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ABSTRACT
Motivation: The MEDLINE database of biomedical ab-
stracts contains scientific knowledge about thousands of
interacting genes and proteins. Automated text processing
can aid in the comprehension and synthesis of this
valuable information. The fundamental task of identifying
gene and protein names is a necessary first step towards
making full use of the information encoded in biomedical
text. This remains a challenging task due to the irregular-
ities and ambiguities in gene and protein nomenclature.
We propose to approach the detection of gene and protein
names in scientific abstracts as part-of-speech tagging,
the most basic form of linguistic corpus annotation.
Results: We present a method for tagging gene and
protein names in biomedical text using a combination
of statistical and knowledge-based strategies. This
method incorporates automatically generated rules from a
transformation-based part-of-speech tagger, and manually
generated rules from morphological clues, low frequency
trigrams, indicator terms, suffixes and part-of-speech
information. Results of an experiment on a test corpus of
56K MEDLINE documents demonstrate that our method
to extract gene and protein names can be applied to large
sets of MEDLINE abstracts, without the need for special
conditions or human experts to predetermine relevant
subsets.
Availability: The programs are available on request from
the authors.
Contact: tanabe@ncbi.nlm.nih.gov

INTRODUCTION
The automatic extraction of gene and/or protein names
from the biological literature is a timely undertaking
due to the current trend in molecular biology towards
large-scale genetic analyses. The ability of scientists to
produce data on the expression of thousands of genes
at a time has led to an increased need for information
regarding these genes and the proteins they encode. The
prohibitive volume of information proliferating in the
biomedical literature has prompted researchers to explore
automated text processing techniques to make the task of

managing all the relevant information more feasible. The
recognition of gene and protein names in biomedical text
is important for information filtering, information retrieval
and automated knowledge acquisition for text mining.
It remains a challenging task because many names are
not proper nouns (envelope, ran, frizzled), several names
are used to refer to the same entity (caspase-3, CASP3,
apoptosis-related cysteine protease, CPP32), and names
can be used in combination with other entities like cell
lines and chemicals (CHO-A(3), Ca2+/calmodulin). For
compound names, there is the additional requirement of
determining where the name begins and ends within a
sentence. This can be particularly difficult when verbs and
adjectives are embedded in names (mullerian inhibiting
substance, deleted in azoospermia-like). Yet another
difficulty arises when there are few morphological clues,
making a legitimate gene or protein name hard to dis-
tinguish from the general language text surrounding it
(cysteine rich intestinal protein, d component of com-
plement, never in mitosis). Fortunately, there exists a
fair amount of regularity in naming conventions, making
automated methods possible.

The methods proposed for identifying gene and protein
names in biomedical documents vary in their degree of
reliance on dictionaries, statistical or knowledge-based
approaches, manual versus automatic rule generation and
ability to extract compound names. Most approaches
require the use of a part-of-speech (POS) tagger, which
is considered to be the most basic form of linguistic
corpus annotation. The goal of a POS tagger is to
automatically assign each word in a piece of text its part of
speech, a task that can be easily and accurately performed
on a computer. For the purpose of gene/protein name
extraction, POS information can also be used in rule-based
systems for rule conditions and/or error recovery, or as
features in machine learning algorithms, for example, in
Hidden Markov Models (HMMs) or decision trees. Lastly,
POS information can aid in further linguistic processing
including parsing and semantic interpretation.

One rule-based method, PROPER (PROtein Proper-
noun phrase Extracting Rules), uses surface clues like
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capital letters, numbers and symbols to extract core terms
for potential protein names which are later connected to
other terms in the surrounding text (Fukuda et al., 1998).
The PROPER system does not rely on a dictionary, uses
manually generated rules and can recognize compound
words. It uses a POS tagger for rule conditions. A
different approach uses a morphological POS tagger
and a disambiguation program based on Hidden Markov
Models (HMM) to find gene names in text by process
of elimination. A sentence is split into tokens that are
recognized by the morphological analyzer. If a term is not
identified, it is assigned the Guessed tag and sent to the
HMM disambiguator. This method uses a dictionary of
general biological terms, a series of manually generated
error recovery and contextual analysis rules and does not
identify compound words (Proux et al., 1998).

Some researchers have taken a machine learning
approach to gene/protein name extraction. One group
uses an HMM trained on word features like digits, single
capital letters, Greek letters and symbols (Collier et al.,
2000). Their method uses no dictionaries or handcrafted
rules, and can detect compound words. They found that
POS information did not significantly help their program’s
performance. The Naı̈ve Bayes and decision tree methods
have also been tried (Nobata et al., 1999). In the statistical
Bayesian approach, they used no POS information,
and in the decision tree they used POS tags along with
surface clues to build feature vectors. In both methods,
they distinguished between classification (SOURCE,
PROTEIN, DNA or RNA) and identification of the name.
They found that identification was a much harder task
than classification, due to the compositionality of terms
according to a domain-specific model, and acknowledged
that the absence of high level biological knowledge was
a significant impediment to better performance of both
methods. The Bayesian model used a small lookup list
of gene-related headwords, and the decision tree used no
dictionary. Both methods retrieved compound words.

EDGAR (Extraction of Drugs, Genes and Relations)
is a more linguistically motivated system that uses an
HMM tagger with an under specified syntactic parser
and extensive knowledge resources to identify single
and compound word gene names (Rindflesch et al.,
2000). The EMPathIE (Enzyme and Metabolic Pathways
Information Extraction) and PASTA (Protein Active Site
Template Acquisition) projects use dictionaries, context-
free grammars and semantic interpretation to extract single
and compound enzyme and protein names (Humphreys
et al., 2000). Their approach formalizes handcrafted and
semi-automatically generated rules into phrasal grammars
for enzyme and protein names.

In this paper, we show that a rule-based POS tagger
can be trained to extract gene and protein names from
MEDLINE abstracts. We extend the capabilities of the

POS tagger by adding a GENE tag to the list of familiar
part-of-speech tags available to the tagger, and training
the tagger to recognize candidates for this new tag. We
describe the rules that are automatically generated from
our training set, followed by details of post-processing
strategies to decrease false positives and false negatives.
We present results and evaluation of an experiment
conducted on a test set of 56 469 MEDLINE documents.

METHODS
We use a combination of statistical and knowledge-based
strategies to extract gene and protein names from MED-
LINE abstracts. First we apply automatically generated
rules from the Brill POS tagger (Brill, 1994) to extract
single word gene and protein names. These results are then
filtered extensively using manually generated rules formed
from morphological clues, low frequency trigrams, indica-
tor words, suffixes, and part-of-speech information. A key
step during this process is the extraction of multi-word
gene and protein names that are prevalent in the litera-
ture but inaccessible to the Brill tagger. Finally, we apply
Bayesian learning to rank the documents by similarity to
documents with known gene names and show the effect of
an assumption that documents below a certain threshold
do not contain gene/protein names.

Training the transformation-based POS tagger
The Brill tagger is a transformation-based POS tagger
that uses error-driven learning to induce rules for tagging
parts of speech in text. It assigns each word its most
likely tag if it is in the lexicon, and assumes that
unknown words are nouns. Lexical rules are applied using
prefixes, suffixes, infixes and word bigrams to challenge
the first assignments. Contextual transformations improve
the accuracy of the tagger.

We trained the Brill tagger to recognize protein and gene
names in biomedical text. A set of 7000 sentences was
hand-tagged using the new tag GENE. We updated the
lexicon included in the Brill package (Brown Corpus plus
Wall Street Journal corpus) with entries from the UMLS
SPECIALIST lexicon (McCray et al., 1994; Humphreys
et al., 1998), and generated a list of bigrams and a word
list from all of MEDLINE to customize the training for our
purposes. Training produced 78 new lexical rules and 81
new contextual rules involving the GENE tag. Examples
of each type of rule are given in Table 1.

Post-processing of Brill output
The Brill tagger produces tagged text from untagged text.
We use a variety of data sources to filter false positive
and false negative gene and protein names from the Brill
output. False negatives are given new tags to distinguish
them from those found by the Brill tagger that carry the
GENE tag. The order of filtering is: (1) eliminate false
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Table 1. Examples of lexical and contextual rules learned by the Brill
tagger NNP = proper noun, CD = cardinal number, CC = coordinating
conjunction, JJ = adjective, VBG = verb, gerund/present participle

Lexical rule Description

NNP gene fgoodleft GENE Change the tag of a word from NNP to
GENE if the word gene can appear to
the right

-A hassuf 2 GENE Change the tag of a word from
anything to GENE if it contains the
suffix -A

c- haspref 2 GENE Change the tag of a word from
anything to GENE if it contains the
prefix c-

GENE cell fgoodright NNP Change the tag of a word from GENE
to NNP if the word cell can appear to
the left

Contextual rule Description

NNP GENE PREV1OR2WD
genes

Change the tag of a word from NNP to
GENE if one of the two preceding
words is genes

NNP GENE NEXTBIGRAM
(GENE

Change the tag of a word from NNP to
GENE if the two following words are
tagged (and GENE

CD GENE SURROUNDTAG
CC)

Change the tag of a word from CD to
GENE if the preceding word is tagged
CC and the following word is tagged)

VBG JJ NEXTTAG GENE Change the tag of a word from VBG to
JJ if the next word is tagged GENE

positive names; (2) recover false negative names by lexical
lookup or trigram matching and tag them NEWGENE;
(3) recover false negative compound names and tag each
component MULTIGENE; and (4) recover false negative
names by applying non-specific contextual rules after
retrieving as many false negatives as possible and tag
them CONTEXTGENE. In this section we explain each
filtering step in greater detail, and give examples of the
data sources required for that step.

Eliminate false positive names. During this step, the
GENE tag is removed from a word if it matches a term
from a list of 1505 precompiled general biological terms
(acids, antagonist, assembly, antigen, etc.), 39 amino acid
names, 233 restriction enzymes, 593 cell lines, 63 698
organism names from the NCBI Taxonomy Database
(Wheeler et al., 2000) or 4357 non-biological terms.
Non-biological terms were obtained by comparing word
frequencies in MEDLINE versus the Wall Street Journal
(WSJ) using the following expression, where p is the
probability of occurrence:

log(p(word occurs in MEDLINE)/

p(word occurs in WSJ)) < 1

Table 2. Examples of theme terms that appear directly before or after a gene
name

Score
range

Before gene After gene

3.0–4.0 Gene, truncated, express,
recombinant, purified,
chimeric

Transcript, mrnas, deficient,
homolog, locus, deletion,
transfected, encodes

2.0–3.0 Bind, activate, protein,
inducible, rat, amplified,
monomeric, factor

Regulates, translocates,
heterodimers, binds, allele,
plays, fusion

1.0–2.0 Oncogenic, fragment,
subtypes, mutation,
minimal, enzyme, avian,
transporters

Levels, complex, domain,
activator, stimulates, probe,
isotype, antigen, region

Additional false positives are found by regular expres-
sion matching to patterns indicating that the word is not a
gene/protein name. These patterns include numbers fol-
lowed by measurements (25 mg/ml) and common drug
suffixes (-ole, -ane, -ate, -ide, -ine, -ite, -ol, -ose, cooh).

Recover false negative names by lexical lookup. We
obtained a compilation of gene names for multiple or-
ganisms from LocusLink (Pruitt and Maglott, 2001) and
The Gene Ontology Consortium (2000), including 34 555
single word names and 7611 compound word names
that comprise our gold standard for gene names. During
lexical lookup, we require that a single word name appear
in a particular context due to ambiguity problems. Since
compound gene names have less ambiguity, there is no
similar contextual requirement.

The context words chosen to disambiguate single
word gene names were automatically generated by a
probabilistic algorithm. This requires a large set of known
gene names (we use our gold standard set) and a large
collection of texts in which these gene names occur.
We computed a log odds score or Bayesian weight for
all non-gene name words indicating their propensity to
predict an adjacent gene name in the texts. We chose
1083 positive scoring words that could be useful for
disambiguating single word gene names during lexical
lookup. We refer to these positive scoring words as gene
theme terms. If a text word matches a known gene name,
its tag is changed to NEWGENE if it is preceded or
followed by a gene theme term. A selection of gene theme
terms is shown in Table 2.

Recover false negative names by trigram matching. We
used a frequency distribution of trigrams of 500 000
terms occurring at least 3 times in MEDLINE to pick
up potential gene/protein names overlooked by the Brill
tagger. If a term contains one of 20 173 low frequency
trigrams, it becomes a candidate for the NEWGENE
tag. This is justified by the fact that many gene and

1126



Tagging gene and protein names

protein names contain unusual trigrams that do not
occur frequently in MEDLINE. However, other biological
entities may also contain low frequency trigrams. For
example, the low frequency trigram jtc occurs in the cell
name JTC-15. To minimize these errors, we require that
the trigram-containing word is either preceded or followed
by a gene theme term.

Recover false negative compound names. This important
third step involves assembling multi-word gene/protein
names by applying manually generated rules to recognize
where the name begins and ends. The Gene Ontology
names comprise our gold standard for gene/protein
names, because they represent multiple organisms’ nam-
ing conventions. The compound names are particularly
valuable because they give clues about the types of pat-
terns that occur in gene/protein names. We observed that
recombination of terms and/or morphological patterns
can yield many different gene/protein names. Therefore,
we start with a pool of terms and regular expressions
that occur frequently in our gold standard and allow for
recombination of these terms and patterns to identify new
candidates.

From the gold standard, we compiled a set of 415 terms
that occur frequently in gene names. These terms include
the digits 1–9, the letters a–z, the roman numerals, the
Greek letters, functional descriptors (adhesion, channel,
coagulation, filament, junction, differentiation), organism
identifiers (feline, hamster, rabbit), activity descriptors
(regulated, releasing, promoting, stimulating), placement
indicators (early, central, downstream, epidermal, heart,
liver), and generic descriptors (light, major, non, red,
small, smooth). In addition to the 415 exact terms, we
added regular expressions that allow for partial matches or
special patterns such as words without vowels, words with
numbers and letters, words in capital letters, and common
prefixes and suffixes (-gene, -like, -ase, homeo-).

Potential gene/protein names that match any of 312 stop
words or 4357 non-biological terms (described previously
in the false positive recovery section) are immediately
eliminated as candidates. A potential gene/protein name
begins with one of the matched terms or patterns and
continues word by word until there is no match. At
this point, the potential name is validated or rejected
by applying a series of rules. If a rejecting rule is
triggered, either the candidate is removed completely, or it
is revised and re-evaluated. Criteria for complete removal
include verbs followed by numbers, numbers followed by
measurement terms, amino acid names, pH or pI numbers,
molecular weights, IC50 numbers, and ATCC numbers.
Criteria for revision include verbs at the beginning of the
name, words ending in –ing or –ed at the end of the name
and general biological terms in the name (bacteria, base,
dimers).

Table 3. Contextual rules and constraints that will change the tag of x to
CONTEXTGENE. ANYGENE = GENE, NEWGENE or MULTIGENE,
CC = coordinating conjunction, x = current word, y = word near x

Contextual Rule Constraints

ANYGENE , x y x not a verb or adverb, y not a verb
or symbol

x CC ANYGENE . x must be a noun, adjective,
cardinal number or preposition

ANYGENE CC x . x contains a capital letter, dash or
number and is not a verb or adverb

ANYGENE , CC x x contains a capital letter, dash or
number and is not a verb or adverb

x ( ANYGENE y x is not a verb or adverb, y is not a
date, ‘et’, ‘and’, ‘,’ or ‘=’

ANYGENE ( x y x is not a verb or adverb and
contains a capital letter, dash or
number, y is not a date, ‘et’, ‘and’,
‘,’ or ‘=’

ANYGENE x ) x is not a verb or adverb, y is not a
date, ‘et’, ‘and’, ‘,’ or ‘=’

x ANYGENE ) x is not a verb or adverb
x , ANYGENE x is not a verb or adverb

The final validation step involves the last word in the
name. This word has a more restrictive set of allowable
terms/patterns than the other positions because many
words that may occur within a name (activating, feline,
smooth) are unacceptable at the end of a name. Thus we
require that the last word in a name be a noun or contain
special characters and/or numbers. As a final check, we
employ the false positive filters of cell lines, organisms,
restriction enzymes, and general biological terms to the
gene/protein name. If the name passes, each separate word
in the compound name is given the tag MULTIGENE.

Recover false negative names by context. After the
NEWGENE and MULTIGENE tags have been assigned, a
final pass is performed to pick up additional gene/protein
name candidates using a small set of contextual rules.
The CONTEXTGENE tag depends on the accuracy of
the GENE, NEWGENE and MULTIGENE tags, which
can cause cascading error problems. These problems arise
because the rules are generic and simple, thus constraints
are needed to lower the risk of carrying through an
error from an incorrectly tagged GENE, NEWGENE or
MULTIGENE to an error in the CONTEXTGENE tag.

An additional option to decrease errors is to check
the potential CONTEXTGENE word for poor indicator
suffixes. By calculating probability values based on the
hypergeometric distribution of words that occur as head
words (last position) of UMLS terms and those that do
not, we concluded that the following suffixes are poor
indicators of gene/protein names: ar, ic, al, ive, ly, yl, ing,
ry, ian, ent, ward, fold, ene, ory, ized, ible, ize, izes. Other
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poor indicator suffixes are common drug suffixes and the
very common suffixes ed, tion, ity, ure, ence.

During the CONTEXTGENE pass, we keep track of
words that have been confirmed as gene/protein names, so
that within a document, as long as the CONTEXTGENE
name has been confirmed once, it is assumed to be
confirmed throughout, without needing to trigger any
rules. This automatic confirmation is done to pick up
occurrences of the gene/protein name that do not occur
in a typical gene/protein context. The assumption is that
if the name has occurred in a gene/protein context at
least once in the document, then it is safe to tag it as a
gene/protein elsewhere in the document even if it does
not occur in a gene/protein context. In other words, the
gene/protein name has already ‘proven itself.’ We do this
on a document boundary to eliminate errors that would
occur if the boundary were extended to more than one
document.

Apply Bayesian learning to rank documents
While we use our extension of the Brill tagger and several
rule-based processing steps to identify potential gene
names based on morphology, context, and grammatical
considerations, such processing does not take into account
the general context of the whole document being pro-
cessed. In order to take advantage of the general context
of all the words in a document we use Naı̈ve Bayes
learning (Langley, 1996; Mitchell, 1997; Wilbur, 2000) to
predict the overall likelihood that a document contains a
gene name. First our gold standard set of gene names is
used to find documents containing these names in all of
MEDLINE. A Naı̈ve Bayesian classifier is then trained
to distinguish these documents from the remainder of
MEDLINE. Examination of the results show that those
documents that receive high scores from the classifier
almost always contain gene names even if they are not
names contained in the gold standard set of gene names
used in selecting the training set. We are then able to make
use of these scores to rate the chance that a document
contains a gene name and to eliminate from consideration
documents that almost certainly do not contain gene
names (e.g. a score less than –20).

EXPERIMENT AND RESULTS
In this section, we describe an experiment to explore the
utility of our approach to the task of finding gene/protein
names in biomedical abstracts. The test set consists of the
complete set of 56 469 abstracts introduced into MED-
LINE between 15 June–24 September, 2001. No attempt
was made to narrow the set using query terms. We ran the
abstracts through the Brill tagger, false positive/negative
filters and ranking procedure. We checked 100 random
sentences out of every 50K sentences in the test set ordered
by descending Bayes classifier score. Precision and recall

results are shown for each individual score range in Table
4, and cumulative results are shown in Table 5. For a com-
pound gene name to be considered a true positive, it must
be both complete and accurate. For example, histocom-
patibility complex genes was tagged as a MULTIGENE,
but not counted as a true positive because major was not
included. General terms like leukocyte RNA, growth fac-
tors, and N-linked glycosylation sites were considered to
be false positives. The heuristics to detect invalid com-
binations of gene components in compound word names
are imperfect, allowing false positive gene names like re-
gion containing a short sequence. Other notable false pos-
itives include entities related to genes, for example, plas-
mid pMC1403N and RNA phage Qbeta.

Next we provide illustrative examples of the output
obtained by applying our methods to the large test set. The
examples are excerpts from randomly chosen abstracts in
three score ranges: high (200s), medium (100s) and low
(−20s). We give the interim outputs to show how the tags
shift during each step.

High-scoring example, Score = 254.24
The results after applying the Brill tagger and false
positive filter are:

We/PRP conclude/VBP that/IN a/DT se-
ries/NN of/IN sites/NNS (/( NF-kappaB/GENE
,/, IRF/GENE ,/, GRE/NNP ,/, and/CC the/DT
E/NN box/NN )/SYM are/VBP not/RB
required/VBN for/IN efficient/JJ viral/JJ
spread/NN in/IN the/DT sheep/NN model/NN
,/, although/IN mutation/NN of/IN some/DT
of/IN these/DT motifs/NNS might/MD
induce/VB a/DT minor/JJ phenotype/NN
during/IN transient/JJ transfection/NN as-
says/NNS in/IN vitro/FW ./.

We see that the tagger has correctly identified NF-
kappaB and IRF, but has missed GRE and the E box. After
applying the false negative filter, we obtain:

We/PRP conclude/VBP that/IN a/DT se-
ries/NN of/IN sites/NNS (/( NF-kappaB/GENE
,/, IRF/GENE ,/, GRE/CONTEXTGENE ,/,
and/CC the/DT E/MULTIGENE box/MULTIGENE
)/SYM are/VBP not/RB required/VBN for/IN
efficient/JJ viral/JJ spread/NN in/IN the/DT
sheep/NN model/NN ,/, although/IN mu-
tation/NN of/IN some/DT of/IN these/DT
motifs/NNS might/MD induce/VB a/DT mi-
nor/JJ phenotype/NN during/IN transient/JJ
transfection/NN assays/NNS in/IN vitro/FW
./.

GRE has triggered a CONTEXTGENE rule, and E box
has been extracted as a compound gene name.
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Table 4. Precision and recall for each score range TP+FN = number of gene names; B = Brill tagger; B FP = Brill tagger and false positive filter; B FP FN
(L/T) = Brill tagger, false positive filter, false negative filter using gene list and trigrams; B FP FN (L/T, M) = Brill tagger, false positive filter, false negative
filter using gene list, trigrams and multiple word rules; B FP FN (L/T, M, C) = Brill tagger, false positive filter, false negative filter using gene list, trigrams,
multiple word rules and final pass contextual word rules.

Score Range no.
of
words
tested

TP
+
FN

B B FP B FP
FN
( L/T)

B FP
FN
( L/T, M)

B FP
FN
(L/T, M, C)

−60 to −40 3403 0 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000

−40 to −20 12 490 51 0.084 0.200 0.319 0.347 0.386
0.156 0.146 0.288 0.463 0.593

−20 to 0 2760 59 0.409 0.700 0.632 0.633 0.657
0.143 0.125 0.211 0.322 0.371

0 to 20 1884 53 0.679 0.714 0.760 0.769 0.744
0.373 0.294 0.358 0.556 0.571

20 to 40 1362 52 0.640 0.810 0.778 0.778 0.789
0.333 0.321 0.396 0.528 0.566

40 to 60 1324 54 0.714 0.783 0.778 0.744 0.756
0.417 0.333 0.389 0.571 0.607

60 to 80 468 25 0.857 0.857 0.909 0.762 0.739
0.240 0.240 0.400 0.593 0.654

80 to 100 413 21 0.833 0.833 0.789 0.630 0.630
0.714 0.714 0.714 0.810 0.810

100 to 120 416 24 0.667 0.727 0.769 0.850 0.850
0.348 0.333 0.417 0.708 0.708

120 to 140 339 27 1.000 1.000 1.000 1.000 1.000
0.680 0.630 0.630 0.815 0.815

140 to 160 304 31 0.933 0.933 0.941 0.833 0.833
0.467 0.452 0.516 0.806 0.806

160+ 101 9 1.000 1.000 1.000 0.857 0.857
0.417 0.444 0.444 0.667 0.667

Medium-scoring example, Score = 102.98
The results after applying the Brill tagger and false
positive filter are:

Furthermore/RB ,/, the/DT yeast/NN ELAV/NNP
homolog/NN ,/, Pub1p/GENE ,/, regulates/VBZ
the/DT stability/NN mediated/JJ by/IN
the/DT TNFalpha/NN ARE/VBP ./.

We see that the tagger has correctly identified Pub1p, but
has missed TNFAlpha. After applying the false negative
filter, we obtain:

Furthermore/RB ,/, the/DT yeast/MULTIGENE
ELAV/MULTIGENE homolog/MULTIGENE
,/, Pub1p/GENE ,/, regulates/VBZ the/DT
stability/NN mediated/JJ by/IN the/DT
TNFalpha/NN ARE/VBP ./.

A compound name is found, yeast ELAV homolog,
however, TNFalpha remains unchanged. This is due to
the fact that, even though TNFalpha is a member of our
gold standard, we required that a gene theme term occur
directly before or after a word tagged NEWGENE. The

compound name TNFalpha ARE is not found, because
‘are’ is on the stop list, immediately eliminating it as a
MULTIGENE candidate.

Low-scoring example, Score = −20.538
The results after applying the Brill tagger are:

NE/NN threshold/NN sensitivity/NN (/(
pD(T20/GENE )/SYM =/SYM -log/CD of/IN
20%/CD response/NN dose)/NN was/VBD
analyzed/VBN ./. pD(T20)/GENE was/VBD
significantly/RB decreased/VBN in/IN
A1/NN ,/, pA3/GENE ,/, and/CC dA3/CD
of/IN 1-hit/CD 24-h/JJ septic/JJ rats/NNS
(/( P/NN </SYM 0.05/CD )/SYM ,/, and/CC
was/VBD further/RB decreased/VBN in/IN
all/DT vessels/NNS of/IN 2-hit/JJ 72-h/JJ
septic/JJ rats/NNS (/( P/NN </SYM 0.05/CD
)/SYM ./.

We see that the tagger output for all three GENE tags
is incorrect. After applying the false positive filter, we
obtain:
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Table 5. Cumulative precision and recall using the score as a lower threshold. B = Brill tagger; B FP = Brill tagger and false positive filter; B FP FN (L/T)
= Brill tagger, false positive filter, false negative filter using gene list and trigrams; B FP FN (L/T, M) = Brill tagger, false positive filter, false negative filter
using gene list, trigrams and multiple word rules; B FP FN (L/T, M, C) = Brill tagger, false positive filter, false negative filter using gene list, trigrams, multiple
word rules and final pass contextual word rules

Score B B FP B FP
FN
( L/T)

B FP
FN
( L/T, M)

B FP
FN
(L/T, M, C)

−60 0.482 0.684 0.693 0.671 0.673
0.348 0.321 0.394 0.571 0.609

−40 0.523 0.703 0.708 0.683 0.684
0.348 0.321 0.394 0.571 0.609

−20 0.729 0.823 0.810 0.771 0.769
0.373 0.345 0.410 0.587 0.611

0 0.774 0.832 0.831 0.788 0.784
0.424 0.386 0.448 0.639 0.660

20 0.795 0.853 0.844 0.791 0.792
0.435 0.406 0.467 0.657 0.680

40 0.833 0.863 0.861 0.794 0.793
0.462 0.429 0.487 0.692 0.711

60 0.878 0.889 0.889 0.811 0.806
0.478 0.467 0.526 0.741 0.754

80 0.881 0.892 0.886 0.821 0.821
0.532 0.518 0.554 0.777 0.777

100 0.898 0.915 0.922 0.886 0.886
0.489 0.473 0.516 0.769 0.769

120 0.973 0.972 0.974 0.898 0.898
0.537 0.522 0.552 0.791 0.791

140 0.950 0.947 0.952 0.838 0.838
0.452 0.450 0.500 0.775 0.775

160 1.000 1.000 1.000 0.857 0.857
0.417 0.444 0.444 0.667 0.667

NE/NN threshold/NN sensitivity/NN (/(
pD(T20/NN )/SYM =/SYM -log/CD of/IN
20%/CD response/NN dose)/NN was/VBD
analyzed/VBN ./. pD(T20)/NN was/VBD sig-
nificantly/RB decreased/VBN in/IN A1/NN
,/, pA3/GENE ,/, and/CC dA3/CD of/IN
1-hit/CD 24-h/JJ septic/JJ rats/NNS (/( P/NN
</SYM 0.05/CD )/SYM ,/, and/CC was/VBD
further/RB decreased/VBN in/IN all/DT
vessels/NNS of/IN 2-hit/JJ 72-h/JJ septic/JJ
rats/NNS (/( P/NN </SYM 0.05/CD )/SYM ./.

The filter has eliminated 2/3 false positives. Next we
apply the false negative filter:

NE/NN threshold/NN sensitivity/NN (/(
pD(T20/NN )/SYM =/SYM -log/CD of/IN
20%/CD response/NN dose)/NN was/VBD
analyzed/VBN ./. pD(T20)/NN was/VBD
significantly/RB decreased/VBN in/IN
A1/CONTEXTGENE ,/, pA3/GENE ,/,
and/CC dA3/CONTEXTGENE of/IN 1-
hit/CD 24-h/JJ septic/JJ rats/NNS (/( P/NN
</SYM 0.05/CD )/SYM ,/, and/CC was/VBD
further/RB decreased/VBN in/IN all/DT

vessels/NNS of/IN 2-hit/JJ 72-h/JJ septic/JJ
rats/NNS (/( P/NN </SYM 0.05/CD )/SYM ./.

Here we see an example of cascading errors as pA3
gives rise to two additional errors, A1 and dA3. A simple
way to decrease these errors is to restrict the CON-
TEXTGENE tag to abstracts with higher Bayesian scores,
which we have found useful. Unfortunately, cascading
errors can also occur in abstracts with high scores, due to
Brill tagging errors that affect the triggering of rules. For
example, our method extracts the incorrect gene name in-
hibiting NF-kappaB from the text fragment down-regulate
LPS-induced COX-2 expression by inhibiting NF-kappaB.
The tag provided by the Brill tagger for inhibiting is
JJ (adjective). If the correct verbal tag had been found,
the post-processing program would have removed the
verb from the beginning of the name. To address this
problem, we tested a Support Vector Machine (Platt,
1998, 1999; Burges, 1999) to disambiguate adjectives and
verbs containing the suffix–ing. Using 268 examples of
correctly tagged words and 424 examples of incorrectly
tagged words, we were able to predict 77% of the correct
and 93% of the incorrect training examples using a
leave-one-out cross validation procedure.
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RELATED WORK
Direct comparison of gene/protein name extraction meth-
ods is difficult because some of the methods distinguish
between genes, proteins and enzymes and some do not,
and there is wide variation in both the type and size of the
test sets used by each group to evaluate their methods. In
general, small, specialized test sets tend to perform better
than large, general ones. For example, the PROPER sys-
tem of Fukuda et al. achieves a precision value of 0.95
and recall of 0.99 using a set of 30 abstracts about the
SH3 protein domain (Fukuda et al., 1998). Proux et al.
obtain a precision of 0.91 and recall of 0.94 using 1200
sentences from FlyBase where each gene name uses the
correct gene symbol, and all sentences contain at least 2
gene symbols (The FlyBase Consortium, 1998). The pre-
cision ratio on a larger, more general set of 25K MED-
LINE abstracts was 0.70, and the test set was constrained
by the query ‘Drosophila’ (Proux et al., 1998). Collier et
al. achieve F-scores of 0.76, 0.47 and 0.03 for proteins,
DNA and RNA respectively on a set of 100 abstracts con-
trolled by the query ‘human, blood cell, transcription fac-
tor’ (Collier et al., 2000). Nobata et al. achieve F-score
ranges of 0.05–0.15 and 0.63–0.72 for DNA and PRO-
TEIN, respectively, using the decision tree method, and
0.07–0.19 and 0.43–0.48 using the Naı̈ve Bayes method
on a set of 100 MEDLINE abstracts (Nobata et al., 1999).
Humphreys et al. achieve a precision of 0.87 and recall of
0.97 for proteins, 0.61 and 0.84 for sites and 0.44 and 1
for regions on a set of 52 abstracts using the PASTA sys-
tem (Humphreys et al., 2000). Rindflesch et al. (2000) use
gene name extraction as part of a larger semantic interpre-
tation, and no precision/recall values are available for this
task alone.

CONCLUSION
Our gene and protein tagging method has some limita-
tions, for example, it can miss single word gene names
that occur without contextual gene theme terms. It can
also incorrectly tag some related entities like plasmids
and phages as genes. Our heuristics to detect invalid
combinations of gene components in compound word
names are imperfect. One of the most problematic results
of the staged discovery of names during multiple passes is
cascading errors. We can decrease these errors in abstracts
unrelated to genes by applying a Bayesian score cutoff
after which the contextual rules are discontinued. How-
ever, the problem also arises in abstracts that contain valid
gene/protein names. Here we can stop the error cascade at
its source, the POS tagger, by using a larger, more general
training set for the Brill tagger, or by adding another
step to identify incorrect tags used in post-processing
rules. We have successfully experimented with the second
alternative using a Support Vector Machine.

The extraction of gene and protein names from biolog-
ical texts remains a challenging computational problem
due to informal naming conventions and morphological
similarity to other biological entities including cell line
names. However, there is enough structure and regular-
ity in the naming conventions, making automated meth-
ods possible. The results presented in this paper show that
a rule-based POS tagger can be trained to automatically
identify gene and protein names in biomedical text. We
have also demonstrated the utility of using a combination
of filters to pick up compound word names, using a vari-
ety of knowledge sources and manually generated rules.
Our method can be used on large and unconstrained sets
of MEDLINE documents.
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