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Abstract - In image sensing and processing, ambiguities 
arise when only one source of information is used. Thus, 
3D object recognition and localization is a difficult task 
when using intensity image as single input. This paper 
presents a machine vision system that uses a Radio 
Frequency (RF) Tag device to identify objects prior to 
locating them visually. The tag system consists of a tag 
reader that can interrogate, and receive radio signals 
from, tags attached on objects and characterizing them. 
Laying the basis of an object model database shared on a 
network, we perform a knowledge-based recognition task 
where the information retrieved from the database query 
serves as a prior knowledge. The recognition algorithm 
used is a matching with projective invariants. We 
describe how this system can be used for efficient object 
registration and how the concept of integrated tag based 
systems can provide new insights in image processing and 
machine vision. 

Keywords: machine vision, tags, model-based vision, 
sensor fusion. 

1 Introduction 
The problem of object recognition and localization in a 3D 
context is a fundamental task for autonomous vision 
systems. It is the preliminary step to autonomous 
navigation and object manipulation. 3D object recognition 
requires constructing and efficiently storing models of the 
3D world, and matching features extracted from sensed 
information with these models [2,4]. Recognition based on 
2D single intensity images is very hard without prior 
models or assumptions that make up for the lack of depth 
information in monocular vision[2,5,8,14]. Such additional 
information can be provided by an auxiliary sensing 
channel, through which the system can improve its 
understanding of the surrounding world [7,10]. 

Now, an increasing amount of information is available 
through the Internet, and efforts are made to structure it for 
improved retrieval. Namely, the XML standard is a 
promising and appealing technology for sharing 
information organized according to its semantic content. 

Thanks to this nature, XML appears as a powerful tool 
when designing a system expected to dynamically acquire 
knowledge about an object or infer the best course of 
action to undertake in a given context. 

Based on these observations, some researchers 
implemented systems where visual tags are attached on 
objects, allowing to characterize objects in a visual 
scene[9,12]. However, inconvenients of using visual tags 
are that, among others, line of sight is required, visual tags 
can wear off over time, they are not easily rewritable, they 
alter the aspect of the object, and they can be hard to 
recognize unambiguously themselves. Example of a visual 
tag of widespread use is provided by barcodes used to 
register merchandise goods.  In this article we present the 
architecture of a vision system that uses RF tags that can 
be attached to or embedded in objects. Such tags contain a 
unique identifier, the Tag ID, and can be read by a tag 
interrogator coupled to the camera.  
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Figure 1. The general architecture of the tag-based vision 
system. The central CPU commands the RF tag 

identification system and retrieves information from the 
network, knowing the object’s Tag ID. Tag sensing and 

visual sensing are then integrated to perform a high-level 
vision task. 
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The main technical drawback of using RF Tags instead of 
visual tags is that we don’t have direct access to the object 
location. Fig.1 shows the architecture of a RF Tag-based 
vision system.  

When an object equipped with a RF Tag enters the 
operational field of the RF receiver, the Tag Interrogator 
retrieves the object’s unique Tag ID, and sends a request to 
the network to ask for the object model. This model is then 
used to perform a model-based vision task. 

In the next section, we describe the principles that 
motivate our vision system, section 3 will briefly 
summarize the paradigm of RF tagging, and in section 4 
we present a practical implementation for 3D scene 
analysis. In the final section we present some results 
obtained with our object recognition system still under 
construction. They suggest that a RF tag identification 
module can expand the capabilities of a machine vision 
system in brand new directions, providing ways to design 
more “intelligent” image analysis devices and systems. 

2 Principles  of a Tag-Based Vision 
System 

2.1 Added value of using tags 

The key point in using identifying RF tags is that, since the 
detection of the tag can be considered reliable, we have 
access through the network to a model representing the 
object at any different level of description that we choose. 
Thus, the system not only can retrieve a physical model of 
the object, but also can get a high level functional 
"understanding" of the object. In this sense, and in the 
perspective of information technology, RF tagging is much 
more than just an alternative to conventional barcode 
tagging. 

Let us draw some key elements that constitute the added 
value of a tag based vision module compared to classical 
systems for visual analysis: 

. accuracy: the preliminary tag identification process 
ensures the presence of the object which tag ID has been 
detected by the system. Therefore, the recognition step is 
posed as a rigorously constrained knowledge based 
matching of the database information with the visual 
information directly available. 

. complementary information: the RF Tag can contain - 
or give a key to - information that cannot be retrieved only 
from the visual content. This includes physical and 
chemical properties (such as 3D configuration and real 
dimensions, weight, tactile info., acoustic info., odor, 
etc...) as well as higher level information about the 
function and purpose of the object. This property is 

essential in the design of autonomous systems or systems 
aimed at interacting with and providing output to humans. 

. capacity of evolution: the system doesn't have to be 
trained with a predefined set of objects, but rather can 
acquire "awareness and knowledge" of new objects each 
time it performs a database query knowing the object's ID. 

As a type of widely used identification tags, we can cite 
barcodes, for which some systems of visual recognition 
have been succesfully developed, as in [17]. However, in 
comparison to barcodes, RF Tags are more easily and 
unamibiguously detected, they do not require line of sight, 
they do not wear off over time, they can be embedded into 
objects to make them invisible, and they can be rewritable 
to update/modify their information.  

2.2 RF Tags and Machine Vision 

As possible applications of the concept of Tag-Based 
image analysis, we can think of systems that recognize 
objects/places/people in a tagged environment, and detect 
the degree of correspondence with the model, for 
inspection, diagnosis, automatic repairing, etc… when 
accuracy is needed, or when the objects encountered can 
be very versatile. In augmented reality applications, the 
system can display useful information about the detected 
objects. The possible applications of RF Tag –based vision 
systems are really infinite, all the more since RF Tags and 
the information in the database can be modified, allowing 
several systems to cooperate and update the information of 
the database according to the result of their 
observation/action. In a typical example, the system 
updates the information concerning the location of the 
object that is detected, and shares this information on the 
network. In the same open manner, one can think of 
unlimited “Tag-Based Applications”, for such areas as 
augmented reality, virtual reality, entertainment, automated 
inspection and repairing of objects, and ultimately 
intelligent autonomous robots. 

As a very basic illustration of this concept, and in order to 
present a practical implementation, we devise in this paper 
a recognition system for polyhedral objects from single 
view. We make use of some recent results derived from 
considerations of projective geometry [14]. 

3 RF Tag Identification 
RF Tag Identification (RFID) consists in an architecture 
where information contained in a small tag is remotely 
read by a reference system, using radio frequencies. This 
technology represents a fast grwoing market and is 
constantly attracting more and more economic actors. In 
this section we will present a brief survey on RF tagging 
technologies and issues.  

413



As global standards are being developed by industrial 
partners and low cost RF Tags are achieved, RFID 
applications are due to be more and more popular. 

3.1 An overview of RFID 

The principle of RFID was invented in 1948 (transmission 
of energy and data by inductive/propagative coupling), but 
it really developed as a business only about two decades 
ago[18]. According to market analysts Frost&Sullivan, it is 
expected to grow fastly and reach a US$2b global business 
by 2006. RFID was originally driven by applications 
concerning Electronic Article Surveillance (EAS) and 
security (checking luggage, granting access to facilities,…). 
In the last few years RFID has much diversified, and RFID 
manufacturers are striving to provide with an ever wider 
choice of hardware options. 

4 Implementation 
The chartflow of our application is presented in fig.(2). 
Our purpose is to realize an efficient integration of the 
information processing and image processing modules. 
Tag sensing is performed by the system described in 4.1. 
In the information processing stage, we design an object 
model database as in 4.2. The image processing stage is 
described in 4.3. 

RF Tags can be categorized according to the following 
parameters, among others[19]: 

Tag ID DetectionImage Sensing

Feature Extraction
Object Info Retrieval

Object Recognition
and Registration

High level task

Physical Sensing

Global, Network-
based information

retrieval

Local, Vision-
based processing

Figure 2. The chartflow of the system, splitted in 3 
functional domains. The lower “High level task” is 

mentioned as an ultimate goal and is not tackled here.   

. frequency range: typical  RFID systems use frequencies 
in the VHF, UHF and up to the micro-wave band. Much 
effort is made for practical implementations of the 125-
135kHz range and the 13.56MHz and 2.45GHz 
frequencies. Higher frequencies naturally allow for higher 
bitrates.  

. active/passive: whether the tag contains a power source 
or not. Active tags allow bigger operational range, whereas 
passive tags cost less and have longer lifetime. 

. chip/chipless: whether there is an embedded integrated 
circuit (IC) in the tag. Microchips allow greater 
functionalities (R/W, on-tag processing). 

. conventional/low cost: the industry is pushing towards 
the achievement of low cost tags that will overcome 
limitations due to the cost of integrating RF Tags. 

Besides, RF Tags come in all types of shapes, ranging 
from tiny devices (Hitachi recently released the smallest 
chip RF Tag, the “µ-chip”, that can be embedded in paper) 
to rigid rings of alloy or flexible laminates, etc…. 

4.1 The RF Tag system 
3.2 The future of RF Tags 

The RF Tag system we use in practice consists of an 
industrial Tag Interrogator device and its corresponding 
smart card-shaped tags that contain 1024bits of rewritable 
data each, which allows storing an amount of object 
information directly in the Tag. The operational frequency 
is the 2.45GHz standard, for a bandwidth of 16kbs, and the 
detection range is limited to 1.2m. Our system belongs to 
the family of passive tags with microchips. Of interest is 
the fact that 2.45GHz radiations are not absorbed by water 
and the human body: the system we are using was 
originally designed to be used for granting access to 
people to facilities and the RF Tags were supposed to be 
worn as badges. Due to vector components of the RF field, 
the reliability of Tag detection is sensitive to the position 
and orientation of the tags. 

Industrial applications of RFID are concerned with gains 
in productivity security, and anti-counterfeiting. Thus, 
typical examples of developing applications are: assembly 
line monitoring, product storage and tracking, access 
control, EAS. Also, the European Central Bank is planning 
to put RF Tags in Euro banknotes by 2005. 

On the other hand, some different and ambitious directions 
are being taken. Of particular interest is the MIT’s vision 
of the “Internet of Things”[20] that seeks to create the 
global network of physical objects equipped with low cost 
RF Tags. For this purpose, they devise a standard for Tag 
IDs that they call Electronic Product Code (EPC). 

414



For our purpose, each Tag contains an identifier made of 6 
characters, much simpler than MIT’s EPC and proprietary, 
corresponding to the primary key of the model entry in the 
model database. 

 

Figure 3. The main window of our image analysis 
application, showing the interface for Tag detection/object 

info retrieval, and the video capture window, where the 
Tag Interrogator (central box) and some card-shaped Tags 

are visible in the foreground, and the RF antenna in the 
background. 

4.2 The object model database 

For an automated system to efficiently analyse an object 
and dynamically undertake an « intelligent » course of 
action, it is very useful to store information according to its 
content. This is why we choose to build the object model 
in the XML fashion. Our vision system is aimed at 
identifying and locating industrial objects, of which a 
simple and natural representation is a wire-frame model 
formed with edges connected by vertices. This 
representation is inspired by the IGES norm for CAD 
modelization of wire-frame models[6]. We devise our 
XML network database including this model and 
appending textual information that describes the object at a 
high level. Fig.4 shows the listing of our rudimentary 
Document Type Definition(DTD).  

The vertices of the object are stored in homogeneous 
coordinates, with each vertex containing the indices of its 
neighbour points. Thus the physical model of the object is 
transfered to the vision system as a 3D vertex network. We 
intend to handle more complex models such as NURBS in 
the future. 

4.3 Model-based recognition 

Projective geometry is a powerful tool to account for the 
representation of the 3D world on the image plane. It has 

been widely used for camera calibration and multiple view 
feature correspondence. The shape of the object is stored 
as 3D homogeneous coordinates, and although no direct 
correspondence is available from P3 to P2, various 
algorithms allow recognition of polyhedrons with 
projective invariants [14,15,16].  

<?xml version='1.0' encoding='utf-8'?>
<!-- DTD for the sample object model database -->

<!ELEMENT ObjectList(object+)>

<!ELEMENT object(tagID,name,maker*,description*,
shape,color*,texture*)>
<!ATTLIST objectclass CDATA "undefined">
<!ELEMENT tagID (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT maker (#PCDATA)>
<!ELEMENT description (#PCDATA)>

<!ELEMENT shape (point+)>
<!ATTLIST shape type CDATA "polyhedron">

<!ELEMENT point (X,Y,Z,T,connected)>
<!ATTLIST point index ID #REQUIRED>
<!ATTLIST point unit (mm|cm|dm|m) "mm">

<!ELEMENT X (#PCDATA)>
<!ELEMENT Y (#PCDATA)>
<!ELEMENT Z (#PCDATA)>
<!ELEMENT T (#PCDATA)>
<!ELEMENT connected (#PCDATA)>

Figure 4. Our DTD for wire-frame object models. Each 
object is nested inside an <object> node, referenced by its 
unique Tag ID, and contains structured information (name, 

maker, description, shape parameters…). The shape is 
stored as connected vertices. 

Consider the projection of a 3D world point ( , , )P X Y Z  
onto the image point ( , ),p x y  as performed by the pinhole 
camera model. This is expressed: 

 
11 12 13 14

21 22 23 24

31 32 33 341

x c c c c X
y c c c c Y

c c c c Z
λ
     
     =     
          

 (1) 

The 12 coefficients c are the camera calibration 
parameters that need to be determined when locating the 
projection of an identified object in the image. In this 
paper, we wish to registrate a given known shape to the 
image sensed by the camera. We claim that using a RFID 
system greatly speeds up the registration process. Indeed, 
we want to compute the 3x4 camera calibration parameters 
of eq.(1), which is often done by solving the linear system 
of projection equations of n points in correspondence from 

ij
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3D to 2D, as in eq.(2). In this equation, xi and yi are the image coordinates of a point which world coordinates are 
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We use the result proved by Weiss and Ray[14] in their 
theorem 2, giving a formal relation between the 3D 
projective invariants of 2 subsets of 6 points in P3 and their 
images by a projective transformation. Eq.(2) needs at 
least 6 points in order to determine those parameters. 
Solving for each set of points being computationaly 
expensive, we use Weiss and Ray’s result to check for the 
correspondence of 2 sets of 6 points, one from the object 
model and one from the image. 

P1

P2

P3

P6

P5

P4

p6

p3

p1

p2

p4

p5

x

y

O'X
Y

Z

O
Figure 5. Two sets of 6 points in correspondence by 

projective projection. The points Pi are 3D world points 
projected into the points pi in the image plane. The point 
p1 in the image is a trihedral point because it is connected 

to the 3 points p2, p3 and p4. 

From the set of 3D points Pi such as in fig.5, we can form a 
set of three 3D projective invariants as follows: 

1 31 2 1 4
1 2 3, ,M M

1 2 1 3 1 4

M M MI I I M
M M M M M
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1 1 1 4 6k k k
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From the projections of the Pi  onto the image plane, they 
define the following 2D projective invariant cross-ratios : 
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where : 

1 1 1 1 1 4de ... ... ... )
det( ... ... ... )

j j k kp p p p p
p p p p p

− + − +
 (6)

5

1 1 1 1 1 4 6j j k k

p
p− + − +

4 2 1 3 1 3 4 0

With these notations, 2 subsets of poins in correspondence 
as in fig.4 verify the relation : 

3 2 1 2 3 1 1 1 2 2) ( 1) ( 1)
( 1 ( 1) ( 1)

i I I i I I i
I I i I I i

− − − − −

− − − − − =
 (7)

Eq.(7) expresses a necessary condition that we constarint 
by considerations of edge relationship: if 2 points from the 
object model  and jP  are connected by a 3D edge, their 

images ip and jp  should be linked by an edge.  

The way the sets are formed is as follows: from the image, 
we extract 6 points (intersections of Hough lines detected 
in the image) connected to each other by edges. From the 
object, we just group points knowing their connection 
information previously stored in the model. When the best 

          where : 
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match is found over the whole image, corresponding to the 
set that best verifies eq.(7). we solve for eq.(2) with the 
single value decomposition (SVD) method. This means 
finding the eigenvector of (  of least 
eigenvalue, where  is the left-hand side matrix of  eq.(2) 
built with the corresponding points P and 

. 

AAA tt .). 1−

,( ii YX
A

), ii Z
),( yxp iii

5 Experiments 
Our system is developed on a desktop PC driving the Tag 
Interrogator and the image sensor (CD-711 camera by 
Sony), and connected to a server PC that manages the 
object model database. The Tag-Based Vision algorithm 
falls into 4 parts:  

1)read Tag info and retrieve object model from database.  

2)detect lines with Hough transform and extract image 
vertices as their intersections, if the local gradient intensity 
is above a gradient threshold. When a new valid 
intersection point is found, it is rejected if it lies on an 
edge segment joining 2 points that we already found. This 
way we keep edge segments of maximum length, but we 
cannot deal with T-junctions. 

3)form subsets of six 2D feature points, and for each 
subset, compute the invariant relation of eq.(7) with all the 
3D subsets of 6 points from the object vertices which have 
a compatible connection configuration. This gives a 
criterion of confidence of the two subsets being in 
correspondence by a pinhole camera projection. The 6-
point subset from the image is deemed relevant when: 

- it contains a trihedral point such as 1p in fig.5 (point of 
intersection of 3 edges). Thus we expect the 3D points 

1 2 3,, ,P P P  and P to form an affine basis. 4

- feature points 5p and 6p (resp.) are not connected to any 

of the points 2 , 3p p and 4p . Thus we minimize the chance 
of having coplanar 3D points that cause the determinants 

iM and iM ′ to become null, which cannot be dealt with 
by our algorithm. Here again we use a gradient threshold 
to determine the likeliness of [pj ,pk] for being an edge. 

4)for the image point subset that gives the best match, i.e. 
the subset pair for wich ε  in eq.(7) is minimum, use this 
optimum pair of 2x6 points to compute the camera 
calibration parameters with eq.(2).  

5)knowing the camera calibration parameters, backproject 
the object model onto the image and display object 
information. According to a vocabulary commonly used in 

computer vision, the system has formed its scene, meaning 
its representation of the surrounding context consistent 
with a model.  

When performing step 2), we speed up the computation of 
the classical Hough transform by using consistent gradient 
operators without smoothing the image sequence[1], and 
relying on their approximation of the local direction of 
edges, allowing to accumulate the Hough parameter space 
only in a narrow [θ-δθ, θ+δθ] area. Feature points in the 
image are found as intersections of Hough lines. This 
allows finding principal directions and vanishing points 
more easily, and also suggests that non-polyhedral objects 
can be described with directions or points other than 
vertices. 

When forming subsets of connected points in step 3), we 
start by selecting trihedral points in the image. Thus, the 
computing complexity of step 3) is of O  
where: T is the number of trihedral feature points, N is the 
average number of connected neighbours for each image 
feature point, and n is the average number of neighbours 
for each model vertex (n=3 if only trihedral corners are 
present on the object). 

).( 62nNT

Fig. 6 shows the window of our main application for image 
analysis. The object we use for our test demo is a simple 
polyhedron with 12 vertices. The RF Tag (not shown) 
containing the object’s model is presented to the Tag 
interrogator when the object enters the camera’s field of 
vision. 

a - original polyhedron b - feature extraction

P5

P1

P2

P4

P3
P6

c - extraction of 6-point d - object model registered
subset

Figure 6. Example of recognition for a simple polyhedron 
with our image analysis software. In (b) lines and edges 

are detected by Hough transform, and a discriminating 6-
point subset is extracted from those feature points (c). The 

camera is calibrated and the objectis registered in (d). 
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6 Conclusion 
In this paper, we introduced a novel architecture for a 
vision system that integrates a cooperative strategy for 
image analysis and acknowledges the ever-growing 
availability of structured information on the computer 
networks. The integration is performed thanks to a RF Tag 
object identification system, providing a key to retrieve a 
complete model of the detected object through a network 
knowledge database, designed in XML. This system 
enables to simplify any object recognition task to a 
problem of registering the object model to the image, and 
the recognition part is independent of the number of 
models in the database. We use wire-frame object models. 
A more elaborate model, implementing general 
components from the IGES standard as well as other 
structural object description elements will be needed to 
handle general objects. Moreover, we still need to work on 
the robustness of our system. Those points, as well as the 
application of our architecture to various scenarios in 
machine vision, will be the objects of future developments.  
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