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1.    Introduction 

Today many engineers are using Taguchi's cata- 
log of orthogonal arrays [1] to plan industrial ex- 
periments. But Taguchi provides either no 
information or insufficient information on the 
methods that were used to construct these arrays. 
Moreover, Taguchi displays orthogonal arrays in 
forms that are different from the way these arrays 
are usually displayed in the statistical literature. It 
is, therefore, difficult to discern the links between 
Taguchi's arrays and their counterparts published 
elsewhere. Recent advertisements and testimonials 
of the efficacy of experiments based on Taguchi's 
orthogonal arrays increase the confusion by giving 
an impression that these arrays are something 
other than fractional factorials and classical plans 
of experiments. This paper describes the structure 
and constructions of Taguchi's orthogonal arrays, 
illustrates their fractional factorial nature, and 

points out that his catalog can be expanded to in- 
clude orthogonal arrays developed since 1960. 

The next section of this paper provides the back- 
ground of orthogonal arrays and introduces the 

concept that an orthogonal array can be displayed 
in one of many equivalent forms. This concept is 
subsequently used to exhibit the equivalence of 
certain well-known fractional factorial plans and 
Taguchi's orthogonal arrays. Taguchi's catalog con- 
tains 20 arrays. However, only 18 of these arrays 
are orthogonal arrays. These 18 orthogonal arrays 
are the focus of this paper, and they have been 
classified into eight groups defined in such a way 
that the orthogonal arrays in each group can be 
constructed by a common method. The subsequent 
eight sections are devoted to these eight specific 
groups. In these sections, first the constructions of 
Taguchi's orthogonal arrays are described and then 
these arrays are related to fractional factorials and 
other well-known orthogonal arrays. In order to 
appreciate the factorial nature of Taguchi's orthog- 
onal arrays, it is necessary to understand the con- 
structions of these arrays. The last section of this 
paper identifies several useful orthogonal arrays 
that are not in Taguchi's catalog because they were 
developed after 1960. 
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2.    The Background of Orthogonal Arrays 

An orthogonal array (more specifically a fixed- 
element orthogonal array) of 5 elements, denoted 
by OA^is"'), is an Nxm matrix whose columns 
have the property that in every pair of columns 
each of the possible ordered pairs of elements 
appears the same number of times. The symbols 
used for the elements of an orthogonal array are 
arbitrary. This paper uses the symbols 
(0,1,2,..., s — 1) to denote the s elements. Tables 1 
and 2 display OA4(2^) and OA8(2'') respectively. 
Note that in every pair of columns of table 1 each 
of the 4 ordered pairs (0,0), (0,1), (1,0), and (1,1) 
appears exactly once. Similarly, every pair of 
columns in table 2 contains each of the four pairs 
(0,0), (0,1), (1,0), and (1,1) exactly twice. Taguchi 
refers to OAw(.s'") by the notation LN{S"'). The 
letter L in this notation stands for latin square, and 
it indicates that orthogonal arrays are generalized 
latin squares. Taguchi uses the symbols (1,2,...,.?) 
to denote the elements of an orthogonal array. The 
authors have, however, used the symbols 
(0,1,..., 5-1) in this paper because these symbols 
are natural in light of the methods of constructing 
these arrays. 

Table 1. Orthogonal array OA4 (2^) 

Column No. 

Row No. 1 2          3 

1 
2 
3 
4 

0 
0 
1 

1 

0 0 
1 1 
0 1 
1 0 

Table 2. Orthogonal array OAH (2') 

Column No. 

Row No. 1 2 3 5 6 7 

1 0 0 0 0 0 0 
2 0 0 0 1 1 1 

3 0 1 1 0 1 1 
4 0 1 1 1 0 0 

5 1 0 1 1 0 1 
6 1 0 1 0 1 0 

7 1 1 0 1 1 0 

S 1 1 0 0 0 1 

Orthogonal arrays can be viewed as plans of mul- 
tifactor experiments where the columns correspond 
to the factors, the entries in the columns corre- 
spond to the test levels of the factors and the rows 
correspond to the test runs. More specifically, the 
A^ rows of an OAN{S "') can be viewed as a subset of 
the possible s"' test runs of a complete factorial 
plan in m factors each having s test levels. Thus, an 
OAN{S"') can be viewed as a N/s'" fraction of a 
complete s'" factorial plan. For example, the four 
rows of the OA4(2^) that are displayed in Table 1, 
can be viewed as a 4/2^ = 1/2 fraction of a com- 
plete 2^ factorial plan. 

A sub-matrix formed by deleting some columns 
of an orthogonal array is also an orthogonal array. 
Thus, by deleting certain columns of a given or- 
thogonal array, it is possible to generate many dif- 
ferent plans of multifactor experiments. 

A fractional factorial plan that enables uncorre- 
lated estimation of every factorial effect included 
in the underlying linear model assuming that all 
other effects are zero is called an orthogonal plan. 
Fractional factorial plans based on orthogonal ar- 
rays irrespective of the degree of fractionation are 
necessarily orthogonal plans. This is the primary 
reason for the popularity of fractional factorials 
based on orthogonal arrays. 

Some of the most popular arrays in Taguchi's 
catalog are mixed-element (level) orthogonal ar- 
rays. A mixed-element orthogonal array, denoted by 
OA//(s"'x;"), is a matrix of N rows and m+n 
columns in which the first m columns have s ele- 
ments each, the next n columns have t elements 
each, and in every pair of columns each of the pos- 
sible ordered pairs of elements appears a constant 
number of times. The constant, however, depends 
on the pair of columns selected. Table 3 displays 
two orthogonal arrays: OAi8(6'x3'^) and 
OAi8(2'x3''). Note that every pair of columns in 

Table 3 contains each of the possible ordered pairs 
a constant number of times. A mixed-level orthogo- 
nal array can be viewed as a fractionated multilevel 
factorial plan. 

It follows from the definition of an orthogonal ar- 
ray that an orthogonal array remains an orthogonal 
array when its (1) rows are permuted or (2) columns 
are permuted or (3) the elements within a column 
are permuted. When orthogonal arrays are viewed 
as plans of multifactor experiments, the row permu- 
tation corresponds to reordering of test runs, the 
column permutation corresponds to relabeling of 

factors, and the permutation of elements within a 

column corresponds to relabeling of factor levels. 

Most experimenters realize that the labels of factors. 
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Table 3. Orthogonal arrays OAi« (e'xS") and OAi« (2'x3')" 

Column No. 

Row No. 1' 1 2 3 4 5 6 7 8 

1 0 0 0 0 0 0 0 0 0 

2 0 0 0 1 1 1 1 1 1 

3 0 0 0 2 2 2 2 2 2 

4 1 0 1 0 0 1 1 2 2 

5 1 0 1 1 1 2 2 0 0 

6 1 0 1 2 2 0 0 1 1 

7 2 0 2 0 1 0 2 1 2 

8 2 0 2 1 2 1 0 2 0 

9 2 0 2 2 0 2 1 0 1 

10 3 0 0 2 2 1 1 0 

11 3 0 1 0 0 2 2 1 

12 3 0 2 1 1 0 0 2 

13 4 1 0 1 2 0 2 1 

14 4 1 1 2 0 1 0 2 

15 4 1 2 0 1 2 1 0 

16 5 2 0 2 1 2 0 1 

17 5 2 1 0 2 0 1 2 

18 5 2 2 1 0 1 2 0 

» Columns l',3,4,5,6,7, and 8 form OAi8(6'x3'^). 
Columns 1,2,3,4,5,6,7, and 8 form OAi»(2'x3'). 

the labels of factor levels and the order of test runs 
are arbitrary. Indeed, the order of test runs is usu- 
ally randomized. Therefore, two orthogonal arrays 
are defined to be equivalent if one can be obtained 
from the other via the following permutations: (1) 
the rows are permuted, (2) the columns are per- 
muted, and (3) the elements (symbols) within a 
column are permuted (for example, in a three- 
element column, the elements (0,1, and 2) can be 
replaced with any one of their permutations: (0,2, 
and.^1); (1,0, and 2); (1,2 and 0); (2,0, and 1); or 
(2,1, and 0) respectively). 

Taguchi's format for an orthogonal array has the 
property that the entries in the left most columns 
change less frequently than the entries in the right 
most columns. Therefore, when these arrays are 
used to plan multifactor experiments, the cost of 
running the experiment can sometimes be reduced 
by judiciously associating with the left most 
columns those factors that are most expensive or 
most difficult to vary. 

Taguchi's catalog contains twenty arrays. How- 
ever, only eighteen of these twenty arrays are 
orthogonal arrays. The remaining two arrays, de- 
noted by L'9 (2^') and L'27 (3"), are not orthogo- 
nal arrays and they are not discussed in this paper. 
The eighteen orthogonal arrays are classified into 
eight groups based on the common method of con- 
struction. The next eight sections are devoted to 
these eight groups. 

3.   Two-Element Orthogonal Arrays of 

2' Rows for r = 2,3,4,5, and 6 

The fractional factorial nature of two-element 
(level) orthogonal arrays follows from the way 
these arrays are constructed. So this section first 
describes a simple method of constructing these 
arrays, then illustrates their fractional factorial 
nature. A complete two-element orthogonal array 
with 2' rows has 2''-l columns and it is con- 
structed column by column in three steps. 

Step 1: Write   in   the  r 
column numbers 

columns specified by 
1,2,4,8,..., r-' a com- 

plete factorial plan in r factors each hav- 
ing two test levels represented by 0 and 1 
respectively. In order to match Taguchi's 
display format, write this plan in such a 
way that the entries of the left most 
columns change less frequently than the 
entries of the right most columns. The 
entries of these r columns are used to cal- 
culate and define the entries of the 
remaining columns. Therefore, these r 
columns are referred to as the basic 
columns and marked as xi, X2,..; Xr, 
respectively. 

Step 2: These basic columns are used to generate 
the other columns. The generator of a 
particular column is a rule of the form 

a\Xl+a2X2+   ...   +  UrXr  ^hQVQ Xl,X2, ...yXr 

are the r basic columns and the coeffi- 
cients fli, fl2, ...fly are obtained from the 
appropriate row of table 4. [For example, 
in the construction of OA8(2') discussed 

below, the coefficients ai,fl2,..., and a^ 
for column 5 are in the fifth row of table 4 
and have the values 1, 0, and 1 respec- 
tively. This yields A: 1-fA:3 as the generator 
for column 5 of OA8(2^)]. List the gener- 
ators in the order of column numbers. 

Step 3: Compute the entries of the other columns 
by using the generators identified in step 
2. The required calculations are per- 
formed in modulo 2 arithmetic (that is, 
0-hO = 0, 0 + 1 = 1, 1 + 0 = 1 and 
1 + 1=0). 

This method of construction and analogous 
methods of constructing three-, four-, and five- 
element orthogonal arrays are based on the mathe- 
matical theory of fractional factorials developed by 
Bose [2]. 
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Table 4. Coefficients of the generators of two-element orthogo- 
nal arrays of 2' rows for r = 2, 3,... 

Coefficients oix\.xi,x-i. ...,Xr 
Column 

No. fli "2 "3 a^-i Or 

1 1 0 0 First (2'--^-1) First (2'-'-1) 
2 0 1 0 entries are 0 entries are 0 
3 1 1 0 Next (2--^) Last (2'-') 
4 0 0 1 entries are 1 entries are 1 
5 1 0 1 Next (2'-^) 
6 0 1 1 entries are 0 
7 1 1 1 Last (2'-2) 
. Repeat Repeat entries are 1 

(0,1)  (0,0, 1.1) 
2'-2 0 1 1 
2'-l 1 1 1 

The following example illustrates these steps. 
Example: Construction of an OA8(2^) 
Here N = 8 = 2\ so r = 3. 

Step 1:   Write the r = 3 basic columns. 

Column No.   12   3   4   5   6   7 

Row No. 

1 0 0 0 
2 0 0 1 
3 0 1 0 
4 0 1 1 
5 1 0 0 
6 1 0 1 
7 1 1 0 
8 1 1 1 

Generator     Xi X2       X3 

Step 2:   List the generators (see rows 1 to 
7 of table 4). 

Column No. Generator 

Xl 

X2 

X1+X2 

Xl 

X1+X3 

X1+X3 

Step 3:   Complete the array using the generators 
identified in step 2. 

Column No.    12   3   4   5   6   7 

Row No. 

1 0 0 0 0 0 0 0 
2 0 0 0 1 1 1 1 
3 0 1 1 0 0 1 1 
4 0 1 1 1 1 0 0 
5 1 0 1 0 1 0 1 
6 1 0 1 1 0 1 0 
7 1 1 0 0 1 1 0 
8 1 1 0 1 0 0 1 

The fractional factorial nature of Taguchi's two- 
element orthogonal arrays stems from the fact that 
the entries of the r columns identified by column 
numbers 1,2,4,8,...,2'"' form a complete factorial 
plan, and the remaining columns correspond to the 
interaction effects. The generators of these 
columns have a one-to-one correspondence with 
the main effects and the interaction effects written 
in Yates' [3] standard order. The r basic columns 
correspond to the main effects and the remaining 
columns correspond to the interaction effects, 

A two-element (two-level) orthogonal array with 
2' rows reduces to a fractional factorial plan when 
more than r factors are associated with the columns 
of the array and the remaining columns are 
deleted. In particular, when all 2''-l columns are 
associated with an equal number of factors, a two- 
level orthogonal array OAAf(2"') where N - 2' rep- 
resents a Nil'" = (1/2)'""'' fraction of a complete 
2'" factorial plan. For example, an OA8(2') repre- 
sents a (1/2)'-^ = (1/2)" = l/16th fraction of a 
complete 2'' factorial plan. That is, an OA8(2') 
represents a 2'"'' plan in factorial notation. 

The test levels of 2*"'' type fractional factorial 
plans are usually represented [4] by the symbols 
- and +. Such plans are often constructed by 
writing a complete factorial plan in the required 
number of test runs and appending additional 
columns obtained by multiplying certain columns 
of the complete factorial plan. This method and 
the Bose method of constructing two-level orthogo- 
nal arrays described here are similar, but since 
(-x- = -f, -x-f = -, and + y. + = +) 

while (0-f-0 = 0, 0-H = 1, and 1-1-1 = 0 in 
modulo 2 arithmetic), the two methods yield differ- 
ent fractions of the same type. However, one frac- 
tion can be obtained from another of the same type 
by switching the test levels, and permuting the rows 
and columns. For example, Taguchi's OA8(2^) can 
be obtained from Box, Hunter, and Hunter's 2'"'* 
plan [4] (shown as table 12.5 on page 391 of their 
book) by switching - and + in columns 4, 5 and 6; 
permuting the columns in the order 3,2,6,1,5,4, and 
7; and relabeling - as 0 and + as 1. 

4,   Two-Element Orthogonal 
Array OAi2(2") 

Table 5 displays Taguchi's OAj2(2") in the 0 
and 1 notation, and table 6 displays the classic 
Plackett and Burman [5] plan of 12 runs in the 0 

and     1     notation     rather    than     the    usual 
- and 4- notation. Since table 5 can be obtained 
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from table 6 through the following permutations, 
Taguchi's OAi2(2") and the Plackett and Burman 
plan of 12 runs are equivalent. 

(1) In table 6 switch the elements 0 and 1 of 
columns 1,2,4,5,7, and 11 (that is, substitute 1 
for 0 and 0 for 1 in these columns). 

(2) Permute the rows in the following order: 
5,2,6,10,4,1,3,7,11,8,12,9. 

(3) Permute the columns in the following order: 
1,2,3,4,6,5,9,10,8,7,11. 

Table 5. Orthogonal array OAi2{2") 

Column No. 

Row No. 1 2 3 4 5 6 7 8 9 10 11 

1 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 1 1 1 1 1 1 

3 0 0 1 1 0 0 0 1 1 1 

4 0 1 0 1 0 1 1 0 0 1 

5 0 1 1 1 1 0 1 0 1 0 

6 0 1 1 0 1 1 0 1 0 0 

7 0 1 0 0 1 1 0 1 0 

8 0 1 1 1 1 0 0 0 1 

9 0 0 1 1 0 1 1 0 0 

10 1 1 0 0 0 1 1 0 1 

11 1 0 0 1 0 0 0 1 1 

12 1 0 0 1 0 1 0 1 1 0 

5.   Three-Element Orthogonal Arrays of 

3*^ Rows for r = 2, 3, and 4 

A complete three-element orthogonal array with 
3' rows has (3''-l)/(3-l) columns and it is con- 
structed in three steps: 

Step 1: Write in the r columns specified by 
column numbers 1,2,5,14,...,(3''"'-1)/ 
(3 -1) +1 a complete factorial plan in r 
factors each having three test levels 
represented by 0,1, and 2, respectively. In 
order to match Taguchi's display format, 
write this plan in such a way that the en- 
tries of the left-most columns change less 
frequently than do the entries of the 
right-most columns. Mark these columns 
asA:i,;t2 Xr, respectively. 

Step 2: As before the generators of the re- 
maining columns are of the form 

aiXi + a2X2+ ... + ttrXr where xi,X2, ...iXr 

denote the r basic columns and the coeffi- 
cients a I, 02,..., flr for a particular column 
are given in the appropriate row of 
table 7. List the generators in the order of 
column numbers. 

Step 3: Compute the entries of the remaining 
columns by using the entries of the r basic 
columns and the appropriate generators. 
All calculations are done in modulo 3 
arithmetic (that is, an integer larger than 
or equal to three is replaced with its re- 
mainder after division by three). 

Table 6. Plackett and Burman plan of 12 rows 

Column No. Table 7. Coefficicnts of   the   generators of   three-element 

orthogonal arrays of 3' rows for r = 2, 3, ... 
Row No. 1 2 3 4 5 6 7 8 9 10 11 

1 1 

1 

0 

1 

1 

n 
0 

1 

0 

0 

0 

0 

1 

0 

1 

1 

1 

1 

0 

1 

1 

0 
Column 

Coefficients oixi,X2 X:S,-,Xr 

2 
No. fli "2 flr-l Or 

3 0 1 1 n 1 0 0 0 1 1 1 

4 1 0 1 1 n 1 0 n 0 1 1 1 1 0 First (3'--l)/(3-l)First(3'-'-l)/(3-l) 

2 0 1 entries arc 0 entries are 0 
5 1 1 0 1 1 0 1 0 0 0 1 3 1 1 Next {y-^) Last (3'-') 
6 1 1 1 0 1 1 u 1 0 0 0 4 2 1 entries arc 1 entries are 1 

7 0 1 1 1 0 1 1 0 1 0 0 Repeat Repeat Next (3'--) 

8 0 0 1 1 1 0 1 1 0 1 0 (0,1,2) (0,0,0, entries are 0 

9 0 0 0 1 1 1 0 1 1 0 1 
1,1,1, 
2,2,2) 

Ncxt(3'--) 

entries are 1 
10 1 0 u 0 1 1 1 0 1 1 0 

Last {y--) 

11 0 1 0 0 0 1 1 1 0 1 1 entries are 2 

12 0 0 0 0 0 0 0 0 0 0 0 (3'-l)/(3- 1) 2 2 
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The following example illustrates these steps. 
Example: Construction of an OA<;(3'') 
Here N = 9 = 3\ so r = 2. 

Step 1:   Write the r = 2 basic columns 

Column No.    12   3   4 

Step 2: 

Row No. 

1 0   0 
2 0   1 
3 0   2 
4 1   0 
5 1   1 
6 1   2 
7 2   0 
8 2   1 
9 2   2 

Generator Xi  X2 

List the generators (see rows 1 to 
4 of table 7). 

Column No, Generator 

1 ^1 

2 X2 

3 X2^Xl 

4 ^2 + 2ri 

Step 3:   Complete the array using the generators 
identified in step 2. 

Column No. 1 2 3 4 

Row No. 

1 0 0 0 0 
2 0 1 1 1 
3 0 2 2 2 
4 1 0 1 2 

5 1 1 2 0 
6 1 2 0 1 
7 2 0 2 1 

8 2 1 0 2 
9 2 2 1 0 

The fractional factorial nature of Taguchi's 
three-element orthogonal arrays stems from the 
fact that the entries of the r basic columns identified 
by column numbers, l,2,5,14,...,(3''"'-l)/(3-l) + l 
form a complete factorial plan and the other 
columns correspond to the interaction effects. Since 
each column contains three distinct elements, two 
degrees of freedom are associated with each 
column. Since pairwise interaction effects carry 
(3 -1) X (3 -1) = 4 degrees of freedom, two 
columns correspond to each pairwise interaction ef- 
fect. An interaction effect involving k factors carries 

(3-1)* = 1^ degrees of freedom. Therefore, 2*"' 

columns correspond to each interaction effect 
involving k factors for k = 2,3,4,... . 

A three-element (level) orthogonal array with 3' 
rows reduces to a fractional factorial plan when 
more than /• factors are associated with the columns 
of the array and the remaining columns are 
deleted. In particular, when all (3''-l)/(3-l) 
columns are associated with an equal number of 
factors, a three-level orthogonal array OAAr(3"') 
where N = 3' and m = (3''-l)/(3-l) represents 
a N/3"' = (1/3)""-' ■  fraction of a complete 3'" facto- 
rial plan. For example, an OA9(3'') represents a 
(1/3)^ fraction of a complete 3* factorial plan. That 
is, an OA9(3'') represents a 3*~' plan in factorial 
notation. 

6.   Four-Element Orthogonal Arrays of 4'^ 
Rows for r = 2 and 3 

The method of constructing four-element or- 
thogonal arrays is similar to the method for three- 
element arrays. An important difference, however, 
is that the calculations required to generate the 
columns are not performed in modulo 4 arithmetic. 
Instead, special addition and multiplication tables, 
displayed here as tables 9 and 10 are used. These 
addition and multiplication tables are based on the 
"finite arithmetic of the Galois Field Theory" that 
underlies this method of construction. According 
to this theory, the calculations required to generate 
an orthogonal array of s elements are done in 
modulo s arithmetic when s is a prime number, as 
is the case with 2, 3, and 5. When j is a power of a 
prime number such as 4 (which is the square of 
prime number 2), finite arithmetic of a Galois 

Field of s elements is used. A four-element 
orthogonal array with 4' rows and (4''-l)/(4-l) 
columns is constructed in three steps. 

Step 1: Write in the r columns specified by 

column numbers 1,2,6,...,(4''"' —1)/ 
(4-l) + l a complete factorial plan in r 
factors each having four test levels 
represented by 0,1,2, and 3, respectively. 
Write this plan in Taguchi's format, and 
mark these columns asAri,j:2,...,A:,, respec- 
tively. 

Step 2: As before the generators of the re- 
maining   columns    are    of   the   form 

fllXi 4-^2^:2+  ...  + OrXr whcre ;Ci,.V2, ...,Xr 

denote the r basic columns and the coeffi- 
cients fl 1, fl2 a,- for a particular column 

are given in the appropriate row of 

table 8. List the generators in the order of 
column numbers. 

582 



Volume 96, Number 5, September-October 1991 

Journal of Research of the National Institute of Standards and Technology 

Step 3: Compute the entries of the remaining 
columns by using the entries of the r basic 
columns and the appropriate generators. 
All calculations are done using finite 
additions and multiplications defined in 
tables 9 and 10. 

Table 8. Coefficients of the generators of four-element orthog- 

onal arrays of 4'' rows for / ■  = 2, 3,... 

The following example illustrates these steps. 
Example: Construction of an OAi6(4^) 
Here A^ = 16 = 4^ so r = 2. 

Step 1:   Write the r = 2 basic columns 

Column No.   1   2   3   4   5 

Column  

No.     a I     02 

Coefficients oixi,X2, —tX, 

flr-l 

1       0   First (4'-2- l)/(4-l) First (4'-'-l)/(4-l) 

0 

1 

2 

3 

Repeat 

(0,1,2,3) 

entries are 0 

Next (4'-^) 

entries are 1 

Next (4'--^) 

entries arc 0 

Next (4^-2) 

entries are 1 

Next (4'-2) 

entries are 2 

Last (4'-2) 

entries are 3 

entries are 0 

Last (4'-') 

entries are 1 

Row No. 

1 0   0 

2 0    1 

3 0   2 

4 0   3 

5 1    0 

6 1    1 

7 1    2 

8 1   3 

9 2   0 

10 2    1 

11 2   2 

12 2   3 

13 3   0 

14 3    1 

15 3   2 

16 3   3 

Generator     X\ x^ 

Step 2:    List the generators (see rows 1 to 
5 of table 8). 

(4'--l)/(4-l) 3    3 

Table 9. Addition table for a 

Galois field of four elements" 

-H 0 1 2 3 

0 0 1 2 3 

1 1 0 3 2 

2 2 3 0 1 

3 3 2 1 0 

Column No. Generator 

X2 

jr2+2j:i 

JTO + SATI 

Step 3: Complete the array using the generators 
identified in step 2 and finite additions 
and multiplications defined in tables 
9 and 10. 

" This addition table is also the 

diffefence table for a Galois 

field of four elements. 

Table 10. Multiplication table 

for a Galois field of four 

elements 

Column No.    1    2   3   4   5 

0     1 

0      0 0     0     0 

10 12     3 

2 0 2     3     1 

3 0 3     12 

Row No. 

1 0 0 0 0   0 

2 0 1 1 1    1 

3 0 2 2 2   2 

4 0 3 3 3   3 

5 1 0 1 2   3 

6 1 1 0 3   2 

7 1 2 3 0    1 

8 1 3 2 1    0 

9 2 0 2 3    1 

10 2 1 3 2   0 

11 2 2 0 1    3 

12 2 3 1 0   2 

13 3 0 3 1    2 

14 3 1 2 0   3 

15 3 2 1 3   0 

16 3 3 0 2    1 
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The entries of the r basic columns identified by 
column numbers l,2,6,...,(4'^"'-l)/(4-l) + l form 
a complete factorial plan and the other columns 
correspond to the interaction effects. Since each 
column contains four distinct elements, three 
degrees of freedom are associated with each 
column. An interaction effect involving k factors 
carries (4 —1)* = 3* degrees of freedom. Therefore, 
3*"' columns correspond to each interaction effect 
involving k factors. In particular, three columns 
correspond to each pairwise interaction effect. 

When all (4''-l)/(4-l) columns are associated 
with factors, a four-element (four-level) array 
0AAr(4"') where AT = 4'- and m = (4'--l)/(4-l) 
represents aN/^"" = (IM)"" ~' fraction of a complete 
4"* factorial plan. For example, OAi6(4^) represents 
a (1/4)^ fraction of a complete 4' factorial plan. 

7. Five-Element Orthogonal Array 

OA2s(5*) 

Taguchi's OA25(5'') is constructed through the 
same general approach that is used to construct 2-, 
3-, and 4-element arrays. The first two columns 
form a complete factorial plan in two factors each 
having five test levels represented by 0,1,2,3, and 4. 
The other columns are generated from these two 
columns using the following generators where xi 
and X2 represent the entries of the first two 
columns. 

Column No. Generator 

1 Xl 

2 X2 

3 J;2+J:I 

4 X2 + 2xi 

5 j;2+3xi 

6 X2+4JC1 

All calculations are done in modulo 5 arithmetic. 
When the six columns of an OA25(5'') are associ- 
ated with an equal number of factors, then 
OAasCS*^) represents a (1/5)'' fraction of a complete 
5" factorial plan. 

8.   Mixed-element Orthogonal Arrays 

OAi8(2'x3'), OA32(2'x4'') and 

OAso(2^x5") 

These orthogonal arrays are constructed by the 
method of Bose and Bush [6]. This method involves 
four concepts: difference matrices, Kronecker 

sums, saturated orthogonal arrays, and column 
replacement. 

1) A difference matrix of s elements 0,1,...,(5 — 1), 
denoted by DM{S), is an MxM matrix whose 
columns have the property that the differences in 
finite arithmetic between any two columns is a 
column in which each of the s elements occurs 
equally often. Table 11 displays the difference 
matrix D3(3). When .s is a prime number such as 3 
or 5, the finite arithmetic used in defining the dif- 
ference matrix is modulo s arithmetic, and when s 
is a power of a prime number such as 4 (which is 
the square of prime number 2), the finite arith- 
metic is the arithmetic of a Galois Field of s 
elements. Table 9 defines finite addition for 5=4. 
The finite difference table for s =4 is the same as 
the finite addition table. 

Table 11. Difforc nee matrix D3(3) 

Column No. 

Row No. 1 2           3 

1 
2 
3 

0 
0 
0 

0 0 
1 2 
2 1 

2) The Kronecker sum of an MxM difference 
matrix DM{S) and a p xl vector b of s elements, 
denoted by DM(S) @b,is a matrix of Mxp rows 
and M columns obtained by adding in finite arith- 
metic each element of the vector b to each element 
of the difference matrix DM(S). For example, if b is 
the column vector (0,1,2) and D.i(3) is as defined in 
table 11, then 

0+0 0+0 0+0 
0+1 0+1 0+1 

0+2 0+2 0+2 

0+0 1+0 2+0 
T)M(s)@b=      0+1 1 + 1 2+1 

0+2 1+2 2+2 

0+0 2+0 1+0 

0+1 2+1 1+1 
0+2 2+2 1+2 

3) An orthogonal array OAN(s"'xt") is said to 
be saturated when A^-1 = m(5-l)+/i(f-1). 
Since an s element column has s — 1 degrees of 
freedom and a t element column has r — 1 degrees 
of freedom, m +n columns of OAN{s"'xt") have 
m(s -l) + n(t -1) degrees of freedom. Since (heN 
rows of 0AAI(5"'X/") yield N (independent) data 

values, the total number of effects that can be 

estimated after allowing for the grand mean of the 

0   0   0 
1  1  1 
2   2   2 
0    1    2 
1   2   0 

= 2   0    1 
0   2   1 
1    0   2 
2    1    0 
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0 0 0 

0 1 1 

1 0 1 

1 1 0 

1 1 0 

1 0 1 

0 1 1 

0 0 0 

N data values isN — 1. Therefore when a saturated 
orthogonal array is used as an experimental plan, 
the total number of effects that can be estimated is 
equal to the total degrees of freedom of the 
columns (factors). When all m +n columns are 
associated with factors, a saturated orthogonal 
array can be viewed as a saturated main effect frac- 
tional factorial plan. 

4) An orthogonal array remains an orthogonal 
array when one of its columns is replaced with an 
orthogonal array whose rows have a one-to-one 
correspondence with the elements of the replaced 
column. For example, suppose a is a four-element 
column of an orthogonal array A, and suppose B is 
an orthogonal array whose rows have a one-to-one 
correspondence with the elements of column a 
where 

0 
1 
2 
3       and B 

3 
2 
1 
0 

Then a matrix obtained from the orthogonal array^4 
by replacing the column a with the orthogonal array 
B is an orthogonal array. 

Taguchi's OA:8(2'x3'), OA32(2'x4'), and 
OA5o(2'x5") are constructed by the Bose and 
Bush method [6] from the difference matrices 
D6(3), D8(4), and Dio(5) displayed in tables 12, 13, 
and 14 respectively. The following example illus- 
trates the method. 

Example: Construction of an OAi8(2^ x3') 

Step 1: Construct a matrix of 6 x 3 = 18 rows and 
6 columns from the Kronecker sum of the 
difference matrix D6(3) displayed in table 
12 and the column vector (0,1,2). This 
18x6 matrix is displayed in columns 
3,4,5,6,7, and 8 of table 3, and it is an 
OA,8(3'^). 

Step 2: Append to columns 3,4,5,6,7, and 8 a six- 
element column consisting of three O's, 
three I's, three 2's, three 3's, three 4's, and 
three 5's. Label this column as 1'. Now 
columns 1',3,4,5,6,7, and 8 of table 3 form 
a saturated orthogonal array OAi8(6' x 3''). 

Step 3: Construct a matrix of 18 rows and 2 
columns by associating the six ordered 
pairs (0,0), (0,1), (0,2), (1,0), (1,1), and 

(1,2) with the 6 elements 0,1,2,3,4, and 5 of column 
1'. This matrix is an orthogonal array and its rows 
have a one-to-one correspondence with the ele- 
ments of r. Write this orthogonal array in columns 
1 and 2 of table 3. Now columns 1,2,3,4,5,6,7, and 8 
of table 3 form Taguchi's OAi8(2' x3'). 

Taguchi's OA32(2'x4'') and OA5o(2'x5'0 are 
constructed, similarly, from the difference matrices 
D8(4) and D,o(5) displayed in Tables 13 and 14, 
respectively. 

Table 12. Taguchi's difference matrix Df,(3) 

Column No. 

Row No. 1 2 3 4 5 6 

1 0 0 0 0 0 0 

2 0 0 1 1 2 2 

3 0 1 0 2 1 2 

4 0 2 2 1 1 0 

5 0 1 2 0 2 1 

6 0 2 1 2 0 1 

Table 13. Taguchi's difference matrix D«(4) 

Column No. 

Row No. 1 2 3 4 5 6 7 8 

1 0 0 0 0 0 0 0 0 

2 0 0 1 1 2 2 3 3 

3 0 1 2 3 0 1 2 3 

4 0 1 3 2 2 3 1 0 

5 0 3 0 3 1 2 1 2 

6 0 3 1 2 3 0 2 1 

7 0 2 2 0 1 3 3 1 

8 0 2 3 1 3 1 0 2 

Table 14. Taguchi's difference matrix Dio (5) 

Column No. 

Row No. 1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0 1 2 3 4 0 1 2 3 4 

3 0 2 4 1 3 3 0 2 4 1 

4 0 3 1 4 2 4 2 0 3 1 

5 0 4 3 2 1 3 2 1 0 4 

6 0 0 3 4 3 2 1 4 1 2 

7 0 1 0 2 2 1 3 4 4 3 

8 0 2 2 0 1 4 4 3 1 3 

9 0 3 4 3 0 1 4 1 2 2 

10 0 4 1 1 4 2 3 3 2 0 
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The general method of constructing a mixed- 
element array of the type OA//(2'xs"') where 
m =25 + 1 and N = 2s^ from a difference matrix 
of the type D2s(s) where 5 is a prime number (such 
as 3 or 5) or a power of a prime number (such as 4) 
consists of three steps. 

Step 1: 

Step 2: 

Step 3: 

Construct a matrix of 2s^ rows and 2s 
columns from the Kronecker sum of the 
difference matrix D2i(5) and the column 

vector (0,1,—.^-!)• These 2s columns 
form OAN{S^') where N = 2s^. Label 

these columns as 3,4,—. and 2^+2, 
respectively. 
Append a 2s-element column consisting 
of s O's, s I's, ..., and s (2s - l)'s. (The 
total number of entries in the column is 
2s xs=2s^). Label this column 1'. Now 
columns r,3,4,..., and 2s +2 form a satu- 
rated orthogonal array OAN[(2S)^XS''] 

where N = 2s^. 
Construct a matrix of 2s^ rows and 2 
columns by associating the 2s ordered 
pairs (0,0), (0,1),..., (0,s-l), (1,0), 
(1,1),..., and (1,5-1) with the 25 ele- 
ments 0,1,..., s — 1, s, s +1,..., and 25-1 
of column 1'. This matrix is an orthogonal 
array and its rows have a one-to-one cor- 
respondence with the elements of column 
r. Write this orthogonal array in columns 
1 and 2. Now columns 1,2,3,..., 25+2 
form OAN(2^XS"') where N = 2s^ and 
m =25 + 1. 

A difference matrix remains a difference matrix 
when (1) its rows are permuted or (2) its columns 
are permuted or (3) an integer is added (in finite 
arithmetic) to any column of the matrix. Because of 
finite arithmetic, the addition of an integer to a 
column results in a permutation of the elements of 
that column. Thus each of these three operations 
results in a permutation of the elements of the 
matrix. The difference matrices D6(3) and Ds(4) 
used by Taguchi are permuted versions of Bose 
and Bush's D6(3) and D8(4), respectively, and 
Taguchi's Dio(5) is a permuted version of 
Masuyama's [7] Dio(5). Specifically, Taguchi's 
D6(3) displayed in table 12 can be obtained from 
Bose and Bush's D5(3) displayed in table 15 by 
permuting the columns of table 15 in the following 
order: 1,2,3,5,6, and 4. And Taguchi's D8(4) dis- 
played in table 13 can be obtained from Bose and 

Bush's D8(4) displayed in table 16 by permuting 

the columns of table 16 in the following order: 

1,5,2,6,3,7,4, and 8. Similarly, Taguchi's Dio(5) 
displayed in table 14 can be obtained from 
Masuyama's Di()(5) displayed in table 17 by per- 
muting both the rows and the columns of table 17 
in the following order: 1,2,3,4,5,10,6,7,8, and 9. 

Table 15. Bose and Bush's difference matrix D( .(3) 

Column No. 

Row No. 1     2     3 4     5     6 

0 0     0     0     0     0 
0 0     12     12 
0 10     2     2     1 

0 2     2     0     11 
0 12     10     2 
0 2     112     0 

Table 16. Bose and Bush's difference matrix Dn(4) 

No. 

Column No. 

Row 1      2     3 4     5 6     7     8 

1 0 0 0 0 0 0 0 0 

2 0 1 2 3 0 1 2 3 

3 0 2 0 2 1 3 1 3 

4 0 3 2 1 1 2 3 0 

5 0 0 1 1 3 3 2 2 

6 0 1 3 2 3 2 0 1 

7 0 2 1 3 2 0 3 1 

Table 17. Masuyama's difference matrix Dia(5) 

Column No. 

Row No. 1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0 1 2 3 4 1 2 3 4 0 

3 0 2 4 1 3 0 2 4 1 3 

4 0 3 1 4 2 o 0 3 1 4 

5 0 4 3 2 1 2 1 0 4 3 

6 0 1 0 2 2 3 4 4 3 1 

7 0 2 2 0 1 4 3 1 3 4 

8 0 3 4 3 0 4 1 2 2 1 
9 0 4 1 1 4 3 3 2 0 2 

10 0 0 3 4 3 I 4 1 2 2 

When all m+1 columns are associated with 
factors, a mixed-element (mixed-level) orthogonal 

array, OA;v(2'x5"'), where A^ = 25-andm =25 + 1 
represents a N/(2^xs'") = {Vsy'-^ fractional 
factorial plan. For example, OAis(2'x3'') can be 

viewed as a (1/3)'"^ =(1/3)^ fraction of a complete 
2'x3' factorial plan. 
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9.   Mixed-Element Orthogonal Arrays 

OA36(2"x3'') and OA36(2'x3^') 

These arrays are constructed by appending cer- 
tain columns to OA36(3^^) developed by the Bose 
and Bush method [6] from the difference matrix 
Di2(3) displayed in table 19. The following steps 
describe the method. 

Step 1: Construct a matrix of 12 x 3 = 36 rows 
and 12 columns from the Kronecker sum 
of the difference matrix Di2(3) displayed 
in table 19 and the column vector (0,1,2). 
These twelve columns are displayed in 
columns 12,13,..., and 23 of table 18 and 
they form OA36(3'^). 

Step 2: Append to columns 12,13,..., and 23 a 
twelve-element column consisting of 
three O's, three I's,..., and three ll's. 
Label this column as 1". Now columns 
12,13,..., 22, 23, and 1" form a saturated 
orthogonal array OA36(3'^x 12'). 

Step 3: Construct a matrix of 12x3 = 36 rows 
and 11 columns by repeating three times 
each row of OAi2(2") displayed in table 
5. This matrix is an orthogonal array and 
its rows have a one-to-one correspon- 
dence with the twelve elements of column 
1". Write this orthogonal array in 
columns 1,2,...,10, and 11. Now columns 
1,2,...,11,12,13,..., and 23 of table 18 form 
Taguchi'sOA3f,(2"x3'^). 

Table 18. Orthogonal arrays OA36(2"x3"), OAjr, (2^x3'^), and OA36(3'-xl2')" 

Col umn No, 

r--^=:j--~-. 

Row No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1' 2' 3 4' 1" 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 I 1 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 

4 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 2 2 2 2 0 1 0 1 

5 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 0 0 0 0 0 1 0 1 
6 0 0 0 0 0 1 1 1 2 2 2 2 0 0 0 0 1 1 1 1 0 1 0 1 

7 0 0 1 0 0 0 0 0 1 2 0 1 2 2 0 1 1 2 0 0 2 

8 0 0 1 0 0 0 1 1 2 0 1 2 0 0 1 2 2 0 0 0 2 
9 0 0 1 0 0 0 2 2 0 1 2 0 1 1 2 0 0 1 0 0 2 

10 0 0 0 1 0 0 0 0 2 1 0 2 1 2 1 0 2 1 1 0 0 3 

11 0 0 0 1 0 0 1 1 0 2 1 0 2 0 2 1 0 2 1 0 0 3 
12 0 0 0 1 0 0 2 2 1 0 2 1 0 1 0 2 1 0 1 0 0 3 

13 0 0 1 0 0 1 0 0 1 2 0 2 1 0 2 2 1 0 1 0 0 0 4 
14 0 0 1 0 0 1 0 1 2 0 1 0 2 1 0 0 2 1 2 0 0 0 4 

15 0 0 1 0 0 1 0 2 0 1 2 1 0 2 1 1 0 2 0 0 0 0 4 

16 0 0 1 0 1 0 0 0 1 2 1 0 0 2 1 2 2 1 0 0 1 5 

17 0 0 1 0 1 0 0 1 2 0 2 1 1 0 2 0 0 2 1 0 1 5 
18 0 0 1 0 1 0 0 2 0 1 0 2 2 1 0 1 1 0 2 0 1 5 

19 0 0 0 1 0 1 0 0 1 0 2 2 2 0 1 1 0 1 2 0 6 
20 0 0 0 1 0 1 0 1 2 1 0 0 0 1 2 2 1 2 0 0 6 
21 0 0 0 1 0 1 0 2 0 2 1 1 1 2 0 0 2 0 1 0 6 

22 0 0 1 0 0 0 1 0 1 1 2 2 0 1 0 0 2 2 1 1 0 7 
23 0 0 1 0 0 0 1 1 2 2 0 0 1 2 1 1 0 0 2 1 0 7 
24 0 0 1 0 0 0 1 2 0 0 1 1 2 0 2 2 1 1 0 1 0 7 

25 0 0 1 1 0 1 0 0 0 2 1 0 1 2 2 0 2 0 1 1 0 0 0 2 8 
26 0 0 1 1 0 1 0 0 1 0 2 1 2 0 0 1 0 1 2 2 0 0 0 2 8 
27 0 0 1 1 0 1 0 0 2 1 0 2 0 1 ] 2 1 2 0 0 0 0 0 2 8 

28 1 0 0 0 0 1 0 0 2 1 1 I 0 0 2 1 2 0 2 0 1 2 9 
29 1 0 0 0 0 1 0 1 0 2 2 2 1 1 0 2 0 1 0 0 1 2 9 
30 1 0 0 0 0 1 0 2 1 0 0 0 2 2 1 0 1 2 1 0 1 2 9 

31 0 1 0 1 0 0 0 0 2 2 2 1 2 1 1 0 1 0 0 0 2 10 
32 0 1 0 1 0 0 0 1 0 0 0 2 0 2 2 1 2 1 1 0 2 10 
33 0 1 0 1 0 0 0 2 1 1 1 0 1 0 0 2 0 2 2 0 2 10 

34 0 0 1 0 1 0 1 0 0 2 0 1 2 1 2 0 1 1 2 0 1 0 2 11 
35 0 0 1 0 1 0 1 0 1 0 1 2 0 2 0 1 2 2 0 1 1 0 2 11 
36 0 0 1 0 1 0 1 0 2 1 2 0 1 0 1 2 0 0 I 2 1 0 2 11 

' Columns 1,2,...,22, and 23 form OA36(2" x3'^). 
Columns 1",12,13,...,22, and 23 form OA36(3'^xl2'). 
Columns l',2',3',4M2,13,...,22 and 23 form OA36(2^x3'^). 
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Step 4: Construct a matrix of 12 rows and 4 
columns by repeating OA4(2^) displayed 
in table 1 three times and appending a 
three-element column consisting of four 
O's, four I's and four 2's. These four 
columns form OAi2(2'x3'), and are dis- 
played in table 20. Now construct a matrix 
of 36 rows and 4 columns by repeating 
three times each of the twelve rows of 
OAi2(2'x3') displayed in table 20. This 
36x4 matrix is an orthogonal array of 36 
rows and 4 columns and its rows have a 
one-to-one correspondence with the ele- 
ments of column 1". Write this orthogo- 
nal array in columns l',2',3', and 4' of 
table 18. Now columns 12,13,..., 23, 
l',2',3', and 4' of table 18 form Taguchi's 
OA36(2^x3'^). 

The difference matrix Di2(3) used by Taguchi is 
a permuted version of Seiden's [8] Di2(3). Specifi- 

Table 19. Taguchi's difference matrw Di2(3) 

Column No. 

Row No.          1    2   3   4   5    6   7   8   9   10   11 12 

0000000000 0 0 

0000111122 2 2 

0012012201 1 2 

0021021210 2 1 

0120210221 0 1 

0121002122 1 0 

0102220110 1 2 

0112201002 2 1 

0210122020 1 1 

0211100212 0 2 

0222121101 0 0 

0201212011 2 0 

Table 20. Orthogonal array OAi2(2'x3') 

9 

10 
11 
12 

Column No. 

Row No. 1 2 3 4 

1 0 0 0 0 

2 0 1 1 0 

3 0 1 0 

4 1 0 0 

5 0 0 1 

6 1 1 1 

7 0 1 1 

8 1 0 1 

9 0 0 2 

10 1 1 2 

11 0 1 2 

12 1 0 2 

cally, Taguchi's Di2(3) displayed in table 19 can 
be obtained from Seiden's Di2(3) displayed in 
table 21 through two operations. First add 1 (in 
modulo 3 arithmetic) to each element of columns 
10 and 11, and add 2 to each element of columns 
4,5, and 8 in table 21, then permute the columns in 
the following order: 1,2,3,6,12,10,11,5,9,7,8, and 4. 

When all columns of OA35(2"x3'^) are 
associated with factors, this array represents a 

36/(2"X3'-) fraction of a complete 2"x3'^ 
factorial plan; a very highly fractionated orthogonal 
plan indeed. Similarly OA3f,(2'x3'^) represents a 
36/(2^x3'^) fraction of a complete 2^x3^^ 
factorial plan. 

Table 21. Seiden's difference matrix Di2(3) 

Column No. 

Row No. 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 0 0 1 1 0 0 1 0 2 2 0 

2 0 0 0 0 2 0 2 0 2 0 0 1 

3 0 0 1 0 0 2 1 2 0 0 1 0 

4 0 0 2 2 0 1 0 0 1 1 0 0 

5 0 1 2 2 0 0 1 1 2 0 2 2 

6 0 1 2 1 2 1 2 2 2 2 1 0 

7 0 1 0 0 2 2 0 2 1 1 2 2 

8 0 1 1 2 I 2 2 0 0 2 0 2 

9 0 2 1 2 1 0 0 2 2 1 1 1 

10 0 2 1 0 0 1 2 1 1 2 2 1 

11 0 2 2 1 2 2 1 1 0 1 0 1 

12 0 2 0 1 1 1 1 0 1 0 1 2 

10. Mixed-Element Orthogonal Array 

OAs4(2'x3") 

This array is a special case of OA54(6'x3^'') 
where the six-element column is replaced with two 
columns one having two elements and the other 
having three elements. Orthogonal array 
OA54(6'x3-'*) is displayed in table 22 in a special 
vector form (to save space). In table 22 boldface 
numbers and letters 0,l,2,3,4,5,a,A, and c represent 
the column vectors (0,0,0), (1,1,1), (2,2,2), (3,3,3), 
(4,4,4), (5,5,5), (0,1,2), (1,2,0), and (2,0,1), respec- 
tively. An OA54(6'x3'*') is constructed from 
OAi8(6'x3^'), displayed in table 3, in three steps. 
(1) Repeat three times each row of OAi8(6'x3*). 
(2) Append a column consisting of the vector 
(0,1,2) repeated eighteen times. (3) Append seven- 
teen additional columns representing the interac- 
tions of the columns of OAi8(6'x3'') and the 

three-element column appended in step 2. The 
following paragraphs describe these steps in more 
detail. 
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Table 22. Orthogonal array OA54(2'x3"), and OAs4 (G'xS")" 

Column No. 

Row No. 1' 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

1-3 0 0 0 0 0 0 0 0 0 a a a a a a a a a a a a a a a a a a 

4-6 0 0 0 1 1 I 1 1 1 a a a a a a b c b c b c b c b c b c 

7-9 0 0 0 2 2 2 2 2 2 a a a a a a c b c b c b c b c b c b 

10-12 1 0 1 0 0 1 1 2 2 a a b b c c a a a a b c b c c b c b 

13-15 1 0 1 1 1 2 2 0 0 a a b b c c b c b c c b c b a a a a 

16-18 1 0 1 2 2 0 0 1 1 a a b b c c c b c b a a a a b c b c 

19-21 2 0 2 0 1 0 2 1 2 a h a c b c a a b c a a c b b c c b 

22-24 2 0 2 1 2 1 0 2 0 a b a c b c b c c b b c a a c b a a 

25-27 2 0 2 2 0 2 1 0 1 a b a c b c c b a a c b b c a a b c 

28-30 3 0 0 2 2 1 1 0 a c c b b a a a c b c b b c b c a a 

31-33 3 0 1 0 0 2 2 1 a c c b b a b c a a a a c b c b b c. 

34-36 3 0 2 1 1 0 0 2 a c c b b a c b b c b c a a a a c b 

37-39 4 1 0 1 2 0 2 1 a b c a c b a a b c c b a a c b b c 

40-42 4 1 1 2 0 1 0 2 a b c a c b b c c b a a b c a a c b 

43-45 4 1 2 0 1 2 1 0 a b c a c b c b a a b c c b b c a a 

46-48 S 2 0 2 1 2 0 1 a c b c a b a a c b b c c b a a b c 

49-51 5 2 1 0 2 0 1 2 a c b c a b b c a a c b a a b c c b 

52-54 S 2 2 1 0 1 2 0 a c b c a b c b b c a a b c c b a a 

" Columns l',3,4 25, and 26 form OA54(6' x3-''). 
Columns 1,2,3,...,25, and 26 form OA54(2'x3"). 

The entries 0,1,2,3,4,5,0 ,ft, and c represent the column vectors (0,0,0), (1,1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,5), (0,1,2), (1,2,0), and 
(2,0,1), respectively. 

Step 1: Construct a 54x7 matrix by repeating 
three times each row of OAis(6'x3'^) 
displayed in table 3. This matrix forms the 
columns 1',3,4,5,6,7, and 8 of table 22. 

Step 2: Append to columns r,3,4,5,6,7, and 8 of 
table 22, a three-element column consist- 
ing of the vector (0,1,2) repeated eighteen 
times. This is column 9 of table 22. 

Step 3:   The   seventeen   columns   identified   by 
column numbers 10,11,12 25 and 26 of 
table 22 represent the interactions of 
column 9 with each of the seven columns 
r,3,4,5,6,7, and 8. Since column 1' has 6 
elements (5 degrees of freedom) and 
column 9 has 3 elements (2 degrees of 
freedom), interaction of column 1' and 
column 9 has 5x2 = 10 degrees of free- 
dom. Thus 5 three-element columns 
(2 degrees of freedom each) are needed 
to represent the interaction of column V 
and column 9. These five columns are 
constructed from columns 2,3,4,5, and 6 
of the difference matrix D6(3) displayed 
in table 12 as follows. Construct an 18 x 5 
matrix (not shown in this paper) by delet- 

ing column 1 of table 12 and repeating 
three times each row of the remaining 
five columns. Now construct a matrix of 
54 rows and 5 columns by the Kronecker 
sum of this 18x5 matrix and the column 
vector (0,1,2). These tlve columns are 
displayed in columns 10,11,12,13, and 14 
of table 22 and they represent the interac- 
tion of column 1' and column 9. 

Since each of the columns 3,4,5,6,7,8, and 9 has 
three elements (2 degrees of freedom), each pair- 
wise interaction among these columns has 
4 degrees of freedom. Thus 2 three-element 
columns (2 degrees of freedom each) are needed to 
represent each pairwise interaction of column 9 
with the columns 3,4,5,6,7, and 8. These interaction 
columns are identified by the method of Bose [2]. 
This method of construction was used earlier in 
this paper to construct 2-, 3-, 4-, and 5- element 
orthogonal arrays. Mark columns 3,4,5,6,7,8, and 9 
as X3, XJI, XS, X(„ x^, Xs, and x^, respectively. These 
seven columns are used to generate the columns 
15,16,17,18,19,20,21,22,23,24,25, and 26 using the 
following generators, respectively. 
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Column No. Generator 

15 Xl+Xi 

16 J:9 + 2A:3 

17 X9+Xi 

18 X<, + 2X4 

19 X9+XS 

20 xv + 2xs 
21 X9+Xf, 

22 A;9 + 2<;6 

23 XV+X7 

24 X9 + 2X7 

25 X9+Xa 

26 X9+2xs 

All calculations are done in modulo 3 arithmetic. 
Note that columns 15 and 16 together represent the 
four degrees of freedom corresponding to the inter- 
action of column 3 and column 9. Similarly the 
other columns (in pairs) represent the interactions 
involving column 9, and columns 4,5,6,7, and 8, 
respectively. Now columns 1',3,4,5,...,25, and 26 of 
table 22 form OA54(6'x3''*). 

Taguchi's OA54(2'x3") is constructed by 
replacing column 1' with two columns formed by 
associating the 6 ordered pairs (0, 0),(0, 1),(0, 2), 
(1, 0),(1, 1), and (1, 2) with the elements 0,1,2,3,4, 
and 5 of column 1'. These two columns are 
displayed in columns 1 and 2 of table 22. Now 
columns 1,2,3,4,..., 25 and 26 of table 22 form 
Taguchi's OA54(2'x3"). When all columns of 
OA54(2'x3") are associated with factors, this 
array represents a 54/(2'x3^^) fraction of a com- 
plete 2'x3" factorial plan. 

11.   Concluding Remarks 

As shown in this paper, Taguchi's catalog of 
orthogonal arrays [1] is primarily based on two 
papers: Bose [2], and Bose and Bush [6]. The Bose 
paper laid the mathematical foundation of frac- 
tional factorials and orthogonal arrays. The Bose 
and Bush paper describes a method of constructing 
mixed-element orthogonal arrays from dif- 
ference matrices. The difference matrices used by 
Taguchi to construct OAj8(2'x3'), OA32(2'x4'), 
OA36(2"x3'2),OA36(2^x3'^)andOA5o(2'x5") 
are permuted versions of the difference matrices 
developed by Bose and Bush [6], Seiden [8], and 
Masuyama [7]. The extensions of the Bose, and the 
Bose and Bush, methods needed to construct 
OA36(2'' X3'^), OA36(2'X3'^), and OA54(2' x3") 
appear to be Taguchi's contributions. The authors 

have shown that Taguchi's OAi2(2") is a permuted 

version of the Plackett and Burman [5] plan of 
12 runs, but there is no reason to believe that 
Taguchi permuted the Plackett and Burman plan 
to construct his OAi2(2"). 

Although the original Japanese version of 
Taguchi's catalog of orthogonal arrays was devel- 
oped before 1960, it continues to be very useful. 
These arrays can be modified to generate many 
types of multifactor experiments [9] and many other 
orthogonal arrays can be derived from Taguchi's 
catalog through established mathematical proce- 
dures. Nevertheless, the catalog can now be 
expanded to include arrays developed after 1960. 
For example, Taguchi's catalog can be expanded to 
include OA24(4'x2'"), OA4o(4'x2'*) and 
OA4s(4^x2'*') first developed by Dey and 
Ramakrishna [10] and Chacko, Dey, and 
Ramakrishna [11], and then re-constructed through 
a unified procedure by Cheng [12]. It is the authors' 
intent to develop an expanded and revised version 
of Taguchi's catalog of orthogonal arrays. A com- 
panion paper [13] limited to the fixed-element 
orthogonal arrays appeared in the Journal of 
Quality Technology. 
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