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Abstract Let {X(t), t ≥ 0} be a centered Gaussian process and let γ be a non-

negative constant. In this paper we study the asymptotics of P

{
sup

t∈[0,T /uγ ]
X(t) > u

}
as u → ∞, with T an independent of X non-negative random variable. As an appli-
cation, we derive the asymptotics of finite-time ruin probability of time-changed
fractional Brownian motion risk processes.
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1 Introduction

One of the seminal results in the extreme value theory of Gaussian processes concerns
the asymptotic behavior of

P

{
sup

t∈[0,T ]
X(t) > u

}
, u → ∞, (1)
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where {X(t), t ≥ 0} is a centered Gaussian process with almost surely (a.s.) contin-
uous sample paths, variance function that attains its unique maximum at exactly one
point t0 ∈ [0, T ] and T > 0 is deterministic; see the classical monograph Piterbarg
(1996), Adler and Taylor (2007) for a complete survey on distributional properties of
extremes of Gaussian processes and related topics.

The aim of this paper is to analyze the asymptotics of a counterpart of Eq. 1 in
the case of T being an independent of X non-negative random variable, possibly
depending on u, namely

p(X, T , γ, u) := P

{
sup

t∈[0,T /uγ ]
X(t) > u

}
, with γ ≥ 0 (2)

as u → ∞.
Let in the following Bα denote a fractional Brownian motion (fBm) with Hurst

index α/2 ∈ (0, 1], and let {Y(t), t ≥ 0} independent of Bα be a non-negative,
non-decreasing stochastic process.

Apart from theoretical interest in properties of Eq. 2, the motivation to analyze it
comes for numerous applications. For instance the calculation of the finite-time ruin
probability of the time-changed fractional Brownian motion risk process ψT defined
by

ψT (u) = P

{
inf

t∈[0,T ](u+ cY (t)− Bα(Y (t))) < 0

}
(3)

for some c > 0, T > 0, u ≥ 0 is possible using Monte Carlo simulations only
when Y is known. In view of our findings, for all large u compact formulas for
approximation of ψT (u) can be given explicitly.

In the context of theoretical actuarial models, u is the so-called initial reserve, c
models the premium income rate, and Bα(t) represents the total amount up to time
t > 0 of aggregate claims (including fluctuations). The justification for choosing fBm
to model the aggregate claim process comes from Michna (1998), where it is shown
that the finite-time ruin probability ψT (u), with Y(t) = t is a good approximation
of the finite-time ruin probability for the classical risk process with claims possess-
ing long range dependence property. The role of the random process Y is crucial in
order to make such models adequate for applications. It is a substitute for the real
time, where Y(t) stands for the random business time, which is consistent with the
insurance practice where both claims and premiums may not be received immedi-
ately at time t of the event, but at a later random time modeled by Y(t). Indeed, if
{Y(t), t ≥ 0} has additionally a.s. continuous sample paths, then re-writing (3) as

ψT (u) = P

{
sup

t∈[0,T /u]
Bα(t)

1 + ct
> u1−α/2

}
, T = Y(T ) (4)

we see that the asymptotic analysis of ψT (u) reduces to the analysis of the asymptotic
tail behaviour of supremum of a specific Gaussian process over a random interval.

Other branch of motivations to analyze (2) stems from recently studied problems
in fluid queueing theory. In particular, the tail asymptotics of the stationary buffer
content of a hybrid fluid queue, with input modelled by a superposition of integrated
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alternating on-off process and a Gaussian process with stationary increments, reduces
(under some assumptions) to Eq. 2 with suitably chosen random T ; see e.g., Zwart
et al. (2005).

In the case that {Y(t), t ≥ 0} is a Gamma process and c = 0, investigation of
ψT (u), as u → ∞ reduces to the analysis of the tail asymptotics of the fractional
Laplace motion; see Kozubowski et al. (2006), Arendarczyk and Dȩbicki (2011).
For the related literature on time-changed models we refer to Fotopoulos and Luo
(2011), who considered the case of Brownian motion (α = 1) and Wu and Wang
(2012), where a model based on the Cox risk process, which is a time-changed
compound Poisson risk process, is considered. For more applications in finance and
insurance, see e.g., Geman et al. (2001) and Palmowski and Zwart (2007), among
many others.

Contribution : a) In Theorem 3.1, under some canonical asymptotic assumptions of
the Gaussian process {X(t), t ≥ 0}, see Section 2, if T has a sufficiently heavy tail
distribution (which is manifested by insensitivity property of the tail distribution of
T ), we derive exact asymptotics of p(X, T , γ, u).

b) Theorem 3.3 deals with a more general class of random variables T . Under a
log-power tail asymptotic assumption (see Eq. 6), we obtain the logarithmic asymp-
totics of p(X, T , γ, u). It appears that, depending on the interplay between heaviness
of T and local properties of the variance function of X at 0 we can distinguish four
scenarios, leading to four qualitatively different asymptotics.

Our novel result complement recent findings of Arendarczyk and Debicki (2011,
2012) and Tan and Hashorva (2013), where extremes over a random-time interval
were analyzed for stationary centered Gaussian processes and centered Gaussian
processes with stationary increments respectively. We refer to Zwart et al. (2005),
Dȩbicki and van Uitert (2006), Palmowski and Zwart (2007) for other related results.

The organization of the paper is as follows: In Section 2 we introduce some nota-
tion and formulate the main assumptions imposed to the Gaussian process {X(t),

t ≥ 0}. Section 3 presents the main results. In Section 4 we discuss the finite-time
ruin probability of the time-changed fBm risk processes. The proofs of all the results
are relegated to Section 5.

2 Preliminaries

Throughout this paper �(·) denotes the survival function of a standard Gaus-
sian random variable N(0, 1). For two positive functions a1(·), a2(·) on [0,∞)

we write a1(u) ∼ a2(u) if limu→∞ a1(u)/a2(u) = 1 and a1(u)
log∼ a2(u) if

limu→∞ log(a1(u))/ log(a2(u)) = 1. In the sequel �(·) denotes the Euler Gamma
function.

Following, e.g., Foss et al. (2013) we say that a non-negative random variable T
is h−insensitive if

P{T > u± h(u)} ∼ P{T > u}
as u → ∞ for some function h(·). Our first main result in this paper is the exact
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asymptotic behaviour of p(X, T , γ, u) defined in Eq. 2 for T being h−insensitive.
Two large classes of distributions for T that satisfy the insensitivity criteria are:

i) T is regularly varying at ∞ with index λ > 0, which means that P{T > u} =
L(u)u−λ, where L(·) is slowly varying at ∞, i.e., for any x > 0 we have
limu→∞ L(xu)/L(u) = 1 (see e.g., Resnick 1987);

ii) T is asymptotically Weibullian, i.e.,

P{T > u} ∼ L(u)uδ exp(−Lup) (5)

as u → ∞, where L, p > 0 and δ ∈ IR and L(·) is slowly varying at ∞; we
abbreviate Eq. 5 as T ∈ W(p, L,L, δ).

A significant relaxation of the Weibullian-tail assumption (5) for T is that it has
asymptotically a log-power tail with coefficient L > 0 and power p > 0, i.e.,

lim
u→∞

logP {T > u}
up

= −L. (6)

As above, hereafter Bα stands for a fBm with Hurst index α/2 ∈ (0, 1], i.e., a
centered Gaussian process with stationary increments, continuous sample paths a.s.
and variance function σ 2

Bα
(t) = tα . Following Piterbarg (1996), we introduce two

key constants, namely Pickands constant

Hα := lim
S→∞S−1

E

(
exp

(
sup

t∈[0,S]

(√
2Bα(t)− tα

)))
∈ (0,∞)

and Piterbarg constant

PR
α := lim

S→∞E

(
exp

(
sup

t∈[−S,S]

(√
2Bα(t) − (1 + R)|t|α

)))
∈ (0,∞), R ∈ (0,∞).

In this paper we tacitly assume that {X(t), t ≥ 0} is a centered Gaussian process
with a.s. continuous and bounded sample paths and σ 2(t) := Var (X(t)) that attains
its maximum over [0,∞) at the unique point t = t0 > 0 with σ(t0) = 1. Additionally
we suppose that:

A1. There exist some positive constants a, β such that

σ(t) = 1 − a|t − t0|β + o(|t − t0|β), t → t0. (7)

A2. There exist d > 0, α ∈ (0, 2] such that

Cov

(
X(s)

σ(s)
,
X(t)

σ (t)

)
= 1 − d|t − s|α + o(|t − s|α), s → t0, t → t0.

A3. There exist constants Q > 0, H > t0 and r ∈ (0, 2] such that, for all s, t ∈
[0, H ] with |s − t| < 1

E

(
(X(t)−X(s))2

)
≤ Q|t − s|r . (8)

A4. lim sup
t→∞

σ(t) < 1.
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We conclude this section with a preliminary result, which gives the exact asymptotics
of the supremum of a Gaussian process over a deterministic time interval; see e.g.,
Piterbarg (1996).

Theorem 2.1 If the assumptions A1-A4 are satisfied, then for any T > t0 we have

P

{
sup

t∈[0,∞)

X(t) > u

}
∼ P

{
sup

t∈[0,T ]
X(t) > u

}
∼ Cα,β�α,β(u)�(u), u → ∞,(9)

where

Cα,β =
⎧⎨
⎩

2Hα�(1/β + 1)d1/αa−1/β , if α < β,

Pa/d
α , if α = β,

1, if α > β,

and �α,β(u) =
{
u2/α−2/β , if α < β,
1, if α ≥ β.

Remark The exact asymptotics for the infinite-time interval case can be obtained by
a direct application of the Borell-TIS inequality (e.g., Adler 1990 or Adler and Taylor
2007) using further the result for the asymptotics of the supremum of X over any
finite-time interval [0.T ].

3 Main results

In this section we present our main results. We begin with the derivation of the exact
asymptotic behaviour of p(X, T , γ, u) as u → ∞, which is presented in Theo-
rem 3.1. Then, under milder assumptions on T , we provide a complete study of the
logarithmic asymptotics of p(X, T , γ, u) as u → ∞, see Theorem 3.3.

Theorem 3.1 Let {X(t), t ≥ 0} be a centered Gaussian process such that assump-
tions A1-A4 are satisfied, and let T be a non-negative random variable independent
of the Gaussian process X.

i) If γ = 0 and P {T ≥ t0} > 0, then

p(X, T , γ, u) ∼ P {T ≥ t0} . (10)

ii) If γ > 0 and T is u1−2/(γ (1+β))-insensitive, then

p(X, T , γ, u) ∼ Cα,β�α,β(u)�(u)P
{
T ≥ t0u

γ
}
. (11)

The proof of Theorem 3.1 is given in Section 5.1.
Theorem 3.1 complements recent results of Arendarczyk and Dȩbicki (2011,

2012) and Tan and Hashorva (2013), where the class of centered stationary Gaussian
processes and Gaussian processes with stationary increments was analyzed.

As a straightforward consequence of Theorem 3.1 we obtain the following results.

Corollary 3.2 Suppose that the assumptions of Theorem 3.1 are satisfied and that
γ > 0.

i) If T is regularly varying at ∞ with index λ > 0, then

p(X, T , γ, u) ∼ Cα,β�α,β(u)�(u)P
{
T ≥ t0u

γ
}
. (12)
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ii) If T ∈ W(p, L,L, δ) with p ∈
(

0, 2
γ (1+β)

)
, then Eq. 12 holds.

Complementary to the above exact asymptotics, in the next theorem we derive the
logarithmic asymptotic behaviour of Eq. 2 for a class of log-power tailed random
variables T .

Let us introduce the following notation

σ̂ (s) := sup
t∈[0,s]

σ(t), σ̃L,γ (s) := 1

2σ̂ 2(s)
+ Ls2/γ , s ≥ 0 (13)

and

A0 = inf

{
A : A = arg inf

t≤t0

(
σ̃L,γ (t)

)}
. (14)

Theorem 3.3 Let {X(t), t ≥ 0} be a centered Gaussian process such that assump-
tions A1–A4 are satisfied and let T be a non-negative random variable independent
of the Gaussian process X with asymptotically log-power tail with coefficient L > 0
and power p > 0.

i) If γp < 2, then

lim
u→∞

logp(X, T , γ, u)

u2
= −1

2
. (15)

ii) If γp = 2, A0 > 0, and on any compact subset of (0,∞) σ̂ (s) is differentiable
and |̂σ ′(s)| is uniformly bounded, then

lim
u→∞

logp(X, T , γ, u)

u2
= −σ̃L,γ (A0). (16)

iii) If γp > 2 and σ(0) > 0, then

lim
u→∞

logp(X, T , γ, u)

u2 = − 1

2σ 2(0)
. (17)

iv) If γp > 2 and σ(t) = Dtη(1 + o (1)) as t ↓ 0 for some positive constants D
and η, then

lim
u→∞

logp(X, T , γ, u)

u2p(ηγ+1)/(2η+p)
= −A1, (18)

where A1 = 1
2D

− 2p
2η+p (Lp/η)

2η
2η+p + L

2η
2η+p (η/(pD2))

p
2η+p .

A complete proof of Theorem 3.3 is given in Section 5.2.

Remark It follows straightforwardly from the proof of Theorem 3.3 that statements
i) and iii) also hold if − logP{T > u} = L(u)up with some slowly varying function
L(·) at infinity.

When pγ = 2 we imposed the assumption that A0 > 0. The special case A0 =
0, which is also possible, is much more involved, and will therefore be considered
elsewhere.
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4 Ruin probability of the time-changed fBm risk processes

Consider an extension of the time-changed fBm risk process defined in the Introduc-
tion, by allowing a power trend-function; i.e., let

Z(t) := u+ c(Y (t))θ − Bα(Y (t)), t ≥ 0, (19)

where u ≥ 0, c > 0, θ > α/2 and {Y(t), t ≥ 0} is a non-negative non-decreasing
stochastic process being independent of {Bα(t), t ≥ 0}. Clearly, θ = 1 is a choice
leading to our risk model in the Introduction. Related risk models were studied for
instance in Dȩbicki and Rolski (2002), where the finite-time ruin probability with
the choice Y(t) ≡ t was analyzed, whereas the infinite-time ruin counterpart was
considered in Hüsler and Piterbarg (1999), see also the recent contribution Hashorva
et al. (2013).

As in the Introduction the finite-time ruin probability for the risk process (19) is
given by

ψT (u) = P

{
inf

t∈[0,T ]
(
u+ c(Y (t))θ − Bα(Y (t))

)
< 0

}

= P

{
sup

t∈[0,T ]
(
Bα(Y (t)) − c(Y (t))θ

)
> u

}
,

with T > 0 and u ≥ 0.

4.1 Continuous time-process Y

In this subsection, we apply the results of Theorems 3.1 and 3.3 to the analysis of the
asymptotics of the finite-time ruin probability of the time-changed fBm risk process
(19) as u → ∞, where the time process Y has a.s. continuous sample paths.

Before stating our results for this risk model we need to introduce the following
notation

Q := 2
1
2+ 1

α
√
πc

2−α
2θ α

α−2−θ
2θ θ

2−α
α (2θ − α)

θα−4θ+2α−α2
2θα ,

s0 :=
(

α

c(2θ − α)

)1/θ

, V0 := 2θ − α

2θ
s
α/2
0 = 2θ − α

2θ

(
α

c(2θ − α)

) α
2θ

.

The main results are presented in Propositions 4.1 and 4.2; their proofs are
relegated to Section 5.3.

Proposition 4.1 Assume that θ > α/2, c > 0 and {Y(t), t ≥ 0} has a.s. continuous
sample paths.

i) If Y(T ) is regularly varying at ∞ with index λ > 0, i.e., P{Y(T ) > u} =
L(u)u−λ, then

ψT (u) ∼ QHαs
−λ
0 u

(2θ−α)(2−α)−2λα
2θα L(s0u

1
θ )�

(
V −1

0 u
2θ−α

2θ

)
. (20)
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ii) If Y(T ) ∈ W(p, L,L, δ) with p ∈
(

0, 2θ−α
3

)
, L > 0, and δ ∈IR, then

ψT (u) ∼ QHαL(s0u
1/θ )sδ0u

(2θ−α)(2−α)+2δα
2θα exp

(
−Ls

p

0 u
p
θ

)
�
(
V −1

0 u
2θ−α

2θ

)
.

(21)

Proposition 4.2 Under the setup of Proposition 4.1, suppose further that Y(T ) has
asymptotically log-power tail with coefficient L > 0 and power p > 0.

i) If 2θ − α > p, then

lim
u→∞

logψT (u)

u
2θ−α
θ

= −1

2V 2
0

. (22)

ii) If 2θ − α < p, then

lim
u→∞

logψT (u)

u
2p
α+p

= −
(

1

2

(
2p

α

) α
α+p +

(
α

2p

) p
α+p

)
L

α
α+p . (23)

iii) If 2θ − α = p, then

lim
u→∞

logψT (u)

u
2θ−α
θ

= −
(
(1 + cAθ

0)
2

2Aα
0

+ LA2θ−α
0

)
, (24)

where

A0 =
⎛
⎜⎝c(α − θ)+

√
c2(θ − α)2 + 2α

(
c2(θ − α/2)+ L(2θ − α)

)
c2(2θ − α)+ 2L(2θ − α)

⎞
⎟⎠

1/θ

.

4.2 Discontinuous time-process Y

In several models the time-process Y has discontinuous sample paths. Therefore, in
this section we investigate additional cases relaxing the assumption on continuity of
sample paths of Y .

Proposition 4.3 Assume that θ > α/2, c > 0 and the random variable Y(T ) pos-
sesses an absolutely continuous distribution with probability density function which
is regularly varying at ∞ with index λ+ 1 > 1. Then

lim
u→∞

logψT (u)

u
2θ−α
θ

= −1

2V 2
0

. (25)

Proposition 4.4 Assume that θ > α/2, c > 0 and Y(T ) possesses abso-
lutely continuous distribution with probability density function ρY(T )(·) such that
limu→∞ log(ρY(T )(u))/up = −L for some p,L > 0.

i) If 2θ − α > p, then

lim
u→∞

logψT (u)

u
2θ−α
θ

= −1

2V 2
0

. (26)
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ii) If 2θ − α < p, then

lim
u→∞

logψT (u)

u
2p
α+p

= −
(

1

2

(
2p

α

) α
α+p +

(
α

2p

) p
α+p

)
L

α
α+p . (27)

iii) If 2θ − α = p, then

lim
u→∞

logψT (u)

u
2θ−α
θ

= −
(
(1 + cAθ

0)
2

2Aα
0

+ LA2θ−α
0

)
, (28)

where

A0 =
⎛
⎜⎝c(α − θ)+

√
c2(θ − α)2 + 2α

(
c2(θ − α/2)+ L(2θ − α)

)
c2(2θ − α)+ 2L(2θ − α)

⎞
⎟⎠

1/θ

.

Example 4.5 Assume that Y(t) = ∑N(t)
i=1 Zi is a compound Poisson process with

Zi, i ≥ 1 non-negative independent random variables with common probability den-
sity function h(·) which is regularly varying at ∞ with index λ + 1 > 1. If h(·) is
monotone and {N(t), t ≥ 0} is a homogeneous Poisson process with intensity μ > 0,
then by Proposition 4.3

lim
u→∞

logψT (u)

u
2θ−α
θ

= −1

2V 2
0

.

Example 4.6 Let {�t , t ≥ 0} be a Gamma process with parameter ν > 0, i.e., a Lévy
process such that the increments �t+s−�t have Gamma distribution with probability
density function

f (x) = 1

�( s
ν
)
x

s
ν−1 exp(−x), x > 0.

By fractional Laplace motion {Lα(t), t ≥ 0} we denote a random process defined as

{Lα(t), t ≥ 0} d= {σBα(�t ), t ≥ 0}, σ > 0.

A standard fractional Laplace motion corresponds to σ = ν = 1; see, e.g.,
Kozubowski et al. (2004, 2006). Choosing Y(t) = �t , we consider below finite-time
ruin probability of risk process modelled by fractional Laplace motion

ψT (u) = P

{
inf

t∈[0,T ] (u+ c�t − Bα(�t )) < 0

}
= P

{
sup

t∈[0,T ]
(Bα(�t )− c�t ) > u

}
.

For this model Proposition 4.4 implies:

i) If α < 1, then

lim
u→∞

logψT (u)

u2−α
= −2

(2 − α)2

(
c(2 − α)

α

)α

.
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ii) If 1 < α < 2, then

lim
u→∞

logψT (u)

u
2

α+1

= −1

2

(
2

α

) α
α+1 −

(α
2

) 1
α+1

.

iii) If α = 1, then

lim
u→∞

logψT (u)

u
= − (1 + cA0)

2

2A0
− A0,

where A0 = 1√
c2+2

.

5 Proofs

This section is dedicated to proofs of our results. In what follows, the positive con-
stant Q may be different from line to line. We begin with a lemma which is of some
interests on its own.

Lemma 5.1 Let X be a non-negative random variable which is u1−p-insensitive,
with p > 0. Then, for any positive constant B

lim
u→∞

exp(−Bup)

P {X > u} = 0.

Proof of Lemma 5.1 First observe that, for any sufficiently large u there exists some
θu ∈ [0, 1] such that (set next Y = Xp)

P{Y > u} ≤ P{Y > u− 1}
= P

{
X > (u− 1)1/p

}
= P

{
X > u1/p − (1/p)(u− θu)

1/p−1
}

≤ P

{
X > u1/p − (2/p)(u)1/p−1

}
.

By insensitivity of X, we immediately get that

P

{
X > u1/p − (2/p)(u)1/p−1

}
∼ P

{
X > u1/p

}
= P{Y > u}

as u → ∞. Hence

P{Y > u− 1} ∼ P{Y > u}, u → ∞.

Consequently, for any ε ∈ (0, 1) there exists A > 0 such that for any v > A we have
P{Y > v} ≥ (1 − ε)P{Y > v − 1}. Thus, for sufficiently large u

P{Y > u} ≥ (1 − ε)P{Y > u− 1} ≥ (1 − ε)2
P{Y > u− 2} ≥ (1 − ε)u−A

P{Y > A}
implying that for each B > 0

lim
u→∞

exp(−Bu)

P{Y > u} = 0

and thus the claim follows.
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5.1 Proof of Theorem 3.1

i) We first give the upper bound. For any ε ∈ (0, t0), u > 0, we derive that

P

{
sup

t∈[0,T ]
X(t) > u

}
≤ P

{
sup

t∈[0,T ]
X(t) > u, T < t0 − ε

}

+P

{
sup

t∈[0,T ]
X(t) > u, T ≥ t0 − ε

}

≤ P

{
sup

t∈[0,t0−ε]
X(t) > u

}

+P

{
sup

t∈[0,∞)

X(t) > u

}
P {T ≥ t0 − ε} ,

Similarly, for any u > 0

P

{
sup

t∈[0,T ]
X(t) > u

}
≥ P

{
sup

t∈[0,t0+ε]
X(t) > u

}
P {T ≥ t0 + ε}

≥
(
P

{
sup

t∈[0,∞)

X(t) > u

}

−P

{
sup

t∈[t0+ε,∞)

X(t) > u

})
P {T ≥ t0 + ε} .

Choosing ε small enough such that lim sup
t→∞

σ(t) < σ(t0 ± ε) < 1 and using the

Borell-TIS inequality (e.g., Adler and Taylor 2007), we conclude that

P

{
sup

t∈[0,t0−ε]
X(t) > u

}
= o

(
P

{
sup

t∈[0,∞)

X(t) > u

})

and

P

{
sup

t∈[t0+ε,∞)

X(t) > u

}
= o

(
P

{
sup

t∈[0,∞)

X(t) > u

})

as u → ∞. Thus the claim of the first statement follows by letting ε → 0.
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ii) Assume that T is u1−2/(γ (1+β))-insensitive and let εu = u−2/(1+β). With similar
arguments as in the proof of statement i) we obtain

p(X, T , γ, u) = P

{
sup

t∈[0,T /uγ ]
X(t) > u

}

≤ P

{
sup

t∈[0,t0−εu]
X(t) > u

}

+P

{
sup

t∈[0,∞)

X(t) > u

}
P
{
T > (t0 − εu)u

γ
}

(29)

and

p(X, T , γ, u) ≥ P

{
sup

t∈[0,t0+εu]
X(t) > u

}
P
{
T > (t0 + εu)u

γ
}

≥
(
P

{
sup

t∈[0,∞)

X(t) > u

}

− P

{
sup

t∈[t0+εu,∞)

X(t) > u

})
P
{
T > (t0 + εu)u

γ
}
.

Further, by insensitivity of T as u → ∞
P
{
T > (t0 ± εu)u

γ
} ∼ P

{
T > t0u

γ
}
. (30)

Thanks to Piterbarg inequality (cf. Theorem 8.1 of Piterbarg 1996), combined with
A3, for all u large we have

P

{
sup

t∈[0,t0−εu]
X(t) > u

}
≤ Qu2/r−1 exp

(
−u2

2

)
exp

(
−au2(εu)

β

4

)

for some positive constant Q not depending on u. Similarly, using additionally Borell-
TIS inequality, for u large and some G > t0

P

{
sup

t∈[t0+εu,∞)

X(t) > u

}
≤ P

{
sup

t∈[t0+εu,G]
X(t) > u

}
+ P

{
sup

t∈[G,∞)

X(t) > u

}

≤ Qu2/r−1 exp

(
−u2

2

)
exp

(
−au2(εu)

β

4

)

+ exp

⎛
⎜⎜⎜⎜⎜⎝−

(
u− E

(
sup

t∈[G,∞)

X(t)

))2

2 sup
t∈[G,∞)

σ 2(t)

⎞
⎟⎟⎟⎟⎟⎠ .
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Hence, using that εu = u−2/(1+β) and the results of Lemma 5.1

lim
u→∞

exp
(
− a

4u
2

1+β

)
P {T > t0uγ } = 0

and thus

P

{
sup

t∈[t0+εu,∞)

X(t) > u

}
= o

(
P

{
sup

t∈[0,∞)

X(t) > u

})
, (31)

P

{
sup

t∈[0,t0−εu]
X(t) > u

}
= o

(
P

{
sup

t∈[0,∞)

X(t) > u

}
P
{
T > (t0 − εu)u

γ
})

. (32)

Consequently, combining Eqs. 29–32 we obtain

p(X, T , γ, u) ∼ P

{
sup

t∈[0,∞)

X(t) > u

}
P
{
T > t0u

γ
}

as u → ∞, which completes the proof.

5.2 Proof of Theorem 3.3

For the proof we need to distinguish between three different cases depending on the
value of γp. For notational simplicity, let Tu := T /uγ .
Case γp < 2. For some ε > 0 small enough and u large

p(X, T , γ, u) = P

{
sup

t∈[0,Tu]
X(t) > u, Tu > u

2−γp
p −ε

}

+P

{
sup

t∈[0,Tu]
X(t) > u, Tu ≤ u

2−γp
p −ε

}

≥ P

{
T > u

γ+ 2−γp
p

−ε

}
P

⎧⎪⎪⎨
⎪⎪⎩ sup

t∈
[

0,u
2−γp
p −ε

]X(t) > u

⎫⎪⎪⎬
⎪⎪⎭

≥ P

{
T > u

γ+ 2−γp
p −ε

}
P {X(t0) > u}

log∼ P {X(t0) > u} ,

which follows from the fact that, by the assumption on T , P

{
T > u

γ+ 2−γp
p −ε

}
log∼

exp(−Lu2−εp), while P {X(t0) > u} log∼ exp(−u2/2). Since, in view of Theorem 2.1

p(X, T , γ, u) ≤ P

{
sup

t∈[0,∞)

X(t) > u

}
log∼ P {X(t0) > u} ,

then the claim (15) follows.
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Case γp = 2. Let σ̂ (s), σ̃L,γ (s), s ≥ 0 and A0 be defined as in Eqs. 13 and 14
respectively. The lower bound follows from the fact that

p(X, T , γ, u) = P

{
sup

t∈[0,Tu]
X(t) > u, Tu > A0

}
+ P

{
sup

t∈[0,Tu]
X(t) > u, Tu ≤ A0

}

≥ P
{
T > A0u

γ
}
P {σ(A0)N > u}

log∼ exp
(
−LA

2/γ
0 u2

)
exp

(
− u2

2σ 2(A0)

)

= exp
(
−σ̃L,γ (A0)u

2
)
, (33)

where N is a standard Gaussian (i.e., an N(0, 1)) random variable.
Next we derive an upper bound. For some 0 < m < 1 < M (to be determined

later) we have

p(X, T , γ, u) = −
∫ ∞

0
P

{
sup

t∈[0,s]
X(t) > u

}
dP {Tu > s}

= −
∫ mA0

0
P

{
sup

t∈[0,s]
X(t) > u

}
dP {Tu > s}

−
∫ MA0

mA0

P

{
sup

t∈[0,s]
X(t) > u

}
dP {Tu > s}

−
∫ ∞

MA0

P

{
sup

t∈[0,s]
X(t) > u

}
dP {Tu > s}

:= I1(u)+ I2(u)+ I3(u).

We analyze Ii(u), i = 1, 2, 3 separately.
Ad. I2(u). Using Piterbarg inequality and integration by parts, we have that

I2(u) ≤ −
∫ MA0

mA0

(
QMA0u

2/r�

(
u

σ̂ (s)

))
dP {Tu > s}

= −QMA0u
2/r

(
�

(
u

σ̂ (MA0)

)
P
{
T > MA0u

γ
}

−�

(
u

σ̂ (mA0)

)
P
{
T > mA0u

γ
}

+
∫ MA0

mA0

u√
2π

(
1

σ̂ (s)

)′
exp

(
− u2

2σ̂ 2(s)

)
P {Tu > s} ds

)
:= I2,1(u)+ I2,2(u)+ I2,3(u) ≤ I2,2(u)+ I2,3(u).

Next we find bounds for I2,i(u), i = 2, 3 one by one. It straightforwardly follows that

I2,2(u)
log∼ exp

(
−
(

1

2σ̂ 2(mA0)
+ L(mA0)

2/γ
)
u2
)

(34)

and, for any ε2 > 0 and u large
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I2,3(u) ≤ QMA0
u2/r+1

√
2π

max
s∈[mA0,MA0]

( −1

σ̂ (s)

)′ ∫ MA0

mA0

exp

(
−
(

1

2σ̂ 2(s)
+ L(1 − ε2)s

2/γ
)
u2
)
ds

≤ Q(MA0)
2 u

2/r+1

√
2π

max
s∈[mA0,MA0]

( −1

σ̂ (s)

)′
exp

(
− inf

s∈[mA0,MA0]

(
1

2σ̂ 2(s)
+ L(1 − ε2)s

2/γ
)
u2
)
.

Consequently, letting ε2 → 0 we obtain

lim sup
u→∞

log I2,3(u)

u2
≤ −σ̃L,γ (A0). (35)

Ad. I1(u). By the Piterbarg inequality we have that

I1(u) ≤ P

{
sup

t∈[0,mA0]
X(t) > u

}
≤ Qu2/r+1 exp

(
− u2

2σ̂ 2(mA0)

)
, (36)

where r ∈ (0, 2] is as in A3.
Ad. I3(u). We straightforwardly have that

I3(u) ≤ P {Tu > MA0} log∼ exp(−L(MA0)
2/γ u2). (37)

Now we are ready to determine both constants m and M . First, choose m such that

1

2σ̂ 2(mA0)
> σ̃L,γ (A0),

and then choose M such that

L(MA0)
2/γ > σ̃L,γ (A0).

We conclude from Eqs. 34–37 that

lim sup
u→∞

logp(X, T , γ, u)

u2 ≤ −σ̃L,γ (A0). (38)

Consequently, combination of Eq. 33 with Eq. 38 leads to

lim
u→∞

logp(X, T , γ, u)

u2
= −σ̃L,γ (A0).

Case γp > 2 and σ(0) > 0. Let ε ∈ (0, γp−2
p

). Then we have (set uε := u
2−γp
p +ε)

p(X, T , γ, u) = P

{
sup

t∈[0,Tu]
X(t) > u, Tu > uε

}

+P

{
sup

t∈[0,Tu]
X(t) > u, Tu ≤ uε

}

≤ P

{
T > u

2
p+ε

}
+ P

{
sup

t∈[0,uε]
X(t) > u

}
.
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Since − logP {T > u} is regularly varying at infinity with index p, then

lim
u→∞

logP
{
T > u

2
p
+ε
}

u2
= −∞

and, by Borell-TIS inequality, for sufficiently large u

P

{
sup

t∈[0,uε]
X(t) > u

}
≤ 2 exp

⎛
⎜⎜⎜⎜⎜⎝−

(
u− E

(
sup

t∈[0,uε]
X(t)

))2

2 max
t∈[0,uε]

σ 2(t)

⎞
⎟⎟⎟⎟⎟⎠ .

Combining the above with

p(X, T , γ, u) ≥ P{X(0) > u}
we obtain that

lim
u→∞

logp(X, T , γ, u)

u2
= − 1

2σ 2(0)
,

which proves (17).

Case γp > 2 and σ(t) = Dtη(1 + o (1)) as t ↓ 0. Let g(t) = 1
2D2t2η + Ltp , t ≥ 0,

which has a unique minimum point at t∗ =
(

η

pLD2

)1/(2η+p)

with

A1 := g(t∗) = 1

2
D

− 2p
2η+p (Lp/η)

2η
2η+p + L

2η
2η+p (η/(pD2))

p
2η+p .

Setting μ = pγ−2
2η+p

> 0 we may write

p(X, T , γ, u) = P

{
sup

t∈[0,Tu]
X(t) > u, Tu > t∗u−μ

}

+P

{
sup

t∈[0,Tu]
X(t) > u, Tu ≤ t∗u−μ

}

≥ P

{
sup

t∈[0,t∗u−μ]
X(t) > u

}
P
{
T > t∗uγ−μ

}
≥ P

{
X(t∗u−μ) > u

}
P
{
T > t∗uγ−μ

}
log∼ exp

(
− u2+2ημ

2D2(t∗)2η
− L(t∗)pup(γ−μ)

)

= exp

(
−A1u

2ηγp+2p
2η+p

)
.

In order to derive an upper bound, we replace A0 with t∗u−μ in the upper estimate
of the case γp = 2. Following step-by-step the same argument as in the upper bound
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of the case γp = 2, we conclude that

lim sup
u→∞

logp(X, T , γ, u)

u
2ηγp+2p

2η+p

≤ −A1

and thus the proof is complete.

5.3 Proof of Propositions 4.1 and 4.2

By the self-similar property of the fBm we see that

P

{
sup

t∈[0,T ]
(
Bα(Y (t)) − c(Y (t))θ

)
> u

}
= P

{
sup

t∈[0,Y (T )/u1/θ ]
Bα(t)

1 + ctθ
> u1− α

2θ

}

(39)

The function V (t) = tα/2

1+ctθ
attains its maximum at the unique point

t0 =
(

α/2

c(θ − α/2)

)1/θ

and

V0 = V (t0) = 2θ − α

2θ

(
α

c(2θ − α)

) α
2θ

.

Re-writing (39), we have

P

{
sup

t∈[0,T ]
(
Bα(Y (t)) − c(Y (t))θ

)
> u

}
= P

{
sup

t∈[0,Y (T )/u1/θ ]
Z(t) > V −1

0 u1− α
2θ

}

= P

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup

t∈
⎡
⎣0,

Y (T )(V0)
− 2

2θ−α

(v(u))

2
2θ−α

⎤
⎦
Z(t) > v(u)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
,

(40)

where

Z(t) = Bα(t)

tα/2

V (t)

V0
, t ≥ 0 and v(u) = V −1

0 u1− α
2θ .

It is straightforward to check that√
E
(
Z2(t)

) = 1 − 1

8
c

2
θ α1− 2

θ (2θ − α)1+ 2
θ (t − t0)

2 + o
(
(t − t0)

2
)

as t → t0 and

Cov

⎛
⎜⎝ Z(t)√

E
(
Z2(t)

) , Z(s)√
E
(
Z2(s)

)
⎞
⎟⎠ = 1 − 1

2tα0
|t − s|α + o

(|t − s|α)
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as s, t → t0. Moreover, for any given positive constant H , it is derived that, for
t, s ∈ [0, H ] with |t − s| < 1

E (Z(t)− Z(s))2 = V −2
0 E

((
Bα(t)

1 + ctθ
− Bα(s)

1 + ctθ

)
+
(

Bα(s)

1 + ctθ
− Bα(s)

1 + csθ

))2

≤ 2(V0)
−2

(
E

(
Bα(t)

1 + ctθ
− Bα(s)

1 + ctθ

)2

+ E

(
Bα(s)

1 + ctθ
− Bα(s)

1 + csθ

)2
)

= 2(V0)
−2

(
|t − s|α

(1 + ctθ )2
+ sα

(
1

1 + ctθ
− 1

1 + csθ

)2
)

≤ Q|t − s|α.

Thus assumptions A1–A4 are satisfied. Additionally, by Theorem 1 in Hüsler and
Piterbarg (1999)

P

{
sup

t∈[0,∞)

Z(t) > v(u)

}
∼ QHαu

(2θ−α)(2−α)
2θα �

(
2θ

2θ − α

(
α

c(2θ − α)

)− α
2θ

u
2θ−α

2θ

)
, u → ∞,

where Q := 2
1
2+ 1

α
√
πc

2−α
2θ α

α−2−θ
2θ θ

2−α
α (2θ − α)

θα−4θ+2α−α2
2θα .

The rest of the proof follows from an application of Theorem 3.1 statement ii) and
Theorem 3.3.

5.4 Proof of Propositions 4.3 and 4.4

Note that, for each u > 0, using notation introduced in Section 5.3

P

{
sup

t∈[0,T ]
Bα(Y (t)) − c(Y (t))θ > u

}
≤ P

{
sup

t∈[0,Y (T )/u1/θ ]
Z(t) > V −1

0 u1− α
2θ

}
.

Thus it suffices to find logarithmically tight lower bounds for each subclass of den-
sities of Y(T ). The idea of the proof is the same both for the density of Y(T ) being
regularly varying and log-power tailed and heavily uses the idea of getting the lower
bound in the proof of Theorem 3.3. Hence we give only the argument for Y(T ) having
regularly varying density function with index λ+ 1. Under this scenario

P

{
sup

t∈[0,T ]
(
Bα(Y (t)) − c(Y (t))θ

)
> u

}
≥ P

{
Bα(Y (T ))

u+ c(Y (T ))θ
> 1

}

≥ min
t∈[t0u1/θ−u1/(2θ),t0u

1/θ+u1/(2θ)]
P

{
Bα(t)

u+ ctθ
> 1

}

XP

{
Y(T ) ∈ [t0u1/θ − u1/(2θ), t0u

1/θ + u1/(2θ)]
}
.
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Using that P
{
Y(T ) ∈ [t0u1/θ − u1/(2θ), t0u

1/θ + u1/(2θ)]} is regularly varying at ∞
and

lim
u→∞u

α
θ
−2 log

(
min

t∈[t0u1/θ−u1/(2θ),t0u
1/θ+u1/(2θ)]

P

{
Bα(t)

u+ ctθ
> 1

})
= − 1

2V 2
0

we obtain a logarithmically tight lower bound, and thus the proof is complete.
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