
TAGME: on-the-fly annotation of short text fragments

(by Wikipedia entities)

Ferragina Paolo Scaiella Ugo

Dipartimento di Informatica
University of Pisa, Italy

{ferragina,scaiella}@di.unipi.it

Abstract

In this paper we address the problem of accurately
and efficiently cross-referencing text fragments with
Wikipedia pages, in a way that structured knowledge
is provided about the (unstructured) input text by
resolving synonymy and polysemy. We take inspira-
tion from the invited talk of Chakrabarti at WSDM
2010, and extend his proposed scenario from the an-
notation of entire documents to the annotation of
short texts, such as snippets of search-engine results,
tweets, news, etc.. These short and poorly composed
texts pose new challenges in terms of efficiency and
effectiveness of the annotation process, that we ad-
dress by proposing Tagme, the first system that per-
forms an accurate and on-the-fly annotation of these
short textual fragments. A large set of experiments
shows that Tagme significantly outperforms state-of-
the-art algorithms [11, 15] when they are adapted to
work on short texts, and surprisingly, it results com-
petitive (if not superior!) on long texts with the plus
of being faster.

1 Introduction

The typical IR-approach to indexing, clustering, clas-
sification and retrieval, just to name a few, is that
based on the bag-of-words paradigm [3]. In recent
years, a good deal of work attempted to go beyond
this paradigm with the goal of improving the search

experience on unstructured textual data as well as
on structured or semi-structured data. In his invited
talk at WSDM 2010, S. Chakrabarti surveyed this
work categorizing it in three main classes: (a) adding
structure to unstructured data, (b) adding structure
to answers, and (c) adding structure to queries while
avoiding the complexity of elaborate query languages
that demand extensive schema knowledge. In this pa-
per we will be concerned with the first issue, which
consists of identifying a sequence of terms (also called
spots in [11]) in the input text and of annotating
them with un-ambiguous entities drawn from a cat-
alog. The choice of the catalog is obviously crucial
for the success of the approach; currently several sys-
tems adopt Wikipedia pages or derived concepts as
entities (see e.g. [11, 15] and Sect. 3 for more details),
because of their ever-expanding number (more than
3 million English pages, and more than 500K pages
in each major European language) and the fact that
Wikipedia offers the best trade-off between a catalog
with a rigorous structure but with low coverage (like
the one offered by the high-quality entity catalogs s.t.
WordNet, CYC, OpenCYC, TAP [8]), and a large text
collection with wide coverage but unstructured and
noised content (like the whole Web). These systems
have already shown that this annotation process pro-
vides a stunning contextualization of the input text
helpful for improving subsequent searching, classifi-
cation or clustering tasks.

In this paper we add to this flow of work the
specialty that the input texts to be annotated are

1

ar
X

iv
:1

00
6.

34
98

v1
 [

cs
.I

R
]

 1
7

Ju
n

20
10

very short, namely composed of few tens of terms.
The context of use we have in mind is the annota-
tion of either the results of a search engine (a.k.a.
web-snippets), or the tweets of a Twitter channel,
or the items of a news feed, or the posts of a blog,
etc.. These poorly composed texts pose new chal-
lenges in terms of efficiency and effectiveness: (1)
the annotation should occur on-the-fly, because in
those contexts data may be retrieved at query time
and thus cannot be pre-processed; (2) the annotation
needs new algorithms because the input texts are so
short that it is difficult to mine significant statistics
and rely on other good contextual-information which
would be surely available in the case of the “entire
document”.

Given these goals, we have designed Tagme,1 a
system that is able to accurately and efficiently cross-
reference short text fragments with Wikipedia pages
(a.k.a. senses/concepts), in a way that it resolves
synonymy and polysemy (in a language-independent
manner).2 This is extremely informative, with impli-
cations which go far beyond the enrichment of a text
with explanatory links (as also pointed out by Cha-
krabarti in his WSDM10’s talk). In fact, any task
that is currently addressed using the bag-of-words
model, or with knowledge obtained from less com-
prehensive knowledge bases (such as the ones men-
tioned above), could benefit from using Tagme to
draw upon (the millions of) Wikipedia topics instead.

Technically speaking, Tagme follows the approach
proposed in [11, 15] and thus uses Wikipedia anchor
texts as entities and their (potentially many) pages
linked in Wikipedia as possible annotations for them.
Tagme receives a short text in input, detects the an-
chors occurring in it, and then tries to annotate them
in a unique way by possibly discarding some of these
anchors if they are considered un-important or un-
meaningful for the topics discussed in the input text.
Tagme aims, like prior work [11], at the collective
agreement among all anchor annotations by deploy-
ing a powerful relatedness function among concepts

1A preliminary version of the software can be tested at
http://tagme.di.unipi.it.

2Tagme runs on English-Wikipedia but, of course, noth-
ing prevents to make it work on other languages present in
Wikipedia.

(proposed in [14]) together with some other statistics
drawn from Wikipedia (see Sect. 2). However, unlike
prior works [11, 15], Tagme deploys this information
within new scoring functions which take into account
the sparseness of the anchors in the short input text,
and allow to disambiguate and possibly discard some
of the candidate annotations in a way that is fast and
effective in the quality of the final assignment.

The performance of Tagme has been validated
through a large set of experiments which involve
standard datasets, as the ones offered by iitb [11]
and consisting of over a hundred manually annotated
Web pages and tens of thousands of text entities, as
well as new datasets that we have constructed and
make available to the community (see Sect. 5.3). Our
datasets consist of millions of short text fragments
drawn from Wikipedia and Tweeter. Overall our
experiments show that Tagme significantly outper-
forms state-of-the-art algorithms [11, 15] when they
are adapted to work on short texts, and surprisingly,
it results also competitive (if not superior!) on long
texts with the plus of being much faster.

2 Notation and terminology

A (text) anchor (referred also as spot in [11]) for a
page p is a text used in another page to point to p.
This concept is borrowed from the Web search, where
anchors were used to enrich Web-page descriptions
for indexing purposes. In the Wikipedia context, an
anchor text pointing to p can be the title of p, one of
its synonyms or acronyms, or even long phrases which
might be (much) different from a syntactic point of
view from p’s title. As an example, an anchor text
for the page “Nintendo DS” is the acronym “nds”
as well as the phrase “Gameboy ds” or “Nintendo
Dual Screen”. For coverage purposes, we assume to
enrich all anchors of p with other descriptive phrases
such as the title of the Redirect pages that link to
p. Overall, this approach derives a total of about 8M
distinct anchors from Wikipedia (English).

Because of polysemy and variant names, the same
anchor a may occur in Wikipedia pointing to many
different pages. So we denote by P (a) the set of all
pages linked by a, and use some well-known basic

2

http://tagme.di.unipi.it

scoring functions to evaluate the “significance” of an
occurrence of a as an anchor or the “significance”
of annotating anchor a with the page p ∈ P (a). In
particular, we set: freq(a) as the number of times
the text a occurs in Wikipedia (as an anchor or not);
link(a) as the number of times the text a occurs as an
anchor in Wikipedia (of course link(a) ≤ freq(a));
lp(a) = link(a)/freq(a) denotes the probability that
an occurrence of a has been set as an anchor (a.k.a.
link probability [15]).

Given a page p ∈ P (a), we call the prior probabil-
ity Pr(p|a) as the commonness of page p among the
senses of a. This value denotes the probability that,
given an occurrence of a as anchor, this is an anchor
to page p. It is clear that the entropy of Pr(p|a), com-
puted over all p ∈ P (a), would give us a measure of
the ambiguity of a, in terms of “related” Wikipedia
senses, and thus it would measure the difficulty to an-
notate a with some page p ∈ P (a). This annotation
will be denoted by a 7→ p. Often a has more senses,
thus |P (a)| > 1, so we call disambiguation the pro-
cess of selecting one of the possible senses of a from
P (a). It goes without saying that not all occurrences
of text a should be considered as text anchors: think
to the occurrence of the single term “act”, sometimes
it refers to meaningful entities like Act of Parliament,
act of a drama, or is the acronym of the Australian
Capital Territory; some other times it is used as a
verb. Thus, by following [11] we introduce a fake
page na and use the annotation a 7→ na in order
to denote that an occurrence of anchor a has been
discarded, which means “no assignment” for that oc-
currence of a in the input text.

Finally, we will denote by AT the set of all anchors
detected in a text T , and use M(AT) = {a 7→ p | a ∈
AT , p ∈ P (a)∪{na}} to denote the set of all selected
assignments for the anchors in T . The goodness of
an assignment process depends on the significance
of the mappings in M(AT). The main goal of this
paper will be to efficiently compute a good assignment
M(AT) for input texts T which are short.

3 Related Works

The literature offers two main approaches to contex-
tualize a (possibly short) text in order to empower
subsequent IR-steps such as clustering, classification,
or mining.

One approach consists of extending the classic
term-based vector-space model with additional di-
mensions corresponding to features (concepts) ex-
tracted from an external knowledge base, such as
DMOZ [5, 6], Wikipedia [7, 1, 10], or even the whole
Web (such as the Google’s kernel [17]). Probably
the best achievements have been obtained by query-
ing Wikipedia (titles or entire pages) by means of
short phrases (possibly single terms) extracted from
the input text to be contextualized. The result pages
(typically restricted to the top-k) and their scores
(typically tf-idf) are used to build a vector that is con-
sidered the “semantic representation” of the phrase.
Vectors are then combined (via centroid or other min-
ing approaches) to derive the “semantic representa-
tion” of the input text, which is finally used in clas-
sification [7], clustering [1, 10], or searching [21] pro-
cesses. The pro of this approach is to extend the bag-
of-words scheme with more concepts, thus possibly
empowering the identification of related texts which
are syntactically far apart. The cons is the contam-
ination of these vectors by un-related (but common)
concepts retrieved via the syntactic queries.

In order to overcome these difficulties, more and
more authors have recently tried to annotate only
the salient entity references present in the input
text, without resorting to the vector-space model.
Their key idea is to identify in the text short-and-
meaningful sequences of terms and connect them to
an unambiguous sense (entity) drawn from a cata-
log. Entities can be either Named Entities (see e.g.
[19, 22]) drawn from a small set of specifically recog-
nized types—most often People and Locations— or
they can be short phrases (see e.g. [11, 15]) drawn
from a large knowledge base, such as Wikipedia. In
the former case, substantial training or human effort
is needed in knowledge representation and linguis-
tics which eventually provides a very “coarse” an-
notation. A typical example consists of two texts
that contain the entity Michael Jordan; these sys-

3

tems would certainly recognize that it is the name
of a person, but they would miss to disambiguate
which Michael Jordan the occurrence is referring to
(e.g. Wikipedia reports at least seven VIPs with that
name).

More recently, some authors tried to deploy much
larger catalogs composed of millions of senses, typi-
cally represented by Wikipedia pages or derived con-
cepts. They are promising because of the ever-
expanding size of Wikipedia (more than 3 million
English pages, and more than 500K pages in each
major European language) and because it offers the
best trade-off between a rigorous structure with low
coverage (like the one offered by the high-quality en-
tity catalogs such as WordNet, CYC, OpenCYC, TAP [8]),
and the large coverage of collections composed by
unstructured and noised texts (like the whole Web).
Wikipedia is probably the most impressive example
of the Web-2.0 trend in which tagging and catalogu-
ing of knowledge has been opened to the masses: it
has 340K categories and 3M pages, and keeps up with
worlds event on an hourly or daily basis. The nega-
tive side of using Wikipedia as an entity catalogue is
that there is little schema, the authorship is missing,
and its categories are “haphazard, redundant, incom-
plete and inconsistent” [12].

This is the reason why more and more authors are
trying to extract some useful structured knowledge
from its content and links. For example, [9] derived
concept relations by exploiting some special pages
that are present in Wikipedia like Disambiguation
pages (for polysemy), Redirect pages (for synonymy)
and Category links (for hyperonymy). Other authors
(such as [14]) proposed to deploy the links between
Wikipedia pages to infer other concept relations, and
[11] showed that this improves the precision and re-
call of what is achievable via just Wikipedia cate-
gories. Yet other authors tried to build Wikipedia-
derived ontologies: such as YAGO [18], Kylin [20]
and DBpedia 3, in order to provide a machine read-
able and consistent representation of the entities and
facts contained in Wikipedia. More recently, some
research groups proposed a new approach which con-
sists of annotating an input text by cross-referencing

3http://dbpedia.org

some of its fragments with proper Wikipedia arti-
cles. As observed in the Introduction and in [11, 15],
this approach has implications that go far beyond the
enrichment of texts with explanatory links because
it can provide structured knowledge about any un-
structured fragment of text. This way, any task that
is currently addressed with bags of words-indexing—
such as clustering, retrieval, and summarization, just
to name a few— could use these techniques to draw
on a vast network of concepts and semantics (refer to
Chakrabarti’s invited talk).

A common feature among all these approaches is
that they exploit few million anchor texts in Wiki-
pedia as spots to be annotated via two main steps:
anchor disambiguation and anchor pruning. Disam-
biguation is the task that selects the best sense for an
anchor (i.e. assigns an anchor to a Wikipedia page
that best describes its meaning); pruning is the pro-
cess that possibly discards some detected anchors be-
cause not interesting for the contextualization of the
input text. Recall that (see Sect. 2), this means as-
sociating an anchor to the fake page na.

To our knowledge the first work that addressed the
problem of linking anchor texts to Wikipedia pages
was Wikify [13]. Here, disambiguation is performed
by comparing the context of the anchor (i.e. terms
that surround it in the input text) with the context
of all its possible senses (i.e. terms that surround
citations of those senses/pages in Wikipedia); anchor
pruning is performed by using a threshold on the link
probability of the selected annotation (see Sect. 2).
This approach yields a disambiguation precision of
93% (recall is 83%), but it may be slow in that it
requires the comparison among many term-vectors
that cannot be kept in main memory. This clearly
prevents its use in our on-the-fly annotation process.

In the same year, Cucerzan [4] proposed an an-
notation process that in some sense mixes the two
approaches above— feature-based vs entity-based—
and was the first to recognize the importance of
the inter-dependence between entity annotations. It
first performs anchor pruning by using NE-techniques
that exploit Wikipedia and Web statistics; then it
does disambiguation by representing each page p with
an high-dimensional feature vector f(p) that exploits
context terms (of the anchors pointing to p) and cat-

4

http://dbpedia.org

egory links of p. Then a vector g(P) of the same
type is built for the entire input text T by consider-
ing terms and category links drawn from the set of all
possible senses of the anchors occurring in T : namely,
P = {p | p ∈

⋃
a∈AT

P (a)}. Then the score of an
annotation a 7→ p is computed as the dot-product
between f(p) and g(P \{p}). This takes into account
the candidate annotations of the other entities in T ,
but presents two major limitations: it is based on
the Wikipedia category hierarchy (see above), and
g(P \ {p}) is contaminated with all possible disam-
biguations of all anchors, so its use for “agreement
with the majority” may be misleading.

Recently Milne and Witten [15] proposed an ap-
proach that yielded considerable improvements by
hinging on three main ingredients: (i) the identifi-
cation in the input text of the set C of so-called
context-pages, namely pages drawn from anchors that
are not ambiguous (because they link to just one
page/sense); (ii) a measure rel(p1, p2) of relatedness
between two pages p1, p2 based on the overlap be-
tween their in-linking pages in Wikipedia; and finally
(iii) a notion of coherence of a page p based on the
relatedness of p to the other context pages c ∈ C.
Given these, the disambiguation of an anchor a is
then obtained by using a classifier that exploits for
each sense p ∈ P (a): the commonness Pr(p|a) of the
annotation a 7→ p, the relatedness rel(p, c) between
the candidate sense p and all context-pages c ∈ C,
and the coherence of each c with respect to the en-
tire input text. Then anchor pruning is performed
by using another classifier that mainly exploits the
location and the frequency of the anchor in the input
text, the link probability, the confidence of disam-
biguation (assigned by the classifier at the previous
step) and the relatedness of the disambiguated sense
with respect to the un-ambiguous pages c ∈ C. In
[15] the authors showed an impressive precision of
97% for disambiguation and an F-Measure of 74.8%
for pruning. It must be said that this approach is
designed to deal with a text that is “reasonably long
and focused”4, so it seems unsuitable for our context
of annotation where C might be empty or too small

4http://wikipedia-miner.sourceforge.net This is the re-
sponse message of the system by Milne&Witten when the input
text is too short.

in short texts. Experiments in Sect. 5.6 validate such
negative expectations!

Last year, Chakrabarti and his group [11] proposed
a method based on two main novelties. The first one
was to score an annotation a 7→ p with two terms: one
local to the occurrence of a and the other global to the
text fragment. The local score involves the context
terms of a in the input text and 12 features built upon
the context terms of p and some similarity functions.
The global score involves all the other annotations
a′ 7→ p′ detected for the input text and, inspired by
[14], this score is computed as the sum of the related-
ness between p and the other pages p′. The average
of these two scores provides the score for an assign-
ment a 7→ p, given the others. The second novelty of
this paper was to model the annotation process as a
search of the mapping of all anchors that maximizes
the sum of their scores. Actually Chakrabarti et
al. fused the two steps— anchor disambiguation and
pruning— by introducing the fake entity na (whose
relatedness with other pages is zero), and a param-
eter ρna in the objective function that balances pre-
cision vs recall. Extensive experiments showed that
this approach overcomes Cucerzan’s algorithm, yields
a precision score comparable to Milne&Witten’s sys-
tem, but reaches a considerable higher recall. Unlike
the others, this approach does not offer any evidence
that it could work badly on short fragments: actu-
ally, the only local score achieved high performance
in [11]. However, as it is shown in Figure 13 of [11],
the system is not fast since it takes > 2 seconds over
texts of about 15 anchors. This is acceptable for an
off-line setting, like the one considered in [11], but
it is unsuitable for our setting where we wish to an-
notate on-the-fly many text fragments (think to the
text snippets of a search engine, or a tweet flow).

In the light of this literature, we will compare
in Sect. 5 our system Tagme against the two
best-known systems: namely, Chakrabarti’s and
Milne&Witten’s one, together with some other base-
line systems that will be fast and behave surprisingly
well on our datasets.

5

4 Our Proposal

In this section we describe Tagme, a software system
that annotates short fragments of text on-the-fly and
with high precision by cross-referencing some mean-
ingful text spots (i.e. anchors drawn from Wikipe-
dia) with pertinent concepts (i.e. Wikipedia pages).
This is obtained in two main phases, namely anchor
disambiguation and anchor pruning. Disambiguation
will be based on finding the “best agreement” among
the concepts assigned to the anchors detected in the
input text, while pruning will evaluate the “signifi-
cance” of an anchor-sense annotation by considering
the relatedness among the assigned senses and their
link probability, in order to possibly drop the annota-
tions which result non-pertinent with the topics the
input texts talks about.

So the structure of Tagme mimics the one of
[11, 15]’s systems and, as done in these papers, it aims
at the collective agreement among all anchor annota-
tions. However, unlike prior works (and as detailed
in the next sections), Tagme deploys some new scor-
ing functions that evaluate the “significance” of an
anchor annotation in a way that is fast and effective
in the quality of the final assignment. The following
subsections will detail our algorithmic choices, and
then experiment Tagme showing that it achieves the
best known precision/recall with on-the-fly speed of
annotation over short text fragments. When Tagme
is adapted to work on long texts, our experiments
will show that it competes favorably against the best-
known systems resulting superior either in annotation
accuracy (wrt. [15]) or much faster (wrt. [11]).

4.1 Preprocessing

Tagme indexes some distilled, but useful, informa-
tion drawn from the Wikipedia snapshot of Novem-
ber 6, 2009.

Anchor dictionary. We took all anchors present in
Wikipedia pages, augmented them with the titles of
Redirect pages plus some variants of the page-titles,
as suggested in [4]. We then removed the anchors
composed by one character or just numbers, and
also discarded all anchors a whose absolute frequency
(link(a) < 2) or its relative frequency (lp(a) < 0.1%)

is small enough to argue that they are unsuitable
for annotation and probably misleading for disam-
biguation. The final dictionary contains about 3M of
“valid” anchors, and it is indexed by Lucene5.

Page catalog. We took all Wikipedia pages and
discarded disambiguation pages, list pages, and redi-
rect pages, because un-suitable as concepts/senses.
About 2.7M pages remained, they were indexed with
Lucene by building documents consisting of two
fields: the first one contains the body of the page,
the second one contains all anchors and context terms
that are used as citations to that page.

In-link graph. This is a directed graph whose ver-
tices are the pages in the Page Catalog, and the
edges are the links among those pages as derived
from the Wikipedia-dump called “Page-to-page link
records”. This dump consists not only of the links
inserted in the page body, but also of links that are
added by template expansions. This expands the “in-
body links” of a factor 2, thus obtaining a graph of
about 147M edges. This graph is indexed in internal-
memory by Webgraph6, taking 190Mb.

4.2 Anchor parsing

Tagme receives a short fragment of text as input,
tokenizes it, and then detects the text anchors by
querying the Anchor dictionary. Since anchors may
overlap or be substring one of another, we need to
detect their boundaries. We simplified the approach
of [4] in the following way: if we have two anchors
a1, a2 s.t. a1 is a substring of a2, we drop a1 only if
lp(a1) < lp(a2). This is because a1 is typically more
ambiguous than a2 (being one of its substrings), and
editors like to link more specific (i.e. longer) term
sequences. Therefore, we prefer to discard a1 in or-
der to ease the subsequent disambiguation task. As
an example, consider a1 = “jaguar” and a2 = “jaguar
cars”: in this case if we didn’t discard a1, disambigua-
tion task would uselessly handle all possible senses of
“jaguar” thus slowing down the process and making
it more cumbersome.

5http://lucene.apache.org
6http://webgraph.dsi.unimi.it

6

http://lucene.apache.org
http://webgraph.dsi.unimi.it

On the other hand, it might be the case that
lp(a1) > lp(a2). Now since freq(a1) ≥ freq(a2),
this may occur because link(a1) � link(a2). This
is the case when a2 adds a non-meaningful word to
a1 that nonetheless identifies some senses. As an ex-
ample, consider a1 = “act” and a2 = “the act” for
which it is lp(a1) > lp(a2): in fact, “act” refers to
a huge amount of possible senses (Act of parliament,
Australian Capital Territory, Act of a drama, Group
Action, etc. etc.), while “the act” is the name of a
band and the title of a musical with a consequent
small number of link occurrences. In this case we
keep both anchors because, at this initial step of the
annotation process, we are not able to make a prin-
cipled pruning.

4.3 Anchor disambiguation

This phase takes inspiration from the algorithmic
principles and the relatedness function deployed in
previous works [11, 14, 15], nonetheless we special-
ize and/or enrich them to work in our context of
short text fragments and to achieve on-the-fly an-
notation. More precisely, as in [11], we aim for
the collective agreement among all anchors detected
in the (short) input text, and thus deploy among
their associated senses/pages the relatedness func-
tion proposed in [14]; moreover, as in [15], we deploy
the context-anchors (if any) to boost the relatedness
among the detected un-ambiguous senses. However,
unlike these two approaches, we propose new disam-
biguation scoring-functions that are fast to be com-
puted and take into account the sparseness of the
anchors which is typical in the short input texts. Al-
though simple, our scoring functions allow to improve
precision-and-recall of the known approaches on short
text fragments and, surprisingly, obtain competitive
performance on the long ones (see Sect. 5.5).

Given a set of anchors AT , detected in the short
input fragment T , Tagme tries to disambiguate each
anchor a ∈ AT by computing a score for each pos-
sible sense pa of a (hence pa ∈ P (a)) that is based
on a new notion of “collective agreement” between pa
and the possible senses of all other anchors detected
in T . To do this, we introduce a voting scheme that
computes for each other anchor b ∈ AT \ {a} its vote

to the annotation a 7→ pa. Given that b may have
many senses (i.e. |P (b)| > 1) we will compute this
vote as the average relatedness between each sense pb
of b and the sense pa we wish to associate to a. Since
not all possible senses of b have the same (statisti-
cal) significance, we weight the contribution of pb in
this voting scheme by means of its commonness (i.e.
Pr(pb|b)). The formula is:

voteb(pa) =

∑
pb∈P (b) rel(pb, pa) · Pr(pb|b)

|P (b)|

We notice that if b is un-ambiguous, it is Pr(pb|b) =
1 and |P (b)| = 1, so we have voteb(pa) = rel(pb, pa)
and hence we fully deploy the unique senses of the
un-ambiguous anchors (as it occurred in [15]). But if
b is polysemous, only the senses pb related to pa will
mainly affect voteb(pa) because of the use of the re-
latedness score rel(pb, pa). This is the key difference
with the scoring proposed by Milne&Witten, based
only on un-ambiguous anchors (here possibly miss-
ing) and by Cucerzan, which does not use any weight-
ing and thus results contaminated by un-meaningful
senses (see Sect. 3). The net result is a significant
improvement in Precision/Recall bounds, as shown
in Sect. 5.5. As for [11], we do not use vectors over
terms and for all involved senses (pages) with con-
sequently slowdown in efficiency, but we implicitly
used few and short vectors, one per anchor and one-
dimension per sense (possibly pruned, see below).

Finally, the score for the annotation a 7→ pa
is computed as the sum of the votes given by
all other anchors b detected in T : rela(pa) =∑

b∈AT \{a} voteb(pa). We use this score in combina-

tion with the commonness Pr(pa|a) to disambiguate
the anchor a and thus select the best annotation
a 7→ pa. To do this we developed two different rank-
ing algorithms: Disambiguation by Classifier (shortly
dc) and Disambiguation by Threshold (shortly dt).
dc uses a classifier that takes into account these
two values as features and computes a “probability
of correct-disambiguation” for all senses pa ∈ P (a).
Among all pa ∈ P (a), dc selects the one reporting
the highest classification score. On the other hand,
dt recognizes a roughness in the value of rela among
all p ∈ P (a), so it computes the best sense pbest that

7

achives the highest relatedness value with a and then
identifies the set of other senses in P (a) that yield
about the same value of rela(pbest), according to some
fixed threshold ε. Finally dt annotates a with the
sense that obtains the highest commonness among
these top-ε senses.

Given that speed is a main concern in our context,
both dc and dt discard from the above computa-
tion all senses whose prior-probability is lower than
a properly set threshold τ . In fact, as illustrated in
[15], the distribution of Pr(p|a) follows a power law so
we can safely discard pages at the tail of that distri-
bution. The setting of τ clearly affects the precision
of the disambiguation process: if τ is too large, preci-
sion decreases because we would discard many valid
senses; if τ is too small, speed and recall decrease. In
Sect. 5.5 we will perform a wide set of experiments
to evaluate these two algorithms and their parameter
settings.

A comment is in order at this point. Previous
works [4, 11, 13] deployed also the text surrounding
anchors for boosting the efficacy of the disambigua-
tion process. We tested these features in the design
of Tagme but we either got worse accuracy or slower
speed of annotation. For the lack of space we cannot
report these numbers, but we foresee to investigate
further the use of these terms (see Sect. 6).

4.4 Anchor pruning

The disambiguation phase produces a set M(AT) of
candidate assignments, one per anchor detected in
the input text T . This set has to be pruned in or-
der to discard the possible un-meaningful anchors a.
These “bad anchors” are detected via a novel and
efficiently-computable scoring function that takes into
account only two features: the link probability lp(a)
of the anchor a and the coherence of its candidate
annotation a 7→ pa (assigned by the Disambiguation
Phase) with respect to the candidate annotations for
the other anchors in M(AT). The link probability
is a simple yet effective feature for detecting signifi-
cant anchors, as it was shown in [15]. The coherence
with the un-ambiguous anchors was also shown to
be effective in [15], Tagme extends this notion to all
anchors present in T and computes it as the average

relatedness between the candidate sense pa for a and
the candidate senses pb for all other anchors b. More
precisely, let us define S as the set of distinct senses
assigned to the anchors of T after the Disambiguation
Phase, we compute:

coherence(a 7→ pa) =
1

|S| − 1

∑
pb∈S\{pa}

rel(pb, pa)

So the principle is to keep all anchors whose link
probability is high or whose assigned sense (page)
is coherent with the senses (pages) assigned to the
other anchors. We implemented this idea by com-
bining lp and coherence in one unique score, de-
noted by ρ(a 7→ p), obtained in two simple ways:
either we average the two scores as ρAVG(a 7→ pa) =
(lp(a) + coherence(a 7→ pa))/2; or we consider a lin-
ear combination of the form ρLR(a 7→ pa) = α · lp(a)+
β · coherence(a 7→ pa) + γ), where the 3 parameters
are trained via linear regression.

We also used some classifiers— such as C4.5,
Bagged C4.5, Support Vector Machine— in order to
provide a “probability of not-pruning” for an candi-
date annotation a 7→ p. We finally set a threshold
ρna so that if ρ(a 7→ p) < ρna then we remove the
annotation for a setting a 7→ na. The parameter ρna
allows to balance recall vs precision, and its impact
will be experimentally evaluated in Sect.5.6 where we
show that, although much simple in using just two
features, our pruning is effective and overcomes the
other (more complicated) state-of-the-art annotators
on short texts, still resulting competitive (if not su-
perior) on long texts.

5 Evaluation

In the following subsections we will address some key
questions that pertain with the efficiency and efficacy
of Tagme:

• How much is the coverage of Wikipedia’s anchors
in short text fragments like the ones occurring in
web-search snippets and tweets ? This is crucial
to understand how much useful can be the us-
age of Wikipedia anchors as entity catalog. (See
Sect. 5.1.)

8

Figure 1: Number of Wikipedia anchors found in web
snippets and tweets.

• How do best know annotators (such as [11, 15])
behave on short text fragments ? (See Sect. 5.4.)

• How much effective is the disambiguation
(Sect. 5.5) and pruning phases (Sect. 5.6) of
Tagme with respect to these best-known sys-
tems on short and long texts?

• Is Tagme fast in annotating short text frag-
ments, and how its speed compares with the
other known systems? (See Sect 5.7.)

5.1 Coverage by Wikipedia anchors

First we want to evaluate the coverage of Wikipedia
as entity catalog in the context of short fragments
of text drawn from the web. We consider two types
of text fragments: web snippets and micro-blogging
(namely, tweets), which constitute a worst-case set-
ting for an annotator because of their poor and much
short textual composition. We derived these datasets
by parsing about 5K tweets (of 10 terms on average)
and about 133K web snippets (of 20 terms on aver-
age)7.

7Tweets and web snippets are gathered by using the “The
1000 most frequent web search queries issued to Yahoo!
Search”. We randomly selected 300 queries from this dataset,
performed searches on Tweeter and collected first 20 results.
For web snippets, we used almost all queries in that dataset
and we collected top 200 results for each performed query from
a web search engine.

Figure 2: Distribution of Wikipedia anchors in web-
snippets by considering their link probability.

Figure 1 reports statistics on the number of Wiki-
pedia anchors found in those fragments: notice that
more than 93.9% tweets and 98.5% web-snippets have
at least 3 anchors. So Wikipedia offers an unexpected
large coverage of senses even in these challenging sce-
narios.

However this is just a quantitative test in that the
presence of an anchor is not a witness of its “signif-
icance”. So Figure 2 uses the link probability of an
anchor as an estimate for its meaningfulness, as sug-
gested in [13, 15], and plots the distribution of an-
chor’s link-probability among web-snippets (results
for Tweets are slightly lower, and not reported for
the lack of space). In particular, the Figure plots
for each lp-threshold the percentage of web-snippets
that have the top-lp above that threshold (Best), the
average among the top-3-lps above that threshold
(LP@3), and the average among the top-5-lps above
that threshold (LP@5). We notice that for a link-
probability larger than 6.5%, which [15] considered a
strong indication of a significant anchor, we get Best
¿ 95%, and LP@3/5 ¿ 90%. (For the tweets we get,
Best= 96%, LP@3 = 89%, LP@5 = 83%.) These re-
sults support our hypothesis that Wikipedia is a sig-
nificant entity catalog also for short text fragments
drawn from the Web.

9

5.2 Evaluation Measures

In order to evaluate the performance of the Disam-
biguation Phase in Tagme, we use standard pre-
cision and recall scores: precision = tp/(tp + fp)
and recall = tp/(tp + fn), where tp, fp and fn are
the number of true-positive, false-positive and false-
negative cases.

In order to evaluate both Disambiguation and
Pruning Phases, hence the whole Tagme system, we
follow [11] and thus focus on the precision/recall mea-
sures that are computed only on the set of anchors
which are annotated in the ground truth (see Sect. 5.3
for a description of the corpora). We adopt the fol-
lowing notation: A → A is the set of anchors anno-
tated in the ground truth that were correctly anno-
tated by Tagme, A 9 A is the set of anchors anno-
tated in the ground truth but wrongly annotated by
Tagme, A → na is the set of anchors annotated in
the ground truth but pruned by Tagme (i.e. anno-
tated with na), na → A is the set of anchors that
were not annotated in the ground truth but were an-
notated by Tagme. Given this notation, we can com-
pute the precision of the annotation and the recall of
the annotation as follows:

Pann =
|A→ A|

|A→ A|+ |A9 A|+ |na→ A|

Rann =
|A→ A|

|A→ A|+ |A9 A|+ |A→ na|
Note that the denominator of Pann denotes the

number of anchors that got annotated (correctly or
wrongly) by Tagme, whereas the denominator of
Rann denotes the number of anchors that were an-
notated in the ground truth.

The previous evaluation-measures are much de-
manding because they ask for a perfect match be-
tween the annotation in the ground truth and the
annotation obtained by Tagme. If the goal of an
annotator is to identify topics in the text fragment,
then it doesn’t matter which anchors got annotated,
but which senses (pages of Wikipedia) annotated that
text. So, given a text fragment f , let T (f) be the set
of senses pointed to by f ’s anchors in the ground
truth, and Tagme(f) be the set of senses identified
by Tagme in f . So as in [15], we define a topic-based

notion of precision (Ptopics) and recall (Rtopics) over
a set of fragments F , as follows:

Ptopics =

∑
f∈F |T (f) ∩Tagme(f)|∑

f∈F |Tagme(f)|

Rtopics =

∑
f∈F |T (f) ∩Tagme(f)|∑

f∈F |T (f)|

5.3 Evaluation corpora

In our experiments we considered three datasets. The
first one is derived from the manually annotated
dataset introduced in [11], called iitb dataset. It
consists of about 100 documents and 19K anchors
(40% of them are annotated with na). For the ex-
periments we split each iitb document into fragments
of 30 words each: this way on avg each short text con-
tains 20 non-stop-words, as it occurs for web-snippets.

The second and third datasets were derived from
Wikipedia, as done in [15], and will be used for eval-
uating the disambiguation phase (Wiki-Disamb30)
and the overall system (Wiki-Annot30). The for-
mer dataset consists of 1.4M short fragments ran-
domly selected from Wikipedia pages. Each fragment
consists of about 30 words. To avoid any advantage
to Tagme, we were careful in selecting fragments that
surely contain at least one ambiguous anchor-text
(i.e. |P (a)| > 1). The latter dataset consists of 150K
fragments whose set of anchors is expanded by detect-
ing all their un-annotated anchors (say N) and an-
notating them with one of the senses (say T) pointed
out by (possibly other) anchors that occur in the
same page from which that fragment was drawn. We
did this because Wikipedia-contributors usually link
only the first occurrence of an anchor-text in a page,
so if the short fragment contains a subsequent occur-
rence of that anchor, this occurrence could be not
annotated in the ground truth. Therefore we expand
Wiki-Annot30 by annotating an anchor a ∈ N with
the page p that has the largest commonness Pr(p|a)
among the ones in P (a) ∩ T (if 6= ∅). After this ex-
pansion, Wiki-Annot30 contains about 1.5M anno-
tated anchors, 63% of them annotated by na (i.e. not
annotated). So, each of the 150K fragments has on
average 10 anchors, about 4 of them got annotated.

10

Figure 3: Performance of Baseline, iitb’s system and
Tagme over the iitb dataset.

We point out that we need two distinct datasets for
the two phases (i.e. Disambiguation and Pruning)
because in the former phase we need to concentrate
on ambiguous anchors and thus force the dataset to
contain them; in the other phase, fragment may or
may not contain ambiguous anchors and also we wish
to further stress Tagme providing in input a differ-
ent dataset, thus further testing the Disambiguation
Phase (which was trained on Wiki-Disamb30).

5.4 Baseline and competitors

We developed a trivial (yet surprisingly effective)
baseline system that performs the disambiguation of
anchor a by selecting its most common sense, namely
the page p ∈ P (a) that has the highest commonness
Pr(p|a). This system, inspired by Wikify’s pruner
[13], then implements the subsequent pruning phase
via a threshold on the link probability of anchor a. It
goes without saying that Precision and Recall of this
Baseline can be balanced by changing this threshold.

Figure 3 compares the performance of Baseline,
the system in [11], and our Tagme over the iitb
dataset chopped into short texts (see above), us-
ing annotation-based precision and recall. Since we
could not get access to iitb’s system,8 we extracted
its performance from Figure 14 in [11]. Note that
this extrapolation gives advantage to [11]’s system
wrt Tagme because they used the entire document
whereas Tagme processes it one short fragment at a

8Chakrabarti’s personal communication.

time. Overall Figure 3 is interesting because it shows
that Baseline is very close or, even, superior to [11] at
the extremes of the Recall-range; on the other hand,
Tagme is always above the Baseline up to a recall of
75%, and it is competitive (if not superior!) to iitb’s
system even if Tagme operates on short fragments.

We do not want to draw any conclusions upon
the elegant algorithm in [11], actually we foresee to
download their software if it’ll be made available
in the future8 or re-implement their scoring func-
tions upon Tagme’s architecture. Moreover, since
the iitb dataset awards too much the most-common
sense, as one can argue given the excellent perfor-
mance of Baseline, we decided to drop it from the
following experiments on short texts, and hence con-
centrate our following experiments on the two da-
tasets Wiki-Disamb30 and Wiki-Annot30. For
the tested systems, we will consider the Baseline and
Milne&Witten’s system [15] because it is freely avail-
able9 and offers competitive performance in annotat-
ing long documents (recall that no known software is
designed to annotate short text fragments, which is
properly the specialty of Tagme).

5.5 Evaluation of the disambiguation
phase

We split Wiki-Disamb30 into two datasets: one con-
tains 400K anchors and is used for training, the other
contains the remaining 1M anchors. We refer the
reader to Sect. 4.3 for details on our two approaches
to disambiguation, here we comment their experi-
mental results.
Approach dc. We trained a C4.5 classifier that was
shown to achieve the best results for disambiguation
in [15]. We trained it using different values of τ , and
discovered that τ = 0.5% got the best results: larger
values didn’t gain precision while recall decreased sig-
nificantly.
Approach dt. Recall that this approach depends on
two parameters: τ and ε. Setting ε close to zero leads
dt to always select the sense (page) that achieves the
highest value of rela (i.e. the most related sense),

9http://wikipedia-miner.sourceforge.net We set this
system with the same snapshot of English Wikipedia used by
our Tagme.

11

http://wikipedia-miner.sourceforge.net

Figure 4: Performance of dt with respect to ε and τ
over the training dataset, where MC and MR plot the
performance for the choice of the Most Common (i.e.
ε = 100%) and the Most Related (i.e. ε = 0%) sense,
respectively.

while ε close to 1 leads dt to select the sense with the
highest commonness (i.e. the most common sense).
It could be the case that two senses (pages) yield
about the same values of rela and commonness (in
our experiments this occurs for 0.2% of the disam-
biguated anchors): in this case dt chooses the sense
at random. Also, if all senses get rela = 0, we de-
cided to set a 7→ na: this gained just 0.04% in Pre-
cision and a drop of 0.6% in Recall, but doing this,
disambiguator is more consistent when used in the
whole system, because it can help the following prun-
ing phase (see Sect. 5.6). Figure 4 plots F-Measure
with respect to τ and ε. To clarify it, we didn’t plot
the performance of dt for values of ε > 50%: because
for these values its performance approaches the most
common scheme (MC). Overall, lower values of ε are
better; experiments lead us to choose τ = 2% and
ε = 30%.

Given these parameter settings for dc and dt, we
compared them against Milne&Witten’s disambigua-
tor over the 1M anchors of Wiki-Disamb30. To
make the comparison wider, we consider also two
other (simple) approaches to disambiguation: one se-
lects always the most-common sense from P (a) (i.e.

Precision Recall F-Measure
Random 32.2 32.2 32.2
Most Common 85.8 86.8 86.3
Milne&Witten 92.3 84.6 88.3
dc 91.7 89.9 90.8
dt 91.5 90.9 91.2

Table 1: Performance of disambiguation algorithms
over Wiki-Disamb30.

statistically-driven choice), and the other randomly
selects a page from P (a) (i.e. oblivious choice).

Performances are shown in Table 1. The F-
measure of both our algorithms is (significantly) bet-
ter than all other approaches; this is also true for
recall, whereas precision of the Milne&Witten’s sys-
tem is slightly better than ours (a difference lower
than 0.6%). The key difference between Tagme and
Milne&Witten’s system is that we are deploying re-
latedness not only with the senses of un-ambiguous
anchors, but also with all the other candidate senses
in the fragment, via our novel voting scheme de-
scribed in Sect. 4.3. This is crucial in our scenario
of application because the input texts are short and
thus often do not contain un-ambiguous anchors.

As for the comparison between dc and dt, al-
though precision and recall are very close, we decided
to choose dt as winning approach because of three
main reasons: (i) it has a better F-Measure, (ii) the
best F-Measure is obtained with τ = 2% that let us
to gain much speed, as explained in Sect. 4.3, (iii) dt
depends on a threshold ε that gives much flexibility:
we can increase ε if the input texts are too ambiguous
(and thus choose more often the most-common sense)
or decrease ε if the input texts are longer and more
focused (and thus choose more often the most-related
sense).

As a final check for fairness, let us compare the
results obtained on our datasets against the ones
achieved by Milne&Witten in [15]. In that paper,
the authors evaluated their system over a collection
of 100 full-articles of Wikipedia, each containing at
least 50 links (for a total amount of 11,000 anchors).
Their system yield an overall performance on disam-

12

biguation of about 96%, which is larger than the 88%
we obtain for their system on our datasets. The rea-
son is that our datasets are more difficult to be disam-
biguated because texts are short and more ambiguous
as witnessed by the following numbers: on our data-
sets the choice of a random sense gets F ≈ 32% and
the choice of the most-common sense gets F ≈ 86%;
whereas on Milne&Witten’s dataset, these numbers
were 53% and 90% respectively. This remarks further
that the performance yield by Tagme in the disam-
biguation phase is much effective, with the plus of
being computed fast!

5.6 Evaluation of the whole system

As detailed in Sect. 4.4, the pruning step hinged
onto two features, lp and coherence. We tested
two combination of these features (AVG and LR)
and three different classifiers deploying these features
(C4.5, Bagged C4.5 and Support Vector Machine).
We trained these classifiers over 50K short-texts ex-
tracted from Wiki-Annot30. We consider each an-
chor contained in these fragments as a test case: if
it is linked in the ground truth it is a positive case,
otherwise it is a negative case, for a total amount
of 500K test cases. However, since the result of the
disambiguation phase affects the value of coherence
(given that it defines S in the formula of Sect. 4.4)
a wrongly disambiguated anchor could be mislead-
ing in the training step because it provides a positive
case for the classifier but its coherence value would
be a negative example. So we removed these disam-
biguation errors from the training. Moreover, to train
the three parameters of the approach based on linear
regression, we transformed the boolean class of the
ground truth (linked or not linked) into a numeric
value: we set ρLR = 1 for positive cases (i.e. linked
anchors) and ρLR = 0 for negative cases.

After training, we evaluated our approaches over
the remaining 100K fragments of Wiki-Annot30,
obviously without removing the wrongly disam-
biguated anchors. We performed several evaluations
for different values of the parameter ρna which con-
trols the sensibility of our annotation process. So
to gain insights on its impact, we evaluated all ap-
proaches by varying ρna in [0, 1] using a step of 0.01.

Pann Rann F-Measure
Milne&Witten 69.32 69.52 69.42
Baseline 74.98 69.94 72.37
Only lp 75.5 72.01 73.71
AVG 76.27 76.08 76.17
LR 76.49 75.74 76.1
C4.5 76.72 76.22 76.47
Bagged C4.5 76.54 76.22 76.38
SVM 76.25 75.96 76.11

Ptopics Rtopics F-Measure
Milne&Witten 69.6 69.8 69.7
Baseline 77.16 74.09 75.59
Only lp 76.85 76.65 76.75
AVG 78.41 77.48 77.94
LR 78.42 77.03 77.72
C4.5 76.78 79.69 78.21
Bagged C4.5 79.13 77.12 78.11
SVM 78.91 77.13 78.01

Table 2: Performance of annotators over Wiki-
Annot30, using either annotation or topics metrics.

In these experiments we included another simple
method that we called “Only lp”: it disambiguates
the anchors by using dt and performs anchor prun-
ing by using only the link probability, like Baseline
explained above (see Sect. 5.4). By comparing this
approach against Tagme, we can evaluate the signif-
icance of using the feature coherence in addition to
the link-probability in order to perform the pruning
step.10

Table 2 summarizes all experimental results by re-
porting the numbers only for the setting of ρna that
yield the highest F-Measure, using 2-fold cross vali-
dation. As we could expect, annotation measures are
more severe than topics measures. Anyway, there are
dependencies between them, and indeed the ranking
of the experimented systems is the same for both of
them.

The system by Milne&Witten performed poorly,
overcame even by Baseline. This is worse than ex-

10We tested also the case of coherence-only feature but per-
formance was worse than Milne&Witten’s one. They are not
reported to ease the reading of the Table.

13

Figure 5: Performance of annotators by varying the
value of ρna.

pected, but not surprising, because many features
used by their pruning method are not effective when
dealing with short fragments of text: indeed, they
considered features like location and frequency of an-
chors (which may be “undefined” or even misleading
on short texts), as well as they considered only the
un-ambiguous anchors to compute a coherence-score
(and these are often absent in short texts, as we com-
mented above).

The overall performance of all our pruning ap-
proaches is very close to each other, and all of them
overcome the Baseline quite clearly. Results also
show that “Only lp” is surpassed by all other ap-
proaches that deploy coherence, which confirm the
significance of this feature in the pruning phase. As
a result, we decided to implement in Tagme the sim-
plest pruning method based on ρAVG. This is because
SVM was very slow, the others were as fast as AVG
but they needed a training step that we prefer to
avoid in the Web context. In some sense our choice
of the simple AVG-pruning was driven by the Occam
Razor principle!

Finally Figure 5 reports the comparison among the
three systems— Tagme, in which we set τ = 2% and
ε = 30%, Milne&Witten’s system and the Baseline.
We notice that the performance of all annotators has
a uniform trend as ρna varies in [0, 1], and Tagme
overcomes the other approaches even by pushing the

value of ρna to its boundaries. The value of ρna that
gives the highest F-measure is 0.2, anyway ρna can be
set properly in order to balance precision vs recall.11

5.7 Last issues

How does Tagme perform on long text? In the con-
text of long text, Tagme operates by shifting a text
window of about 10 anchors over the long text in
input: this way we do not change the software and
system scales linearly with the number of anchors
in the input text (see below). It is clear that this
approach gives advantage to both Chakrabarti’s and
Witten&Milne’s systems in terms of precision/recall
of the annotation, because they deploy the full in-
put text (and thus probably more than 10 anchors!).
Nevertheless, we decided to stick on this unfavorable
setting for Tagme in order to stress its performance
and keep fast its annotation speed. Figure 3 already
showed that Tagme over the iitb dataset is com-
petitive wrt Chakrabarti’s annotator with the plus of
being one-order of magnitude faster. Moreover, Ta-
ble 2 and the way we built Wiki-Annot30 allow us
to extrapolate a comparison between Tagme and the
Milne&Witten’s system over full Wikipedia articles,
and safely conclude that Tagme’s F-Measure can
be estimated at about 78% (for Ptopics and Rtopics)
which surpasses the 74% reported in [15] for long and
highly linked Wikipedia full-documents (whose struc-
ture is much better than our Wiki-Annot30, as we
commented above)!

Since last experiments are based over datasets
drawn from Wikipedia, does Tagme achieve the same
effective performance in the wild? There are two is-
sues that let us argue positively about this: (1) the
iitb dataset (see Sect. 5.4) is a manually annotated
set of news stories drawn from web, and there Tagme
is competitive, if not superior, to the state-of-the-art
system proposed in [11]; (2) the user-study conducted
in [15] confirmed that perfomance yielded over large
datasets drawn from Wikipedia are good predictors
of performance in the wild. In addition to these two
positive witnesses, we are currently setting up a much

11The on-line version of Tagme offers this feature to the
user.

14

larger user-study over Mechanical Turk12 in order to
yield a further feedback on the efficiency and effec-
tiveness of our approach.

What about time efficiency of Tagme? We notice
that the most time consuming step is the calculation
of the relatedness score, because anchor detection and
other scores require time linear in the length of the
input text T . If n is the number of anchors detected
in T , s is the average number of senses potentially as-
sociated with each anchor, and din is the average in-
degree of a Wikipedia page, then the time complex-
ity of the overall calculation is O(din × (n× s)2). In
practice, for our short text fragments (taken from the
Web, see Sect. 5.1) it is n ≈ 10, s ≈ 5 and din ≈ 50,
so that our current implementation of Tagme, al-
though not much engineered, takes less than 10ms
per input text fragment on a commodity PC13. This
is more than an order of magnitude faster than the
time performance reported by [11] for about 15 an-
chors. Additionally, when Tagme is applied on long
texts of L anchors (L � 10), it can process them
by considering overlapping windows of about w an-
chors each (e.g. w = 10). This way, when shifting
the window over text anchors to the right, we can
re-compute incrementally the scores, so actually pay-
ing Wcost = O(din × w × s2) time per shift. This is
O(L×Wcost) in total and thus linear with number of
anchors in the input text. Conversely, [11]’s system
scales “mildly quadratically” in L.

6 Conclusion and future works

Our datasets are freely available as well as is avail-
able Tagme as a web-service 14. We believe that
Tagme, like the systems of [11, 15], has implications
which go far beyond the enrichment of a text with
explanatory links. Currently, we are investigating
Tagme’s annotation of short texts in the on-the-fly
labeled clustering of search-engine results of our past

12http://www.mturk.com
13In detail, anchor parsing takes about 3.5ms, disambigua-

tion and pruning about 6.5ms per fragment. Of course algo-
rithm engineering could speed-up it, and this will be addressed
in the future.

14http://tagme.di.unipi.it

system SnakeT[5], which was based just on syntactic
features (as most of its similar competitors, see e.g.
[2, 16]). Furthermore, we are studying how other
by-products of Wikipedia— such as DBpedia.org,
Freebase.com, Kylin [20] or YAGO [18]— could be
used to better relate concepts and/or assigning senses
to text spots. Finally, as commented in Sect. 5.6, we
are setting up a large user-study based on Mechani-
cal Turk with the goal of extending our experimental
results and thus check Tagme in the wild.

We conclude by mentioning another quote from
the talk given at WSDM 2010 by S. Chakrabarti:
“How can they [users] take advantage of the new
type-entity-snippet composite data model?”. Well,
we have not yet a principled answer to this ques-
tion, but we think that our paper has added a new
info pathway between the micro-docs of Web 2.0 and
the semi-structured knowledge provided by Wikipe-
dia (another Web 2.0 product!).

References

[1] S. Banerjee, K. Ramanathan, and A. Gupta.
Clustering short texts using wikipedia. In Proc.
ACM SIGIR, 787–788, 2007.

[2] C. Carpineto, S. Osiński, G. Romano, and
D. Weiss. A survey of web clustering engines.
ACM Comput. Surv., 41(3):1–38, 2009.

[3] S. Chakrabarti. Mining the Web: Discover-
ing Knowledge from Hypertext Data. Morgan-
Kauffman, 2002.

[4] S. Cucerzan. Large-scale named entity disam-
biguation based on wikipedia data. Proc. of Em-
pirical Methods in NLP, 2007.

[5] P. Ferragina and A. Gulli. A personalized search
engine based on web-snippet hierarchical cluster-
ing. In Proc. WWW, 801–810, 2005.

[6] E. Gabrilovich and S. Markovitch. Feature
generation for text categorization using world
knowledge. In Proc. IJCAI, 1048–1053, 2005.

15

http://www.mturk.com
http://tagme.di.unipi.it

[7] E. Gabrilovich and S. Markovitch. Wikipedia-
based semantic interpretation for natural lan-
guage processing. J. Artif. Int. Res., 34(1):443–
498, 2009.

[8] R. V. Guha and R. McCool. Tap: A semantic
web test-bed. J. Web Sem., 1(1):81–87, 2003.

[9] J. Hu, L. Fang, Y. Cao, H.-J. Zeng, H. Li,
Q. Yang, and Z. Chen. Enhancing text cluster-
ing by leveraging wikipedia semantics. In Proc.
ACM SIGIR, 179–186, 2008.

[10] X. Hu, N. Sun, C. Zhang, and T.-S. Chua. Ex-
ploiting internal and external semantics for the
clustering of short texts using world knowledge.
In Proc. ACM CIKM, 919–928, 2009.

[11] S. Kulkarni, A. Singh, G. Ramakrishnan, and
S. Chakrabarti. Collective annotation of wikipe-
dia entities in web text. In Proc. ACM KDD,
457–466, 2009.

[12] O. Medelyan, D. Milne, C. Legg, and I. H. Wit-
ten. Mining meaning from wikipedia. Int. J.
Hum.-Comput. Stud., 67(9):716–754, 2009.

[13] R. Mihalcea and A. Csomai. Wikify!: linking
documents to encyclopedic knowledge. In Proc.
ACM CIKM, 233–242, 2007.

[14] D. Milne and I. H. Witten. An effective, low-
cost measure of semantic relatedness obtained
from wikipedia links. In Proc. AAAI Workshop
on Wikipedia and Artificial Intelligence, 2008.

[15] D. Milne and I. H. Witten. Learning to link with
wikipedia. In Proc. ACM CIKM, 509–518, 2008.

[16] S. Osinski. Improving quality of search results
clustering with approximate matrix factorisa-
tions. In Proc. ECIR, LNCS vol. 3936, 167–178,
2006.

[17] M. Sahami and T. Heilman. A web-based ker-
nel function for measuring the similarity of short
text snippets. In Proc. WWW, 377–386, 2006.

[18] F. M. Suchanek, G. Kasneci, and G. Weikum.
YAGO: A core of semantic knowledge. In Proc.
WWW, 697–706, 2007.

[19] C. Whitelaw, A. Kehlenbeck, N. Petrovic, and
L. Ungar. Web-scale named entity recognition.
In Proc. ACM CIKM, 123–132, 2008.

[20] F. Wu and D. Weld. Automatically Semantifying
Wikipedia. In Proc. ACM CIKM, 41–50, 2007

[21] Y. Yang, N. Bansal, W. Dakka, P. Ipeirotis,
N. Koudas, and D. Papadias. Query by docu-
ment. In Proc. ACM WSDM, 34–43, 2009.

[22] H. Zaragoza, J. Atserias, M. Ciaramita,
and G. Attardi. Semantically anno-
tated snapshot of the English Wikipedia.
http://www.yr-bcn.es/semanticWikipedia,
2007.

16

http://www.yr-bcn.es/semanticWikipedia

	1 Introduction
	2 Notation and terminology
	3 Related Works
	4 Our Proposal
	4.1 Preprocessing
	4.2 Anchor parsing
	4.3 Anchor disambiguation
	4.4 Anchor pruning

	5 Evaluation
	5.1 Coverage by Wikipedia anchors
	5.2 Evaluation Measures
	5.3 Evaluation corpora
	5.4 Baseline and competitors
	5.5 Evaluation of the disambiguation phase
	5.6 Evaluation of the whole system
	5.7 Last issues

	6 Conclusion and future works

