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Abstract

Although mass spectrometry is well-suited to identifying thousands of possible protein post-
translational modifications (PTMs), it has historically been biased towards just a few. To measure 
the entire set of PTMs across diverse proteomes, software must overcome the dual challenges of 
searching enormous search spaces and distinguishing correct from incorrect spectrum 
interpretations. Here, we describe TagGraph, a computational tool that overcomes both challenges 
with an unrestricted string-based search method that is as much as 350-fold faster than existing 
approaches, and a probabilistic validation model we optimized for PTM assignments. We applied 
TagGraph to a published human proteomic data set of 25 million mass spectra and tripled 
confident spectrum identifications compared its original analysis. We identified thousands of 
modification types on almost one million sites in the proteome. We show new contexts for highly 
abundant yet understudied PTMs such as proline hydroxylation, and its unexpected association 
with cancer mutations. By enabling broad PTM characterization TagGraph informs how their 
functions and regulation intersect.

Editor Summary:

Swift, robust identification of post-translational modifications in MS/MS data sets is enabled by a 
string-based computational tool.
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Introduction

Post translational modifications (PTMs) dynamically modulate the activity, conformation 
states, localization, interactions, abundance and degradation of almost all proteins encoded 
by the human genome1,2. However most remain poorly understood since mapping the full 
breadth of PTM identities and locations across the entire human proteome has remained 
intractable3. Although mass spectrometry is arguably the best-suited technology for direct, 
large-scale PTM measurement, most global PTM studies have focused on modifications for 
which optimized enrichment workflows exist4. Consequently, our current view of PTMs’ 
collective impact on the human proteome is heavily skewed towards a small fraction of the 
possible PTM landscape5.

Despite this, PTM-containing peptides are readily detected by routine tandem mass 
spectrometry (MS/MS) experiments, but are believed to comprise much of the “dark matter” 
in proteome datasets that consistently evades reliable identification6. Search parameters used 
by most MS/MS search approaches strike a compromise between the diversity of 
discoverable modifications, the time needed to interpret MS/MS datasets and the ability to 
distinguish correct from incorrect assignments. Strategies that constrain the number of 
proteins being searched, apply protease specificity rules or minimize the allowable types and 
numbers of PTMs partially address this compromise7. In practice, however, these 
approaches only marginally decrease search times and still do not distinguish correct from 
incorrect PTM assignments8.

Here, we describe TagGraph, a computational tool that addresses these limitations in two 
ways. First, TagGraph leverages accurate de novo mass spectrum interpretations9, efficient 
string-based indexing10, and a graph-based string reconciliation algorithm to rapidly search 
MS/MS data sets without restricting the number of proteins, PTMs or protease specificities. 
Second, by replacing conventional “target-decoy” error estimation11 with a PTM-optimized 
probabilistic model, we can accurately discover and discriminate high-confidence peptide 
identifications from large search spaces. Combined, these advances make unconstrained 
surveys of large MS/MS data sets possible. Our analyses expand the number of known 
modification sites for some PTM types by as much as 30-fold, particularly those lacking 
biochemical enrichment techniques. We show that TagGraph enables unbiased and rapid 
proteome-wide PTM characterization.

Results

Development of TagGraph

We developed TagGraph (Supplementary Code) to accurately assign peptides bearing 
multiple unspecified PTMs or amino acid substitutions (Fig. 1a, Supplementary Fig. 1). 
TagGraph leverages the speed of indexed string matching algorithms by first transforming 
complex, numeric mass spectra into discrete, unambiguous query strings using de novo 
peptide sequencing. De novo sequencing algorithms are more sensitive to MS/MS spectra 
imperfections than traditional database search engines, and therefore have not been widely 
used for large-scale proteomics analysis. However, we recently showed that they frequently 
produce long, reasonably accurate sequence predictions from high resolution MS/MS 
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spectra: these predictions were over 50% correct for nearly all interpretable MS/MS spectra 
(Fig. 1b)9. We therefore suspected that many de novo peptides contain long (e.g., >5 amino 
acids) substrings that perfectly match the true protein sources of their observed MS/MS 
spectra. The FM-index data structure10 was developed to facilitate this kind of search. 
TagGraph uses it to rapidly find a small number of substring-matched candidate peptides 
from an arbitrarily large, pre-indexed sequence database with no restrictions on protease 
specificity, post-translational modifications, or sequence variants (Fig. 1c). These candidates 
are then reconciled against the input de novo sequence using a graph-based alignment 
algorithm. This strategy lets TagGraph discover and localize multiple PTMs and other 
sequence alterations that co-occur on a single peptide sequence without anticipating them a 
priori (Supplementary Note 1). Modification masses localized to specific amino acids are 
cross-referenced with the Unimod resource3 to suggest the modification’s identity based on 
mass and amino acid specificity. In this way, TagGraph effectively searches all possible 
sequence alterations on time scales and search sensitivities commensurate with conventional 
database search tools (Fig. 1d, 1e, Dataset 1 (https://taggraph.page.link/Datasets)).

TagGraph surveys very large sequence spaces that would be impractical to query using 
traditional database search engines and other flexible search methods. Our strategy contrasts 
with prior approaches including sequence tag filtering12, iterative search13, precursor mass 
shift14,15 and spectrum clustering16 (Supplementary Note 2). Compared to an equivalent 
database search, these approaches reduce the number of peptides considered per mass 
spectrum (or vice versa for spectrum clustering). However, they are subject to similar speed 
limitations as they consider larger numbers of amino acid modifications and variants. As a 
result, most are prone to impractically long search times (Supplementary Note 2). TagGraph 
addresses this obstacle by shifting the computational burden of generating many numerical 
pattern comparisons to an efficient string matching and reconciliation procedure. We 
measured the resulting speed advantage by comparing TagGraph’s execution time to five 
algorithms designed to consider greatly expanded search spaces12–15,17, and found that none 
could execute on both the entire data set and the search space TagGraph considered in this 
comparison. Recognizing that most of these methods were not designed to consider such 
unrestricted parameters, we provided them with reduced number of spectra, search spaces or 
both. Nevertheless, TagGraph was 4- to 18-fold faster than any other algorithm, depending 
on whether we considered its preliminary de novo sequencing step (Fig. 1d, 1e). We note 
that more restrictive search parameters than the ones tested here could be expected to 
produce substantially faster search times for some of these prior methods. In contrast, 
however, TagGraph has just one unrestricted operation mode removing researchers’ need to 
choose between search speed and search depth.

Hierarchical Bayes Model for decoy-free error estimation

Indexed string searches solve the conflict between search speed and search depth, but 
exacerbate the challenge of estimating reliable FDRs. The standard target-decoy estimation 
method we previously developed11 is unsuitable for unconstrained search results since it 
loses discrimination accuracy as more peptides and PTMs are considered (Supplementary 
Note 3)8,18,19. Consequently, we developed a probabilistic validation strategy using a 
hierarchical Bayes Model optimized by expectation maximization (EM) (Supplementary 
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Figs. 2, 3)20. Our model deduces the likelihood that any individual peptide-spectrum match 
is correctly interpreted based on fourteen quantitative and categorical attributes 
(Supplementary Note 4.B); of these, half relate specifically to modified peptides. 
Consequently, our model concurrently discriminates correctly and incorrectly interpreted 
spectra from both modified and unmodified peptides.

We first evaluated TagGraph’s error model by comparing it to target-(shuffled) decoy 
database searching (Online Methods) with SEQUEST using the cell line dataset described in 
Figure 1. We found that the EM-based scoring discriminated decoys from high-confidence 
identifications (Fig. 2a) while generating FDR estimates which were more conservative than 
those inferred from target-decoy searches (Fig. 2b, Dataset 2 (https://taggraph.page.link/
Datasets)), as expected for a model that discriminates between correct and incorrect PTM 
assignments. Furthermore, we found that the extent to which SEQUEST and TagGraph 
disagreed was consistent with the estimated 1% FDR threshold we applied to both 
(Supplementary Fig. 4a). For the majority of these disagreements, however, TagGraph-
generated peptide-spectrum matches were more consistent with correct identifications based 
on protease specificity, algorithm-assigned scores, and ion assignment (Supplementary Figs. 
4b, 5). Twelve other large data sets analyzed in a similar manner yielded comparable 
observations (Supplementary Analysis 1).

To further evaluate TagGraph’s error model, we sought to measure how often it misassigns 
modifications to incorrect amino acid sites. To accomplish this, we replaced all tyrosine 
residues with phenylalanines (mass difference of one oxygen, 15.9995 Da) in an altered 
human proteome sequence database (Fig. 2c). We reasoned that an accurate expanded search 
algorithm should return phenylalanine-containing peptides with an additional oxygen 
localized to converted phenylalanines. We benchmarked five search methods against 
TagGraph with this validation tool. Each algorithm’s results were filtered based on target-
decoy-based criteria (either the algorithm’s own implementation or a linear discriminant 
analysis21) or, for TagGraph, the hierarchical Bayes model. The proportion of peptide-
spectrum matches containing unmodified phenylalanines at tyrosine positions was used to 
estimate both sequence- and modification-specific FDRs relative to the 1% predicted FDR. 
Only TagGraph’s error model reliably discriminated both incorrect “base” peptide sequences 
and those bearing unmodified altered phenylalanines. TagGraph reported 3.5-fold fewer 
inconsistencies with the expected search results than the next-best flexible search method 
(MODa) but with 4.3-fold greater sensitivity (Fig. 2c). These data suggest that both incorrect 
sequences and modifications may be common when searching multiple types of target-decoy 
protein databases (Supplementary Fig. 6).

Stringent error tolerance often comes at the expense of overall analysis sensitivity11. 
However, we found that TagGraph doubled the number of unique peptide identifications 
relative to SEQUEST, in part, by enabling accurate identification of peptides with any 
modification state. Once reconciled with Unimod, we found that unanticipated post-isolation 
modifications accounted for the majority of this increase (50.2% of novel modifications), 
followed by biologically-regulated post-translational modifications (8.5%) and those with no 
previous association (2.1%) (Supplementary Fig 4a). This analysis demonstrated TagGraph’s 
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unique ability to characterize modified peptides with the speed, accuracy and sensitivity that 
is compatible with large-scale proteomic workflows.

To further verify TagGraph’s ability to generate bona fide PTMs, we analyzed 451,655 
MS/MS spectra from a published phosphorylation-enriched data set22. We first established a 
set of high-confidence phosphorylated peptides by searching these spectra with SEQUEST 
and localizing phosphates to specific amino acid residues with the A-score algorithm23. In 
parallel, we searched these spectra with the four expanded search approaches demonstrating 
the greatest throughput: TagGraph, Peaks-PTM, Open Search and MSFragger (Fig. 1e). 
Comparing TagGraph with PEAKS-PTM, we found similar proportions of phosphorylated 
peptides (30% vs 31%, respectively), and agreement with high-confidence SEQUEST 
phosphopeptide identifications (98% vs 99%) (Supplementary Fig. 7, Dataset 3 (https://
taggraph.page.link/Datasets)). Furthermore, we found that TagGraph rarely (1–2%) yielded 
tied peptide candidates for individual spectra (Dataset 4 (https://taggraph.page.link/
Datasets), Supplementary Table 1), supporting our scoring model’s ability to discriminate 
between alternate modification configurations. The Open Search and MSFragger methods 
produced proportionately fewer phosphopeptide identifications (24 and 22%) which were 
not inherently localized to specific amino acids due to the general nature of this approach 
(Supplementary Note 2).

The human proteome’s broad modification landscape

To demonstrate TagGraph’s utility for deep PTM characterization, we re-analyzed a draft 
human proteome data set24, which is approximately 150 times larger than our initial test data 
set. Interpreting these 25 million tandem mass spectra – derived from 30 adult and fetal 
tissues and over 2,000 raw data files – would not be feasible with prior expanded search 
approaches, but took just six days on a single desktop computer once de novo sequencing 
was complete (one month of total running time). These data yielded over 1.1 million unique 
peptides, tripling the number originally reported using traditional database searching (Fig. 
3a, Dataset 5 (https://taggraph.page.link/Datasets)). As with the phosphorylation data set 
described above, the human proteome analysis yielded few tied spectra (Supplementary 
Table 1, Dataset 6 (https://taggraph.page.link/Datasets)), further supporting our scoring and 
validation model. Although the analysis presented here focused on identification and FDR 
estimations for peptides rather than proteins, we nevertheless found evidence for 100 (Adult 
CD8+ T Cells) to over 600 (Adult Gallbladder) additional proteins per tissue that were not 
originally reported (Supplementary Fig. 8a, Dataset 7 (https://taggraph.page.link/Datasets)). 
Several of these were corroborated by histological staining (Supplementary Fig. 8b).

As with our cell line analysis (Supplementary Fig. 4), TagGraph rescued peptides bearing at 
least one modification that was not considered in the original search (Fig. 3b). A small 
number of post-isolation modifications (methionine oxidation; N-terminal carbamylation, 
carbamidomethylation, and formylation) collectively accounted for 38% of modified spectra 
(Fig. 3c, Table 1), as previously observed12,14,15,25,26. TagGraph rescued other commonly 
disregarded peptide classes, including semi-specific and non-specific trypsin cleavage, and 
misassigned monoisotopic precursor masses (Fig. 3b, Supplementary Fig. 9). We note that 
these general identification classes persisted when we searched low-resolution MS/MS 
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spectra with TagGraph, but the overall identification success rate was reduced two-fold 
relative to conventional database search (Supplementary Fig. 10, Dataset 8 (https://
taggraph.page.link/Datasets)). This coincided with decreased performance of our EM model 
on this data set (Supplementary Analysis 1). Thus, our ability to probe post-translationally 
modified proteomes depends on the mass resolution of the underlying MS/MS spectra.

In comparison to the handful of abundant yet biologically irrelevant post-isolation 
modifications, this extremely deep proteome analysis revealed a much wider array of lesser-
abundant PTMs (Fig. 3c,d, Dataset 9 (https://taggraph.page.link/Datasets)). For example, 
we found N-terminal myristoylation, lysine hydroxylation and arginine dimethylation 
hundreds to thousands of times in the proteome without requiring the kind of targeted, 
sample-intensive enrichment procedures that have previously been essential to PTM 
analysis. This study confirmed 4,278 modifications previously reported in the Uniprot 
proteomics resource, while extending it by an additional 39,954 (Fig. 3e, Dataset 10 (https://
taggraph.page.link/Datasets)). To evaluate the extent to which marginal, incorrect 
identifications might disproportionately inflate our modification tally, we manually 
examined 100 diverse modification-bearing peptide assignments from this human proteome 
dataset, which were assigned scores just at the threshold of acceptance. We found that just 
26 were clearly incorrect as deemed by expert scrutiny, coinciding with an overall expected 
increased FDR for these proportionally rare and marginal results (Supplementary Analysis 
1d, Supplementary Analysis 2, Dataset 11 (https://taggraph.page.link/Datasets)). Comparing 
MS/MS spectra from these datasets to spectra derived from synthetic peptides 
(Supplementary Analysis 3) further served to validate 75 unexpected, yet high-scoring 
identifications.

Many PTMs act as reversible switches on protein function. Their enzymatic addition and 
removal regulates signaling networks, protein binding, and other cellular processes2,27. 
Although more than 90% of TagGraph-identified PTMs were previously unreported, we 
found several known PTM-flanking sequence motifs enriched in this dataset (e.g. proline-
directed phosphorylation21 and glycine-directed arginine methylation28) (Fig. 4a, 
Supplementary Fig. 11). We also identified over 200 gene ontologies that were significantly 
(Benjamini-corrected Fisher’s Exact p-value <0.001) enriched among proteins bearing 22 
noteworthy PTMs (Fig. 4b, Supplementary Fig. 12, Dataset 12 (https://taggraph.page.link/
Datasets)). This analysis confirmed biological processes known to be regulated by multiple 
PTMs5 (e.g., acetyl Lys, methyl Lys, phosphorylated Ser regulating chromatin function27). 
Other processes, such as the cell cycle, were associated with a much more restricted set of 
PTMs (phosphorylated Ser)29.

We found that 19 of the 22 PTMs represented in Figure 4b were enriched in multiple 
biological processes or cellular compartments. For example, reversible arginine methylation 
dynamically regulates proteins involved in RNA splicing and stabilization30, as confirmed 
by our ontology analysis (Fig. 4b). We observed a relative increase in the mono- and di-
methylation site abundances on RNA splicing proteins such as HNRNPA3 and SFPQ in 
reproductive tissues and lymphocytes (Fig. 4c, Dataset 13 (https://taggraph.page.link/
Datasets)), suggesting that these modifications have specific roles in these contexts.
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Quantifying PTMs without biochemical enrichment

Since PTMs and their host proteins can be simultaneously quantified by mass spectrometry, 
we accordingly estimated each PTM’s stoichiometry (Online Methods, Dataset 14 (https://
taggraph.page.link/Datasets))22. This method contrasts with previous PTM stoichiometry 
assays which required metabolic labeling31 or enzymatic removal of a single target PTM 
class32. Since PTM stoichiometries can have important implications for substrate protein 
activity and function, deeply sequenced proteome datasets like this are an untapped resource 
for measuring a wide range of protein regulation. We found that protein N-terminal 
acetylation demonstrated the most consistently high stoichiometry (95.5%; stdev = 16.7%, 
Fig. 4d). This is expected, considering the broad and irreversible acetyl group addition, co-
translationally catalyzed by N-terminal acetyltransferases33. Conversely, we found that 
lysine acetylation exhibited low and variable stoichiometry (15.2%; stdev = 22.7%, Fig. 4d), 
consistent with its heterogeneous representation on histone proteins34, and its possible non-
enzymatic origins on abundant cytosolic and mitochondrial proteins35,36. We found that 
neither PTM abundance nor stoichiometry correlated with substrate protein abundance 
(Supplementary Fig. 13), supporting the complementary use of both measurements in 
proteome characterization.

Characterizing multiple PTM types on highly modified proteins

TagGraph identified multiple intersecting PTMs on individual proteins, and on individual 
residues (Fig 4c, Dataset 10 (https://taggraph.page.link/Datasets)), with hundreds of PTMs 
identified on proteins such as albumin (921 PTMs) and actin (514 PTMs) (Fig. 4e). Histones 
are known to undergo extensive and combinatorial modifications to encode epigenetic 
information27, but deciphering these modifications has previously required individual 
histone isoform37 or specific modification38 enrichment. Using TagGraph, we identified 273 
PTMs across the five major histone proteins, 128 of which were not previously reported 
(Dataset 15 (https://taggraph.page.link/Datasets)). While we found modifications such as 
K28 dimethylation and K80 methylation on Histone H3 were both abundant and ubiquitous 
across the tissues examined here (Fig. 4f), we note several tissue-specific PTMs, such as 
Histone H4 R56 dimethylation occurring with 25-fold greater abundance in fetal than adult 
tissues. Twenty-six diverse PTMs showed similarly greater abundance in fetal tissues, 
suggesting specific roles in development (Dataset 15 (https://taggraph.page.link/Datasets)). 
Systematically evaluating these modifications in conjunction with the rest of the proteome, 
and without targeted enrichment techniques, supports TagGraph’s use for this type of 
secondary analysis.

Enrichment-free discovery and characterization of protein hydroxylation

We found that hydroxylated prolines, tyrosines and lysines were a sizeable (16%) proportion 
of histone PTMs (Dataset 15 (https://taggraph.page.link/Datasets)), yet only hydroxylated 
tyrosine was previously described39. Proline hydroxylation is the most abundant 
modification in the human body40, but just 321 sites have been catalogued41. Unlike more 
widely studied modifications, no enrichment methods have facilitated its focused analysis. 
Furthermore, of 11 amino acids capable of becoming hydroxylated3, four (Met, Trp, Phe, 
His) are often hydroxylated by sample preparation protocols. Thus, true post-translational 
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proline hydroxylation must be distinguished from mislocalized artifacts23. TagGraph’s 
modification-focused error model allowed us to identify and localize over 10-fold more 
hydroxyl proline residues than were previously known in humans (Table 1).

Proline hydroxylation is essential to the role of collagen proteins in maintaining extracellular 
matrix (ECM) stability. Despite hydroxyl proline comprising over 13% of mammalian 
collagen by weight42, only 254 sites across all collagens were previously assigned in 
humans (79% of all charted hydroxyl prolines in the human proteome). TagGraph identified 
166 proline hydroxylation sites on COL1A2 alone, just 4 of which were previously 
described43 (Fig. 5a). While most proline hydroxylation sites were represented across most 
solid tissues examined here (e.g., P330, P642), several displayed tissue-specific abundance 
(e.g., P408, restricted to colon, bladder, liver, gallbladder and pancreas) (Fig. 5b). TagGraph 
identified 14 other PTM types from this single protein, suggesting multiple routes by which 
PTMs cooperatively regulate collagen structure and function (Dataset 16 (https://
taggraph.page.link/Datasets)).

Our analysis extends known proline hydroxylation by nearly 3,000 sites spanning almost 
1,000 substrate proteins (Dataset 10 (https://taggraph.page.link/Datasets)). These proteins 
were significantly enriched for 113 biological processes and 60 cellular compartments 
(Benjamini-corrected Fisher’s exact p <0.01) (Dataset 12 (https://taggraph.page.link/
Datasets)), suggesting that proline hydroxylation could influence many cellular processes 
beyond matrix homeostasis (Fig. 4b). Noting that tumors exploit some of these same 
processes during oncogenesis, we hypothesized that proline hydroxylation could play a role 
in cancer. Associations were previously shown between specific phosphorylation sites and 
cancer-associated mutations44, and using a similar approach, we examined whether proline 
hydroxylation significantly intersected with missense somatic cancer mutations catalogued 
in the COSMIC database45. We found that hydroxylated prolines were 25% more likely to 
be associated with cancer mutations than expected (p=6e-11, Fisher’s exact test; p<1e-9, 
Bonferroni corrected), even excluding collagens (22%, p=4e-6 Fisher’s exact test; p<7e-5, 
Bonferroni corrected) (Fig. 5c, Datasets 17, 18 (https://taggraph.page.link/Datasets)). 
Methionine oxidation, a common post-isolation modification, was not enriched (p=0.49, 
Fisher’s exact test), nor were other post-isolation proline modifications (Fig. 5c). Thus, 
further study of hydroxylation could provide insight into cancer pathogenesis and reveal new 
therapeutic targets.

As with proline hydroxylation, TagGraph substantially expanded the number of known 
lysine hydroxylation and asparagine hydroxylation sites by 14- and 4-fold, respectively. To 
elucidate possible direct protein-PTM interactions, we screened all PTM and protein 
quantifications for strong correlations across the 30 tissues examined here. We found several 
that confirmed known functional associations (Fig. 5d, Supplementary Fig. 14). Generally, 
we found that proteins that were highly correlated with specific modifications did not bear 
those modifications themselves (Supplementary Fig. 14b). However, they tended to be 
enriched for the same functional ontologies as the PTMs’ substrates (Supplementary Fig. 
14c). Such highly correlated proteins may be candidate PTM-altering enzymes (analogous to 
kinases) or indirect regulators (analogous to cyclins).

Devabhaktuni et al. Page 8

Nat Biotechnol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://taggraph.page.link/Datasets
https://taggraph.page.link/Datasets
https://taggraph.page.link/Datasets
https://taggraph.page.link/Datasets
https://taggraph.page.link/Datasets
https://taggraph.page.link/Datasets


We found over 70 proteins that correlated highly with lysine hydroxylation across all tissues 
(Fig. 5d). Many of these proteins, such as PXDN and CYGB have known roles in oxygen 
transport or oxidoreductase activity (Supplementary Fig. 14c), supporting their role in 
regulating hydroxylation PTMs. Notably, many proteins that correlated with lysine 
hydroxylation also correlated with asparagine hydroxylation despite no previous evidence 
linking these PTMs to the same biological context. ECM collagens are the major substrates 
for lysine hydroxylation. Though asparagine hydroxylation was not previously characterized 
in the ECM, TagGraph revealed 45 sites on Fibrillin-1 and Fibrillin-2 (Datasets 10 (https://
taggraph.page.link/Datasets)), both of which are ECM constituents. These data suggest that 
proteins correlating with both PTMs may function as general positive regulators of ECM 
homeostasis through structure-stabilizing hydroxylation40,46.

Discussion

While conventional database searches remain the optimal strategy for restricted protein 
identification, improvements in de novo sequencing speed47 suggest that the TagGraph 
strategy can approach real-time data acquisition speeds. We expect this capability will 
become increasingly important as high-resolution and high-volume mass spectrometers 
become more widely available. Relatedly, enrichment methods remain the optimal choice for 
very deep analysis of select modifications, but we expect this requirement will greatly 
diminish as instrumentation sensitivity improves. Here, we find that given sufficiently deep 
MS/MS spectra, TagGraph makes otherwise un-enrichable PTMs readily measurable (Fig. 
5a,b).

TagGraph incorporates a single-pass probabilistic model that simultaneously evaluates the 
likelihood that a peptide’s sequence and any modifications it bears are correct (Fig. 2). This 
component of our approach was essential because current “target-decoy” error estimation 
methods are inherently blind to amino acid modifications23,48. We demonstrate the accuracy 
of our error estimations with expert inspection, synthetic peptides, direct comparison to 
target-decoy error estimations and secondary modification localizations. The re-discovery of 
known modification sites, motifs, protein-PTM relationships and functional roles for various 
PTMs further supports the validity of our approach. We expect this model can be further 
expanded for protein-level error estimation and to incorporate additional mass spectrum and 
peptide features attributes made possible by new data acquisition methods49.

This kind of high-throughput, unbiased PTM discovery platform is compatible with any 
proteomics experiment that uses high-resolution tandem-mass spectrometry. We envision 
applying TagGraph to many types of experiments requiring much larger sequence spaces, 
including metaproteomics50, alternate start site utilization51 and gene prediction 
refinement52. By rapidly evaluating many candidate protein and peptide configurations, 
TagGraph can validate translation products that would confound conventional database 
search methods. TagGraph’s peptide-focused output maintains compatibility with protein 
assembly and related post-search computations53, and this flexibility should have direct 
application to systems that have previously been intractable to large-scale proteome analysis 
such as the gut microbiome and other complex microbial communities. Finally, by learning 
essential experimental details directly from input data, TagGraph can help standardize 

Devabhaktuni et al. Page 9

Nat Biotechnol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://taggraph.page.link/Datasets
https://taggraph.page.link/Datasets


proteomic analyses. This could enable direct comparisons between data sets collected by 
multiple laboratories, thereby fostering the kind of large-scale collaborations that have 
transformed the genomics field.

ONLINE METHODS

A375 Dataset

Sample processing—A375 melanoma cells (ATCC)61 were cultured in DMEM 
supplemented with 10% FCS and antibiotics. Cells were detached by trypsinization, 
pelleted, washed with PBS and flash frozen in liquid nitrogen. 5×107 flash-frozen A375 cells 
were thawed on ice and lysed by tip sonication in Urea lysis buffer (8 M Urea, 100 mM 
NaCl, 50 mM Tris, 1 mM PMSF, 10 μM E-64, 100 nM bestatin, pH 8.2). The cell lysate was 
reduced (5 mM DTT, 55 °C, 30 min), alkylated (12.5 mM iodoacetamide, room temperature, 
1 hr in the dark), and digested overnight with LysC at an enzyme:substrate ratio of 1:100 
(37 °C). The resulting peptide mixture was desalted using C-18 Sep-Pak cartridges (Waters), 
dried using vacuum centrifugation, and resuspended in 10 mM ammonium formate, pH 10 
prior to high pH reverse phase (HPRP) separation. HPRP was performed using an Agilent 
1100 binary HPLC, delivering a gradient (0%−5% B over 10 min, 5%−35% B over 60 min, 
35%−70% B over 15 min, 70% B for 10 min) across an Agilent C-18 Zorbax Extend 
column. Buffer A was 10 mM ammonium formate, pH 10 and buffer B was 10 mM 
ammonium formate, 90% acetonitrile, pH 10. Sixty one-minute fractions were collected and 
concatenated into twelve fractions as described previously62.

Mass Spectrometry—All HPRP fractions were desalted using C-18 Sep-pak cartridges 
(Waters), vacuum centrifuged, and resuspended in 5% ACN, 5% formic acid at 
approximately 1 ug/ul. One microgram of each fraction was analyzed by microcapillary 
liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS) on 
an LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, San Jose, CA) 
equipped with an in-house built nanospray source, an Agilent 1200 Series binary HPLC 
pump, and a MicroAS autosampler (Thermo Fisher Scientific). Peptides were separated on a 
125 um ID × 18 cm fused silica microcapillary column with an in-house pulled emitter tip 
with an internal diameter of approximately 5 um. The column was packed with ProntoSIL 
C18 AQ reversed phase resin (3 um particles, 200Å pore size; MAC-MOD, Chadds Ford, 
PA). Each sample was separated by applying a two-step gradient: 7% −25% buffer B over 
2h; 25–45% B over 30 min. Buffer A was 0.1% formic acid, 2.5% ACN and buffer B was 
0.1% formic acid, 97.5% ACN. The mass spectrometer was operated in a data dependent 
mode in which a full MS scan was acquired in the Orbitrap (AGC: 5×105; resolution: 6×104; 
m/z range: 360–1600; maximum ion injection time, 500 ms), followed by up to 10 HCD 
MS/MS spectra, collected from the most abundant ions from the full MS scan. MS/MS 
spectra were collected in the Orbitrap (AGC: 2×105; resolution: 7.5×103; minimum m/z: 
100; maximum ion injection time, 1000 ms; isolation width: 2 Da; normalized collision 
energy: 30; default charge state: 2; activation time: 30 ms; dynamic exclusion time: 60 sec; 
exclude singly-charged ions and ions for which no charge-state could be determined). The 
mass calibration of the Orbitrap analyzer was maintained to deliver mass accuracies of ±5 
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ppm without an external calibrant. All raw mass spectrometry data were uploaded to the 
PRIDE repository54 and assigned the accession ID PXD005912.

Synthetic peptide confirmation data set

In total, 86 synthetic peptides (SpikeTides from JPT Peptide Technologies GmbH) validating 
various modifications, semi- or non-specific peptide assignments were evaluated. A final 
pool of all peptides dissolved in 0.1% formic acid was generated and the concentration of 
each individual peptide was roughly 250 fmol/μL. Two LC-MS/MS runs were performed 
and the auto-sampler injected 1 μl of the synthetic peptide pool. An ESI-Orbitrap Elite mass 
spectrometer (Thermo Electron, Bremen, Germany) interfaced with an Eksigent ekspert 
nanoLC 425 system (Eksigent technologies, Dublin, CA, USA) was used. Peptides were 
introduced into the mass spectrometer via a fused silica microcapillary column (100 μm 
inner diameter) ending in an in-house pulled needle tip. The columns were packed in-house 
to a length of 18 cm with a C18 reversed-phase resin (with Reprosil-Pur C18-AQ resin (3 
μm Dr. Maisch, GmbH, Germany). For elution a two-step gradient of 4–25% buffer B (5 % 
DMSO, 0.2% formic acid and 94.8 % acetonitrile (v/v)) in buffer A (5 % DMSO, 0.2% 
formic acid in water (v/v)) over 60 min followed by a second phase of 25–45% buffer B over 
20 min was used. The LTQ-Orbitrap was operated in data-dependent mode to automatically 
switch between Orbitrap-MS (from m/z 340 to 1600) and ten MS/MS acquisition. Each FT-
MS scan was acquired at 60,000 FWHM nominal resolution settings while the MS/MS 
spectra were acquired using HCD and at a resolution of 15,000. Precursor ion charge state 
screening was enabled (charge state 1 rejected) and the normalized collision energy was set 
to 35%.

The resulting data were analyzed by TagGraph to match mass spectra with their best-
matching synthetic peptide sequence. Synthetic-derived and experiment-derived mass 
spectra (e.g., from the draft human proteome data set) were only compared if spectra were 
assigned to the same peptide sequence in the same charge state. Of the 86 peptides 
synthesized, 75 were matched in this manner and used to validate TagGraph peptide-
spectrum assignments (Supplementary Analysis 3). The mass tolerance used to match b- and 
y-ions was 0.1 Daltons.

Phosphorylation–enriched proteome data set

A subset of RAW data from a recent phosphorylation analysis22 were downloaded from the 
PRIDE data repository using accession ID PXD000612. The re-analysis data presented here 
were deposited into PRIDE with the accession ID PXD008899.

Draft human proteome data set

All RAW data and database search results from the draft human proteome data set24 were 
downloaded from the PRIDE data repository using accession PXD000561. Lung-specific, 
low-resolution RAW data were described in the companion human proteome data set63, and 
were downloaded from the PeptideAtlas data repository using the accession ID PAe001771. 
The re-analysis data presented here for the Kim et al data set were deposited in the MassIVE 
repository and linked with the original source identifier MSV000079514. The Lung-specific 
low resolution data were deposited into PRIDE with the accession ID PXD008902.
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De novo search engine comparisons

We compared the performance of three de novo sequencing algorithms, PEAKS 756, 
PepNovo+ (ver. 3.1)58, and pNovo (ver 1.1)57 and assayed their ability to generate mostly 
correct sequence interpretations of high mass accuracy MS/MS spectra9. Each algorithm was 
used to search the A375 dataset, and the resulting peptide identifications were compared 
against high confidence peptide spectrum matches obtained from a SEQUEST search of the 
same dataset as previously described9 (Target-decoy database construction and 
utilization section, below). Static and differential modifications were set as for the 
SEQUEST search. Mass tolerance parameters were optimized to achieve maximum 
sequencing accuracy for each algorithm individually9. PEAKS was run with a precursor 
mass tolerance of 10 ppm and a fragment mass tolerance of 0.01 Da. PepNovo+ was run a 
0.01 Dalton precursor mass tolerance and 0.05 Da mass tolerance on fragment ions. pNovo 
was run with a 6 ppm precursor mass tolerance and a 25 ppm fragment ion tolerance. These 
mass tolerances were previously determined to maximize sequence accuracy corresponding 
with our instrumentation9.

The accuracy of each de novo algorithm was assessed using the sequence accuracy metric9. 
For a given de novo peptide-spectrum match and its corresponding high confidence 
SEQUEST peptide-spectrum match, sequence accuracy represents the fraction of prefix 
residue masses present in the high confidence SEQUEST match which were also present in 
the de novo sequence9.

Database search engine comparisons

Algorithm benchmarking with the A375 data set—We assessed several expanded 
database search algorithms’ abilities to detect undefined modifications, without constraining 
protease specificity, using the A375 dataset. As a baseline, we searched all 168,391 MS/MS 
spectra in this dataset with SEQUEST64 (ver. 28 rev 12) using an indexed sequence database 
comprised of the human proteome (Uniprot, downloaded 12/9/2014)65 plus common 
contaminants. These sequences were appended by decoy protein sequences constructed as 
described in TagGraph Parameters section, below. The SEQUEST search was conducted 
with LysC protease specificity, 50 ppm precursor ion mass tolerance, and 0.5 Da fragment 
ion mass tolerance. Cysteine carbamidomethylation (+57.021464 Da) was set as a static 
modification and methionine oxidation (+15.994915 Da) was set as a differential 
modification. False discovery rates (FDRs) were estimated with a linear discriminant 
method21.

The A375 dataset was then searched using PEAKS PTM (ver. 7)17, Byonic (ver. 2.5.6)13, 
ModA (ver. 1.03)12, the Open Search method using SEQUEST14 and MSFragger (build 
20170103)15 – four distinct strategies described as being able to either consider relatively 
large numbers of discrete amino acid modifications, or searching spectra with no a priori 
constraints on possible modifications. It was not possible to search the entire A375 dataset 
with any of the above algorithms using completely unconstrained parameters with respect to 
both modifications and protease specificity: either the algorithms would not execute, or they 
did not complete within a reasonable amount of time (5 days per RAW data file). Thus, CPU 
times (Fig. 1e) were calculated using the least restrictive parameters that were compatible 
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with each algorithm. Search times were extrapolated from a limited subset of search results 
(Byonic) for which searching the entire dataset would be too computationally intensive with 
similar computational resources used by the other algorithms. As such, reported search times 
represent a substantial underestimate of the true time needed for each of these algorithms to 
analyze a sample in a manner equivalent to TagGraph, as described below.

PEAKS PTM:  the A375 dataset was first de novo sequenced with PEAKS using the 
following settings: 10 ppm precursor ion tolerance and 0.01 Da fragment ion tolerance, 
cysteine carbamidomethylation as a static modification, and methionine oxidation as a 
differential modification. The dataset was then analyzed with PEAKS PTM using the same 
modification and mass tolerances as for the de novo sequencing, LysC enzyme specificity 
allowing for nonspecific cleavage at both ends of the peptide, and considering all 485 
unimod-based modifications curated in PEAKS’s internal PTM database. FDRs were 
estimated using PEAKS’ internal target-decoy method.

MODa:  the A375 dataset was analyzed with the following settings: 0.05 Da precursor mass 
tolerance, 0.05 Da fragment ion tolerance, allowing multiple modifications per peptide, no 
protease specificity, modification size between −200 Da and 200 Da and cysteine 
carbamidomethylation as a static modification. FDRs were estimated using the 
“anal_moda.jar” program included in the MODa software package

Byonic:  the A375 dataset was analyzed using the following settings: 10 ppm precursor ion 
tolerance, 20 ppm fragment ion tolerance, LysC protease specificity, cysteine 
carbamidomethylation as a static modification, methionine oxidation as a differential 
modification, wildcard search enabled with a minimum mass of −200 Daltons and a 
maximum mass of 200 Daltons. FDRs were estimated using Byonic’s internal target-decoy 
method.

Open Search (SEQUEST):  the A375 dataset was analyzed using the same search 
parameters as the initial SEQUEST search, except allowing a 500 Da mass window 
surrounding each precursor and allowing semi-trypsin specificity. FDRs were estimated 
using the linear discriminant method as described above for SEQUEST.

Open Search (MSFragger):  the A375 dataset was analyzed using the following settings: 
500 Da precursor mass tolerance; 10 ppm precursor true tolerance; 20 ppm fragment mass 
tolerance; no isotope_error correction; semispecific Trypsin digestion; one missed cleavage; 
clipped N-terminal Methionine; cysteine carbamidomethylation as a static modification; 
variable oxidized methionine, allow multiple modifications on one residue; allow up to three 
variable modifications per modification type; allow up to 1000 variable modifications per 
peptide; require at least 15 fragment ion peaks per MS/MS spectrum. FDRs were estimated 
using PeptideProphet as originally described15.

For the above algorithms, the target sequence database used was the same as for SEQUEST. 
PEAKS PTM and Byonic were allowed to use their own internal methods for creating decoy 
sequences, whereas ModA and both Open Search methods were provided the same 
concatenated target-decoy sequence database used for TagGraph EM comparisons (see 
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TagGraph Parameters section, below). Open Search with SEQUEST used the same pre-
processed sequence index as the conventional SEQUEST search. One CPU thread was used 
for all searches.

CPU search times (Fig. 1e) were calculated as the sum of the CPU time over all processes 
spawned by each database search algorithm to analyze the data. Due to computational 
constraints, it was not possible to run Byonic with semi specific or nonspecific enzyme 
specificity or on the entire A375 dataset. Thus, we conducted the Byonic search with full 
LysC specificity (Fig. 1d), and analyzed only the first fraction of the A375 dataset. The 
estimated CPU time over the entire dataset was extrapolated by multiplying the CPU time 
recorded from the analysis of a single HPRP fraction by the ratio of the total MS/MS spectra 
in the dataset (168,391) divided by the number of MS/MS spectra in the single fraction 
(16,613).

Unrestricted modification discovery from phosphorylation-enriched data set—

We compared TagGraph to the highest-performing search methods emerging from Figure 1, 
PEAKS-PTM, Open Search (SEQUEST) and Open Search (MSFragger) using the Sharma 
et al phosphorylation-enriched data set22 as well as conventional database search with 
SEQUEST. We searched 451,655 MS/MS spectra as described for the A375 data set above, 
noting the following differences:

SEQUEST:  searches were conducted with trypsin protease specificity, and phosphorylation 
(+79.99633) was set as a differential modification on serine, threonine and tyrosines.

PEAKS PTM:  searches applied trypsin specificity allowing for nonspecific cleavage at 
both ends of the peptide.

Open Search (SEQUEST):  searches were conducted with trypsin protease specificity.

Open Search (MSFragger):  no changes relative to the A375 data set.

Unrestricted modification discovery from low-resolution MS/MS spectra.—We 
evaluated TagGraph’s ability to search low-resolution MS/MS spectra, relative to standard 
database searching with the SEQUEST algorithm. SEQUEST searches of were performed 
on 336,344 MS/MS spectra corresponding with the lung data set (PeptideAtlas data 
repository entry PAe001771), as described above except trypsin specificity was required, and 
fragment ion tolerance was set to null (i.e., 1 Da).

Target-decoy database construction and utilization

For the purpose of comparing EM-based FDR estimations with the standard target-decoy 
approach (Figure 2a, 2b, Supplementary Analysis 1), we concatenated human proteome 
sequences with decoy counterparts for target-decoy FDR estimation11. We previously 
observed that de novo sequencing algorithms occasionally mistake b- and y-ion series, and 
consequently have a tendency towards returning reversed sequences9. As a result, decoys 
generated by strict sequence reversal are at risk of systematically overestimating FDRs of 

Devabhaktuni et al. Page 14

Nat Biotechnol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TagGraph results: PSMs derived from incorrect, reversed de novo sequence would 
preferentially match decoy sequences over target sequences.

We addressed this bias by generating decoy sequences in a manner that shuffled amino acid 
sequences while preserving the distribution of tryptic peptides and frequencies of peptides 
shared between proteins: (i) protein sequences are first reversed; (ii) the locations of all 
lysines and arginines in the reversed sequences are fixed, and the intervening sequences are 
shuffled; (iii) for each unique intervening pre-shuffled peptide sequence, the shuffled variant 
is cached and all subsequent peptide instances are mapped to the same shuffled variant. This 
method well-preserved a desired 50–50 target decoy ratio (Fig. 2a, Supplementary Analysis 
1a) by maintaining the same number, length, and mass distribution of unique LysC/tryptic 
peptides in the target and decoy databases, while removing the source of the overestimation 
bias described above.

FDRs based on the target-decoy strategy (Fig. 2b, and Supplementary Analysis 1b–d) were 
calculated by summing the number of decoy identifications exceeding a given EM score 
threshold, dividing this by the total number of identifications exceeding this threshold, and 
then multiplying this quotient by the “decoy factor” we previously described to account for 
the slight bias we observed towards decoy identifications11. This factor was estimated as the 
proportion of low-confidence (EM score <0) target identifications relative to all low-
confidence identifications. This factor was on average 1.88, rather than the expected 2.0. 
Short peptides <8 amino acids in length were excluded from this analysis due to their lower 
information content.

TagGraph Parameters

TagGraph was used to analyze proteome data sets described above. All available MS/MS 
were first de novo sequenced using PEAKS as described in the Database search engine 
comparisons section above and noted below. The resulting peptide sequences and raw mass 
spectra (mzXML-formatted66) were given as input to TagGraph.

For the A375 dataset, PEAKS was run with a precursor mass tolerance of 10 ppm and a 
fragment mass tolerance of 0.01 Da. To account for wider fragment mass variances for 
several component data sets that comprised the draft Human Proteome, we increased the 
fragment ion tolerance to 0.05 Da. This parameter was set to 1 Da for the low-resolution 
MS/MS lung data set. Other parameters were consistent with the A375, phosphorylation and 
low-resolution lung data set analyses: 10 ppm precursor mass tolerance cysteine 
carbamidomethylation as a static modification, and methionine oxidation as a differential 
modification. Unless otherwise specified, de novo sequencing results were searched with 
TagGraph against the human proteome (Uniprot, downloaded 12/9/2014) plus common 
contaminants without any additional decoy sequences.

The above database was concatenated with decoy sequences only for searches involving the 
A375 data set, and for 12 other data sets examined in this report (Target-decoy database 
construction and utilization section, above): Searching this target-decoy sequence database 
with TagGraph enabled fair comparison of the CPU times of TagGraph with the other 
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database search algorithms (Fig. 1e) and direct comparisons of FDR estimates (Fig. 2a,b, 
Supplementary Analysis 1). Otherwise, no decoys were used for TagGraph analyses.

TagGraph empirically optimizes precursor mass tolerances as part of its hierarchical Bayes 
scoring model. Fragment ion tolerances were initially set to 20 ppm of the precursor mass. 
We also define the quantity modification mass tolerance, which describes whether a 
particular modification agrees with one represented in the Unimod resource, or a novel 
modification specific to the present dataset. This tolerance was set to 0.1 Da. Enzyme 
specificity was set to LysC for the A375 dataset and Trypsin for the human proteome data 
set. Although enzyme specificity was considered as a scoring attribute in the hierarchical 
Bayes model, TagGraph is able to return high-confidence semi specific and nonspecific 
peptide-spectrum matches regardless of the input enzyme specificity.

For the purposes of calibrating EM- and target-decoy FDR estimations, all returned peptide-
spectrum matches were ranked according to their probabilities P(D|+) from highest to 
lowest, and the inverse (1- P) of these probabilities were summed in order of decreasing 
rank. FDRs were estimated from EM scores as described in Supplementary Note 4, Equation 
2. For all other purposes, we applied a probability threshold of 0.99 (log10 (1-P) ≥ 2), as 
previously described for parametric error estimation67 – i.e., an EM scoring threshold of 2.0 
(Supplementary Analysis 1c,d).

PTM error estimation with amino acid-substituted proteome

Target-decoy based error estimation accuracy declines when applied to peptide 
modifications and other large search spaces19,68 (Supplementary Note 3). Despite this, all 
previously described unrestricted search algorithms rely on target-decoy to delineate sets of 
confidently identified spectra. To assess the degree to which estimated FDRs reflect 
underlying identification errors, we employed a modified human proteome sequence 
database in which every tyrosine residue was replaced by a phenylalanine. The mass 
difference between these residues (15.994915 Da) corresponds with an oxygen atom, and is 
a frequently observed modification on several residues (e.g., methionine), while 
distinguishing other unmodified residues (e.g., alanine and serine). Search engines capable 
of accurate PTM assignment and discrimination should search the tyrosine-substituted 
database and return phenylalanine-containing peptides modified by an oxygen only on those 
phenylalanines that were previously tyrosines. They should be able to discriminate these 
identifications from erroneous ones in which oxidation modifications were assigned to 
unaltered residues. We analyzed the A375 dataset against this modified sequence database 
using SEQUEST, PEAKS PTM, Byonic, ModA, and Open Search with SEQUEST and 
MSFragger. The results from each algorithm were then filtered to a 1% predicted FDR using 
target-decoy based statistics, or a 0.99 probability threshold for TagGraph (EM score >2.0). 
Byonic, MODa, and PEAKS PTM were allowed to use their own internal target-decoy based 
filtering procedures. Search results provided by SEQUEST were filtered using a linear 
discriminant method21. All results were compared to the initial SEQUEST search results of 
the unaltered sequences database, which were filtered to a 1% FDR. Identification error was 
assessed based on the proportion of peptides that conflicted with the high confidence search 
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results with respect to the overall amino acid sequence (base peptide), or to the presence of 
an unmodified phenylalanine at a former tyrosine position.

The A375 dataset was also analyzed with TagGraph against the phenylalanine-substituted 
human sequence database. The parameters used were identical to those described in the 
TagGraph Parameters section above. Results were filtered to a probability value ≥0.99 
(EM score >2.0) as described above.

We estimated a 2% maximum expected likelihood of conflicting identifications in Figure 2c 
as follows: We consider two sets of search results of the same mass spectra such that 
identifications made in any one set have a 99% likelihood of being correct. Assuming 
incorrect identifications are randomly distributed within each set of search results, spectra 
which receive the same identification from both search result sets should have a likelihood 
of being correct of 0.992 = 0.9801. Accordingly, the likelihood of an incorrect search result 
returned by either or both searches should be estimated as 1 –, 0.992 = 0.0199.

Abundance calculations

Protein abundance calculation—Protein abundances were calculated using the 
distributed normalized spectral abundance factor (NSAF) method69. Briefly, the number of 
spectral counts originating from peptides that uniquely map to single proteins were summed 
over all proteins identified in an experiment. Spectral counts recorded from peptides that 
map to multiple proteins were distributed across all such proteins according to the 
proportion of spectral counts assigned to them from uniquely mapped peptides. Finally, 
summed spectral counts for each protein were normalized by protein length, and the sum of 
all protein abundances for each experimental dataset was normalized to one. Protein 
abundances per tissue were calculated as the average of the individual NSAF for that protein 
over all experiments performed on that tissue. For the purpose of this analysis, proteins were 
defined solely by their unique representation in the input sequence file – proteins with equal 
or overlapping peptide evidence were represented in Dataset 7 (https://taggraph.page.link/
Datasets). For protein-level analyses relying on unique protein counts (Figure 4b, 4e; 
Supplementary Figs. 8, 12, 14) we selected a single highest-abundance entry to represent the 
indicated gene symbol.

Site abundance and stoichiometry calculations—To compare modification sites 
between tissues, we quantified the abundance of sites using two methods: normalized 
spectral counts (NSC) and estimated stoichiometry. For both methods, we first generated a 
catalog of all confident peptide identifications that span a given modified amino acid 
position of a protein, regardless of modification state. The total spectral counts 
corresponding to all peptides containing the amino acid position (ST) and just those 
corresponding to peptides containing the exact modification on the site of interest (Sm) were 
calculated for each experimental dataset.

The normalized spectral count of a modification site was calculated as Sm divided by the 
number of confidently identified peptide-spectrum matches in the experimental dataset. The 
stoichiometry of the modification was calculated as Sm divided by ST, following a 
previously described rationale22. Modification site abundances (stoichiometry or NSC) per 
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tissue were calculated as the average of the site abundances over all experiments performed 
on that tissue. Due to inherent difficulties in accurately reporting very low abundances with 
spectral counting70, experiments in which no peptides overlapping the site of modification 
were detected were not included in the average. Thus, the sum of stoichiometries of all 
modifications at a particular site in a particular tissue may not be normalized. Finally, the 
abundance, stoichiometry or normalized spectral count of a modification site was set to zero 
for a particular tissue if the corresponding protein NSAF was zero in that tissue.

Histology images

Eight protein and tissue combinations which were not previously reported24 were arbitrarily 
selected, and used to query the Human Protein Atlas71 (www.proteinatlas.org). 
Representative images selected by the web resource’s curators were downloaded and 
represented in Supplementary Figure 8b. See figure legend for specific image attributions.

Gene ontology analysis

Gene ontology analysis was conducted using the DAVID web portal60. For each post-
translational modification of interest, proteins bearing that modification were compiled and 
input as a gene list. The background list used was the Uniprot human proteome. The 
resulting gene ontologies were downloaded and a global FDR threshold (Benjamini-
Hochberg) of 1% was used as a threshold for determining significantly enriched ontologies.

We observed that many ontologies were broadly enriched across all post-translational 
modifications and hypothesized that these were simply associated with highly abundant 
proteins and did not reflect true post-translational modification properties. As a control, we 
applied the above enrichment analysis and significance criterion to fifteen post-isolation 
modifications and observed many ontologies that were enriched for all post-isolation 
modifications considered (Supplementary Fig. 12). These ontologies were excluded from the 
set of enriched ontologies in the post-translational modification analysis (Fig. 4b, Dataset 12 
(https://taggraph.page.link/Datasets)).

COSMIC dataset comparison

The COSMIC database of cancer mutations was downloaded via FTP from the resource’s 
website45. These mutations were then filtered to keep only missense mutations. To account 
for slight protein sequence variations between COSMIC and Uniprot, we discarded 
mutations for which the amino acid residue at the denoted position in the Uniprot protein 
sequence did not match the non-mutated amino acid identity in the corresponding COSMIC 
entry.

We tested the significance of any overlap between COSMIC cancer mutations and 
TagGraph-identified modifications via Fisher’s exact test. Using hydroxylated prolines to 
illustrate this calculation, we first identified all TagGraph-identified proteins bearing at least 
one proline hydroxylation and were also represented in the COSMIC database. From these, 
we tabulated the number of prolines in the protein sequences (31,603); the number of 
TagGraph-identified hydroxylations among these prolines (3,248); the number of COSMIC-
identified mutated prolines (5,005) and the number of mutated sites that were also found to 
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be hydroxylated (645). These values were used to derive the expected number of 
overlapping mutated and hydroxylated sites by chance (514.4). We observed 25% more 
overlapping sites than would be predicted by chance: (645–514.4)/514.4 = 25.4%

To guard against biases in background amino acid distributions, overlap statistics were only 
calculated for proteins on which both cancer mutations and the PTM of interest were 
detected and only against the background of peptides confidently identified by TagGraph in 
the human proteome dataset. Using proline hydroxylation as an example, the number of 
prolines, number of hydroxylation prolines, number of mutated prolines, and number of 
mutated and hydroxylated prolines were counted only on peptides confidently identified by 
TagGraph and on proteins containing both cancer mutations and proline hydroxylation. 
Overlapping residues were then tested for significance via Fisher’s exact test (Dataset 18 
(https://taggraph.page.link/Datasets)). This analysis was carried out analogously for other 
types of hydroxylations (lysine, asparagine, methionine, etc.).

Protein-PTM correlation analysis

Reasoning that many modifications’ abundances and stoichiometries will depend on specific 
protein-modifying enzymes, we sought to discover functional relationships between post-
translational modifications and proteins. We identified highly correlated subsets of 
modifications and proteins by comparing their abundances across the tissues examined here. 
Modification site and protein lists were first filtered to include only those identified from at 
least three tissues. For a particular post-translational modification of interest (e.g., Lysine 
hydroxylation), the abundance of the modification was averaged across all measured sites 
from all proteins within each tissue, forming a vector representing the abundance of the 
modification across all tissues. Similarly, for all identified proteins, the calculated NSAF 
was used to form an abundance vector of that protein’s expression across all tissues. We next 
determined the Pearson correlation coefficient between all modification and all protein 
vectors computed and filtered as described above. The proteins with the largest magnitude 
correlations (positive or negative) were then considered as candidates having a functional 
relationship with a modification of interest.

Modification abundance vectors were calculated using both modification stoichiometries and 
modification-normalized spectral counts. Both types of quantification were used in the 
correlation analysis, often yielding different results (Supplementary Fig. 14a). However, in 
both cases, our analysis revealed previously described associations between proteins and 
post-translational modifications (e.g., arginine methylation and RNA splicing proteins), 
supporting the validity of this analysis (Supplementary Fig. 14c).

Statistics and reproducibility

Statistical tests were performed using python with packages noted below (Code availability), 
R version 3.2.2, Microsoft Excel, and web-based tools as noted in main text, Online 
Methods, Supplementary text, and the Life Sciences Reporting Summary. Details 
regarding statistical tests are provided in the main text and corresponding figure legends. 
Numbers of replicates, where applicable, are noted in figure legends. Most statistical 
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calculations, however, describe populations of protein, peptide, and PTM observations made 
by considering each large-scale proteomic experiment as a single replicate.

Code availability.

The TagGraph algorithm and supporting software can be downloaded via http://
sourceforge.net/projects/taggraph. TagGraph was developed under Python ver. 2.7 and 
makes use of freely available packages including lxml ver 4.2.4; mysqlclient ver 1.3.13; 
networkX ver 1.1172; NumPy ver 1.10.0; Pympler ver 0.6; pymzml ver 0.7.8; Pyteomics ver 
3.5.173; SQLAlchemy ver 1.2.11; and SciPy 1.2.0.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. TagGraph efficiently manages large proteome search spaces through flexible, long 
string matches.
a) Traditional versus TagGraph workflow. b) Most de novo-interpreted high-resolution 
MS/MS spectra are mostly correct. The proportion of analyzed spectra interpreted with over 
50% sequencing accuracy by PEAKS56, pNovo57, and PepNovo58 on a data set of 168,391 
MS/MS spectra derived from the A375 melanoma cell line (n=12 fractions evaluated in 
parallel). Central line denotes medians; whiskers indicate the 1.5 interquartile range, and 
circles indicate data points outside this range. c) TagGraph’s longest matching substring 
criterion (Supplementary Fig. 1, Supplementary Note 1) yields very few candidate 
sequences for subsequent refinement and scoring. Heat map depicts the number of candidate 
peptide matches per spectrum (y-axis) versus the longest-matching substring used for 
candidate retrieval. Over 50% of all spectra TagGraph considered from the A375 data set 
were selected from <6 candidates, and over 50% matched with sub-string lengths >6 amino 
acids. d) TagGraph considered an entirely unrestricted peptide search space (black) with 
respect to protease specificity, range of modifications, number of modifications per peptide, 
and number of proteins. The same A375 data set was searched with conventional and 
expanded database search methods, but with one or more major (white) or modest (grey) 
space restrictions. Restrictions were selected so as to approach TagGraph’s unrestricted 
parameters while allowing each search engine to execute without failure (see Online 
Methods). e) The combined de novo sequencing and TagGraph search times on the A375 
data set were 4.3-fold shorter than previously described expanded modification and iterative 
search strategies, even when the latter were given considerably reduced search spaces (Fig. 
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1d). Search rates for TagGraph and PEAKS PTM included the preliminary de novo 
sequencing step using PEAKS (red; 0.51 sec/spectrum). Excluding the de novo step, 
TagGraph was 17.9-fold faster than the next-ranked search method. *Extrapolated values: 
Byonic was run on just 1/12 of the A375 data set due to search speed limitations (see Online 
Methods, Dataset 1 (https://taggraph.page.link/Datasets)).
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Figure 2. Single model estimates modified and unmodified peptide identification errors without 
decoys.
Correct and incorrect TagGraph search results were discriminated with a hierarchical Bayes 
probabilistic model optimized by Expectation Maximization (EM) to score identification 
confidence and estimate false discovery rates (Supplementary Note 4, Supplementary Figure 
2). a) The A375 data set (Fig. 1) was searched against a composite target-decoy sequence 
database (Online Methods) with TagGraph and evaluated by EM (Dataset 1 (https://
taggraph.page.link/Datasets)). Decoys were effectively discriminated with this approach 
although the EM was blind to the decoy label in this analysis and in 12 other data sets 
(Supplementary Analysis 1a). b) EM was generally consistent with, but more conservative 
than target-decoy-based FDR estimates when both were applied to TagGraph results. This is 
expected considering target-decoy’s inability to distinguish correct and incorrect 
modifications. These findings were reproduced considering 12 other data sets 
(Supplementary Analysis 1b). c) The human proteome sequence database was modified, 
substituting every tyrosine residue with a phenylalanine (mass difference of −15.994915 
Da). Unrestricted search error was estimated from the frequencies of “base” peptide 
sequences (grey) or substituted phenylalanine-containing peptides (red) reported by each 
algorithm that conflicted with results returned by a standard database search with SEQUEST 
(Online Methods). Only TagGraph reported results with an empirically calculated error rate 
close to the expected 1.99% upper limit, assuming each algorithm’s results were filtered to a 
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1% FDR (Online Methods). Open Search methods using SEQUEST14 and MSFragger15 

were not evaluated for incorrect PTM localization because they do not directly localize 
modifications to specific residue positions. Values are reported for peptide-spectrum 
matches as provided in Dataset 1 (https://taggraph.page.link/Datasets). *Byonic was run on 
just 1/12 of the A375 data set due to search speed limitations (see Online Methods).

Devabhaktuni et al. Page 27

Nat Biotechnol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://taggraph.page.link/Datasets


Figure 3. TagGraph extends deep proteome characterization to post-translational modifications.
a) TagGraph confirmed the majority of identifications made by Kim et al.24 (Dataset 5 
(https://taggraph.page.link/Datasets)), but also expanded unique peptide identities from the 
human proteome dataset over three-fold relative to those originally reported. b) Categorical 
breakdown of unique peptide forms (distinguishing PTMs) identified by TagGraph. As 
expected, the majority of peptides identified by both TagGraph and Kim et al. correspond to 
tryptic peptides. Peptides identified by TagGraph but not Kim et al. primarily originated 
from non-tryptic peptides and peptides with unanticipated modifications. Post-isolation 
modifications comprised the most prevalent identification category in this dataset. c) Mass 
shifts (modified amino acid mass – unmodified amino acid mass) corresponding to all 
modifications identified by TagGraph from the human proteome dataset reveal a complex 
modification landscape. Numbers of identifications (peptide-spectrum matches) span six 
orders of magnitude. Despite the presence of several highly abundant post-isolation 
modifications (e.g., formylation), the depth of the proteomic profiling achieved in this 
dataset made it possible to characterize lower abundance post-translational modifications. 
Inset: modification frequencies without log transformation. d) Ranked relative abundances 
of 2,576 PTM-amino acid combinations, as estimated by the number of spectra bearing each 
from the human proteome dataset. Ten of these are highlighted; all modifications are 
represented in Dataset 9 (https://taggraph.page.link/Datasets). e) Over 90% of modification 
sites (39,954 of 44,232) identified by TagGraph from the human proteome dataset were not 
among 52,959 previously described in Uniprot. However, the overlap in the sites reported by 
TagGraph and Uniprot (4,278) is highly significant (p-value = 1e-308, one-tail Fisher’s exact 
test).
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Figure 4. TagGraph reveals insights into PTM dynamics, function, and regulation.
a) Sequence logos corresponding with select TagGraph-identified PTMs, as generated by 
WebLogo59. b) Significantly enriched gene ontologies associated with prevalent post-
translational modifications (yellow, 1% FDR (one-tail Fisher’s exact probability, Benjamini-
Hochberg corrected)). Ontologies and significances were assigned with the DAVID web 
tool60. See Dataset 12 (https://taggraph.page.link/Datasets) for the entire list enriched 
ontologies. Ontologies significantly enriched among post-isolation modifications were 
excluded to correct for abundance-biased PTM detection (Supplementary Fig. 12). c) 
Arginine methylation and dimethylation distribution across proteins and tissues. The 64-
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most abundant monomethylated or dimethylated Arg sites from the entire data set are 
displayed across the y-axis, along with corresponding protein expression levels (49 
proteins). Three modification sites on HNRNPA3 and SFPQ are highlighted for their distinct 
arginine monomethylation and dimethylation patterns across the tissues, despite 
demonstrating near uniform protein levels. Methyl modifications on MBP and HSPA8 are 
highlighted for their tissue specificity and ubiquity (respectively). Proteins were ordered by 
hierarchical clustering. PTMs were arranged to match their substrate proteins. All 
methylation sites are reported in Dataset 13 (https://taggraph.page.link/Datasets). d) 
Stoichiometry distributions vary for different PTMs, giving insight into their regulation and 
function. Box plots indicate the average (circle) and median (horizontal bar) values, 25th 

quartile and 75th quartile (box), and minimum and maximum (whiskers) stoichiometry 
values, measured from n=920 (dimethyl arginine), n=14,888 (hydroxylproline) n=9,287 
(phosphoserine), and n=17,816 (n-terminal acetylation) site and tissue combinations. e) 
Several proteins were found to be heavily modified in this data set. Histogram shows the 
number of proteins identified with the indicated number of distinct PTMs (site and 
modification). Of note, 921 distinct PTM sites were identified for human serum albumin. f) 
TagGraph identified both known and novel Histone H3 PTM sites (Dataset 15 (https://
taggraph.page.link/Datasets)); a subset of which are shown. Site positions are numbered 
excluding the initiating methionine. PTMs circled in black are present in Uniprot. See 
Dataset 15 (https://taggraph.page.link/Datasets) for more detailed Histone PTM annotations.
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Figure 5. Characterization of hydroxylation, an un-enrichable PTM, enabled by TagGraph.
a) TagGraph extensively expanded known hydroxylation sites across the human proteome; a 
selection of the most abundant PTMs on COL1A2 are shown as an example; where three 
proline hydroxylation site were previously reported (P420, P441, P444)43, 166 are shown 
along with 25 other types of PTMs on this single protein (Dataset 16 (https://
taggraph.page.link/Datasets)). b) PTMs identified in (a) were found to vary in abundance 
across tissues. Many hydroxylations displayed uniform abundance across solid tissues (i.e., 
P330, P642), whereas others displayed tissue-specific abundance variations (P408). c) 
Comparison between modification and cancer mutation sites (COSMIC). The size of each 
bubble indicates the number TagGraph-identified modification sites that were also found to 
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be mutated in sequenced tumors (Dataset 17 (https://taggraph.page.link/Datasets)). The 
expected value and significance (one-tailed Fisher’s exact test) of this overlap was 
determined from the background of all peptides confidently identified by TagGraph (Online 
Methods, Dataset 18). Proline hydroxylation sites significantly overlapped with mutation 
sites both overall (p =6e-11, Fisher’s exact test; p=1e-9, Bonferroni corrected) and when 
restricted to non-collagen domain containing proteins (p =4e-6, Fisher’s exact test; p=7e-5, 
Bonferroni corrected), suggesting that mutating these sites’ PTM capacity plays a role in 
cancer pathogenesis. d) Correlations between protein abundance and total PTM profiles 
across tissues (Supplementary Fig. 14) suggest candidate regulatory enzymes and functional 
associations. Proteins that highly correlated with lysine hydroxylation (x-axis), asparagine 
hydroxylation (y-axis) or both are highlighted (yellow, blue, or green, respectively). PLOD1 
(in purple), the enzyme responsible for lysine hydroxylation in collagen emerged among the 
proteins most correlated with this modification. Protein expression levels were correlated 
with PTM stoichiometry across all tissues (Online Methods).
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Table 1.

Top 10 Post-isolation, post-translational, and previously uncharacterized amino acid modifications identified 
from the Kim et al. dataset.

Category
a

Modification
b

Specificity
c

Mass Shift
d

Unique Peptides
e

Peptide-Spectrum Matches
f

Sites
g

Post-isolation Carbamylation Peptide N-term +43.01 63,302 254,382 70,207

Formylation Peptide N-term +27.99 47,329 293,863 57,371

Carbamidomethylation Peptide N-term +57.02 42,310 304,898 52,899

Oxidation Met +15.99 42,193 784,001 41,115

Deamidation Asn +0.98 21,064 252,713 22,609

Acetaldehyde Peptide N-term +26.02 15,016 132,086 20,402

Deamidation Gln +0.98 8,911 36,897 13,015

Gln->pyroglutamate Peptide N-term Gln −17.03 8,372 123,277 7,966

Carbamidomethylation Lys +57.02 7,575 40,422 12,355

Carbamylation Lys +43.01 6,932 30,245 11,409

Post-translational Phosphorylation Ser +79.97 3,466 15,798 3,729

Met-loss + Acetyl Protein N-term Met −89.03 2,391 39,799 1,705

Hydroxylation Pro +15.99 1,901 26,348 3,079

Citrullination Arg +0.98 1,551 5,328 2,020

GlyGly Lys +114.04 871 2,403 1,613

Allysine Lys −1.03 861 2,801 1,670

Hydroxylation Lys +15.99 766 3,316 1,090

Cyano Cys −32.03 601 2,591 567

Carboxylation Glu +43.98 467 726 913

Acetylation Lys +42.01 455 1,323 1,196

Previously undefined Unknown Peptide N-term +12.00 3,834 14,743 3,692

Unknown Peptide N-term +51.01 2,569 8,834 2,698

Iron(III)h Asp, Glu +52.92 2,552 9,843 1,468

carbamidomethyl and 
formyl on same 

residueh Peptide N-term
+85.02 1,632 4,848 2,072

disulfide bondh
Cys with nearby 
Cys −116.06 1,529 9,788 1,840

carbamidomethyl on 

C-terminus or Argh Peptide C-term Arg
+57.02 1,372 3,914 3,150

Unknown Peptide N-term +83.04 1,280 4,632 1,948

carbamidomethyl and 
pyro-glutamination on 

same residueh Peptide N-term Glu
+39.01 1,099 3,622 908

Unknown Peptide N-term +23.98 1,059 2,919 1,381

reaction of N-terminal 
carbamidomethyl with 

internal Meth

Peptide N-term, 
co-occurs with 
dethiomethyl 
modification of 
internal Met

+105.02 957 4,907 991
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a)
Top ten modifications of the three indicated categories are shown, ordered by the number of unique peptides identified in the Kim et al. human 

proteome dataset. Categories assigned based on the likely modification identity, as determined by TagGraph.

b)
Modification identities assigned by TagGraph, based on observed mass shifts, modification specificity, and evidence in the Unimod resource.

c)
Specificity determined from the sites within modified peptdies to which observed mass shifts were assigned.

d)
Mass shift measured from the difference between an observed amino acid residue’s monoisotopic mass and the expected value. Negative values 

indicate a net mass loss.

e)
Number of unique peptide sequences bearing the annotated modification. Does not include peptide sequences identified with multiple 

modifications.

f)
Total number of spectra in which indicated modification was confidently identified.

g)
Total number of distinct amino acid residue sites bearing indicated modification.

h)
Hypothetical identity of mass shift

Nat Biotechnol. Author manuscript; available in PMC 2019 October 01.


	Abstract
	Editor Summary:
	Introduction
	Results
	Development of TagGraph
	Hierarchical Bayes Model for decoy-free error estimation
	The human proteome’s broad modification landscape
	Quantifying PTMs without biochemical enrichment
	Characterizing multiple PTM types on highly modified proteins
	Enrichment-free discovery and characterization of protein hydroxylation

	Discussion
	ONLINE METHODS
	A375 Dataset
	Sample processing
	Mass Spectrometry

	Synthetic peptide confirmation data set
	Phosphorylation–enriched proteome data set
	Draft human proteome data set
	De novo search engine comparisons
	Database search engine comparisons
	Algorithm benchmarking with the A375 data set
	PEAKS PTM:
	MODa:
	Byonic:
	Open Search (SEQUEST):
	Open Search (MSFragger):

	Unrestricted modification discovery from phosphorylation-enriched data set
	SEQUEST:
	PEAKS PTM:
	Open Search (SEQUEST):
	Open Search (MSFragger):

	Unrestricted modification discovery from low-resolution MS/MS spectra.

	Target-decoy database construction and utilization
	TagGraph Parameters
	PTM error estimation with amino acid-substituted proteome
	Abundance calculations
	Protein abundance calculation
	Site abundance and stoichiometry calculations

	Histology images
	Gene ontology analysis
	COSMIC dataset comparison
	Protein-PTM correlation analysis
	Statistics and reproducibility
	Code availability.

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.

