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Abstract: Since Synthetic Aperture Radar (SAR) targets are full of coherent speckle noise, the traditional

deep learning models are difficult to effectively extract key features of the targets and share high

computational complexity. To solve the problem, an effective lightweight Convolutional Neural

Network (CNN) model incorporating transfer learning is proposed for better handling SAR targets

recognition tasks. In this work, firstly we propose the Atrous-Inception module, which combines both

atrous convolution and inception module to obtain rich global receptive fields, while strictly controlling

the parameter amount and realizing lightweight network architecture. Secondly, the transfer learning

strategy is used to effectively transfer the prior knowledge of the optical, non-optical, hybrid

optical and non-optical domains to the SAR target recognition tasks, thereby improving the model’s

recognition performance on small sample SAR target datasets. Finally, the model constructed in this

paper is verified to be 97.97% on ten types of MSTAR datasets under standard operating conditions,

reaching a mainstream target recognition rate. Meanwhile, the method presented in this paper shows

strong robustness and generalization performance on a small number of randomly sampled SAR

target datasets.

Keywords: Synthetic Aperture Radar (SAR); Convolutional Neural Network (CNN); transfer learning;

Atrous-Inception module; lightweight network; small sample

1. Introduction

Synthetic Aperture Radar (SAR) features all-weather, long-range and large-scale detection

performance. It can obtain high-resolution radar images under extremely low-visibility weather

conditions, effectively identify ground camouflage and masking targets and is widely used in marine

environment detection, terrain survey and military target recognition field. SAR Automatic Target

Recognition (ATR) is a crucial technique for interpreting SAR target images, which can effectively

improve the utilization efficiency of SAR targets images [1]. However, limited by the SAR’s coherent

imaging system as well as the electromagnetic scattering mechanism, the SAR target image is full

of strong coherent speckle noise, and is affected by the variation of target attitude, angle, imaging

parameters and other factors.

Based on the imaging characteristics of SAR target images, researchers have conducted a lot of

research on the SAR ATR algorithm. Traditional SAR target recognition methods mainly concentrate
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on the stage of feature extraction and the construction of a classifier. In the feature extraction phase,

Principal Component Analysis (PCA) [2], Independent Component Analysis (ICA) [3], Gray Level

Co-occurrence Matrix (GLCM) [4] and Histogram of oriented gradient (HOG) [5] are applied to SAR

target recognition tasks. PCA is a multivariate statistical method that examines the correlation between

multiple variables. The goal is to extract significant information from the acquired data and then depict

it as a new set of orthogonal variables named principal components. Gang et al. [6] put forth a joint

multi-channel sparsity method on the basis of robust PCA to improve the display performance of SAR

ground moving targets. ICA is an analytical method based on high-order statistical characteristics,

which is used to decompose complex datasets into independent sub-parts. Vasile et al. [7] used ICA to

the speckle filtering of actual polarized SAR data, which applied the rotational invariant scattering

vector derived from each ICA to the minimum mean square error filter, the spatial resolution was

better preserved. GLCM is a description of the joint distribution of two gray-level pixels with a certain

spatial location relationship, on which the anatomy of the local patterns as well as the arrangement

rules of the image is based. Numbisi et al. [8] used random forest and ensemble classifier to average

the texture characteristics of SAR target images and the Gray Level Co-occurrence Matrix (GLCM),

showing that SAR target images identify cocoa agricultural and transition forests in a multiphase

landscape. HOG is a feature descriptor for object detection employed to make calculations of the

numerical value of the direction information of the local image gradient. Song et al. [9] designed

a HOG for SAR ATR, which accurately captured the target structure in the SAR target image. In terms

of classifiers construction, Support Vector Machine (SVM) [10], Adaptive Boosting (Adaboost) [11] and

K Nearest Neighbor (KNN) [12] have also been successfully applied to SAR ATR related algorithms.

Sukawatanavijit et al. [13] combined genetic algorithm with SVM to present a novel algorithm, which

can obtain the optimal classification accuracy of multi-frequency radar satellite-2 (RS2) SAR target

images using merely a small number of input features. Kim et al. [14] brought forward a new method

for target detection based on Adaboost’s decision-level SAR and IR fusion, which showed satisfactory

performance on a synthetic database created by OKTAL-SE. Hou et al. [15] introduced the KNN

algorithm to enhance the classification accuracy of super-pixel SAR targets images. This method takes

into account the spatial position relationship between pixels and has strong robustness to coherent

speckle noise. Eryildirim et al. [16] proposed a novel method for extracting descriptive feature

parameters from two-dimensional cepstrum of SAR images, which had a lower computational cost than

PCA. Clemente et al. [17] utilized pseudo-Zernike moments of multi-channel SAR images as features

to identify different targets, and realized high confidence ATR. Sun et al. [18] introduced a SAR images

recognition method based on dictionary learning and joint dynamic sparse representation, which

accelerated the recognition speed and accuracy. Clemente et al. [19] designed a SAR ATR algorithm

based on Krawtchouk moments, which had strong target classification ability and anti-noise ability.

However, the above algorithms heavily rely on cumbersome manual feature design and empirical

selection, which is not only costly, but also the generalization ability of the designed model is often poor.

CNN is capable of processing multi-dimensional data and has powerful representation learning

capabilities, therefore having attracted the attention of many researchers. Since AlexNet [20] won

ImageNet Challenge: ILSVRC 2012 [21] and demonstrated the power of CNN, CNN has begun to

appear in various computer vision tasks. Then VGG Net [22] used a sequential structure to explore the

impact of CNN depth on image classification tasks, showing that the depth of the network has greatly

contributed to the excellent algorithm, and achieved the second place in ILSVRC 2014. ResNet [23]

introduced the concept of residual representation into the construction of CNN models, which further

extended the depth of CNN and achieved better performance. GoogLeNet [24] provided another

idea for the design of CNN models, which proposed the Inception module that greatly improved

the utilization of parameters by expanding the width of the network and using smaller convolution

kernels. In recent years, various models based on CNN have made remarkable achievements in the

optical image target recognition tasks. SAR target image recognition tasks have been stimulated by this

and plenty of related research has been carried out. Chierchia et al. [25] adopted a residual learning
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strategy in the designed CNN to denoise the SAR target images by subtracting the recovered speckle

component from the noise component. Pei et al. [26] augmented the data by generating sufficient

multi-view SAR data and fed the expanded SAR data into a designed CNN with a multi-input parallel

network topology for identification. Dong et al. [27] utilized spatial polarization information and

XGBoost to perform classification experiments on the PolSAR images of the Gaofen-3 satellite, and

proved that the combination of spatial information helps improve the overall performance. Wang et

al. [28] proposed a fixed-feature-size CNN, which realized the classification of all pixels of a PolSAR

image at the same time, and improved the classification accuracy by using the correlation between

different land covers. Shao et al. [29] effectively reduced the impact of data imbalance on SAR image

recognition results by introducing a visual attention mechanism and a new weighted distance measure

loss function into the designed network. Zhang et al. [30] improved the scattering decomposition

technology based on the multi-component model and adopted a superpixel-level classification strategy

for the extracted multiple features, providing a new method for land use classification of PolSAR data.

He et al. [31] designed a special generative adversarial network to generate enough labeled SAR data,

which improved the classification performance of CNN on SAR images. Although the CNN-based

SAR ATR algorithm has achieved breakthroughs in recognition performance, there are still three crucial

problems in the field of SAR target image recognition that need to be resolved. First, the SAR target

images are full of coherent speckle noise, resulting in highly redundant training sample features, lack

of representative features for target recognition and greatly affecting the classification performance of

the model. Second, limited by the expert domain knowledge and labeling costs of SAR target images,

labeled SAR data is scarce. Training a CNN with a small amount of sample SAR data will cause serious

overfitting and the model generalization ability is poor. Third, deep CNNs have complex structures

and enormous computational complexity, which are not conducive to the development of terminal

equipment for SAR identification systems.

In view of the above challenges, a lightweight network architecture TAI-SARNET combined

with transfer learning is put forward here to achieve efficient SAR target image recognition. Firstly,

the Atrous-Inception module with a small size convolution kernel is adopted in the network to increase

both the depth and width of the network while increasing the receptive field and reducing the number

of parameters. Secondly, Batch Normalization (BN) [32] is employed behind each convolutional layer to

effectively prevent network overfitting, and Global Average Pooling [33] is exploited to further decrease

the number of parameters. Subsequently, the robustness of the proposed algorithm on a small amount

of sample data is verified, and transfer learning is introduced to enhance the performance of the model.

Eventually, the suggested algorithm is tested on the MSTAR [34] database, and the experimental results

have demonstrated that it attains excellent recognition accuracy. The main contributions of this paper

are summarized as follows:

(1) An improved lightweight CNN model based on the Atrous convolution and Inception module is

proposed. This model can obtain a rich global receptive field, effectively preventing the network

from overfitting, and obtain high recognition accuracy on the MSTAR dataset.

(2) The Atrous-Inception module is designed to extract more detailed target feature information,

and it has strong robustness on a small sample dataset of the constructed SAR targets images.

(3) The transfer learning strategy is used to explore the performance of the prior knowledge based on

optical, non-optical, hybrid optical and non-optical fields transferred to the SAR targets images

recognition tasks, further improving the robustness as well as the generalization of the model on

the SAR small sample datasets.

The main work arrangement of this paper is as follows: The second part introduces the related

work of CNN and transfer learning. The third part introduces the methods in this paper. The fourth

part introduces the experimental results and analyzes them. The fifth part draws the conclusion.
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2. Related Work

2.1. CNN

CNN is a feed-forward neural network with a deep structure that contains one or more convolution

operations, enabling the transformation of mapping input to output. Compared with other neural

networks, CNN’s most significant feature is the introduction of the concept of local connection and

parameter sharing. Local connection can greatly reduce the amount of network model parameters,

speed up model convergence and reduce the need for computing hardware. Parameter sharing refers

to the convolution kernel with the same parameters to extract the features on the image multiple times,

and the extracted features are combined non-linearly, so that the network can automatically extract

better features. The above characteristics break through the limitations of traditional machine learning

algorithms based on artificial design features and are widely used in many fields.

GoogleNet marks a significant milestone in the history of CNN. It first proposes the Inception

structure, which performs convolution and pooling operations upon input images in parallel and

increases the adaptability of the network to multiple scales. At the same time, GoogleNet adopts

the bottleneck layer design in the Inception module to achieve feature reduction, improves the local

perception area of CNN and reduces the calculation of network parameters. Subsequently, Inception-v2

is proposed based on GoogleNet, and BN is introduced. On the one hand, the BN layer solves the

problem of internal covariate shift and speeds up training. On the other hand, the BN layer plays

the role of regularization, which effectively prevents the phenomenon of network overfitting. After

that, Inception-v3 [35] introduces the concept of factorization, using asymmetric convolution to build

Inception modules. Specifically, the convolution kernel of size N × N is decomposed into convolution

kernels of size N × 1 and 1 ×N, effectively reducing the number of network parameters while achieving

the same effect. Inception-v4 [36] further combs the Inception series and introduces a stem module

to build a deeper network structure. In addition, inspired by ResNet, the researchers combined the

Inception module with the residual structure to propose Inception-ResNet, which further reduced the

rate of image recognition errors. Shao et al. [37] tested the ability of the Inception-v3 network for SAR

targets image recognition tasks and achieved good recognition results. Chen et al. [38] realized the

high-precision detection of small and dense ships in SAR images by adding the Inception module and

residual structure to the designed network architecture. Zhang et al. [39] used GoogleNet to classify

Gaofen-3 PolSAR images and achieved good results on SAR target image tasks with different sampling

intervals. Wang et al. [40] developed an automatic classifier of S-1 WV marine SAR target images

based on the Inception-v3 structure, showing great potential in marine SAR scene recognition.

2.2. Transfer Learning

Traditional machine learning algorithms presume that training data and testing data follow the

same data characteristic spatial and data characteristic distribution, but this assumption usually fails to

meet the actual application scenario. In some specific areas, where data accessibility and labeling costs

are difficult to obtain sufficient training data, transfer learning provides a solution to this situation [41].

It starts by obtaining a large amount of easily accessible data from relevant domains and then uses that

data to create high-performance learners. Those high-performance learners obtain prior knowledge

from previous tasks and apply the acquired knowledge to the current tasks in a feasible way. In

a nutshell, transfer learning is used to advance learners in another field by acquiring relevant domain

information. Therefore, it is a feasible method to obtain the labeled data in relevant fields according to

the actual situation and use transfer learning to enhance the accuracy of SAR target recognition tasks.

In addition, the neural network can retain the skills learned from the original tasks, and continuous

learning can be achieved through transfer learning, which improves the generalization of the model.

Transfer learning breaks through the limitations of traditional machine learning algorithms,

allowing the task or data distribution of the source domain as well as the target domain to differ

greatly, and effectively alleviate the lack of labeled data for the target tasks. The advantages of transfer
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learning are obvious, and researchers have also applied transfer learning to SAR target recognition

tasks. Huang et al. [42] uses a plenty of unlabeled SAR scene images to train the superimposed

convolutional autoencoder and then transfers the acquired knowledge to the task of SAR target image

classification with limited amounts of labels, which effectively solves the problem of failing to train

deep CNN because of limited amount of labeled SAR data. David et al. [43] pioneers in the study

of transfer learning in simulated datasets and SAR real datasets, showing that prior knowledge of

transferring simulation data can effectively speed up the convergence of models and improve the

accuracy of SAR target image recognition. Zhong et al. [44] propose a SAR target image classification

method based on transfer learning and model compression, which effectively solves the training deep

CNN overfitting phenomenon caused by sparse SAR data. Rostami et al. [45] propose a method for

classification of small samples based on deep CNN. This method transfers Electro-Optical domain

knowledge to the SAR target image classification tasks by obtaining easy-to-access labeled data from

the relevant Electro-Optical domain, and then learning from a shared, unchanged cross-domain space.

It is proved Electro-Optical domain knowledge can be very good migration to the SAR domain of ship

classification tasks.

3. Proposed Methods

In this section, we propose a lightweight SAR target image classification network combining the

atrous convolution and the Inception module, and the application of transfer learning is introduced

in this paper. The first part displays the basic network architecture. The second part illustrates

the Atrous-Inception module in detail and elaborates on the related concepts of the receptive fields.

The third part derives the mathematical formula of the design principle of the optimization algorithm

used in this paper. In the fourth part, we give the specific definition of transfer learning and introduce

the transfer learning strategy adopted in this paper.

3.1. Proposed Network

This paper presents a lightweight network based on atrous convolution and Inception-v3, which

we call TAI-SARNET, the specific network structure is presented in Figure 1, and the detailed parameter

information of the structure is shown in Table 1.

The first four layers of TAI-SARNET are consistent with Inception-v3, and output 80 feature maps

after passing the first four layers of the network. Then, an Atrous-Inception module is immediately

followed, which contains three atrous convolution layers and outputs 96 map features, and details

of The Atrous-Inception module will be introduced in Section 3.2. Finally, an atrous convolution

layer is placed behind the Atrous-Inception module, which outputs 256 feature maps. The above

structure constitutes the feature extraction part of TAI-SARNET. In particular, it should be noted

that the activation function used in TAI-SARNET is ReLU and the BN layer is added behind each

convolution layer. The addition of the BN layer can dramatically accelerate the speed of network

training, effectively address the problem of gradient dispersion and avoid overfitting of the network.

The formula of the BN layer can be expressed as follows:

yi = α























xi − µB
√

σ2
B
+ ε























+ β (1)

where xi represents the i-th input of the BN layer, µB is the mean of a batch input data, σB represents the

standard deviation of the batch input data and ε is a very small constant value. α and β are learnable

reconstruction parameters, which are iteratively optimized through network training. By Equation (1),

the i-th output yi of the BN layer can be calculated.

Subsequently, the global average pooling layer is utilized in place of the traditional fully connected

layer so as to realize the calculation of all pixel averages for each feature map output from the feature
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extraction part. The global average pooling layer is employed to directly reduce the data dimension,

greatly reducing network parameters and play the role of regularization in the entire structure to

prevent network overfitting. Finally, the data values from the global average pooling layer are input into

the classifier softmax. The essence of softmax is a normalized exponential function that is functionally

normalized as the probability distribution value within the 0–1 interval, and the formula of the softmax

layer can be represented as follows:

so f tmax
(

yp

)

=
eyp

∑n
q=1 eyq

(2)

In Equation (2), yp represents the p-th output value of the global average pooling layer, and n

represents the number of categories. After softmax normalization, each output value can be regarded

as the probability value of identifying the target for that category, and the sum of the output values for

all categories of the network is one.

–

 





Maxpool Atous-Conv Softmax
Atous-Inception

Module
GlobalAveragepoolConv BN

Figure 1. The structure of the proposed network.

Table 1. The proposed TAI-SARNET parameters setting.

Description Output Size Filter Size/Stride Parameters

Input 64 × 64 × 1 - -
Conv1 31 × 31 × 32 3 × 3/2 288

BN 31 × 31 × 32 - 96
Conv2 29 × 29 × 32 3 × 3/1 9216

BN 29 × 29 × 32 - 96
Conv3 29 × 29 × 64 3 × 3/1 18,432

BN 29 × 29 × 64 - 192
Maxpool 14 × 14 × 64 3 × 3/2 -

Conv4 14 × 14 × 80 1 × 1/1 5120
BN 14 × 14 × 80 - 240

Atrous-Inception module 14 × 14 × 96 - 395,616
Atrous-Conv 6 × 6 × 256 3 × 3/1 221,184

BN 6 × 6 × 256 - 768
Global Averagepool 256 - -

Softmax 10 - 2570
Total 653,818

3.2. Atrous-Inception Module

The receptive field is used to represent the receptive range of different neurons in the network

to the original image. The larger the value of neuron receptive field is, the greater the range of the

original image it can access, which means that it contains more global and higher-level semantic

features. In traditional CNNs, a convolution operation is first used to extract feature maps, and then

downsampling is performed by a pooling operation to increase the receptive field. However, this

operation can result in the loss of the internal structure and spatial information of the target, and the

information of the small target object can not be reconstructed. Atrous convolution [46] is a good

solution to the problems caused by frequent use of pooled operation, and is widely used in the field of

semantic segmentation of images. Specifically, the atrous convolution inserts holes in the standard
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convolution, which ensures that the receptive field is increased without losing image information,

enabling each convolution output to contain a greater range of information.

The size of the receptive field of the standard convolution is pertinent to the size of the current

layer of the convolution kernel, the moving step of the convolution kernel, and the size of the receptive

field of the previous standard convolution. The receptive field calculation formula for standard

convolution is defined as follows:

rn = rn−1 ∗ kn −
(

rn−1 −
∏

n−1
i=1 si

)

∗ (kn − 1), n ≥ 2 (3)

where rn in the formula represents the receptive field in the n-th convolution layer, kn represents the

size of the convolution kernel in the n-th convolution layer, si indicates the moving step size of the

convolution kernel in the i-th convolution layer and the symbol ∗ represents the multiplication of

two factors. In particular, the size of the receptive field of the first convolution layer is the size of the

convolution kernel of the convolution layer. Simplify the formula as follows:

rn = rn−1 + (kn − 1) ∗
∏

n−1
i=1 si, n ≥ 2 (4)

For example, if the first layer is a 3 ∗ 3 standard convolution, then the receptive field of this

convolution layer is 3 ∗ 3. After the first layer of standard convolution is superimposed with a 3 ∗ 3

standard convolution, then the receptive field is 5 ∗ 5. If three 3 ∗ 3 standard convolutions are

superimposed, the receptive field is 7 ∗ 7.

Compared to the standard convolution, the atrous convolution has a hyperparameter called

dilated rate, which refers to the number of intervals between convolution kernels. The calculation

formula of the receptive field of the hollow convolution is as follows:

rn = rn−1 + (kn − 1) ∗ dn ∗
∏

n−1
i=1 si, n ≥ 2 (5)

The Equation (5) represents the dilated rate in the first atrous convolution layer, and the atrous

convolution of the dilated rate of 1 is equivalent to a standard convolution. Figure 2 shows that the

receptive field after 3 ∗ 3 atrous convolution with the dilated rate of 1, 2 and 4 have reached 15 ∗ 15,

which indicates that in the same network depth, the receptive field of the atrous convolution is much

larger than the standard convolutional.

  


        



  

  

(a) rate=1 (b) rate=2 (c) rate=4

 


  
   

 t 
 

Figure 2. Atrous Convolution.

In the Inception series of networks, the strategy adopted is to use a small convolution kernel stack

rather than a large convolution kernel, which is able to reduce the parameters while obtaining the

receptive field of the same size as the large convolution kernel. However, expanding the receptive

field by superimposing a small convolution kernel can only grow linearly, while atrous convolution

can increase the receptive field exponentially without increasing the parameter amount. Therefore,

the Atrous-Inception module is used to grow the receptive field, obtain a larger range of spatial

information, and further control the number of network parameters. The detailed structure of the
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Atrous-Inception module is displayed in Figure 3, the first part uses an atrous convolution layer with

dilated rate of 4 and a convolution kernel size of 3 ∗ 3, the second part uses an improved Inception

module. In this improved Inception module, we maintain the main structure of the original Inception,

using four 1 ∗ 1 standard convolutions to build the bottleneck layer to achieve feature reduction,

and using average pooling to decrease the number of parameters. On top of the original Inception

structure, we replace the three 3 ∗ 3 standard convolutions on the two branches with the dilated rate

of 4 and convolution kernel size of 3 ∗ 3, which can increase the receptive field of the network and

obtain more global information. In the final merge operation, the Maximum merge method is adopted,

which realizes the output element-wise maximum corresponding to the feature map. Compared with

the original Inception structure using Concatenate merge, Maximum avoids the increase of feature

dimensions and greatly reduces the number of parameters.

  


        



  

  

Conv Atous-Conv
Average-

pool
BN Maximum

 


  
   

 t 
 

Figure 3. Structure of the Atrous-Inception module.

3.3. RMSProp Optimization

The gradient descent algorithm is a typical optimization method commonly used in CNNs, and the

core of the backpropagation algorithm is to continuously use gradient descent to update the weight

parameters of each layer for optimization. However, the gradient descent algorithm needs to traverse

all samples per iteration, making the training process slow and taking a long time to reach convergence.

The RMSProp algorithm is an adaptive learning rate algorithm propounded by Hinton [47], which

uses the exponential decay average of historical gradients and discards the gradients at the earlier

points, thus speeding up the convergence speed of the algorithm. The related calculation formula of

RMSProp vector update is shown in Equation (6):

E
[

g2
]

t
= γE

[

g2
]

t−1
+ (1− γ)g2

t (6)

In Equation (6), gt represents the gradient of the current moment, γ is a manually set fractional

value and E
[

g2
]

t
represents the running average of the attenuation of the square gradient at the time

step t. It can be known from the formula that E
[

g2
]

t
depends only on the current gradient and the

previous gradient average.

The calculation formula for parameter update is as follows:

θt+1 = θt −
η

√

E[g2]t + ε
gt (7)
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In Equation (7), θt represents the parameter at the time step t, η represents the initial learning

rate and ε represents a smoothing term that avoids the denominator of 0, in which ε generally takes

1 × 10−8. The RMSProp algorithm is applied to update according to the parameter update rule of the

above formula, one of the optimization learning algorithms commonly used in deep learning.

3.4. Transfer Learning

When the distribution of training data and testing data does not meet the prerequisites of the

same distribution, traditional machine learning algorithms cannot achieve satisfactory performance.

However, due to the cost of manual annotation and data accessibility, it is difficult to construct

a qualified dataset from scratch. Transfer learning is capable of improving the learning effect of

related new tasks through transferring knowledge from already learned tasks, breaking through the

limitations of data distribution differences and the lack of a vast quantity of labeled data in the related

target domain. Specifically, transfer learning transfers the knowledge learned from a source domain

incorporating a large number of labeled training samples to a related target domain with a small

number of labeled samples, so that the target domain achieves better results. In addition, transfer

learning can reuse previous models, thus greatly speeding up learning efficiency. For more rigorous

expressions, the relevant definitions and symbols of transfer learning are as follows: Given a domain

D =
{

χ, P(X)
}

, where χ represents the feature space, P(X) represents the edge probability distribution

and X = {x1, x2, . . . , xn} ∈ χ. Then given a task T =
{

Υ, f (·)
}

corresponding to the domain D, where Υ

represents the label space and f (·) represents the target prediction function. The training set data pair

can be represented as
{

xi, yi
}

, where xi ∈ X, yi ∈ Υ. f (x) represents the label value of the unlabeled

test sample x. In transfer learning, the domain that has been learned is called the source domain

DS =
{

χS, P(XS)
}

, and the related domain to be improved is called the target domain DT =
{

χT, P(XT)
}

.

The task corresponding to the source domain DS is called the source task TS =
{

ΥS, fS(·)
}

, and the task

corresponding to the target domain DT is called the target task TT =
{

ΥT, fT(·)
}

. The goal of transfer

learning is to use the knowledge learned from the source domain DS and the source task TS to improve

the prediction capability of the prediction function fT(·) in the target domain DT, and require DS , DT

or TS , TT. SAR targets images are typical non-optical images, this paper explores the performance

of transferring prior knowledge from the optical, non-optical, and hybrid optical and non-optical

domains to SAR targets recognition tasks.

For the optical domains, the source domain DS dataset uses the ImageNet, the source task TS is

classified into 1000 classes of optical target images, the target domain DT dataset uses the 10-class

MSTAR dataset under Standard Operating Condition (SOC), and the target task TT is 10 classes of SAR

target image classification. The features extracted by shallow networks are more general, therefore the

structure of the first four layers designed by TAI-SARNET is the same as that of the first four layers of

Inception-v3, and the transfer based on the parameter migration of specific layers is used. Specifically,

first obtain the Inception-v3 model pre-trained on DS, extract its underlying parameters and transfer

to the corresponding layer of TAI-SARNET used in DT and then retrain the entire network until the

model reaches a convergence state and obtains the optimal result. The specific transfer process is

shown in Figure 4.

For the non-optical domains, the source domain DS dataset uses the 3-class MSTAR dataset with

augmentation, the source task TS is 3 categories of SAR target image classification, the target domain

DT dataset uses 10-class MSTAR dataset under Standard Operating Conditions (SOC) and TT is the

classification of 10 categories of SAR target images. First, we use the full-angle rotation enhancement

method to augment the 3-class MSTAR dataset by 360 times as the DS dataset and then use the

enhanced data for TS to train on TAI-SARNET to obtain a pre-trained model. Finally, the network on

DT loads the specific layer weights of the pre-trained model and fine-tunes the training by changing

the classification number of the softmax layer according to TT until the model reaches a convergent

state and fT(·) obtains the optimal prediction result. The specific transfer process is shown in Figure 5.
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Figure 4. Transfer prior knowledge of optical images.
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Figure 5. Transfer prior knowledge of non-optical images.

For the purpose of fully comparing the transfer effects of data from different imaging modes as

source domain knowledge, we take the classification task of combining optical and non-optical radar

images as source task TS and transfer the knowledge obtained from TS to the 10 classes of SAR targets

images classification which is target task TT. Specifically, the NWPU-RESISC45 dataset [48] and the

3-class MSTAR dataset extended by random angle rotation are mixed to construct a complete hybrid

radar image dataset as the source domain DS dataset. The number of the training set for the complete

hybrid radar dataset is 23,472, the number of the validation set is 6768, and the number of the testing

set is 4515. The transfer strategy is consistent with Figure 5, starting with training at TAI-SARNET

in the hybrid radar image to obtain a pre-training model. Then, keep the feature extraction part of

TAI-SARNET and adjust the classifier based on TT only. Finally, the weights of the pre-trained model

are fine-tuned to the network of target domain A and retrained until the model converges on the

10-class MSTAR dataset under SOC.
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4. Experimental Results and Analysis

4.1. Dataset

In order to demonstrate the performance of the algorithm on SAR target recognition tasks, unified

experimental verification is performed using the MSTAR dataset. The MSTAR dataset is the measured

SAR ground stationary target data released by the MSTAR program and supported by the US Defense

Advanced Research Projects Agency, which contains SAR target images obtained at various azimuths

by multiple vehicle targets. The MSTAR dataset contains ten types of ground targets under Standard

Operating Condition (SOC), including artillery (2S1, ZSU234), armored vehicle (BRDM2, BTR60, BTR70,

BMP2, D7, ZIL131) and tank (T62, T72), where BRDM2 in the armored vehicle category contains three

types of variants (9563, 9566, C21), T72 in the tank category contains three types of variants (132,

812, S7). The SAR target image resolution is 0.3 m × 0.3 m and the pixel size is 128 × 128, and the

optical target image and the corresponding SAR targets image are presented in Figure 6. In particular,

the depression angles of the training set and testing set images in the 10-classes MSTAR dataset under

SOC are 17◦ and 15◦, respectively. The BMP2 in the training set contains only the 9563 series and

the T72 contains only the 132 series, while BMP2 and T72 in the testing set contain all three types of

variants. So as to adapt to the network structure proposed in this paper, the pixel size of the image

after ROI extraction is 64 × 64, and the specific SOC 10-classes MSTAR dataset configuration is shown

in Table 2.

2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234  

Figure 6. MSTAR dataset image example.

Table 2. 10-class MSTAR dataset configuration under Standard Operating Condition (SOC).

Types Tops
Train Set Test Set Image

Size
Serial

Depression
Angle

Number Serial
Depression

Angle
Number

2S1
Artillery

B_01 17◦ 299 B_01 15◦ 274 64 × 64

ZSU234 D_08 17◦ 299 D_08 15◦ 274 64 × 64

BRDM2

Truck

E_71 17◦ 298 E_71 15◦ 274 64 × 64

BTR60 K10YT 17◦ 256 K10YT 15◦ 195 64 × 64

BTR70 C_71 17◦ 233 C_71 15◦ 196 64 × 64

BMP2 9563 17◦ 233

9563

15◦ 587 64 × 649566

C21

D7 92V 17◦ 299 92V 15◦ 274 64 × 64

ZIL131 E_12 17◦ 299 E_12 15◦ 274 64 × 64

T62

Tank

A_51 17◦ 299 A_51 15◦ 273 64 × 64

T72 132 17◦ 232

132

15◦ 582 64 × 64812

S7

Total 2747 3203
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4.2. Experimental Environment and Configuration

All experiments in this paper were run on a computer configured with AMD Ryzen 5 2600X

processor, Nvidia GeForce RTX 2080 (8 GB) GPU and 32 GB RAM. The compilation environment of all

experiments is unified to Ubuntu 18.04 system, and Keras deep learning framework developed by

TensorFlow as the backend is used for training.

4.3. Training/Validation Strategy

The optimizer used in this paper is RMSprop, the initial learning rate η is set to 1 × 10−4, and

250 epochs are trained. The learning rate decay strategy is used during the experiment. The specific

settings are:

Monitoring indicators: validation loss, learning rate attenuation factor: factor = 0.5, waiting for

transition rounds: patience = 20. When the monitored validation loss has not decreased after the

number of patience rounds, the learning rate attenuation strategy will be triggered and the learning

rate will be reset using Equation (8):

new_lr = η ∗ f actor (8)

The complete experimental process is expressed as follows: First, the image size of the MSTAR

dataset under SOC is changed to 64 ∗ 64 through ROI extraction, and the complete training set is

re-divided into a training set and a validation set in accordance with the ratio of 75% and 25%. Then,

the training set data is fed into TAI-SARNET for training, and the validation set is used for real-time

verification. Finally, the trained model is tested on the testing set to get the final recognition result. As

it is shown in Figure 7, the whole training and validation curves are visualized. By monitoring the

visualized curves, the model fitting state in the training process can be dynamically understood, so as to

adjust the relevant training strategies. The curves of training accuracy and validation accuracy almost

coincide at the 150th epoch and are close to 100%. Moreover, the curves of training and validation

have no obvious fluctuation in the subsequent 100 epoch, indicating that the model has reached the

convergence state. On the other hand, the training loss and the validation loss almost coincide at the

beginning of the 100th epoch, and there is no obvious fluctuation in the subsequent training process,

indicating that the results of the training and validation are highly fit.

Figure 7. Visualization graphs for training and validation.

4.4. Analysis of the Proposed TAI-SARNET

In this section, in order to explore the optimal network settings, different structures of TAI-SARNET

will be tested on the dataset configuration mentioned in Section 4.1.



Sensors 2020, 20, 1724 13 of 21

4.4.1. Evaluation on Various Dilated Rate

The dilated rate is one of the key factors exerting an impact on the receptive field of the atrous

convolution layer, and it makes sense to explore the performance effect of different dilated rates on

TAI-SARNET. As shown in Table 3, TAI-SARNET configured with four types of dilated rates are tested.

When the dilated rate is 1, the atrous convolution layer is equivalent to the standard convolution layer,

and the recognition accuracy is 91.72%. When the dilated rate is increased to 2, the recognition accuracy

is improved by 3.84% compared to the standard convolution layer, which shows that using the atrous

convolution layer is more effective than the standard convolution layer in SAR targets recognition

tasks. When the dilated rate is set to 4, the recognition accuracy reaches a maximum of 97.97%, which is

2.41% higher than the atrous convolution layer with a dilated rate of 2. When the dilated rate is further

increased to 6, the recognition accuracy rate is only 88.63%, compared with the standard convolution

layer, it decreases by 3.09%, compared with the highest recognition accuracy rate, it even decreases to

9.34%, which indicates the setting of the dilated rate is not the bigger is the better. Constrained by the

network structure, continuing to expand the dilated rate to 8 will result in negative feature dimensions,

so the dilated rate of the final TAI-SARNET is set to 4.

Table 3. Test result for different dilated rates.

Model Rate Accuracy (%)

TAI-SARNET

1 91.72
2 95.56
4 97.97

6 88.63
8 -

4.4.2. Evaluation on Various Atrous-Inception Module

The test results of TAI-SARNET embedded with different numbers of Atrous-Inception modules

on the MSTAR dataset are shown in Table 4. When the Atrous-Inception module is not added

to the network, the total parameters of the network are low, but the recognition accuracy is only

94.28%. When an Atrous-Inception module is added, the recognition accuracy reaches 97.97%, and the

total number of parameters is still at a low level. When two Atrous-Inception modules are added,

the recognition accuracy is 1.66% lower than when only one Atrous-Inception module is added, and the

total number of parameters also grows significantly. When the quantity of Atrous-Inception module is

increased to three, although the recognition accuracy rate is increased by 1.31% compared with the case

without adding Atrous-Inception modules, the total number of parameters increases by nearly 7 folds.

The lightweight network architecture requires comprehensive consideration of model parameters and

recognition accuracy, so only an Atrous-Inception module is added to TAI-SARNET.

Table 4. Effect of the number of Atrous-Inception module.

Module Number Parameter Accuracy (%)

Atrous-Inception
module

0 221,338 94.28
1 653,818 97.97

2 1,077,082 96.31
3 1,500,346 95.59

4.4.3. Evaluation on Various Merge Ways

The operation objects of the merge layer are chiefly divided into two categories, one is to operate

on the channels of the feature maps, and the other is to operate on the elements in the feature maps.

The merge layer mode for channel operation is Concatenate, which connects multiple feature maps

to be merged, eventually increasing the number of channels on the feature maps, but the amount of
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information on each feature map does not increase. The merge layer modes for elements operations

include Add, Multiply, Average, Minimum and Maximum, and these operations are premised on

ensuring that the amount of feature maps channels of the merge layer to be fused is consistent. By

operating the feature maps element by element, it does not increase the number of channels of the

feature maps, thus controls the growth of the parameter amount. As shown in Table 5, Maximum

achieves the best result among all merge layer modes and has nearly half the amount of parameters

compared to Concatenate based on channel operation. Therefore, the Maximum merge operation is

used in the network in this paper.

Table 5. The result of different layer merge methods of the Atrous-Inception module.

Module Type Parameter Accuracy (%)

Atrous-Inception
module

Concatenate 1,317,370 95.94
Add 653,818 96.32

Multiply 653,818 93.35
Average 653,818 95.32

Minimum 653,818 93.41
Maximum 653,818 97.97

4.4.4. Evaluation on BN

The BN layer can effectively alleviate the overfitting phenomenon during the network training

process. To explore the actual effect of the BN layer in TAI-SARNET, ablation experiments are performed.

The experimental results are demonstrated in Table 6, the recognition accuracy of the BN layer added

after each layer of convolution is 97.97%, while that without the BN layer is only 89.60%. This indicates

that the BN layer performs a certain role in improving the recognition accuracy of the model.

Table 6. Modelling performance of Batch Normalization (BN) strategy.

Model BN Accuracy (%)

TAI-SARNET
No 89.60
Yes 97.97

4.4.5. Confusion Matrix

Table 7 is the confusion matrix of the test results of the 10-class MSTAR dataset under SOC based

on the proposed method. So as to clearly show the test results of the proposed method on each type of

target, we use different color patches to label the classification of the three advanced categories. Yellow

color block indicates artillery, blue color block indicates armored vehicles, green color block indicates

tanks and black bold figures on the diagonal of each color block indicate the number of correctly

identified targets for each subclass in the advanced category. The bold red figures in each color block

indicate the number of subclass targets in the same advanced category that has been misidentified

as targets in other subclasses. The bold red figures outside each color block indicate the number of

targets that have been misidentified as targets in other advanced categories. It can be seen from Table 7

that the artillery and tank classes do not have red bold figures in their respective color blocks, only

a small number of red bold figures appear outside the color blocks, and the identification accuracy of

the two advanced subclasses are very high, artillery sub-class 2S1 and tank sub-class T62 even reach

100% recognition accuracy, indicating that our proposed method has high recognition accuracy in these

two advanced classes. In the blue color block of the armored vehicle class, we find that the subclasses

BRDM2, BTR70, D7 and ZIL131 all have high recognition accuracy, but the subclasses BTR60 and BMP2

have low recognition accuracy. Among them, the armored vehicle subclass BTR60 is misclassified as

a subclass BTR70, which may be engendered by the BTR70 being an upgraded version of the BTR60.

The armored vehicle subclass BMP2 is misclassified into some other advanced categories. This may be
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the 9563 model that only contains BMP2 in the training set under SOC, but the testing set contains three

variant series including 9563, 9566 and C21. However, the BMP2 recognition accuracy also reaches

95.06%. It is worth noting that the T72 in the training set contains only 132 models, but the testing

set contains 132, 812 and S7 variants, and its recognition accuracy reaches 98.63%, showing that the

proposed network acquires certain ability to identify variants. Finally, the proposed network reaches

97.97% in overall recognition accuracy.

Table 7. Confusion Matrix of our method on 10-class MSTAR dataset under SOC.

Types
Artillery Truck Tank Acc

(%)
2S1 ZSU234 BRDM2 BTR60 BTR70 BMP2 D7 ZIL131 T62 T72

2S1 274 0 0 0 0 0 0 0 0 0 100
ZSU234 0 273 0 0 0 0 1 0 0 0 99.64
BRDM2 2 0 271 1 0 0 0 0 0 0 98.91
BTR60 4 0 3 176 11 0 0 1 0 0 90.26
BTR70 1 0 0 0 195 0 0 0 0 0 99.49
BMP2 5 0 2 1 7 558 0 0 0 14 95.06

D7 0 1 0 0 0 0 273 0 0 0 99.64
ZIL131 0 0 0 0 0 0 3 271 0 0 98.91

T62 0 0 0 0 0 0 0 0 273 0 100
T72 4 0 0 0 1 3 0 0 0 574 98.63

Total 97.97

4.5. Robustness Evaluation on Small Samples Dataset

The CNN-based model relies on a sufficient number of labeled training samples and achieves

good recognition results. However, it is arduous to obtain a large amount of labeled data in the SAR

scene, and the recognition results of CNN on small samples datasets of SAR are not ideal. In addition,

the SAR target images are full of coherent speckle noise, thus making it difficult for CNN to extract key

features and resulting in poor robustness of the model. In view of the above problems, we will explore

the robustness of the network proposed in this paper on a small sample dataset of SAR in this section.

ResNet50, MobileNet and TAI-SARNET are verified on small sample datasets constructed, and

the recognition accuracy of each network is presented in Figure 8. The experimental results have

shown that the recognition accuracy of TAI-SARNET proposed in this paper on all small samples

datasets significantly exceeds that of many classic networks that perform well in optical images

classification tasks. As the number of samples decreases to 1/32 of the original data, VGG16Net cannot

converge. Other classical networks need to increase the amount of iterations to ensure that the model

can converge, while our network still converges without increasing the number of iterations. From the

above analysis, we can see that when the number of training samples are very limited, our method has

obvious advantages, indicating that the method has favorable robustness on small samples datasets

of SAR.



Sensors 2020, 20, 1724 16 of 21

 

LeNet AlexNet VGG16 ResNet50 MobileNet
TAI-

SARNET
Transfer1 Transfer2 Transfer3

1/32 39.59% 38.41% 0.00% 36.50% 32.63% 44.46% 56.69% 63.47% 54.98%

1/16 54.19% 56.44% 45.97% 58.53% 50.63% 67.00% 75.91% 80.27% 76.80%

1/8 64.71% 71.68% 48.40% 68.28% 54.31% 76.27% 84.85% 88.37% 82.24%

1/4 80.56% 80.21% 71.75% 72.68% 59.21% 88.69% 91.03% 94.09% 92.26%

1/3 80.84% 87.53% 79.21% 81.09% 72.43% 89.35% 92.78% 95.78% 93.29%

1/2 86.28% 89.12% 89.34% 85.78% 86.43% 93.22% 94.34% 96.06% 93.57%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Figure 8. Result on state-of-the-art model on small samples.

4.6. Transfer Learning on Small Samples dataset

To explore the performance of transferring images of different imaging patterns as source

domain knowledge for the domain of SAR targets, we have verified on small samples datasets

established in Section 4.5. We describe transfer methods based on the knowledge of the optical

domain, non-optical domain, and combined optical and non-optical domains as Transfer1, Transfer2

and Transfer3 respectively, and compare them with other advanced methods. The experimental results

are shown in Figure 8.

4.6.1. Transferring Prior Knowledge of Optical Images

First, the source domain dataset uses the optical dataset ImageNet and pre-trained the model

on Inception-v3. Secondly, the target domain dataset uses 10-class MSTAR dataset under SOC, and

then uses the parameter-based transfer method to load the underlying weights onto the TAI-SARNET

presented in this paper, the recognition results are shown as Transfer1 in Figure 8. Compared with the

model trained from scratch, the performance of the method by transferring knowledge in the optical

domain has improved by 1.12%, 3.43%, 2.34%, 8.58%, 8.91%, 12.23% on the small samples dataset of

1/2, 1/3, 1/4, 1/8, 1/16 and 1/32, respectively. From the experimental results shown above, it can be

known that transferring the low-level parameters of the pre-trained network of a large optical dataset

is helpful for SAR targets recognition tasks.

4.6.2. Transferring Prior Knowledge of Non-Optical Images

To explore the impact of non-optical images knowledge as a source domain on the SAR targets

images recognition task, we use 3-class MSTAR dataset (one of the configurations of the MSTAR

dataset, which includes only T72, BMP2 and BTR70) after 360◦ rotation enhancement as the source

domain dataset, and 10-class MSTAR dataset under SOC is used as target domain dataset. First, the

TAI-SARNET is used to train on the 3-class MSTAR dataset with full-angle rotation augmentation to

obtain a pre-trained model. Then, we load the weights of the pre-trained model on the target task

for fine-tuning. As shown in Transfer 2 in Figure 8, the recognition performance of the method of

transferring knowledge in the non-optical domain has been further improved compared with the
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method based on transferring knowledge in the optical domain, increased by 1.72%, 3.00%, 3.06%,

3.52%, 4.36%, 7.38%, respectively on the small samples datasets of 1/2, 1/3, 1/4, 1/8, 1/16, 1/32, indicating

that the higher the similarity of the dataset of the source and target domains, the more it will help

improve transfer effect. Compared with the model that has been trained from scratch, the transfer

method based on the full-angle data-enhanced SAR data as the source domain dataset has a significant

effect on improving the performance of SAR target image recognition, increasing by 2.84%, 6.25%,

5.40%, 12.10%, 13.27%, 19.01%, respectively on the small sample datasets of 1/2, 1/3, 1/4, 1/8, 1/16, 1/32.

This significant improvement shows that transfer learning can effectively increase the accuracy of

recognition when the data is limited.

4.6.3. Transferring Prior Knowledge of Mixed Optical and Non-Optical Images

In order to further investigate the influence of prior knowledge of the combined optical and

non-optical domains as source domain knowledge on SAR target recognition tasks, we have established

a complete hybrid dataset based on the NWPU-RESISC45 dataset and 3-class MSTAR dataset rotated

at random angles as the source domain dataset, and adopted 10-class MSTAR dataset under SOC is

used as the target domain dataset. First, the TAI-SARNET mentioned in this paper is used to train

on the hybrid dataset to obtain a pre-trained model. Then, we transfer the weights of the pre-trained

model to our target task network and slightly fine tune the initially learned parameters.

From Transfer3 in Figure 8, the method of transferring joint optical and non-optical domain

knowledge is better than direct training, and it is similar to the method of transferring only optical

domain knowledge, but it is not as effective as the method of transferring only non-optical knowledge.

From the above analysis, it can be seen that the knowledge of transferring different source domains

using parameter-based migration methods can assist in improving the recognition results of the

small samples SAR targets classification tasks, in which the source domain and target domain use

homologous imaging mode of data promotion is the best.

4.7. Comparison Evaluation

The increasing depth and size of CNNs have brought great challenges to the deployment of deep

learning in the terminal equipment, and an efficient SAR targets recognition model needs to consider

the number of network parameters and computational complexity while ensuring accuracy. We have

tested the representative five classical CNNs and the TAI-SARNET in 10-class MSTAR dataset under

SOC, and the experimental results are exhibited in Table 8. As can be viewed from Table 8, LeNet is

the network with the least amount of parameters and the smallest storage model size in the classical

network, and its network structure is simple, with only 87.96% recognition accuracy in the classification

of SAR target images based on the 10 classes task. Although the recognition accuracy of Alexnet,

VGG16 and ResNet50 is 93.40%, 90.15% and 89.59%, respectively, these networks are all complex

in structure, with huge model parameters and dimensions. MobileNet, which uses deep separable

convolution, is a lightweight CNN network focusing on mobile or embedded devices. Although the

model size is only 26.1 M, the recognition accuracy is 91.96%. The TAI-SARNET parameters are only

653,818, and the model size is only 5.4 Mb, which is smaller than the simplest structure of LeNet, but the

recognition accuracy is the highest at 97.97%. Compared to MobileNet, which is known as lightweight

CNN, the parameters and storage model size of our proposed network are only 1/5, but the recognition

accuracy is 6.01% higher. Therefore, the TAI-SARNET presented in this paper has reached the level of

lightweight CNN in terms of model parameters, storage model size and recognition accuracy.
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Table 8. Performance comparison with other classical networks.

Method Parameter Model Size (Mb) Accuracy (%)

LeNet 1,134,806 9.1 87.96
AlexNet 21,598,922 172.8 93.40
VGG16 39,928,522 319.5 90.15

ResNet50 23,601,930 189.2 89.59
MobileNet 3,238,538 26.1 91.96

TAI-SARNET 653,818 5.4 97.97

Similarly, we draw comparisons between the method proposed in this paper and other advanced

methods applied to 10 classes of SAR target recognition tasks under SOC as well, and the recognition

results are shown in Table 9. The method based on CNN [49] achieves 91.41% recognition accuracy,

the method based on sparse representation classifier (SRC) [50] achieves 93.67%, the method based on

binary target area analysis [51] achieves 97.72%, the method based on Gabor filter [52] achieves 96.32%

and the method based on sparse representation [53] achieves 97.38%. Our method has proved to achieve

a recognition accuracy of 97.97%, which fully demonstrates the effectiveness of the TAI-SARNET in

SAR target images recognition tasks.

Table 9. Performance comparison with other methods.

Method Accuracy (%)

CNN [49]
SRC [50]

91.41
93.67

Binary Target Region [51]
Data augmentation with Gabor filter [52]

Joint sparse representation [53]

97.72
96.32
97.38

Proposed 97.97

5. Conclusions

In view of the difficult problems in the SAR target recognition tasks, an efficient SAR ATR

algorithm with transfer learning is proposed. The Atrous-Inception module is designed based on the

atrous convolution and the Inception structure. On the one hand, the module can obtain a rich global

receptive field, which helps the network to extract detailed information about limited training data,

and improves the robustness on small samples datasets. On the other hand, this module controls

the augmentation of the number of network parameters and makes the network lightweight. In

addition, the use of the BN strategy speeds up the entire training process and effectively alleviates the

gradient divergence and overfitting during the training process. Meanwhile, adopting BN strategy

to accelerate the whole training process effectively alleviates the gradient divergence and overfitting

phenomenon. Finally, transfer learning strategy is used to explore the recognition performance of

transferring prior knowledge in the domains of optics, non-optical, joint optic and non-optical to SAR

small samples datasets, and the experimental results have shown that the recognition accuracy is

considerably improved. For the 10 classes of SAR targets images recognition tasks under SOC, our

method has reached 97.97 percent recognition accuracy, and the experimental results have proved the

effectiveness of the method. The small sample data has rich information and is closer to the actual

application. It is very meaningful to design an efficient CNN model for small sample data. In the

future, we are likely to further delve into the application of related methods of transfer learning and

few-shot learning in the domain of SAR targets.
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