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Abstract

We consider an M/G/1 retrial queue, where the service time distribution has a finite
exponential moment. We show that the tail of the queue size distribution is asymptotically
given by a geometric function multiplied by a power function. The result is obtained by
investigating analytic properties of probability generating functions for the queue size
and the server state.
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1. Introduction

Retrial phenomena arise in many practical situations such as in call center systems and many
other telecommunication systems. Retrial queues, which deal with stochastic models for the
retrial phenomena, have been investigated for several decades. Detailed overviews for retrial
queues can be found in [3], [4], and [8].

In this paper we consider an M/G/1 retrial queueing system, where customers arrive accord-
ing to a Poisson process with intensity λ and the service times B for customers are independent
and identically distributed with Laplace–Stieltjes transform β, i.e. β(s) := E[e−sB ]. If the
server is idle at the time of a customer arrival, the arriving customer begins to be served
immediately and leaves the system after service completion. Otherwise, i.e. if the server is
busy, the arriving customer joins a retrial group, called an orbit. While in orbit, each customer
spends an exponential time with mean ν−1 before visiting the server again. If an incoming
repeated customer from the orbit finds the server idle, it is served and leaves the system after
service completion. Otherwise, i.e. if the repeated customer finds the server busy, the customer
comes back to the orbit immediately and tries again after an exponential time with mean ν−1.
The traffic load ρ is defined as ρ = λ E B. It is assumed that ρ < 1 for stability of the system.

The interest of this paper is the light-tailed asymptotics of the queue size distribution in the
M/G/1 retrial queue, when the service time distribution has a finite exponential moment, i.e.

γ := sup{t ∈ R : E etB < ∞} > 0. (1)

For the usual M/G/1 queue, it is well known that the stationary distribution of the queue size
has a geometric tail if (1) holds with a related additional assumption. More precisely, for the
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usual M/G/1 queue with arrival rate λ and service times B, if there is a real number σ satisfying

β(λ − λσ) = σ, 1 < σ < 1 + γ

λ
, (2)

then the queue size Q at steady state satisfies

P(Q = n) ∼ cσ−n as n → ∞,

with a constant c > 0. Here and subsequently, gn ∼ hn denotes limn→∞(gn/hn) = 1. See,
for example, [1], [2], [10], [11], [13], [15], [17], and the references therein for geometric tails
of the queue size distribution in the usual M/G/1 or further G/G/1 queue. However, for the
retrial queue, it does not seem that there is any known result on light-tailed asymptotics of
the queue size distribution in the open literature. The situation is not much different for the
light-tailed asymptotics of the waiting time distribution in retrial queues. The only accessible
related work seems to be [12], where a light-tailed approximation was suggested for the waiting
time distribution in the M/G/1 retrial queue.

On the other hand, there are recent works on heavy-tailed asymptotics in the M/G/1 retrial
queue: Shang et al. [14] showed that the stationary distribution of the queue length in the
M/G/1 retrial queue is subexponential if the stationary distribution of the queue length in
the corresponding ordinary M/G/1 queue is subexponential. As a corollary of this property,
Shang et al. proved that the stationary distribution of the queue length in the M/G/1 retrial
queue has a regularly varying tail if the service time distribution has a regularly varying tail.
Kim and Kim [9] showed that if the service time distribution has a regularly varying tail of
index −α, 1 < α < 2, in the M/G/1 retrial queue, then the waiting time distribution has a
regularly varying tail of index 1 − α.

The main contribution of this paper is to find the light-tailed asymptotics for the queue size
distribution in the M/G/1 retrial queue. More precisely, we show that if (2) holds then

P(C = 0, N = n) ∼ c0n
a−1σ−n as n → ∞, (3)

P(C = 1, N = n) ∼ c1n
aσ−n as n → ∞, (4)

for positive constants a, c0, and c1, where N is the number of customers in the orbit at steady
state and C is 0 if the server is idle and 1 otherwise. Furthermore, the constants a, c0, and c1
are given explicitly. The results (3) and (4) are obtained by investigating probability generating
functions (PGFs) for C and N through decomposing a component of the PGFs as a sum of
the principal part and the analytic part. The method of obtaining asymptotic expansions of
state probabilities from generating functions using complex function theory can be found in
Tijms [16]. Tijms illustrated the method in many queueing models. Further illustrations are
found in [5] and [6], for example.

The remainder of this paper is organized as follows. In Section 2 we study the PGFs for C

and N . Specifically, we decompose a component of the PGFs as a sum of principal part and the
analytic part. The decomposition plays a crucial role in deriving the light-tailed asymptotics
for the queue size distribution in Section 3. The main results (3) and (4) are provided with
explicit expressions for c0 and c1 in Section 3. The results (3) and (4) are examined for the
M/M/1 retrial queue.
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2. Probability generating function of the queue size

Consider the M/G/1 retrial queue at steady state. We suppose that (2) holds. Recall that

C =
{

0 if the server is idle,

1 if the server is busy,

N = the number of customers in the orbit.

We define generating functions P0 and P1 as follows:

P0(z) := E(zN ; C = 0) =
∞∑

n=0

P(N = n, C = 0)zn,

P1(z) := E(zN ; C = 1) =
∞∑

n=0

P(N = n, C = 1)zn.

It is well known (see, for example, [7] or [8, Theorem 1.2]) that the generating functions P0
and P1 are given by

P0(z) = (1 − ρ) exp

(
λ

ν

∫ z

1

1 − β(λ − λu)

β(λ − λu) − u
du

)
, |z| < σ, (5)

P1(z) = (1 − ρ)
1 − β(λ − λz)

β(λ − λz) − z
exp

(
λ

ν

∫ z

1

1 − β(λ − λu)

β(λ − λu) − u
du

)
, |z| < σ, (6)

where, for z = 1, (1 − β(λ − λz))/(β(λ − λz) − z) is interpreted as

lim
z→1

1 − β(λ − λz)

β(λ − λz) − z
= ρ

1 − ρ
.

We remark that an interesting probabilistic derivation of (5) and (6) was provided in [7].
To investigate the light-tailed behavior of the queue size distribution, we need to have a close

look at singularities of (1−β(λ−λz))/(β(λ−λz)− z) on {z ∈ C : |z| < 1+γ /λ}. Lemma 1,
below, locates the 0s of β(λ − λz) − z, |z| ≤ σ .

Lemma 1. The analytic function β(λ − λz) − z, |z| < 1 + γ /λ, has simple zeros at 1 and σ .
Furthermore, it has no other 0s on {z ∈ C : |z| ≤ σ }.

Proof. Let f (z) = β(λ − λz) − z, |z| < 1 + γ /λ. We observe that 1 is a zero of f .
Furthermore, the zero 1 is simple because f ′(1) = ρ − 1 < 0. Since f (z) is strictly convex in
z on (0, 1 + γ /λ) and f (1) = f (σ) = 0, we have f (z) < 0 for 1 < z < σ . Thus,

β(λ − λz) < z, 1 < z < σ.

Therefore, for η ∈ (1, σ ),

|f (z) + z| = |β(λ − λz)| < β(λ − λ|z|) < |z| if |z| = η.

Hence, Rouché’s theorem asserts that f (z) has no 0s on {z ∈ C : |z| ≤ η} except 1, which is a
simple zero. Letting η → σ− asserts that f (z) has no 0s on {z ∈ C : |z| < σ } except the simple
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zero 1. We know that σ is a zero of β(λ + λz) − z. Since f (z) is convex in z on (0, 1 + γ /λ)

and f (1) = f (σ) = 0, we have f ′(σ ) > 0. Thus, the zero σ of f is simple. Finally,

|β(λ − λz)| < β(λ − λ|z|) = |z| if |z| = σ and z �= σ.

Hence, f has no 0s on {z ∈ C : |z| = σ, z �= σ }, which completes the proof.

Lemma 2, below, decomposes (1 − β(λ − λz))/(β(λ − λz) − z) as a sum of the principal
part at z = σ and the analytic part.

Lemma 2. There exists δ ∈ (0, 1+γ /λ−σ) and an analytic function 
 on {z ∈ C : |z| < σ+δ}
such that

1 − β(λ − λz)

β(λ − λz) − z
= − σ − 1

−λβ ′(λ − λσ) − 1

1

z − σ
+ 
(z), |z| < σ + δ, z �= σ. (7)

Proof. We note that (1 − β(λ − λz))/(β(λ − λz) − z) has a removable singularity at z = 1
and is regarded as analytic at z = 1. By Lemma 1, there exists δ > 0 such that (1−β(λ−λz))/

(β(λ− λz)− z) is analytic on {z ∈ C : |z| < σ + δ, z �= σ }. We observe that (1 −β(λ− λz))/

(β(λ−λz)− z) has a simple pole at z = σ and the residue of (1 −β(λ−λz))/(β(λ−λz)− z)

at z = σ is −(σ − 1)/(−λβ ′(λ − λσ) − 1). Therefore,

1 − β(λ − λz)

β(λ − λz) − z
+ σ − 1

−λβ ′(λ − λσ) − 1

1

z − σ

has a removable singularity at z = σ . Letting


(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − β(λ − λz)

β(λ − λz) − z
+ σ − 1

−λβ ′(λ − λσ) − 1

1

z − σ
, |z| < σ + δ, z �= σ,

lim
u→σ

1 − β(λ − λu)

β(λ − λu) − u
+ σ − 1

−λβ ′(λ − λσ) − 1

1

u − σ
, z = σ,

completes the proof.

3. Tail asymptotics for the queue size distribution

In this section we state and prove the main result of this paper which provides the tail
asymptotics of the queue size distribution in the M/G/1 retrial queue when condition (2) holds.

Theorem 1. If (2) holds then

P(C = 0, N = n) ∼ c0n
a−1σ−n as n → ∞, (8)

P(C = 1, N = n) ∼ c1n
aσ−n as n → ∞, (9)

where

a = λ

ν

σ − 1

−λβ ′(λ − λσ) − 1
,

c0 = 1 − ρ

�(a)

(
σ − 1

σ

)a

exp

(∫ σ

1

λ

ν

1 − β(λ − λz)

β(λ − λz) − z
+ a

z − σ
dz

)
,

c1 = νc0

λσ
,

and �(·) denotes the gamma function.

https://doi.org/10.1239/jap/1197908829 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1197908829


Tail asymptotics in a retrial queue 1115

Proof. First we prove (8). Substituting (7) into (5) yields

P0(z) = (1 − ρ)

(
σ − z

σ − 1

)−a

exp

(
λ

ν

∫ z

1

(u) du

)
, |z| < σ. (10)

Since 
(z) is analytic on {z ∈ C : |z| < σ + δ}, so is exp((λ/ν)
∫ z

1 
(u) du). Let
∑∞

n=0 φnz
n

be the power series expansion of exp((λ/ν)
∫ z

1 
(u) du) at z = 0, i.e.

exp

(
λ

ν

∫ z

1

(u) du

)
=

∞∑
n=0

φnz
n, |z| < σ + δ. (11)

We note that (1 − ρ)((σ − z)/(σ − 1))−a has the following power series expansion at z = 0:

(1 − ρ)

(
σ − z

σ − 1

)−a

= (1 − ρ)

(
σ − 1

σ

)a ∞∑
n=0

�(a + n)

�(a)�(n + 1)
σ−nzn, |z| < σ. (12)

Substituting (11) and (12) into (10) yields

P(C = 0, N = n) = (1 −ρ)

(
σ − 1

σ

)a n∑
k=0

�(a + n − k)

�(a)�(n − k + 1)
σ k−nφk, n = 0, 1, 2, . . . .

(13)
Therefore,

P(C = 0, N = n)

(�(a + n)/�(a)�(n + 1))σ−n

= (1 − ρ)

(
σ − 1

σ

)a n∑
k=0

�(a + n − k)�(n + 1)

�(a + n)�(n − k + 1)
φkσ

k

= (1 − ρ)

(
σ − 1

σ

)a ∞∑
k=0

1{k≤n}
n(n − 1) · · · (n − k + 1)

(a + n − 1)(a + n − 2) · · · (a + n − k)
φkσ

k, (14)

where

1{k≤n} =
{

1 if k ≤ n,

0 otherwise.

If a ≥ 1 then

1{k≤n}
n(n − 1) · · · (n − k + 1)

(a + n − 1)(a + n − 2) · · · (a + n − k)
< 1.

If 0 < a < 1 then

1{k≤n}
n(n − 1) · · · (n − k + 1)

(a + n − 1)(a + n − 2) · · · (a + n − k)
= 1{k≤n}

n

a + n − 1

n − 1

a + n − 2
· · · n − k + 1

a + n − k

≤ k

a + k − 1

k − 1

a + k − 2
· · · 1

a

≤ k

a
.
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Hence, for all n ≥ 0 and k ≥ 0,∣∣∣∣ 1{k≤n}
n(n − 1) · · · (n − k + 1)

(a + n − 1)(a + n − 2) · · · (a + n − k)
φkσ

k

∣∣∣∣ ≤
(

1

a
k + 1

)
|φk|σk. (15)

Since exp((λ/ν)
∫ z

1 
(u) du) is analytic on {z ∈ C : |z| < σ + δ}, the radius of convergence of
the power series

∑∞
n=0 φnz

n is not less then σ + δ. Therefore,

∞∑
k=0

(
1

a
k + 1

)
|φk|σk < ∞. (16)

By (15) and (16), letting n tend to ∞ in (14) with the Lebesgue dominated convergence theorem
yields

lim
n→∞

P(C = 0, N = n)

(�(a + n)/�(a)�(n + 1))σ−n
= (1 − ρ)

(
σ − 1

σ

)a ∞∑
k=0

φkσ
k

= (1 − ρ)

(
σ − 1

σ

)a

exp

(
λ

ν

∫ σ

1

(u) du

)
= �(a)c0. (17)

Since �(a + n)/�(n + 1) ∼ na−1 as n → ∞, (17) is equivalent to (8).
Next we prove (9). Substituting (7) into (6) yields

P1(z) = 1 − ρ

−σβ ′(λ − λσ) − 1

(
σ − z

σ − 1

)−a−1

exp

(
λ

ν

∫ z

1

(u) du

)

+ (1 − ρ)

(
σ − z

σ − 1

)−a


(z) exp

(
λ

ν

∫ z

1

(u) du

)
, |z| < σ. (18)

Now we consider the power series expansions of the two terms on the right-hand side of (18)
separately as follows:

1 − ρ

−λβ ′(λ − λσ) − 1

(
σ − z

σ − 1

)−a−1

exp

(
λ

ν

∫ z

1

(u) du

)
=

∞∑
k=0

pnz
n,

(1 − ρ)

(
σ − z

σ − 1

)−a


(z) exp

(
λ

ν

∫ z

1

(u) du

)
=

∞∑
k=0

qnz
n.

By the same method which we used to derive (8), we obtain

pn ∼ c1n
aσ−n,

qn ∼ c0
(σ)na−1σ−n.

Therefore, qn = o(pn) as n tends to ∞, and

P(C = 1, N = n) = pn + qn ∼ c1n
aσ−n as n → ∞.
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By Theorem 1 we have

P(N = n) ∼ P(C = 1, N = n) as n → ∞,

P(C + N = n) ∼ P(C = 1, N = n − 1) as n → ∞.

Therefore, the following corollary is immediate.

Corollary 1. If (2) holds then the queue size, N , and the number of customers in the system,
C + N , have distributions with the following tail asymptotics:

P(N = n) ∼ c1n
aσ−n as n → ∞,

P(C + N = n) ∼ c1n
aσ−n+1 as n → ∞.

Remark. Suppose that the service times B have exponential distribution with mean µ−1. Then
we have

σ = 1

ρ
, a = λ

ν
, c0 = (1 − ρ)λ/ν+1

�(λ/ν)
, and c1 = ρ(1 − ρ)λ/ν+1

�(λ/ν + 1)
.

Hence, Theorem 1 asserts that

P(C = 0, N = n) ∼ (1 − ρ)λ/ν+1

�(λ/ν)
nλ/ν−1ρn as n → ∞, (19)

P(C = 1, N = n) ∼ ρ(1 − ρ)λ/ν+1

�(λ/ν + 1)
nλ/νρn as n → ∞. (20)

The results (19) and (20) are consistent with the following known result (see [8, Theorem 1.1]):

P(C = 0, N = n) = (1 − ρ)λ/ν+1

νn!
n−1∏
k=0

(
λ

ν
+ k

)
ρn, n = 0, 1, 2, . . . , (21)

P(C = 1, N = n) = ρ(1 − ρ)λ/ν+1

n!
n∏

k=1

(
λ

ν
+ k

)
ρn, n = 0, 1, 2, . . . . (22)
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