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Abstract

Nowadays numerous social images have been emerging

on the Web. How to precisely label these images is crit-

ical to image retrieval. However, traditional image-level

tagging methods may become less effective because global

image matching approaches can hardly cope with the diver-

sity and arbitrariness of Web image content. This raises an

urgent need for the fine-grained tagging schemes. In this

work, we study how to establish mapping between tags and

image regions, i.e. localize tags to image regions, so as to

better depict and index the content of images. We propose

the spatial group sparse coding (SGSC) by extending the

robust encoding ability of group sparse coding with spa-

tial correlations among training regions. We present spa-

tial correlations in a two-dimensional image space and de-

sign group-specific spatial kernels to produce a more in-

terpretable regularizer. Further we propose a joint version

of the SGSC model which is able to simultaneously encode

a group of intrinsically related regions within a test image.

An effective algorithm is developed to optimize the objective

function of the Joint SGSC. The tag localization task is con-

ducted by propagating tags from sparsely selected groups of

regions to the target regions according to the reconstruction

coefficients. Extensive experiments on three public image

datasets illustrate that our proposed models achieve great

performance improvements over the state-of-the-art method

in the tag localization task.

1. Introduction

Multimedia understanding and retrieval is a long stand-

ing research problem in the field of computer vision and

multimedia [3, 12, 15, 21]. Nowadays, confronted with

the huge number of social images on the Web, traditional

image-level tagging methods tend to become less effective

because global image matching approach can hardly han-

dle the diversity and arbitrariness of Web image content.

How to accurately tag images in more fine-grained levels

becomes a great challenge to facilitate image retrieval. In

this paper, we aim to address the problem of image tag lo-

calization, i.e., assigning tags to image regions.

Several related efforts have been made on this research

topic. Multiple instance learning techniques [17, 18] and

graph models [23] have been exploited and shown some ef-

fectiveness in region-level annotation. Most recently Liu

et al. [5] proposed the Bi-Layer sparse coding for encod-

ing image regions and propagating labels at region level.

In this work, images were first segmented into basic re-

gions, then the Bi-Layer model was applied to reconstruct

each test region from a dictionary formed by other basic

regions. The common tags of images containing the tar-

get region and sparsely selected regions will be re-assigned

to the target region according to the reconstruction coeffi-

cients. It is worth noting that basic regions in the dictio-

nary are implicitly assumed to be independent with each

other. Contextual relationships among these semantic re-

gions/objects, e.g., co-occurrence and spatial correlations,

are ignored. Besides, when reconstructing regions within

an image they individually encode each region and again

ignore the intrinsic correlations among encoding regions.

All of these correlations are important clues for uncover-

ing the underlying data structure, and neglecting them may

lead to a potential loss in interpretability and reconstruc-

tion performance. Hence, to overcome these drawbacks we

propose a joint region reconstruction model which extends

group sparse coding with collaborative encoding ability and

integrates spatial correlations among basic regions into the

training dictionary. Figure 1 illustrates our tag localization

framework.

The contributions of this paper are summarized as fol-

lows: 1) We first propose the spatial group sparse coding

(SGSC) which simultaneously takes advantage of the ro-

bust encoding ability of group sparse coding as well as prior

knowledge about spatial correlations among image regions.

We use the SGSC to encode an individual region from ba-

sic regions, thereby enabling tags to be propagated with

the encoding coefficients; 2) Further, in order to collabo-

ratively encode a group of regions in a test image, the Joint

SGSC model is proposed by taking the intrinsic correlations

among the group of test regions into consideration; 3) More-

over, a novel algorithm is developed to optimize the Joint
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Figure 1. Overall illustration of tag localization framework with the Joint SGSC model. Given a test image, we first segment it and

extract visual features for each region. All these test regions are simultaneously encoded from groups of spatially correlated regions (after

segmentation, feature extraction and spatial kernel construction from the original training set). Finally, reconstruction coefficients are used

to propagate tags from training regions to test regions.

SGSC. Theoretical proof and analysis are given to guaran-

tee that the algorithm converges to the global optimality; 4)

At last, extensive experiments are conducted on three public

image datasets to show the effectiveness of our methods.

The rest of this paper is organized as follows. Related

work will be reviewed in Section 2, followed by describing

the details of the SGSC, the Joint SGSC and our proposed

algorithm in Section 3. Section 4 reports all experimental

results, followed by the conclusion in Section 5.

2. Related Work

The fundamental motivation of our work is to apply

group sparse coding technique on the tag localization task

by considering region correlations. We review research

work on sparse coding and image tagging in this section.

In recent years, sparse coding has been a fairly popular

technique in computer vision research. Yang et al. [19] im-

proved vector quantization by extending sparse coding with

spatial order of local descriptors. Gao et al. [3] followed

this work and posed an additional constraint for enforcing

maximal similarity preservation among similar descriptors.

Mairal et al. [6] proposed simultaneous sparse coding to

encode a group of similar patches for image restoration.

Similarly in [1], Bengio et al. proposed a variant of sparse

coding for jointly encoding the group of visual descrip-

tors within the same image to achieve image-level sparsity.

Wang et al. [14] proposed to use sparse coding twice for im-

age annotation. They applied sparse coding to reconstruct

images for establishing relations among images. The co-

efficients were used for dimensionality reduction over the

feature representations. In [25], the authors applied group

sparse coding to perform feature selection for image annota-

tion. Our work is as well developed from sparse coding but

different from Liu’s work [5] mentioned in Section 1. Our

model not only considers the intrinsic correlations amongst

encoding regions but also explicitly integrates spatial corre-

lations among basic regions to boost performance.

Image tag assignment is to automatically annotate an im-

age with descriptive words. Wang et al. [15] collected

candidate tags from surrounding textual information and

re-ranked them based on visual information to acquire fi-

nal tags. In [12], Siersdorfer et al. revealed the relation-

ship among videos from the perspective of content redun-

dancy, and proposed neighbor-based and context-based tag-

ging schemes. In [20], Yang et al. handled the tag incom-

pletion problem by grouping the visually near-duplicate im-

ages. Given a test image, a candidate tag set is first acquired

from its near-duplicate neighbors. Then the candidate set is

extended by using the multi-tag associations mined from the

preprocessed image dataset. Finally, tag visual models are

built for eliminating tag ambiguity. Most of these existing

schemes perform tagging at image level whilst tag local-

ization aims to assign tags to regions at more fine-grained

levels.

3. Joint Spatial Group Sparse Coding

In this section, we propose a tag localization approach by

uncovering how a group of regions can be jointly encoded

from groups of spatially correlated basic regions.

3.1. Group Sparse Coding

Sparse representation has shown its effectiveness in com-

puter vision due to the computational benefits and robust-

ness. It assumes that a signal y ∈ R
d can be encoded by the

sparse linear combination of N basic elements:

β̂ℓp = argmin
β

1

2
‖y −Xβ‖22 + λ‖β‖p (1)

where X ∈ R
d×N is the encoding dictionary, β indicates

the encoding coefficients, λ is a trade-off parameter and

‖ · ‖p is the ℓp-norm. Ideally, the “pseudo-norm” ℓ0-norm

can guarantee to obtain the sparsest solution, but it has been

proven to be an NP-hard selection problem. In practice one

usually instead uses the ℓ1-norm to reformulate sparse cod-

ing as a convex problem, which is known as the Lasso [13].
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Although the Lasso enjoys significant computational

strength and great performance, it is worth noting that this

method implicitly assumes that an element in the dictio-

nary is independent of all others. In image region encod-

ing, if we simply concatenate regions of the training im-

ages to form the dictionary [5], apparently we lose corre-

lation clues among regions within the same image, such as

co-occurrence between objects (e.g., an image depicting a

computer screen probably contains a computer keyboard),

spatial dependency amongst regions (e.g., sky often lays

over boats), etc. Besides, the Lasso tends to select more im-

ages because the ℓ1-norm only guarantees region-level spar-

sity rather than image-level sparsity. This may introduce

more potential noises when tag propagation is performed.

Therefore, our first motivation is to integrate correlations

among training regions and realize image-level sparsity.

Given a dictionary X = {X1, X2, · · · , XG}, where

Xg ∈ R
d×Ng consists of a group of Ng regions segmented

from the gth image, the Group Lasso [24] can be applied to

reformulate the reconstruction process for a test region y:

β̂gl = argmin
β

1

2
‖y −

G
∑

g=1

Xgβg‖
2

2
+ λ

G
∑

g=1

‖βg‖2 (2)

where βg ∈ R
Ng is the encoding coefficient corresponding

to the gth group.

The Group Lasso uses a group-sparsity-inducing regu-

larization instead of the ℓ1-norm. In fact the regularization

term λ
∑G

g=1
‖βg‖2 is the combination of both the ℓ1-norm

(inter-group) and the ℓ2-norm (intra-group) and thus can be

called the ℓ1ℓ2-norm. The fact that the Group Lasso consid-

ers multiple elements as a whole implies that it utilizes im-

plicit relations among these elements to some extent. Nev-

ertheless, in order to more precisely characterize the corre-

lations we intend to explicitly integrate spatial correlations

among groups of basic regions into the Group Lasso. An-

other restriction of the Group Lasso is that it can only en-

code one region at a time, which may lead to the loss of the

intrinsic correlations and consistency among test regions.

3.2. Spatial Group Sparse Coding

As mentioned before neither the Lasso nor the Group

Lasso explicitly considers correlations among basic ele-

ments. It has shown that such prior knowledge [16] is useful

to uncover the characteristics of the data. In this subsection

we focus on how to extend the Group Lasso with spatial

correlations.

3.2.1 Spatial Dependency

Before reformulating our formula, we first handle how to

represent spatial dependency among the semantic regions

segmented from an image. We propose to describe the spa-

tial relationships in a two-dimensional image space. In this

Figure 2. An illustration of an original image and the spatial depen-

dency among its segmented regions. Each region is represented by

the coordinate of its center and the edge between two regions is

weighted by Gaussian similarity.

space each region is represented by the 2-D coordinate of its

center, and the Euclidean distance can be used to measure

the spatial distance between two regions. To represent spa-

tial dependency, we further propose to use Gaussian kernel

to formulate the spatial similarities.

For a training image Xg and its Ng segmented regions,

denote the two-dimensional coordinate of the ith region as

z
g
i ∈ R

2 in the image space. We build a Gaussian kernel

matrix Kg ∈ R
Ng×Ng over these regions’ coordinates:

k
g
ij = k(zgi , z

g
j ) = exp (−

‖zgi − z
g
j‖

2

γ
) (3)

where γ is the bandwidth parameter of Gaussian kernel.

Figure 2 illustrates an example of spatial dependency

among regions, where each region is a vertex and the edge

between two vertices is weighted by Gaussian similarity.

3.2.2 Extending Group Lasso with Spatial Prior

We propose the SGSC model by extending the Group Lasso

with the spatial kernels mentioned before. In order to inte-

grate Kg into the Group Lasso, we introduce a kernel norm

based on βg and Kg:

‖βg‖Kg
= (β′

gKgβg)
1/2 (4)

We call this norm as the Kg-norm. If we substitute the ℓ2-

norm in Eq.(2) with the Kg-norm, our SGSC model is ob-

tained as follows:

β̂sgl = argmin
β

1

2
‖y −

G
∑

g=1

Xgβg‖
2

2 + λ

G
∑

g=1

‖βg‖Kg
(5)

In [24], it has shown that the kernel group regularization

used in Eq.(5) is an intermediate regularizer between the

ℓ1-norm in the Lasso and the ℓ2-norm in ridge regression.

This means that our SGSC model encourages image-level

sparsity when taking spatial dependency prior knowledge

into consideration. Similar to the Group Lasso, the SGSC

model does not consider the intrinsic correlations among

test regions either, thereby leading to potential loss in the

reconstruction performance and consistency. We will ad-

dress this limitation in the following subsection.
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3.3. Region Reconstruction by Joint SGSC

In this subsection we aim at addressing the limitation of

the SGSC model mentioned before, i.e., the intrinsic corre-

lations of test regions are ignored. We propose a joint ver-

sion of the SGSC to simultaneously encode all test regions

within the same image.

3.3.1 Joint SGSC

Considering a group of test regions segmented from an im-

age, surely we can reconstruct each region individually to

fulfill the tag localization task for the test image. How-

ever, even though the SGSC provides image-level sparsity

for the individual region encoding task, it cannot guarantee

consistency and robustness in encoding all test regions of

the whole image since they are intrinsically correlated with

each other. Therefore, we formulate image reconstruction

as a joint region reconstruction procedure and propose the

Joint SGSC model. The Joint SGSC helps achieve that once

a group of training regions have been chosen as sparse codes

for one test region, then probably should they be chosen to

represent other test regions within the same image without

adding much extra penalty cost.

Denote Y ∈ R
d×Nx as Nx test regions segmented from

a test image x. In previous works [1][6], the authors pro-

posed a simultaneous sparsity regularizer for jointly recon-

structing Y as follows:

B∗ = argmin
B

1

2
‖Y −XB‖2F + λ

N
∑

i=1

‖βi‖p (6)

where the first term penalizes the whole reconstruction er-

ror of all encoding regions. B = [βT
1
, βT

2
, . . . , βT

N ]T ∈
R

N×Nx denotes the reconstruction coefficient matrix, and

βi ∈ R
1×Nx (the ith row of matrix B) specifies the con-

tribution of the ith basic region of X to each test region.

In essence, (6) is the joint version of the Lasso. The reg-

ularizer λ
∑N

i=1
‖βi‖p tends to minimize the number of

nonzero rows in B. As with the Lasso, this formulation

ignores correlations among basic elements and only guar-

antees element-level sparsity rather than group-level.

To overcome these drawbacks we extend the Kg-norm

to a joint version which guarantees sparsity when jointly

reconstructing all test regions:

‖Bg‖Kg
= (

Nx
∑

j=1

‖βg
j ‖

2

Kg
)1/2 = (tr(BT

g KgBg))
1/2 (7)

where tr(·) is the trace of a matrix. B = (BT
1
,BT

2
, . . . ,

BT
G)

T and each Bg ∈ R
Ng×Nx specifies the contribution of

the gth group to all encoding regions. β
g
j is the jth col-

umn of Bg and ‖βg
j ‖Kg

is the Kg-norm on β
g
j as defined in

Eq.(4). Hereby, we define a new spatial kernel regularizer

by summing over all training groups and the Joint SGSC is

finally proposed as follows:

B∗ = argmin
B

1

2
‖Y −XB‖2F + λ‖B‖K (8)

where ‖B‖K =
∑G

g=1
‖Bg‖Kg

. As we can see, our formula

is the natural extension of the SGSC model and (6). In the

next section we develop an effective iterative algorithm to

optimize the objective function of (8).

3.3.2 Computation of Joint SGSC

In order to optimize (8) we first transform the Kg-norm into

the Frobenius norm and then propose an effective algorithm

to find the global optimality.

For a training image Xg , without loss of generality

we assume all its regions have different coordinates, then

the spatial gaussian kernel matrix Kg derived from these

coordinates is symmetric positive-definite [7]. We per-

form Cholesky decomposition on the kernel matrix: Kg =
UT
g Ug. Here Ug is an upper triangular matrix with strictly

positive diagonal entries. It is clear that Ug is invertible.

After substituting the above result into Eq. (7) we obtain:

‖Bg‖Kg
= tr(BT

g U
T
g UgBg)

1/2 = tr(AT
g Ag)

1/2 = ‖Ag‖F

where Ag = UgBg and ‖ · ‖F is the Frobenius norm. Then

the objective function of (8) can be rewritten as below:

min
B

1

2
‖Y −

G
∑

g=1

XgBg‖
2

F + λ

G
∑

g=1

‖Bg‖Kg

⇔ min
A

1

2
‖Y −

G
∑

g=1

X̃gAg‖
2

F + λ

G
∑

g=1

‖Ag‖F (9)

where X̃g = XgU
−1

g , g = 1, 2, . . . , G.

Further, we propose an effective iterative algorithm (as

illustrated in Algorithm 1) to optimize (9). In contrast to co-

ordinate descent based algorithms, in each iteration our al-

gorithm directly obtains an analytical solution which guar-

antees the decreasing trend of (9). We will show that this

algorithm guarantees that A converges to the globally op-

timal solution. In [8], an iterative algorithm was proposed

to solve the joint ℓ2,1-norm minimization problem. Inspired

by [8], we derive the Theorem 1 and prove that Algorithm 1

can obtain the globally optimal solution for (9). Before that

we introduce two lemmas.

Lemma 1. Denote A as the optimal result of the tth itera-

tion and Ã as the variable of (t+1)th iteration of Algorithm

1, then the following inequality holds:

∥

∥

∥
Ã
∥

∥

∥

F
−

tr(ÃT Ã)

2 ‖A‖F
6 ‖A‖F −

tr(ATA)

2 ‖A‖F
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Algorithm 1: An effective iterative algorithm for opti-

mizing the Joint SGSC model.

Input : Original data matrix X , spatial kernels

Kg(g = 1, 2, · · · , G), observation data matrix

Y and initialized coefficient B.

Output: Globally optimal encoding coefficients B∗.

1 for g = 1 to G do

2 Perform Cholesky decomposition: Kg = UT
g Ug;

3 X̃g = XgU
−1

g ;

4 Ag = UgBg;

5 repeat

6 Let D =





‖A1‖F I1
...

‖AG‖F IG



;

7 A = (DX̃T X̃ + λI)−1DX̃TY ;

8 until there is no change to A;

9 for g = 1 to G do

10 B∗
g ← U−1

g Ag;

Proof. See Appendix.

Lemma 2. Given A = [AT
1 A

T
2 · · · A

T
G]

T , Ag is a sub-

matrix ofA and corresponds to the gth group, then we have

the following conclusion:

G
∑

g=1

∥

∥

∥
Ãg

∥

∥

∥

F
−

G
∑

g=1

tr(Ãg

T
Ãg)

2 ‖Ag‖F
6

G
∑

g=1

‖Ag‖F −
G
∑

g=1

tr(Ag
TAg)

2 ‖Ag‖F

Proof. See Appendix.

Now we come out with the conclusion of Theorem 1 ac-

cording to Lemma 1 and 2.

Thereom 1. At each iteration of Algorithm 1, the value of

the objective function in (9) monotonically decreases.

Proof. We first optimize the following quadratic problem:

min
Ã

1

2

∥

∥

∥
Y − X̃Ã

∥

∥

∥

2

F
+ λ

G
∑

g=1

tr(Ãg
T
Ãg)

2 ‖Ag‖F
(10)

By setting the deviation of (10) w.r.t. Ã to zero we obtain

Ã∗ = (DX̃T X̃ + λI)−1DX̃TY , where

D =





‖A1‖F I1
...

‖AG‖F IG





is a diagonal matrix orderly formed by G sub diagonal ma-

trices corresponding to G groups. Then we respectively

substitute Ã∗ and A into (10) and get:

1

2

∥

∥

∥Y − X̃Ã∗

∥

∥

∥

2

F
+ λ

G
∑

g=1

tr(Ã∗

g

T
Ãg

∗

)

2 ‖Ag‖F
6

1

2

∥

∥

∥Y − X̃A
∥

∥

∥

2

F

+λ

G
∑

g=1

tr(Ag
TAg)

2 ‖Ag‖F

⇒
1

2

∥

∥

∥
Y − X̃Ã∗

∥

∥

∥

2

F
+ λ

G
∑

g=1

∥

∥

∥
Ã∗

g

∥

∥

∥

F
− λ

G
∑

g=1

(∥

∥

∥
Ã∗

g

∥

∥

∥

F

−
tr(Ã∗

g

T
Ã∗)

2 ‖Ag‖F

)

6
1

2

∥

∥

∥
Y − X̃A

∥

∥

∥

2

F + λ

G
∑

g=1

‖Ag‖F

−λ

G
∑

g=1

(

‖Ag‖F −
tr(Ag

TAg)

2 ‖Ag‖F

)

⇒
1

2

∥

∥

∥
Y − X̃Ã∗

∥

∥

∥

2

F
+ λ

G
∑

g=1

∥

∥

∥
Ã∗

g

∥

∥

∥

F
6

1

2

∥

∥

∥
Y − X̃A

∥

∥

∥

2

F

+λ

G
∑

g=1

‖Ag‖F

As we can see that at (t + 1)th iteration Ã∗ indeed makes

the value of Eq. (9) decreased.

Because of the convexity of objective function (9), The-

orem 1 clearly guarantees that Algorithm 1 converges to the

global optimality. After obtaining the encoding coefficients

of a test region, we determine its tag as follows. For each

tag, we accumulate the coefficients of the training regions

that are associated with this tag. Then the tag with the high-

est score is chosen as the final tag for the test region.

4. Experiments

In this section we employ three public image datasets to

evaluate the effectiveness of our proposed SGSC and Joint

SGSC models on the tag localization task.

4.1. Experimental Settings

4.1.1 Datasets

In our work three image datasets (two versions of MSRC

[11] and SAIAPR TC-12 [2]) with region-level ground

truths are used to evaluate our proposed models. The pixel-

wise labeled MSRC dataset contains two versions: Version

1 provides 240 images and 13 labels while Version 2 is com-

prised of 591 images and 23 labels. Both of them have been

manually segmented and labeled at pixel level. The SA-

IAPR TC-12 contains about 20,000 images and it also pro-

vides: 1) Segmentation masks and segmented images; 2)

Region-level Features and Labels. According to our ob-

servation, the SAIAPR is organized into 40 subsets and

each subset contains relatively relevant images (e.g. images

taken at the same landscape). We choose the one containing
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251 images. Note that our tagging method can be easily ex-

tended to large-scale datasets by preliminarily filtering out

those potentially relevant images.

4.1.2 Images Segmentation and Features Extraction

The MSRC datasets do not provide segmentation masks and

region-level features so we preliminarily segment the im-

ages and extract visual features from segmented regions.

Various image segmentation algorithms [10, 22] can be used

here and we choose to use Normalized Cuts Clustering [10]

in this paper. Images in the MSRC have 3-4 labels in aver-

age. So we set the number of segmentations to 4. We cannot

expect Normalized Cuts to generate the same segmentation

results as manual ground truths. Therefore, we assign each

region with its dominant label. For both MSRC and SA-

IAPR datasets, we characterize visual content of their im-

age regions by extracting Local Binary Patterns (LBP) fea-

ture [9]. LBP assigns each pixel with a value by comparing

its 8 neighbor pixels with the center pixel value and trans-

forming the result to a binary value. Then the histogram of

the values is accumulated as a local descriptor.

4.1.3 Comparing Algorithms

We first choose the Lasso and the Group Lasso as two basic

baselines to show the effectiveness of our consideration on

spatial correlations among basic training regions. We also

implement the SGSC as another baseline in that we want to

illustrate the advantage of the joint encoding ability of the

Joint SGSC. Moreover we intend to compare with the Bi-

Layer sparse coding [5] which is one of the state-of-the-art

algorithms for the region-level tagging task. To keep con-

sistence with the settings of baselines and our algorithm, we

slightly modify the formula of the Bi-Layer sparse coding

to an extended Lasso. For the Lasso, the Group Lasso and

the Bi-Layer sparse coding we use the implementation of

SLEP package [4]. At last, to illustrate the general perfor-

mance we also compare our models with the classical kNN

algorithm and k is empirically set to 50 and 100.

4.2. Parameter Setting

We test different parameter settings for our models to

obtain the best experimental results. There are two param-

eters: 1) λ is used to keep balance between reconstruction

error and the level of sparsity of the encoding coefficients.

By default we set λ ∈ {10−7, 10−6, · · · , 102}; 2) γ used

in Gaussian spatial kernel tunes the effect of region spatial

dependency prior. Here we set γ ∈ {10−2, 10−1, · · · , 104}
in the following experiments.

The results on average tagging accuracy for the Joint

SGSC and the SGSC on three datasets are illustrated in Fig-

ure 3 and 4 respectively. In order to clearly characterize

the effects of λ and γ, we report the partial experimental

results for brevity. It is clear that the Joint SGSC outper-

forms the SGSC in most cases. Let us first see the effect of

λ (inter-curve comparison). Both Figure 3 and 4 show that

as λ increases the average accuracy does not monotonically

increase. Best λ (top curve in each sub-figure) all appear in

the middle of the range, which means both the reconstruc-
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Datasets kNN (k = 50) kNN (k = 100) Lasso Group Lasso Bi-Layer SGSC Joint SGSC

MSRC v1 0.364 0.315 0.630 0.630 0.632 0.640 0.797

MSRC v2 0.448 0.434 0.673 0.671 0.674 0.672 0.777

SAIAPR TC-12 0.185 0.174 0.384 0.490 0.385 0.498 0.489
Table 1. Overall average accuracy comparison of different algorithms on MSRC and SAIAPR TC-12 datasets. We use k=50 and 100 for

kNN method and the best results for the Lasso, the Group Lasso, the Bi-Layer sparse coding and our proposed SGSC and Joint SGSC.
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(c) SAIAPR TC−12 Dataset

Figure 5. Detailed tag localization performance.

tion error term and the jointly spatial sparsity regularizer

play important roles in finding the optimal region encoding

results. We observe the similar results when testing the ef-

fect of γ (intra-curve comparison). Most lines go up slowly

as γ increases from a very small value, then drop from their

peak accuracies as γ becomes very large. Taking Figure 4

(a) as an example, it shows a clear trend. Actually, when

γ is extremely large, spatial transformation becomes over-

whelming, which may lead to some negative distortion to

the reconstruction performance. On the other hand when

γ is small, spatial kernels are close to the identity matrix,

which ignores spatial transformation. Similar trends can be

seen in other sub-figures of Figure 3 and 4.

In summary the average accuracy of our models could

achieve the best results by testing different combinations of

λ and γ. For fair comparison we also respectively tune pa-

rameters for the Lasso, the Group Lasso, and the Bi-Layer

sparse coding to find their best performance on different

datasets. In the following experiments, for all algorithms

the best results will be used for comparison.

4.3. Comparison and Analysis

In this subsection we report and analyze the results of

our proposed models and comparing algorithms in terms of

the average tag localization accuracy.

Table 1 illustrates the overall average tag localization ac-

curacies of different algorithms on different datasets. De-

tailed tag localization performance comparisons on each tag

are reported in Figure 5. As we can see from Table 1, on

both MSRC v1 and MSRC v2 datasets, the performance

of the Lasso, the Group Lasso, the Bi-Layer sparse cod-

ing and the SGSC is very close. However, the Joint SGSC

consistently outperforms all of them by nearly 20%, which

is huge. This phenomenon apparently indicates the effec-

tiveness of integrating the spatial dependency and joint en-

coding ability in our joint model. We believe that the Joint

SGSC truly preserves the consistency of the intrinsic corre-

lations among the test regions, and the spatial dependency

among the training regions also poses positive effect on

the reconstruction performance. As to the SAIAPR TC-12

dataset, we find that both the SGSC and the Joint SGSC ob-

tain more than 10% improvement over the Lasso and the Bi-

Layer sparse coding. Different from the MSRC datasets, the

performance of the SGSC on the SAIAPR dataset slightly

beats the Joint SGSC. The reason why joint encoding de-

grades is that images in the SAIAPR dataset are more ar-

bitrary, hence the regions of these images do not have in-

evitable relationships and the joint model cannot effectively

reveal the real correlations among encoding regions. From

the detailed tagging performance in Figure 5 we find that

our models usually obtain better performance on category

of animal, such as cow, rodent, zebra, etc. Normally ani-

mals do not appear alone in the dataset, i.e., there are usu-

ally more than one animals in an image. This gives a strong

hint that the considered joint relationship among test re-

gions is effective in our Joint SGSC. In contrast, we do not

achieve better results on tags that often correspond to one

single object in an image, such as sky, etc.

Note that in our experiments we obtain different results

on the MSRC v2 dataset for the Bi-Layer sparse coding

and the Lasso from those reported in [5]. We think the

reasons exist in several aspects: 1) Different preprocessing

strategies lead to different subsets of the MSRC v2 dataset,

which may affect the performance; 2) The slight modifica-

tion to the formula probably causes the results sensitive to

the parameters; 3) The segmentation methods adopted in

these two works are not the same, which may create differ-

ent ground truths of segmented regions, thereby leading to

different performances; 4) Most importantly, tags are prop-

agated in different levels, i.e., they propagated tags from
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image to region while we assign tags from region to region.

5. Conclusion and Future Work

In this paper we develop the SGSC and the Joint SGSC

models for localizing tags to image regions. Besides inte-

grating spatial relationships among training regions, we also

realize the joint encoding of a group of intrinsically rele-

vant regions within the test image. An effective algorithm

is further proposed to optimize the Joint SGSC, and we also

discuss and prove its convergence to the global optimality.

Finally we conduct extensive experiments on three public

image datasets to show the superiority of our proposals. In

future we intend to apply kernel methods to adapt our model

to nonlinear settings.

A. Proof of Lemma 1 and 2

We first prove Lemma 1 and then Lemma 2.

Proof. Since ‖Ã‖F and ‖A‖F are real values, we have:

(‖Ã‖F − ‖A‖F )
2
> 0

⇒tr(ÃT Ã) + tr(ATA)− 2‖Ã‖F ‖A‖F > 0

⇒2‖Ã‖F ‖A‖F − tr(ÃT Ã) 6 tr(ATA)

⇒‖Ã‖F −
tr(ÃT Ã)

2 ‖A‖F
6

tr(ATA)

2 ‖A‖F

⇒‖Ã‖F −
tr(ÃT Ã)

2 ‖A‖F
6 ‖A‖F −

tr(ATA)

2 ‖A‖F

Proof. According to Lemma 1, for each group g we have:

∥

∥

∥
Ãg

∥

∥

∥

F
−

tr(ÃT
g Ãg)

2 ‖Ag‖F
6 ‖Ag‖F −

tr(AT
g Ag)

2 ‖Ag‖F

Thus, by summing over all G above inequalities we get the

conclusion of Lemma 2.
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