invoked: a random group element is
encrypted and then mapped via a key derivation function into a random key
K. Then a Data Encapsulation Mechanism is performed: the previous key K is
used to encrypt the message using a symmetric encryption scheme. A formal
treatment is found in [27, 14].

In order to obtain a CCA-secure hybrid encryption, it is sufficient that both
KEM and DEM are CCA-secure. (Accordingly, we refer the framework of [27,
14] as CCA KEM/DEM framework in this paper). Recently in [21], Kurosawa
and Desmedt introduced a hybrid encryption scheme which is a modification of
the hybrid scheme presented in [25]. Their scheme is interesting from both a
theoretical and a practical point of view. When one looks at it as a KEM/DEM
scheme, we do not know if their KEM is CCA-secure, yet the resulting scheme
is CCA-secure and more efficient than the one in [25] both in computation and
bandwidth. Thus the Kurosawa-Desmedt scheme points out that to obtain CCA-
secure hybrid encryption, requiring both KEM/DEM to be CCA-secure, while
being a sufficient condition, may not be a necessary one, and might indeed be an
overkill. There are other hybrid encryption schemes in the literature, e.g.,[5, 23],
which are very efficient, mostly in the random oracle model, but do not fit to
the CCA KEM/DEM framework.

Our Contribution. Prompted by the above observation, we set out to in-
vestigate another framework that yields more efficient hybrid encryption and
captures a wider variety of existing schemes. Our results can be summarized as
follows:

– We introduce Tag-KEM: a KEM which also takes as input a tag. Though
such a notion is known in the literature, e.g., [27], we give an extended syntax
and show, somewhat surprisingly, that if one uses a CCA-secure Tag-KEM
in a novel way then it is sufficient for the DEM to be secure simply against
passive attackers in order to yield CCA-secure hybrid encryption.
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– We present several constructions of CCA-secure Tag-KEMs based on various
combinations of assumptions.

– We show that the Tag-KEM/DEM framework provides a simple way to
create threshold versions of CCA-secure hybrid encryption schemes, which
is not possible in the CCA KEM/DEM framework.

– We show how several schemes in the literature can be casted in our Tag-
KEM/DEM framework. Furthermore we show that some of those schemes
can actually be simplified when considered as instances of our framework.

– Finally, we present an improved proof of the Kurosawa-Desmedt scheme.
The original proof required the use of information-theoretic key derivation
and message authentication functions. We show that any computationally
secure such function suffices for the security of the scheme. The improvement
is not just theoretical, but it has important practical implications as well.
First of all it allows for a modular design in which any secure key derivation
and MAC function can be used. Moreover our proof yields shorter security
parameters and thus improved efficiency.

2 Definitions

2.1 Key Encapsulation Mechanism with Tags

In CCA KEM/DEM framework of [14], a KEM consists of three algorithms as
public-key encryption does, except that the encryption algorithm takes only pk
and outputs a random one-time key and its encryption. The encryption function
may also take an extra string (called tag) as an input associated to every cipher-
text. In our model, we divide the encryption function into two functions in such
a way that the first one selects a random key and the second one encrypts the
key along with a given tag. We call a KEM that meets this model a Tag-KEM.
Formally:

(pk , sk) ← TKEM.Gen(1λ) : A probabilistic algorithm that generates public-key
pk and private-key sk . The public-key defines spaces for tags and encapsu-
lated keys denoted by T and KK , respectively.

(ω, dk) ← TKEM.Key(pk) : A probabilistic algorithm that outputs one-time key
dk ∈ KD and internal state information ω that essentially carries dk . KD is
the key-space of DEM.

ψ ← TKEM.Enc(ω, τ) : A probabilistic algorithm that encrypts dk (embedded
in ω) into ψ along with τ , where τ is called a tag.

dk ← TKEM.Decsk (ψ, τ) : A decryption algorithm that recovers dk from ψ and
τ . For soundness,TKEM.Decsk (ψ, τ) = dk must hold for any sk , dk , ψ, and
τ , associated by the above three functions.

Note that, in the above syntactic definition, τ is not included in ψ and explicitly
given to TKEM.Dec. Such explicit treatment of τ has some notational advantages
when we consider an adversary who tries to alter the tag without affecting to
the ciphertext.
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Tag-KEM is a generalization of KEM because if the tag is a fixed string, it is
a KEM. Tags associated to PKE or KEM can be found in the literature (e.g. see
[28, 27]), but their syntactic definition and the purpose are different from those
of ours; A tag is supposed to carry an identity of the encryptor and has to be
fixed before DEM key is selected in their definition. Despite the limitations, their
particular implementation fits also to our model without essential modification.

The security of Tag-KEM requires that the adversary should fail to dis-
tinguish whether a given dk is the one embedded in cipehrtext (ψ, τ) or not,
with adaptive access to the decryption oracle. Let O be the decryption oracle,
TKEM.Decsk (·, ·). Let AT be a polynomial-time oracle machine that plays the
following game.

[GAME.TKEM]

Step 1. (pk , sk) ← TKEM.Gen(1λ)
Step 2. υ1 ← AT

O(pk)
Step 3. (ω, dk1) ← TKEM.Key(pk), dk0 ← KD, δ ← {0, 1}.
Step 4. (τ, υ2) ← AT

O(υ1, dkδ)
Step 5. ψ ← TKEM.Enc(ω, τ)
Step 6. δ̃ ← AT

O(υ2, ψ)

In Step 6, AT is restricted not to ask (ψ, τ) to the decryption oracle O. Vari-
able υ1, υ2 are the internal state information of the adversary. Variable dkδ

is set to either dk0 or dk1 according to the value of δ ∈ {0, 1}. Such conven-
tion is used throughout the paper unless otherwise noted. We define εtkem,AT

=
∣
∣
∣Pr[δ̃ = δ] − 1

2

∣
∣
∣ and εtkem = maxAT

(εtkem,AT
) where the maximum is taken over

all machines. We say that a Tag-KEM is CCA-secure if εtkem is negligible in λ.

2.2 Data Encapsulation Mechanism and Public-Key Encryption

DataEncapsulationMechanism(DEM). ADEMisa symmetric encryption scheme
that consists of two algorithms, DEM.Enc and DEM.Dec such that DEM.Enc is an
encryption algorithm that encrypts m into ciphertext χ by using symmetric-key
dk ∈ KD and DEM.Dec is a corresponding decryption algorithm that recovers mes-
sage m from input ciphertext χ by using the same symmetric-key.

For our purpose, we only require DEM to be indistinguishable against passive
attacks. Namely, adversary AD chooses two same-length messages and given
a ciphertext of either of the messages from the encryption oracle and decide
which of the messages is encrypted. It is stressed that the ciphertext is made
by a random key and the key is used only once. DEM is one-time secure if
any polynomial-time adversary succeeds in distinguishing the encryption oracle’s
choice with probability at most 1

2 + εdem where εdem is negligible in the security
parameter. One-time pad is a simple example that fulfills this security notion.

Public-key Encryption (PKE). A public-key encryption scheme consists of key-
generation algorithm PKE.Gen, encryption algorithm PKE.Enc, and decryption
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algorithm PKE.Dec, which are defined in a standard way. We also define chosen
ciphertext security for PKE in the standard sense. That is, the adversary chooses
two messages from the message space, and is given a ciphertext of either of them
from the encryption oracle. The adversary is also given access to the decrypiton
oracle that will decrypt any ciphertext except for the one made by the encryp-
tion oracle. PKE is CCA secure if any polynomial-time adversary succeeds in
distinguishing the encryption oracle’s choice with probability at most 1

2 + εpke
where εpke is negligible in the security parameter.

3 Generic Construction of Hybrid PKE

In GAME.TKEM, it is important to see that the same ψ can be asked to the
decryption oracle as long as τ is different. Therefore, to conform CCA-security,
the pair (ψ, τ) must be non-malleable, which means that CCA-secure Tag-KEM
provides integrity to τ . We exploit this property to protect the DEM part so as
to be non-malleable.

Now in our construction of hybrid PKE, we require that Tag-KEM accepts
any string as a tag, i.e., T = {0, 1}∗. First of all, PKE.Gen is the same as
TKEM.Gen; Given security parameter λ, it outputs pubic-key pk and private-
key sk . Encryption and decryption functions are as follows.

Function: PKE.Encpk (m)

(ω, dk) ← TKEM.Key(pk)
χ ← DEM.Encdk(m)
ψ ← TKEM.Enc(ω, χ)
Output c = (ψ, χ)

Function: PKE.Dec(sk , c)

(ψ, χ) ← c
dk ← TKEM.Decsk (ψ, χ)
m ← DEM.Decdk(χ)
Output m

When the length of DEM key varies depending on the length of message, like
one-time pad, the syntax of Tag-KEM will be modified so that TKEM.Enc and
TKEM.Dec can take necessary information.

Theorem 1. If Tag-KEM is CCA secure and DEM is one-time secure then the
Hybrid PKE scheme in Section 3 is CCA secure. In particular, εpke < 2εtkem +
εdem.

Proof. Let AE be a polynomial-time oracle machine that launches a chosen-
ciphertext attack against the above hybrid encryption scheme. Let O denote the
decryption oracle. Call this attack GAME.PKE.

[GAME.PKE]

Step 1. (pk , sk) ← TKEM.Gen(1λ)
Step 2. (m0,m1, υ) ← AE

O(pk)
Step 3. b ← {0, 1}, (ω, dk) ← TKEM.Key(pk), χ ← DEM.Encdk(mb),

ψ ← TKEM.Enc(ω, χ)
Step 4. b̃ ← AE

O(υ, (ψ, χ))
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Let X denote the event that b̃ = b happens in GAME.PKE. The goal of
this proof is to bound Pr[X]. First we modify Step-3 so that DEM.Enc takes
random key dk× instead of the legitimate one generated by TKEM.Key. Call
this game GAME.PKE’. Let X ′ denote the event of b̃′ = b in GAME.PKE’. We
claim that |Pr[X] − Pr[X ′]| ≤ 2 εtkem, which is shown by constructing AT that
attacks the underlying Tag-KEM scheme by using AE . First AT is given public-
key pk and passes it to AE . Given m0 and m1 from AE , AT requests dkδ to the
encryption oracle of GAME.TKEM. AT then selects b ← {0, 1} and computes
χ = DEM.Encdkδ

(mb). By sending TKEM.Enc χ as a tag, AT receives ψ and
sends ciphertext (ψ, χ) to AE . Every decryption query from AE is forwarded to
decryption oracle TKEM.Dec. If ⊥ is returned, it is forwarded to AE . Otherwise,
AK decrypts χ by using the key given from oracle TKEM.Dec and pass the
resulting message to AE . When AE outputs b̃ = b, AK outputs δ̃ = 1 meaning
that dkδ is the real key. Otherwise, if AE outputs b̃ �= b, AK outputs δ̃ = 0
meaning that dkδ is random. Now observe that the view of AE is identical to that
in GAME.PKE when δ = 1, and that in GAME.PKE’ when δ = 0. Accordingly,
Pr[b̃ = b|δ = 1] = Pr[X] and Pr[b̃ = b|δ = 0] = Pr[X ′]. Therefore,

Pr[δ̃ = δ] − 1
2

=
1
2
(Pr[δ̃ = 1|δ = 1] − Pr[δ̃ = 1|δ = 0])

=
1
2
(Pr[b̃ = b|δ = 1] − Pr[b̃ = b|δ = 0])

=
1
2
(Pr[X] − Pr[X ′])

Since
∣
∣
∣Pr[δ̃ = δ] − 1

2

∣
∣
∣ ≤ εtkem, we have |Pr[X] − Pr[X ′]| ≤ 2εtkem.

Next, we show that AE playing GAME.PKE’ essentially conducts a passive
attack to DEM, i.e.,

∣
∣Pr[X ′] − 1

2

∣
∣ ≤ εdem. It is shown by constructing AD that

plays GAME.DEM by using AE . AD first generates (pk , sk) by using PKE.Gen
and gives pk to AE . When m0 and m1 are given from AE , AD forwards them to
encryption oracle of GAME.DEM and receives cipehrtext χ. It then computes ψ
by following TKEM.Key and TKEM.Enc by using χ as a tag, and sends c = (ψ, χ)
to AE . Note that the key chosen by the encryption oracle of GAME.DEM and
the one embedded in ψ are independent and randomly chosen. All decryption
queries are correctly processed by using sk . When AE outputs b̃, AD outputs
ξ̃ = b̃. It is now easy to see that, in this construction, GAME.PKE’ is perfectly
simulated and whenever AE wins, so does AD. Hence

∣
∣Pr[X ′] − 1

2

∣
∣ ≤ εdem. The

major factors of the running time of AD is that of AE and that for simulating
the decryption oracle which grows linearly in the number of decryption queries.

In summary, we have:

|(Pr[X] − 1
2
) − (Pr[X ′] − 1

2
)| ≤ 2εtkem

εpke − εdem ≤ 2εtkem

εpke ≤ 2εtkem + εdem

where εtkem and εdem are assumed negligible. ��
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4 Construction of Tag-KEM

This section develops some methods for obtaining Tag-KEM from PKE or KEM.
Note that KEM is generally obtained from PKE. Hence starting from KEM is
more general.

4.1 Based on PKE with Long Plaintext

When CCA-secure PKE is available, the first idea would be to encrypt the tag as
a part of the plaintext together with the DEM key to encapsulate. It indeed works
well if there is enough space in a plaintext. Lengthy tags would be compressed
by using a hash function. We can show that a target collision-free hash function
[14], which is implied by universal one-way hash function, is sufficient for this
purpose.

Formally, the construction is as follows. TKEM.Gen is essentially the same
as PKE.Gen; It outputs (pk , sk). It also selects hash function H. (For notational
simplicity, we assume that H is included in pk and sk .) TKEM.Key chooses ran-
dom dk from KD. It also outputs state information ω = pk ||dk. The encryption
and decryption functions are as follows.

Function: TKEM.Enc(ω, τ)

(pk , dk) ← ω
τ ′ = H(τ)
ψ = PKE.Encpk (dk||τ ′)
Output ψ.

Function: TKEM.Decsk (ψ, τ)

dk||τ ′ ← PKE.Dec(sk , ψ)
If τ ′ = H(τ), return dk.
Return ⊥, otherwise.

The resulting Tag-KEM is as secure as attacking the underlying PKE or hash
function. Let εtch be the success probability of finding a target collision for H.
The following theorem holds.

Theorem 2. If PKE is CCA-secure and H is target collision-free, the above
Tag-KEM is CCA-secure. Especially, εtkem ≤ εpke + εtch.

The RSA-based simple KEM [27] can be seen as an instance of this method
in the random oracle model. Applying Theorem 1 yields a hybrid PKE that is
a special case of [15]. Also, similar hybrid PKE is found in legendary protocols
such as [4].

4.2 Based on CCA-Secure KEM and MAC

In this section we present a CCA-secure Tag-KEM based on a CCA-secure KEM
and a secure message authentication code (MAC). Here, MAC is assumed to
be strongly unforgeable against one-time chosen message and unbound MAC
verification attack. That is, a MAC adversary is given a MAC for an arbitrary
message of its choice and attempts to create a valid message-MAC pair that
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is different from the observed pair. The adversary also has polynomially many
access to MAC verification oracle that verifies an arbitrary pair of a message
and a MAC. We say MAC is one-time secure if it satisfies this security notion.
Theoretically, such a MAC is available without intractability assumptions.

The idea is to encrypt a random key K using the KEM, and derive two keys
dk,mk from K. The first, dk is the actual encryption key, while mk is used to
MAC the tag. The resulting MAC is appended to the ciphertext. A decryptor
not only checks that the KEM decryption is correct, but also checks that the
MAC on the tag, using the decrypted key mk, is correct. A formal description
follows.

Construction of Tag-KEM: Let ΠL =(KEM.Gen,KEM.Enc,KEM.Dec) be a KEM.
Let MAC = (MAC.Sign,MAC.Ver) be a MAC. Let KDF2 : KK → KD × KM be
a key derivation function where KD is the key-space of DEM and KM is the
key-space of MAC. By using these components, we construct a Tag-KEM as fol-
lows. TKEM.Gen is the same as PKE.Gen; It outputs (pk , sk). TKEM.Key is that,
given pk , it computes (K,φ) ← KEM.Encpk () and (dk,mk) ← KDF2(K). Then
it outputs dk and state information ω = (mk, φ). The encryption and decryption
functions are as in the table below.

The security of KDF2 requires that its output distribution is indistinguish-
able from uniform one over the key-spaces. By εkdf, we denote the maximum
advantage over all polynomial-time distinguisher. If εkdf is negligible, we say
that KDF2 is secure. If KDF2 requires a key, it is generated by TKEM.Gen and
included in pk and sk .

Function: TKEM.Enc(ω, τ)

(mk, φ) ← ω
σ ← MAC.Signmk(τ)
Output ψ = (φ, σ)

Function: TKEM.Decsk (ψ, τ)

(φ, σ) ← ψ
K ← KEM.Decsk (φ)
(dk,mk) ← KDF2(K)
If K = ⊥ or MAC.Vermk(σ, τ) �= 1,
output ⊥.
Otherwise, output dk.

Clearly the CCA security of the KEM scheme will prevent an adversary from
gaining any advantage by manipulating the KEM ciphertext. On the other hand
the security of the MAC will prevent an adversary from gaining any advantage
by manipulating the MAC. The following theorem holds.

Theorem 3. If ΠL is CCA secure, MAC is one-time secure, and KDF2 is se-
cure then the resulting Tag-KEM is CCA secure. In particular, εtkem ≤ 4εkem +
qD εmac + 5εkdf where qD is the maximum number of decryption queries.

Applying Theorem 1 to the above Tag-KEM yields the same hybrid encryp-
tion scheme as in CCA KEM/DEM framework. But by analysing the same
scheme in our framework, we can show that CCA KEM is an overkill. In [3],
it is shown that there exists a class of KEM that is strictly weaker than CCA
but suffices for this construction.
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4.3 Based on KEM with Hash Function

We show another approach that might be available when the underlying PKE
does not have enough plaintext length as needed in Section 4.1 and/or increasing
ciphertext length as in Section 4.2 is not acceptable.

If a KEM uses a hash function, probably for integrity of ciphertext or plain-
text, the KEM may be converted to a Tag-KEM simply by including the tag
into the hash function. This approach is correct if the hash function is involved
in the scheme in a ’meaningful’ way and provides ’sufficient’ security. Although
generic construction that follows formal version of these intuitive terms can be
shown, it does not seem quite useful due to its complexity. Showing that a KEM
fits to the generic framework may not be simpler than directly proving that
the resulting Tag-KEM scheme is secure. Indeed, in all cases we have in mind,
the security proof can be done by minor or obvious modification of that of the
original KEM (or PKE). Therefore, we only show two concrete constructions of
Tag-KEM based on well known encryption schemes; OAEP+ [26] and Cramer-
Shoup encryption [12]. In the following, the description of the original schemes
are obtained just by dropping the tag τ .

From OAEP+. Let f be a one-way trapdoor permutation. OAEP+ encrypts
dk with tag τ into ciphertext ψ in the following way:

r′ = H ′(r||dk ||τ), s = (G(r) ⊕ dk)||r′, w = H(s) ⊕ r, ψ = f(s||w)

where r and r′ are random and G, H, H ′ are random oracles [5].
Security is argued in the same way as the original one except the case that, for

challenge ciphertext (ψ, τ) the adversary finds another valid ciphertext (ψ, τ ′).
Since ψ uniquely identifies r, r′ and K, (ψ, τ ′) is valid only if H ′(r||dk ||τ) =
H ′(r||dk ||τ ′) holds. When H ′ outputs a k1-bit string, such an event happens with
probability at most qH′ 2−k1 where qH′ is the maximum number of queries to
H ′. Based on this observation, we define game GAME.0’ where decryption oracle
returns ⊥ for all queries that differs only in the tag part with the challenge
ciphertext. The rest of the security proof is done in the same way as in the
original paper [26] except for obvious modifications. Accordingly, only qH′ 2−k1

is an extra reduction cost to that of OAEP+.

From Cramer-Shoup Encryption. A Tag-KEM scheme based on Cramer-
Shoup encryption over a multiplicative group, say Gq, of prime order q is the
following. A private-key is (x1, x2, y1, y2, z1, z2) ∈ Zq and the public-key is
g1, g2 ← G2

q, and c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz1
1 gz2

2 . The encryption func-
tion yields dk = hr where r is random, and ciphertext (u1, u2, v) such that

u1 = gr
1, u2 = gr

2, α = H(u1||u2||τ), v = crdαr

where H is a hash function. Decryption first checks if v
?= ux1+αy1

1 ux2+αy2
2 and

then recovers dk = uz1
1 uz2

2 . Applying Theorem 1 results in the hybrid PKE briefly
mentioned in [12].
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In contrast to [12] where H can be Target Collision Free, we need slightly
stronger assumption to prove the security in our framework, which nevertheless
has little practical impact. We say that H is Random Prefix Collision-Free if
any adversary wins the following game with at most negligible probability. The
adversary is first given H and outputs τ and then given random x and finally
outputs x′ and τ ′ such that H(x||τ) = H(x′||τ ′). We can prove that the above
scheme is secure Tag-KEM when H is random prefix collision free.

It holds that (Collision-Free) ⇒ (Random Prefix Collision-Free) ⇒ (Target
Collision-Free). Hence it is reasonable to use cryptographic hash functions like
SHA-1 which can be assumed collision-free. Nevertheless, we stress that ran-
dom prefix collision-freeness may not necessarily be equivalent to collision-free
because, for example, it is not clear how to perform a birthday attack in the
above game (if the randomness of x affects to the output). Theoretically, we
do not know constructions of random prefix collision-free hash functions from
target collision-free or universal one-way hash functions, thus we resort to strong
collision-freeness. The only drawback is that this requires a longer output (about
twice as much because the birthday paradox applies here), but that does not af-
fect our construction.

4.4 Based on ID-Based PKE

An ID-based encryption scheme is selective-ID secure when it is secure against
chosen ciphertext and chosen ID attacks provided that the target ID is commit-
ted at the beginning and the ID must not be included in any decryption query. It
is shown in [10] that selective-ID ID-based encryption schemes (sIBE in short)
can be strengthened to a full CCA secure ones by using one-time signature.
Then, according to CCA KEM/DEM framework, an ID-based hybrid encryp-
tion scheme can be obtained by combining it with a CCA secure DEM. We show
that the conversion from sIBE to full IBE also yields a Tag-KEM. Accordingly,
the DEM part can be simplified to be a one-time secure DEM. The resulting
scheme yields shorter ciphertexts than before.

Let (SIG.Gen,SIG.Sign,SIG.Ver) be a one-time signature scheme where SIG.Gen
is a key generation algorithm, SIG.Sign is a signature generation algorithm, and
SIG.Ver is a signature verification algorithm. Let sIBE.Enc(pk , ID,m) be the en-
cryption function of an sIBE. Then, we construct a Tag-KEM scheme as follows:
It encrypts (pk , dk) and τ into ciphertext ψ = (vk , φ, σ) where

(vk , sk) ← SIG.Gen(1λ), φ ← sIBE.Enc(pk , vk , dk), σ = SIG.Sign(sk , φ||τ).

Including τ into the message to be signed provides integrity to the tag with-
out affecting the security of the original scheme. Indeed, the security proof is
almost the same as in [10] with obvious modification. The reduction cost does
not change, either. One can extend the above Tag-KEM to ID-based Tag-KEM
in the same way starting from a 2nd-level ID Encryption function that takes
two ID’s. (A given ID is assigned to the first ID and vk is assigned to the sec-
ond ID.) For efficient implementations of sIBE based on standard cryptographic
assumptions, we refer to [7].
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In [8], Boneh and Katz improved the efficiency of [10] by replacing the one-
time signature with commitment scheme (using hash function) and MAC. Part
of their scheme can also be seen as a Tag-KEM.

5 Applications

5.1 Threshold Hybrid PKE

Designing a threshold hybrid PKE is not a trivial task. Even though thresh-
old PKE is available, it is not clear how it can be extended to hybrid thresh-
old PKE. By following CCA KEM/DEM framework, one will suffer from shar-
ing KDF and MAC.Ver, which are often implemented by number-theoretically
unstructured primitives. Although these tasks are feasible using generic tech-
niques from multi-party computation, we are focusing on efficient and practical
solutions.

Since Tag-KEM/DEM framework allows the DEM part to be CPA, it im-
mediately yields a threshold hybrid PKE once a shared Tag-KEM is available.
Decrypting the DEM part is a local task. By defining CCA security for thresh-
old PKE and DEM as in [28, 18], we can translate and prove Theorem 1 in the
threshold setting. Accordingly, one can concentrate on constructing threshold
Tag-KEM. A threshold KEM or PKE can be converted into a threshold Tag-
KEM by following the construction in Section 4.3 or 4.1 without considerable
overheads.

Threshold Cramer-Shoup encryption, secure against static adversaries, is
shown in [1, 9], and the conversion technique in Section 4.3 (or result of section
4.1 with larger security parameter) can be used to obtain a threshold Cramer-
Shoup Tag-KEM. Accordingly, by following the threshold version of Theorem
1, one can have a secure threshold hybrid encryption scheme in the standard
model. Adaptive security can be achieved as well based on the adaptively secure
threshold Cramer-Shoup encryption of [2].

5.2 Refined Fujisaki-Okamoto Conversion and More

We revisit the Fujisaki-Okamoto conversion [19] that provides secure construc-
tion of hybrid encryption in the random oracle model. By fitting their scheme
into Tag-KEM/DEM framework, we can see that one of their assumptions can
be eliminated and a refined version is obtained without loss of efficiency.

Let PKE.Encpk (· ; ·) be public-key encryption function where the last argu-
ment denotes a random coin used in the function. Fujisaki-Okamoto conversion
combines PKE and DEM by using two random oracles, H and G, as follows:

ψ ← PKE.Encpk (K;H(K||m)), χ ← DEM.EncG(K)(m).

A ciphertext is (ψ, χ). The resulting hybrid PKE is CCA-secure if PKE is one-
way and DEM is one-time secure and DEM.Enc is a bijection between ciphertexts
and messages for every fixed key.
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Now one can observe that PKE.Encpk (K;H(K||τ)) works as a Tag-KEM
encryption function that encapsulates DEM key G(K). Then, according to Tag-
KEM/DEM framework, we have slightly modified hybrid encryption:

ψ ← PKE.Encpk (K;H(K||χ)), χ ← DEM.EncG(K)(m)

which does not require DEM.Enc to be a bijection.
Similar observation applies to Bellare-Rogaway scheme [5], which is a special

case of Fujisaki-Okamoto construction, and REACT-RSA [23].

5.3 Revisiting RCCA-Secure PKE

This section revisits RCCA-secure PKE in [11] and show that their construc-
tion of CCA-secure hybrid PKE from RCCA-secure PKE can be improved by
following our Tag-KEM/DEM framework.

The notion of RCCA-secure PKE is introduced in [11]. RCCA is a variant of
CCA where the decryption oracle returns a special nonce ’test’ when it receives
a ciphertext that yields one of the questioned message, m0 and m1. Accordingly,
even if the adversary can tweak the challenge ciphertext without affecting the
embedded plaintext (such a feature is called benign-malleability [27]), sending it
to the decryption oracle will give no advantage to the adversary in determining
which of the questioned messages is hidden there. ’R’ stands for ’replayable’ in
this sense. RCCA-security is a strict relaxation of CCA-security and proven use-
ful for several cryptographic tasks, though, currently, there is no known instance
of RCCA-secure PKE that is more efficient than known CCA-secure ones.

In [11], it is shown that combining RCCA-secure PKE and CCA-secure sym-
metric encryption can yield CCA-secure hybrid PKE. Suppose that a CCA-
secure symmetric encryption is made by combining passively secure DEM and
one-time MAC. Then, their construction is summarized as follows. Given mes-
sage m, output ciphertext (φ, χ, σ) such that;

φ ← PKE.Encpk (dk||mk), χ ← DEM.Encdk(m||φ), σ ← MAC.Signmk(χ)

where dk and mk, are chosen randomly from appropriate domains. It is stressed
that φ is encrypted by DEM and this double-encryption structure is essential in
their security proof. Due to this special structure, the construction does not fit
to Tag-KEM/DEM framework. Below, we show a slightly more efficient variant
that avoids double encryption and fits to Tag-KEM/DEM framework.

φ ← PKE.Encpk (dk||mk), χ ← DEM.Encdk(m), σ ← MAC.Signmk(χ||φ)

Intuitively, applying MAC to φ offsets the benign-malleability of φ. The modified
scheme yields shorter ciphertexts.

From the above, we derive a Tag-KEM scheme which is summarized as fol-
lows.

(K,φ) ← KEM.Encpk (), (dk,mk) ← KDF2(K), σ ← MAC.Signmk(τ ||φ)
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It can be seen as a variant of the construction shown in Section 4.2; MAC is
applied to τ ||φ rather than to τ .

By defining RCCA-security for KEM in the same way as that for PKE, the
following theorem can be proven.
Theorem 4. If KEM is RCCA-secure, MAC is one-time secure, and DEM is
secure, the above Tag-KEM is CCA-secure. Especially, εtkem ≤ 2εrkem + (qD +
3)εkdf + qD

2 εmac

According to Theorem 1, the modified hybrid PKE is CCA-secure. This uncovers
the superfluousness of the double-encryption in the original construction and
obtains a more efficient scheme.

6 New Proof for Kurosawa-Desmedt Scheme

Let us briefly recall the Kurosawa-Desmedt scheme from [21]. The group G,
the hash function H and the public and secret key are as in the Cramer-Shoup
scheme described earlier. It also uses a key derivation function KDF, such that
for v ∈ G, KDF(v) = (k,K), where k is a message authentication key, and K is
a symmetric encryption key.

Encryption of m ∈ {0, 1}∗:
r ← Zq, u1 ← gr

1 ∈ G, u2 ← gr
2 ∈ G, α ← H(u1, u2) ∈ Zq

v ← crdrα ∈ G, (k,K) ← KDF(v), e ← EK(m), t ← MACk(e)
output C := (u1, u2, e, t)

Decryption of C = (u1, u2, e, t):

α ← H(u1, u2) ∈ Zq, v ← ux1+y1α
1 ux2+y2α

2 ∈ G, (k,K) ← KDF(v)
if t �= MACk(e) then reject
else output m ← DK(e)

It is possible to formalize this scheme as a Tag-KEM protocol. Indeed we can
consider (u1, u2, t) as the Tag-KEM part (where (u1, u2) is the proper KEM part,
e is the tag and t is a MAC on it), while e is the one-time DEM. This analysis
seems identical to the one in Section 4.2, but here the basic KEM is not known
to be CCA secure, so we can’t invoke Theorem 3, and a proof specifically for
this case is required.

The proof of security in [21] requires the MAC and KDF functions to be
information-theoretically secure, i.e. if v ∈ G is random, then at least the first
component k of the output of KDF(v) should be (statistically close to) uniform;
also for all e and t, if k is chosen at random, then Pr[MACk(e) = t] is negligible.
Our new proof of security, relaxes the above assumptions as follows: (i) if v ∈ G
is random, then at least the first component k of the output of KDF(v) should be
computationally indistinguishable from uniform; (ii) the MAC function should be
unforgeable. As we pointed out in the introduction this has a significant practical
impact on the scheme.

Our proof shows that the Tag-KEM described above is CCA-secure. Using
Theorem 1 we get that the hybrid scheme is CCA-secure as well.
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Game 0. We start the proof by defining a game, called Game 0, which is an
interactive computation between an adversary and a simulator. This game is
simply the usual game used to define CCA security for Tag-KEM, in which the
simulator provides the adversary’s environment.

Initially, the simulator runs thekeygenerationalgorithm, obtaining thedescrip-
tion of G, generators g1 and g2, keys for KDF and H (if any), along with the values
x1, x2, y1, y2 ∈ Zq and c, d ∈ G. The simulator gives the public key to the adversary.

During the execution of the game, the adversary makes a number of “de-
cryption requests.” Assume these requests are C(1), . . . , C(Q), where C(i) =
(u(i)

1 , u
(i)
2 , e(i), t(i)). For each such request, the simulator decrypts the given ci-

phertext, and gives the adversary the result. We denote by α(i), v(i), k(i), and
K(i) the corresponding intermediate quantities computed by the decryption al-
gorithm on input C(i). The oracle returns K(i) to the adversary.

The adversary may also make a single “challenge request.” When such re-
quest is issued, the Tag-KEM encryption oracle generates u1 = gr

1, u2 = gr
2, α =

H(u1, u2), v = crdrα and sets (k1,K1) = KDF(v). It also generates K0 at ran-
dom, and a random bit δ. The value Kδ is returned to the adversary who then
produces a tag e and receives back (u1, u2, t) where t = MACk1(e).

The only restriction on the adversary’s requests is that after it makes a chal-
lenge request, subsequent decryption requests must be different from (u1, u2, e, t).
At the end of the game, the adversary outputs δ̂ ∈ {0, 1}.

Let X0 be the event that δ̂ = δ. Security means that |Pr[X0] − 1/2| should
be negligible.

We prove this by considering other games, Game 1, Game 2, etc. These games
will be quite similar to Game 0 in their overall structure, and will only differ
from Game 0 in terms of how the simulator works. However, in each game, there
will be well defined bits δ̂ and δ, so that in Game i, we always define Xi to the
event that δ̂ = δ in that game. All of these games should be viewed as operating
on the same underlying probability space.

Before moving on, we make a couple of additional assumptions about the
internal structure of Game 0 that will be convenient down the road. First, the
simulator computes v as (u1)x1+y1α(u2)x2+y2α. This change is purely conceptual,
since v has the same value either way. Second, we assume that g2 is computed
as g2 := gw

1 for w ∈R Z
∗
q . Second, we assume that the quantities r, u1, u2, α, v,

k, and K0,K1 are computed at the very start of the game (they do not depend
on values provided later by the adversary, so this can be done).

Game 1. This is the same as Game 0, except for the following differences. If
the adversary ever submits C(i) for decryption with (u(i)

1 , u
(i)
2 ) �= (u1, u2) and

α(i) = α, the simulator rejects the given ciphertext.
In Game 1, the simulator may reject ciphertexts that would not have been

rejected in Game 0. Let us call Rejection Rule 0 the rule by which ciphertexts
are rejected as in the ordinary decryption algorithm (i.e., the message authen-
tication tags do not match). Let us call Rejection Rule 1 this new rejection
rule, introduced in Game 1.
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Let F1 be the event that the simulator applies Rejection Rule 1 in Game 1
to a ciphertext to which Rejection Rule 0 does not apply. Because Game 0 and
Game 1 proceed identically until the this event occurs, we have

|Pr[X0] − Pr[X1]| ≤ Pr[F1] and Pr[F1] ≤ εtcr, (1)

where εtcr is the success probability that one can find a collision in H using
resources similar to those of the given adversary. By assumption, εtcr is negligible.

Game 2. Now generate u2 as gr′

2 where r′ ∈R Zq. We have

|Pr[X2] − Pr[X3]| ≤ εddh, (2)

where εddh is the advantage with which one can solve the DDH problem, us-
ing resources similar to those of the given adversary. By assumption, εddh is
negligible.

Game 3. In this game, the simulator makes use of the value w ∈ Zq, where
g2 = gw

1 . The simulator did not need to make explicit use of this value in previous
games. Indeed, we could not have used the DDH assumption if the simulator had
to use w. However, we are now finished with the DDH assumption, and so the
simulator is free to make use of w in this and subsequent games.

Game 3 is the same as Game 2, except that we introduce a new Rejec-
tion Rule 2: in responding to decryption requests, the simulator rejects any
ciphertext C(i) such that (u(i)

1 )w �= u
(i)
2 , which is equivalent to saying that

logg1
u

(i)
1 �= logg2

u
(i)
2 .

Define F4 to be the event that a ciphertext is rejected during Game 3 using
Rejection Rule 2 to which Rejection Rules 0 and 1 are not applicable.

Clearly, we have
|Pr[X3] − Pr[X4]| ≤ Pr[F4], (3)

and we want to show that Pr[F4] is negligible.
We postpone this until later. This is the step that allows us to avoid a circular

argument in the original Kurosawa-Desmedt proof and forced them to make
the information theoretic assumptions. Instead of attempting to bound Pr[F4]
right now, we shall patiently wait until Game 5, where it will be much easier.
However, at this point we augment Game 3 just slightly: the simulator chooses
j ∈ {1, . . . , Q}, and we define F ′

4 to be the event that in Game 3, Rejection Rules
0 and 1 do not apply to C(j), but Rejection Rule 2 does apply to C(j). Clearly,

Pr[F4] ≤ QPr[F ′
4], (4)

and so it suffices to show that Pr[F ′
4] is negligible.

Game 4. Moving from Game 3 to Game 4 is a bit involved technically, yet
the basic idea is exactly the same as that underlying the analysis in [12] of the
original Cramer-Shoup encryption scheme. To motivate Game 4, we begin with
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some observations about Game 3. Let x := x1 + wx2 and y := y1 + wy2. Then
we have c = gx

1 and d = gy
1 . Also, for i = 1, . . . , Q, if logg1

u
(i)
1 = logg2

u
(i)
2

v(i) = ux+yα(i)

1 . Moreover, v is uniformly distributed over G, independently of
x and y. Further, if α(j) �= α and logg1

u
(j)
1 �= logg2

u
(j)
2 then v(j) is uniformly

distributed over G, independently of x, y, and v. These observations follow from
simple linear algebra considerations, as in [12].

Based on these observations, in Game 4, we compute a number of quantities
in a different, but equivalent, manner. Let x̄, ȳ be random elements of Zq, and
let v̄1, v̄2 be random elements of G. Let (k̄i, K̄i) := KDF(v̄i).

The key generation algorithm is modified as follows: c ← gx̄
1 , d ← gȳ

1 . The
values k1 and K1 are set equal to (k̄1, K̄1).

In processing decryption requests, for a given C(i) that is not subject to
Rejections Rules 1 or 2, the value v(i) is computed as (u(i)

1 )x̄+ȳα(i)
. Finally, we

define the event F ′
5 to be the event in Game 4 that C(j) is subject to Rejection

Rule 2, C(j) is not subject to Rejection Rule 1, and

– (u(j)
1 , u

(j)
2 ) = (u∗

1, u
∗
2) and t(j) = MACk̄1

(e(j)), or
– (u(j)

1 , u
(j)
2 ) �= (u∗

1, u
∗
2) and t(j) = MACk̄2

(e(j)).

Note that the values x1, x2, y1, y2, v
∗, v(j) are not used in Game 4.

We claim that

Pr[X4] = Pr[X5] and Pr[F ′
4] = Pr[F ′

5]. (5)

This follows from the observations above — we have simply replaced one set of
random variables by another set with same joint distribution.

It is perhaps helpful at this point to state how Game 4 works, starting from
scratch:

– The simulator generates the description of G, along with a random generator
g1, and any keys for KDF and H. It computes w, r, r′, x̄, ȳ ∈R Z

∗
q , g2 := gw

1 ,
c := gx̄

1 , d := gȳ
1 , u1 := gr

1, u2 := gwr′

1 , v̄1, v̄2 ∈R G, (k̄i, K̄i) ← KDF(v̄i) and
j ∈R [1..Q].
The simulator gives the description of G, the generators g1 and g2, keys for
KDF and H (if any), along with c and d to the adversary.

– In processing a decryption request C(i) = (u(i)
1 , u

(i)
2 , e(i), t(i)), the simulator

first checks if (u(i)
1 )w �= u

(i)
2 ; if so, the ciphertext is rejected. Otherwise, the

simulator computes α(i) := H(u(i)
1 , u

(i)
2 ) and checks if (u(i)

1 , u
(i)
2 ) �= (u1, u2)

and α(i) = α; if so, the ciphertext is rejected. Otherwise, the simulator
computes v(i) as ux̄+ȳα(i)

1 and (k(i),K(i)) ← KDF(v(i)). It then tests if
t(i) = mack(i)(e(i)); if not, the ciphertext is rejected. Otherwise, the sim-
ulator returns DK(i)(e(i)) to the adversary.

– In processing the challenge request, the simulator sets K1 = K̄1, then chooses
a random key K0 and a random bit δ and gives Kδ to the adversary who
responds with a tag e. Now the simulator computes t ← MACk̄1

(e), and gives
C := (u1, u2, t) to the adversary.
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Note that the values j and v̄2 (and the derived values k̄2 and K̄2) are not used
in this game, other than to define the event F ′

5.

Game 5. This is the same as Game 4, except that instead of applying KDF to
derive the keys k̄1, K̄1, k̄2, K̄2, these keys are simply generated at random. Define
the event F ′

6 in Game 5 in the same way as it was defined in Game 4.
It is easy to see that

|Pr[X5] − Pr[X6]| ≤ 2εkdf and |Pr[F ′
5] − Pr[F ′

6]| ≤ 2εkdf, (6)

where εkdf is the advantage of distinguishing the output of the KDF from a
random key pair, using resources similar to those of the given adversary. The
factor of 2 comes from applying a standard “hybrid” argument to the two KDF
outputs to be distinguished in moving from Game 4 to Game 5. By assumption,
εkdf is negligible.

We claim that
Pr[X6] = 1/2 (7)

This follows by construction — note that the key K̄1 in Game 5 is random, and
is not used at all in the game, other than to define K1. Therefore, conditioned on
either δ = 0 or δ = 1, the adversary’s view has the same conditional distribution;
from this, it follows that the distribution of δ is independent of the adversary’s
view.

We also claim that
Pr[F ′

6] ≤ 2εmac, (8)

where εmac is the probability of breaking the message authentication code,
using resources similar to those of the given adversary. This also follows by
construction — one has to make a simple “hybrid” argument to account for
the fact that we are breaking one out of two message authentication schemes
(one keyed with k̄1 and the other keyed with k̄2, whence the factor of 2). By
assumption, εmac is negligible.

We are now in a position to complete the proof of security. By using Eqs.
(4), (5), (6), (8), we get

Pr[F4] ≤ Q(2εmac + 2εkdf). (9)

Finally, combining (1), (2), (3), (5), (6), (7), and (9), we have:

|Pr[X0] − 1/2| ≤ εtcr + εddh + 2εkdf + Q(2εmac + 2εkdf). (10)

By assumption, the right-hand side of (10) is negligible, which finishes the proof.
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