
Tags and the Evolution of Cooperation in Complex Environments

Lee Spector1, Jon Klein1,2
and Chris Perry1

1Hampshire College
Amherst, MA 01002

2Physical Resource Theory, Chalmers University of Technology and Göteborg University
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Abstract

Cooperation in evolving populations of agents has
been explained as arising from kin selection, reci-
procity during repeated interactions, and indirect
reciprocity through agent reputations. All of these
mechanisms require significant agent capabilities,
but recent research using computational models
has shown that arbitrary markers called “tags” can
be used to achieve significant levels of cooperation
even in the absence of memory, repeated interac-
tions or knowledge of kin. This is important be-
cause it helps to explain the evolution of cooper-
ation in organisms with limited cognitive capabil-
ities, and also because it may help us to engineer
cooperative behaviors in multi-agent systems. The
computational models used in previous studies,
however, have typically been constrained such that
cooperation is the only viable strategy for gaining
an evolutionary advantage. Here we show that tag-
mediated recognition can lead to significant levels
of cooperation in a less constrained artificial life
simulation, even when other viable survival strate-
gies exist. The results suggest that tags provide a
simple yet effective mechanism for promoting the
emergence of collective behaviors in evolving agent
populations.

Introduction

Altruistic behaviors among individuals in evolving
populations can be attributed to a variety of mech-
anisms. Kin selection explains how cooperation
emerges between closely related individuals (Hamil-
ton, 1963). In repeated interactions, cooperation
can emerge due to reciprocity even when defection
is most beneficial in the short term (Trivers, 1972;
Axelrod and Hamilton, 1981). Even when indi-
viduals are not likely to engage in repeated inter-
actions, cooperation can emerge through “indirect
reciprocity” based on image scoring and reputation
(Nowak and Sigmund, 1998).

More recently, Riolo et al. introduced a model of
cooperation in which individuals have no knowledge

of kin, no significant repeated interactions, no im-
age scoring and no memory. Instead, they showed
that cooperation can arise based on the existence
of arbitrary identifying markers called “tags” (Ri-
olo et al., 2001). In their model, each agent was
given a tag value, a real number between 0.0 and
1.0, and a tolerance value, also between 0.0 and 1.0.
Each agent would cooperate with another (by do-
nating energy) only when its own tag differed from
the other’s by less than the tolerance value. Riolo
et al. showed that significant levels of cooperation
could emerge, even though the agents had no re-
peated interactions and no other recognition mech-
anisms.

In contrast to the other cooperation mechanisms
mentioned above, tags require no memory and little
to no cognitive ability. Tag-mediated recognition
could occur on the level of single molecules, such
as cell surface proteins or pheromones. While tags
can be genetically encoded, they do not necessar-
ily connote more general genetic similarity. Indeed,
as predicted by Richard Dawkins’ “green beard ef-
fect”(Dawkins, 1976), cooperation can emerge from
a single gene which both triggers the expression of
a tag (such as a chemical signal, or a green beard)
and triggers altruistic behaviors toward other in-
dividuals bearing the same tag. This “green beard
effect”has recently been found to be the mechanism
behind altruistic behaviors of the social slime mold
Dictyostelium discoideum (Queller et al., 2003).

While the green beard effect is a straightforward
example of how tag-mediated recognition can give
rise to cooperation, the tag itself need not be a
gene that triggers altruistic behaviors toward other
agents possessing the gene. The tag, as we will
show, can be completely independent of the genes
that trigger the cooperative behavior.

In the context of evolving multi-agent systems,
tags provide a remarkably simple mechanism for en-
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abling the evolution of cooperation and other collec-
tive behaviors. Cooperative behaviors can emerge
when agents are given the simple ability to sense
and respond to tags expressed by other agents, and
the tag can be as simple as a single real number.

While the model presented by Riolo et al. showed
that significant levels of cooperation could be
achieved using only a simple tag, it did so in a very
constrained environment in which sharing was the
only agent behavior modeled. Although an agent
need not actively share with others in order to reap
the benefits, cooperation is nonetheless the only
mechanism by which any agent can attain an evo-
lutionary advantage over others. In addition, the
original model used a high (10:1) ratio of benefit to
cost; the cost to a cooperating agent was far smaller
than the benefit to the recipient of the donation.
In this paper, we seek to address these concerns
to determine whether tags are a viable mechanism
for cooperation in a less constrained environment
in which other survival strategies exist and with a
lower cost-to-benefit ratio.

We describe the emergence of tag-mediated co-
operation in a 3D simulation of flying agents called
SwarmEvolveTags. We compare the levels of co-
operation achieved using tag-mediated recognition
to those achieved using other recognition mecha-
nisms. This paper builds on previous work us-
ing our SwarmEvolve 2.0 simulation. Agents
in SwarmEvolve 2.0 were capable of a simple
self/other recognition using hardcoded tolerance
values; SwarmEvolveTags implements a tag-
mediated recognition mechanism which closely re-
sembles the model of Riolo et al. and a genetic
recognition system. The simulation demonstrates
the emergence of tag-mediated cooperation, with
a cost to benefit ratio of 1:1, in a more realistic
and less constrained environment. SwarmEvolve-
Tags is less constrained than previous models of
tag-mediated cooperation in the sense that agents
can draw from a far richer repertoire of behaviors
— in SwarmEvolveTags, agent behaviors are deter-
mined by evolving computer programs and a wide
variety of non-cooperative behaviors are viable.

breve and Push

All of the the SwarmEvolve simulations described
here were constructed using breve (Klein, 2002),
a free, open-source simulation package designed
for the rapid construction of decentralized systems
and artificial life simulations in 3D worlds. While
breve is conceptually similar to simulation frame-

works such as Swarm (Minar et al., 1996), it is
designed from the ground up for continuous-time
simulations in continuous 3D space. breve in-
cludes built-in collision detection and response, re-
alistic articulated body physical simulation and a
rich OpenGL-based display engine.

Simulations are constructed by defining agent be-
haviors in a simple object-oriented language called
steve. The language is intended specifically for use
with 3D simulations, providing support for 3D vec-
tors and matrices as native types. Agent behaviors
can be further customized via an extensible plugin
architecture that allows users to incorporate exter-
nal libraries or programs into breve simulations.

While breve provides the framework for the
simulated world, the evolving agent behav-
iors of SwarmEvolveTags (and its predecessor,
SwarmEvolve 2.0) are implemented using Push, a
stack-based language developed by Spector (Spec-
tor and Robinson, 2002) for multi-type evolution-
ary computation. The SwarmEvolveTags simula-
tion presented in this paper uses the Push 2.0 li-
brary (Spector et al., 2003b). Push is integrated
with breve using a simple plugin built with the
C++ Push library. The plugin allows agents in
breve to run Push programs to determine their be-
haviors. The plugin also allows callbacks from Push
code into breve so that Push programs can execute
steve methods to obtain sensor input or to trigger
agent behaviors in the simulation. Push allows the
dynamic manipulation of code so that agents can
develop their own genetic operators instead of re-
lying on hard-coded mutation and crossover opera-
tors; see the discussion of autoconstructive evolution
in the SwarmEvolveTags section below.

SwarmEvolve 1.0 and 2.0

SwarmEvolve is the name for a series of artificial
life simulations in which we have investigated the
emergence of cooperative and collective behaviors.
While environments, behaviors and implementa-
tions differ between the different SwarmEvolve ex-
periments, they are all based around the premise of
simple flying agents (“birds”) navigating a 3D world
and competing for limited resources (“feeders”).

In SwarmEvolve 1.0 (Spector et al., 2003a;
Spector et al., 2004) agent behaviors were deter-
mined by an evolving vector of constants in a hard-
coded control equation based on Reynolds’ classic
“boids” flocking algorithm (Reynolds, 1987). Even
with such limited agent behaviors, a variety of rich
survival strategies emerged, some of which exhib-



ited collective behaviors. The most striking behav-
ior could even be seen as a sort of multicellularity, in
which some agents in the group served as protective
organs guarding food sources from other species,
while others gorged on the food source, serving as
digestive organs.

SwarmEvolve 2.0 eliminated both the hardcoded
control equations and species distinctions in favor
of a less constrained approach. Agent behaviors
and species distinctions were determined entirely by
evolving Push programs. In this environment, we
sought to understand the conditions under which
cooperation could emerge by adding instructions
that allowed agents to donate their energy to oth-
ers. While voluntarily reducing one’s energy stores
would normally appear to be maladaptive, we found
that significant levels of food sharing emerged with
a variety of settings relating to environmental sta-
bility and sharing behaviors.

Additionally, SwarmEvolve 2.0 removed the ex-
plicit fitness function used in SwarmEvolve 1.0.
SwarmEvolve 1.0 used a GA-like fitness and repro-
duction scheme in which the fitness of an agent was
determined as a function of its age and energy level.
Agents with the highest fitness scores were selected
for reproduction. In SwarmEvolve 2.0, agents com-
pete for limited resources and control their own re-
production. Evolution is driven by the success of
agents that are best suited to these tasks.

SwarmEvolveTags

With SwarmEvolveTags, we seek to investigate
further the conditions under which cooperation
can emerge by comparing different mechanisms of
agent recognition, specifically genetic1 recognition,
in which an agent compares its genetic code to that
of others, and tag-mediated recognition, in which a
single floating point tag, determined by an agent’s
program, is used.

As in the other SwarmEvolve experiments, flying
agents in SwarmEvolveTags compete for survival
in a 3D world. The agents receive boosts of en-
ergy, up to a maximum value of 1.0, from spherical
energy sources which periodically reposition them-
selves around the world. Agents lose energy at
each timestep due to a small “cost of living.” They
lose additional energy when they collide with other
agents and when they give birth, at which time a

1We differentiate between “kin” recognition which
implies explicit knowledge of common ancestry and“ge-
netic” recognition which implies knowledge of genetic
similarity with or without common ancestry.

portion of the parent agent’s energy is transferred
to the child. If an agent’s energy level drops below
0.0 then the agent dies.

Agent behaviors are represented in the Push lan-
guage. Each agent has a Push program which is run
at every timestep. After executing the program, the
top value from the point stack (a 3D vector) is used
to set the agent’s acceleration vector. The top value
from the float stack is used to set the agent’s hue,
the significance of which is described below.

In addition to standard Push instructions which
manipulate built-in Push types, we supply a num-
ber of simulation callbacks which allow agents to
obtain sensor input and control actuators. The full
Push instruction set used in SwarmEvolveTags is
shown in Table 1.

In contrast to a GA-style “hand of God” re-
production, agents in SwarmEvolveTags reproduce
using autoconstructive evolution, in which agents
must evolve the ability to reproduce. Using a spe-
cial “code” stack, along with the code instructions
shown in table 1, an agent’s program can manip-
ulate its own code (and potentially the code of its
neighbors) to produce novel programs. Whenever
an agent attempts to produce a child (by executing
the Spawn instruction), the top of its code stack is
examined. If the expression is empty (which hap-
pens rarely once the system has been running for
some time) then a newly generated, random pro-
gram is used for the child. If the expression is not
empty then it is used as the child’s program, after a
possible mutation. Code-manipulation instructions
that simplify the construction of standard genetic
programming mutation and crossover operators are
provided, but agent programs need not use these in-
structions, and when these instructions are in fact
used they may also be combined with other code-
manipulation instructions to produce novel genetic
operators. To prevent early outbreaks of clones
from derailing the evolutionary process a manda-
tory mutation step is also imposed, although the
mutation rate for this step is under the agent’s con-
trol.2

Because agents must evolve the ability to repro-
duce, it takes some time before a stable population
of viable agents emerges. During this period, the
population typically dwindles and random agents
are continually introduced into the simulation to
maintain a user-defined population threshold. The

2See (Spector et al., 2003a; Spector et al., 2004) for
details.



Instructions Description
Float instructions : +, /, *, -, %, <, >, FROMPOINT Standard Push instructions
Integer instructions : +, -, *, /, <, >

Boolean instructions : AND, OR, NOT
Point (3D vector) instructions : +, -, /, *,
FROM1FLOAT, FROM3FLOATS, CROSS
Code instructions : DUP, POP, SWAP, QUOTE, DO*
ATOM, CAR, CDR, CONS, IF, SIZE, LENGTH
Code instructions : Mutate, Crossover Potential genetic operators
Spawn Triggers reproduction
ToFood, FoodIntensity Information about energy sources
MyAge, MyEnergy, MyHue, MyVelocity Information about self
MyLocation, MyProgram
ToFriend, FriendAge, FriendEnergy, FriendHue, Information about closest “friend”
FriendVelocity, FriendLocation, FriendProgram agent
ToOther, OtherAge, OtherEnergy, OtherHue, Information about closest “other”
OtherVelocity, OtherLocation, OthherProgram agent
FeedFriend, FeedOther Transfer energy to neighboring agents

Table 1: Push instructions used in SwarmEvolveTags.
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Figure 1: Percentage of successful sharing agents at different environmental stabilities.



agents typically achieve “reproductive competence”
after a few hundred iterations and can thereafter
maintain a stable population size using their own
genetic operators.

Cooperative behavior in SwarmEvolveTags is
possible through food sharing: agents can exe-
cute two sharing instructions, FeedFriend and Feed-
Other, which donate food to nearby “friend” and
“other” agents, respectively. In order to exam-
ine the differences between different recognition
mechanisms, we allow for three different modes of
friend/other recognition: “genetic recognition,” in
which the distinction is made based on genetic sim-
ilarity; “tag-mediated recognition,”in which the dis-
tinction is made based on tag (hue) similarity; and
“none”, where all other agents are perceived to be
friends.

The tolerance levels for genetic and tag-mediated
recognition are determined dynamically by agent
programs. When an instruction requiring a
friend/other distinction (such as “FeedFriend”, or
“OtherVelocity”) is executed, the top value of the
floating point number stack is used as a tolerance
value for the comparison. The evolved tolerance
values allow agents to exercise a great deal of con-
trol over the agents with whom they share and
interact. The tolerance values used for recogni-
tion need not be statically hardcoded as part of an
agent’s genome—they may be changed repeatedly
at run-time by the agent’s program, or even be dy-
namically computed based on sensor inputs or other
calculations.

Genetic recognition is based on differences be-
tween Push programs. A “subprogram” in Push is
defined as any terminal or sublist found in a pro-
gram.3 The difference between two Push programs
p1 and p2 is defined as the sum of the number of
subprograms in p1 which do not appear in p2, and
the number of subprograms in p2 which do not ap-
pear in p1. This value is normalized by dividing by
the sum of the number of subprograms in p1 and
p2. Two identical programs thus yield a difference
value of 0.0 and two programs which have no sub-
programs in common have a value of 1.0.

Tag-mediated recognition is based on differences
between agents’ hue values (on a circular scale that
ranges from 0.0 to 1.0) such that two agents with
identical hues have a difference of 0.0 and two agents
with maximally different hues will have a difference

3Note that this includes the entire program itself; for
the purpose of this calculation a program is considered
to be a “subprogram” of itself.

of 0.5. We multiply this value by 2 so that the tag
tolerance range matches the genetic tolerance range
of 0.0 to 1.0.

Experiment

We ran simulations for each of the three recogni-
tion modes at seven different environmental stabil-
ity settings. The stability of the environment deter-
mines the frequency with which an energy source
will move to a new location. The probability that
an energy source will move at each iteration is given
by 1

stability
. The stability settings ranged from 20

(highly unstable) to 2000 (highly stable).
For each of the recognition modes and stability

settings, we conducted 65 runs for a total of 1365
runs. Each was allowed to run for 13,000 total
iterations, which were divided into 130 epochs of
100 simulation steps. Data collection began only
after reproductive competence had been achieved
for over 300 iterations and continued for 8,500 it-
erations. Runs in which reproductive competence
was not sustained for at least 8,500 iterations were
discarded—this eliminated only 16 runs.

In order to gauge the stability of each sharing
strategy, we examined the prevalence of sharing
agents that emerged with each sharing mode. We
consider a “successful sharing agent” to be an agent
that executes a successful sharing action at some
point during its life. A successful sharing action is
a call to FeedFriend or FeedOther that results in
a transfer of energy, meaning that a neighboring
agent is found that satisfies the recognition require-
ment. If no nearby agents are recognized (which
might occur, for example, if the active tolerance
level is less than 0 for a FeedFriend event), then
the sharing event is not recorded. We computed
the average number of successful sharing agents by
conducting a survey, at each epoch boundary, of all
agents was to determine the size of the population
and which agents were successful friend- or other-
sharers. Population and sharing data were aver-
aged over all runs to compute percentages of sharing
vs. non-sharing agents across different recognition
modes and stability settings.

Results

Figure 1 shows the percentages of sharing agents
at different stability values. Table 2 shows the per-
centages averaged over all stability levels.

Tag-mediated recognition produces a larger per-
centage of cooperating agents than is produced
when no recognition mechanism is available, and



recognition % sharing agents

Genetic 27.3%
Tag 21.0%
None 12.1%

Table 2: Percentage of sharing agents averaged over all stability values.

compares reasonably well to the percentage of shar-
ing agents achieved by genetic recognition at several
stability values.

The results demonstrate that tag-mediated
recognition yields considerable levels of cooperating
agents at all levels of environmental stability.

Discussion & Future Work

One explanation for the success of tag-mediated
recognition mechanisms is that they provide a
heuristic approximation to genetic similarity. This
hypothesis could be tested empirically by measuring
the correlation between tag similarity and genetic
similarity over many runs.

The apparent inverse relationship between the
success of genetic recognition vs. tag-mediated
recognition at various levels of environmental stabil-
ity, as visible in Figure 1, is intriguing, but we have
no definitive explanation for this. Perhaps this re-
lationship is related to the correlation between tag
similarity and genetic similarity.

It would also be interesting to examine the over-
all level of adaptive sharing that occurs in various
conditions. To this end we also examined the to-
tal number of sharing events (as opposed to sharing
agents). This data, however, was dominated by the
necessarily indiscriminate sharing of the agents in
the “no recognition” condition; runs in this condi-
tion produced large numbers of sharing events even
when there were few sharing agents, and even when
the few agents were unsuccessful mutants that left
no offspring. A better handle on adaptive sharing
activity might result from measurement of the num-
ber of sharing events produced by agents that meet
some threshold of success; such a threshold might
be based, for example, on agent lifetime or repro-
ductive success.

Can tags be used to achieve even higher levels
of cooperation? While both tag-mediated and ge-
netic recognition can support significant percent-
ages of sharing agents, we observed more shar-
ing (whether measured in terms of sharing events
or sharing agents) in the simulations with genetic
recognition. This suggests that agents evolved in

the context of tag-mediated recognition are pickier
about the agents with whom they will share. This
persnicketiness may be a product of the fact that
agent tags can evolve and change more rapidly and
more dramatically than agent genomes, even dur-
ing a single lifetime. This leads to the conjecture
that the use of a static tag over an agent’s lifetime
will improve the reliability of tags as a recognition
mechanism, and will therefore lead to higher lev-
els of sharing in evolving populations of agents that
recognize one another by means of tags.

Conclusions

The SwarmEvolveTags simulation results
demonstrate that tag-mediated recognition mech-
anisms can in fact lead to the emergence of
significant levels of altruistic behavior between
agents, even in unconstrained environments in
which other non-cooperative strategies are viable.
In addition, this can occur with a cost to benefit
ratio of 1:1, a condition that is considerably more
challenging than that used in most of the prior
research on tag-mediated cooperation.

Although the level of cooperation achieved with
tag-mediated recognition is not as high as the level
achieved with genetic recognition, the tag-based ap-
proach is arguably both simpler and more natural
than the current alternatives.. Tag-recognition re-
quires little in the way of cognition or memory, but
it may nonetheless form the foundation for cooper-
ative societies of evolving agents.

Source code and screen-shots from the
SwarmEvolveTags experiment described
in this paper are available online from
http://hampshire.edu/lspector/SETags.
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