

Tag Suggestion and Localization in User-generated Videos based on Social Knowledge

Lamberto Ballan, Marco Bertini, Alberto Del Bimbo, Marco Meoni, Giuseppe Serra

ACM SIGMM International Workshop on Social Media (WSM) 25 October 2010, Firenze, Italy

Worldwide social websites for media sharing

- Social websites for media sharing have become more and more popular in the last years
 - Flickr hosts more than 2 billion images with ~3 millions new uploads per day
 - YouTube reported in March 2010 more than 2 billion views a day and 24 hours of videos uploaded per minute
- People upload, share and annotate multimedia content with *tags*

Key problem: social tag reliability

- The performance of social image and video retrieval systems strictly depends on the availability and quality of tags
- But recent studies show that tags are *few*, *imprecise*, *ambiguous* and *overly personalized* [Kennedy *et al.* 2006]
 - e.g. a study on 52 million Flickr photos shows that ~64% of them have only 1-3 tags (see [Sigurbjörnsson and van Zwol 2008])
- Moreover tags might be irrelevant to the visual content

Query tag: airplane

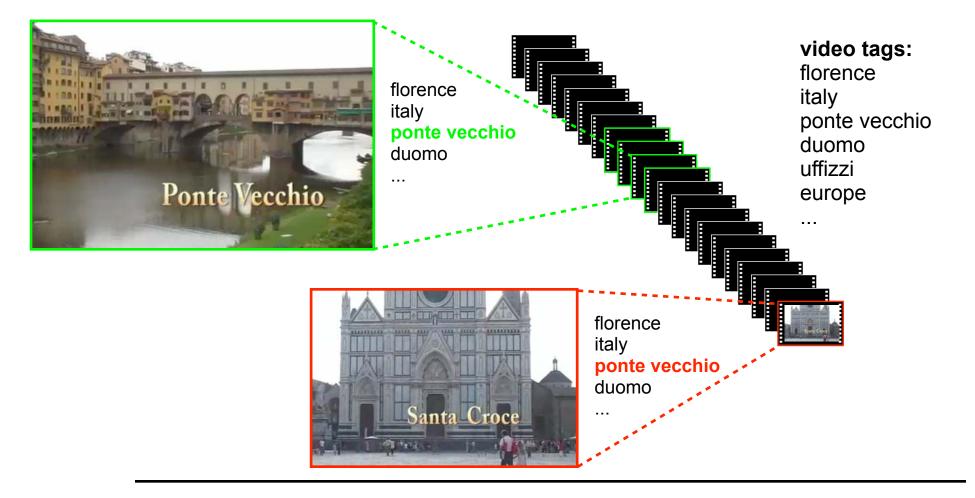
airplane twin engine los angeles

daytime beach airplane ocean

. . .

 In the case of videos there is also another problem: tags are not "localized" in the video frames

Query tag: ponte vecchio



Social image retrieval

- Query-dependent methods ۲
 - Goal: given a particular query, try to re-rank the results considering the visual content [Hsu et al.'07, Jing et al.'08]

Query: airplane

Query-independent methods •

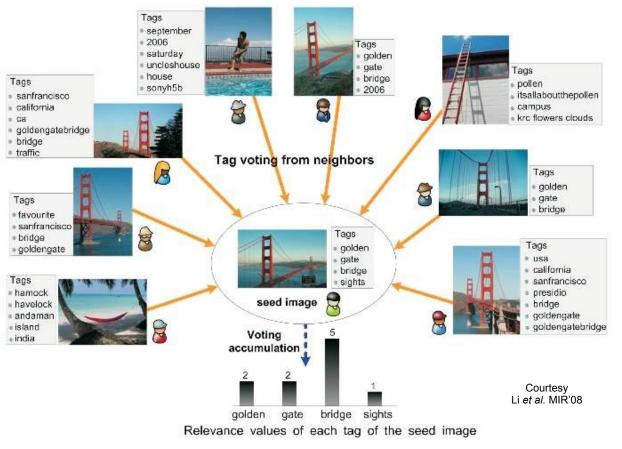
Goal: tag relevance learning by estimating the relevance of each tag with respect to the visual content [Li et al.'08 & later, Kennedy et al.'09, Wu et al.'09]

Query: airplane

airplane twin los

Tag relevance learning by neighbor voting

- Several recent works focus on the *tag relevance learning* approach since it is more general (i.e. it can be used also as a starting point for query-dependent methods)
- An example: estimate tag relevance by exploiting annotations from neighbors users selected by visual similarity [Li *et al.* '08,'09]
 - use visual features to describe the content
 - find neighbors by clustering of visual features
 - voting accumulation to learn tag relevance
 - use a multi-feature tag relevance learning to improve results [Li *et al.* 2010]



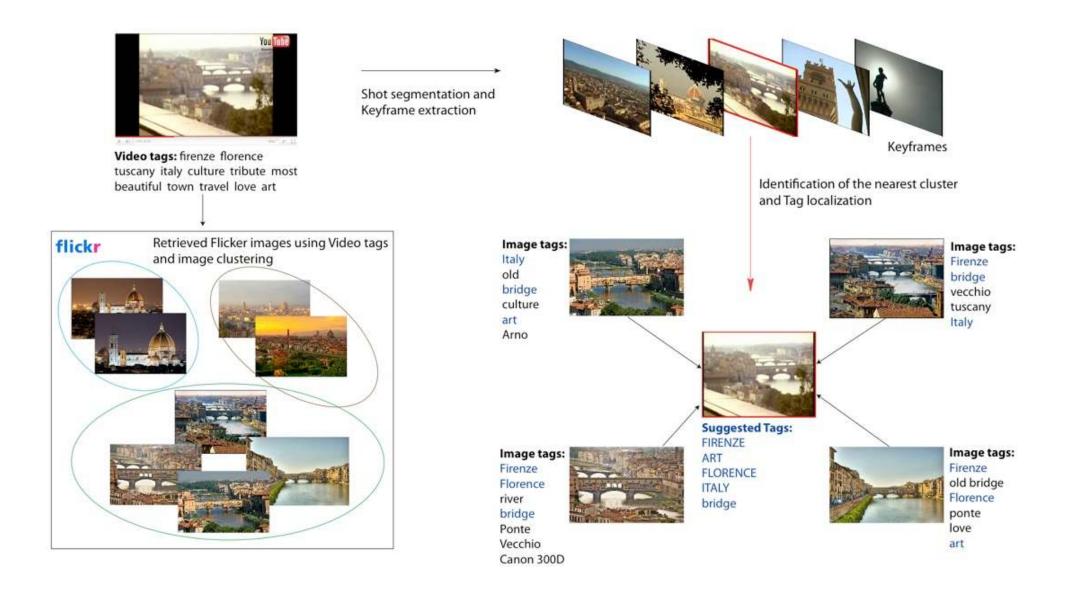
Social video retrieval

- The problem of social video retrieval and tag suggestion in user-generated videos has been less explored
 - several works use YouTube's "related videos" metadata to enrich/re-rank information related to a specific video [Wu et al.'09, Liu et al.'10]
 - other recent works retrieve visual near-duplicates for tag-suggestion and video re-ranking [Siersdorfer *et al.*'09, Zhao *et al.*'10]
- New tags are usually suggested at the video level
- To the best of our knowledge there are no previous works that try to locate tags within the user-generated video

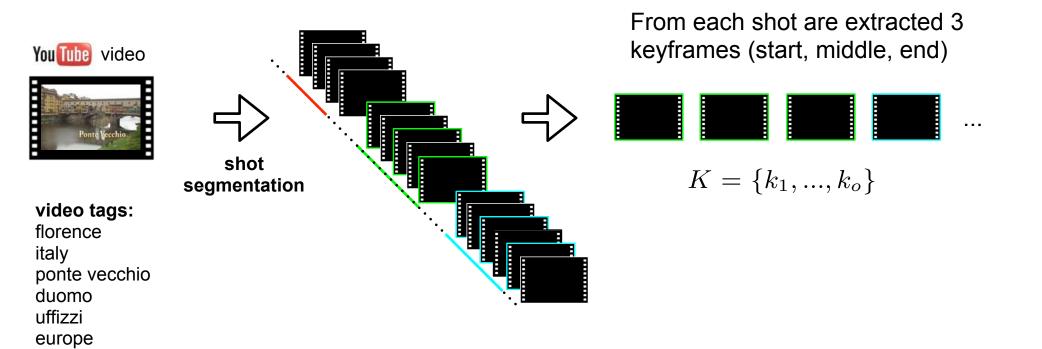
Our approach

- We propose an approach for *video tag suggestion* and *temporal localization* based on collective knowledge and visual similarity of video frames
- Our goal is two-fold:
 - exploits tags associated to user-generated videos and images uploaded to social websites (such as YouTube and Flickr) and their visual similarity for tag suggestion at the video level
 - associate the tags to the relevant shots that compose the video

Overview of the proposed system



Exploiting tag relevance for video annotation



$$\bigvee V = \{v_1, \dots, v_n\}$$

. . .

The video tags V are used to select and download images from Flickr

Let *T* be the union of all the tags of the set of downloaded images *I*

$$I = \{I_{v_1}, ..., I_{v_n}\}$$

$$T = \{t_1, t_2, ..., t_k\}$$

- The set *T* is considered as the dictionary to be used for the video annotation
- Since it is obtained from social images (Flickr) it is fundamental to evaluate the relevance of the terms in the dictionary
 - to this end we followed and extend the approach of [Li et al.'08] to cope with video shot annotation
 - practically tag relevance learning is computed by counting occurrences of each tag *t* in the *k*NN images, minus the prior frequency of *t*
- For all the keyframes in *K* and images in *I* is computed a 72-dim visual feature vector representing global information (color and texture)
 - 48-dim *color correlogram* computed in the HSV color space
 - 6-dim for color moments computed in the RGB color space
 - 18-dim for 3 *Tamura features* that account for texture information

 $[d_1, ..., d_{48}, d_{49}, ..., d_{54}, d_{55}, ..., d_{72}]$

color color texture correlogram moments (Tamura)

11

- Images in *I* are clustered using k-means and cluster centers are used as an index for ANN-search based on visual similarity to the keyframes in *K*
 - for each keyframes k in K is retrieved the NN cluster center and the images belonging to that clusters are selected as neighbors for k
 - tags related to all these images are associated to keyframe k, resulting in the tag set $T_k = \{v_1, ..., v_n\}$
 - video tags in V are kept only if they are present in the visual neighborhood (otherwise they are eliminated from the tag list)
 - also the WordNet synonyms of all the tags v_i are used to download images from Flickr (we download only 1/3 of images with respect to the original term)

- To add new tags to each shot we compute a set of candidate tags computed from the dictionary T
 - for each *t* in *T* is computed its tag relevance and resulting rank position $rank_i$
 - a new tag candidate list C is computed with all the tags c having a co-occurrence value above the average
 - for each c is computed a suggestion score, $score(c,T_k)$, according to the Vote+ algorithm
 - finally, for each candidate tag c of each keyframe k, is computed the following suggestion score:

$$score(c,k) = score(c,T_k) \cdot \frac{\lambda}{\lambda + (rank_c - 1)}$$

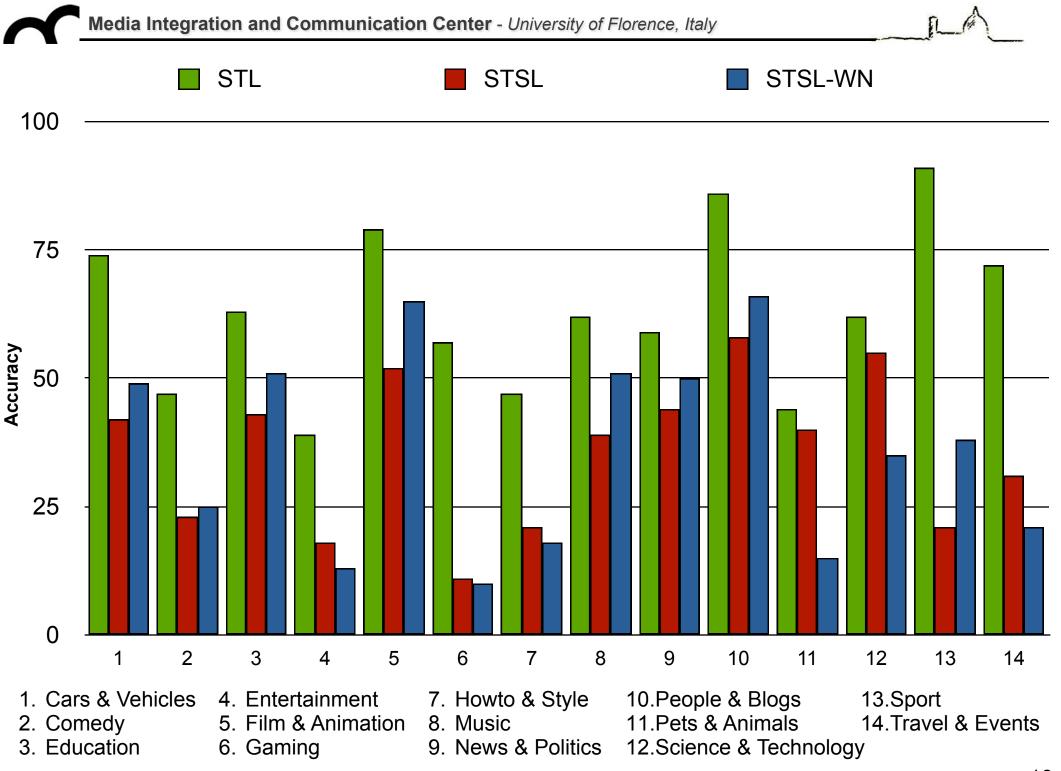
 the score is used to order the tags to be added to the shot (only the five most relevant are used)

Experimental results: dataset

- We evaluate the performance of our approach using a dataset designed to represent the variety of content on YouTube
 - 4 YouTube videos for each YouTube category (1135 shots, 3405 keyframe)
 - all the dataset videos had been previously tagged by YouTube users
- For each YouTube tag our system downloads 15 Flickr images
- In the WordNet query expansion experiment the system downloads 5 additional Flickr images for each WordNet synonym
- Output is shown using SRT subtitles
 - Uppercase: original YouTube tags
 - Lowercase: suggested tags for the shot

Experimental results: types of experiments

- Shot level Tag Localization (STL)
 - evaluation of performance of the localization of the user-generated YouTube tags in the correct shots, in terms of accuracy
- Shot level Tag Suggestion and Localization (STSL)
 - this measure shows the accuracy of the tag localization at shot level for both user-generated and suggested tags
- STSL with WordNet query expansion (STSL-WN)
 - accuracy of STSL with WordNet synset expansion of the YouTube tags that have been kept at the end of localization process



Scene 14: PARK, TERRAIN, LAND, landscape, sky, mountain, scenery, colors

Scene 1: VOLCANO, ERUPTION, EYJAFJALLAJÖKULL, ICELAND, glacier, landscape, volcaniceruption, eldgos, nature

Scene 1: MAID, MIST, NIAGRA, FALLS, scotland, waterfall, trees, crossdresser, tablier

Thank You