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TAIL ASYMPTOTICS OF THE M/G/∞ MODEL

M. Mandjes1 and P. Żuraniewski1,2,3

1Korteweg-de-Vries Institute for Mathematics, Amsterdam, The Netherlands
2Department of Applied Mathematics, AGH University of Science and Technology,
Krakow, Poland
3TNO, Delft, The Netherlands

� This paper considers the so-called M/G/∞ model: jobs arrive according to a Poisson process
with rate �, and each of them stays in the system during a random amount of time, distributed
as a non-negative random variable B; throughout it is assumed that B is light-tailed. With
N (t) denoting the number of jobs in the system, the random process A(t) records the load
imposed on the system in [0, t ], i.e., A(t) := ∫ t

0 N (s)ds. The main result concerns the tail
asymptotics of A(t)/t : we find an explicit function f (·) such that

f (t) ∼ �
(
A(t)
t

> �(1 + �)

)
,

for t large; here � := ��B. A crucial issue is that A(t) does not have i.i.d. increments, which
makes direct application of the classical Bahadur–Rao result impossible; instead an adaptation
of this result is required. We compare the asymptotics found with the (known) asymptotics for
� → ∞ (and t fixed).

Keywords Infinite-servers queues; Large deviations; Tail asymptotics.

Mathematics Subject Classification 60K25.

1. INTRODUCTION

Consider the so-called M/G/∞ model: jobs arrive according to a
Poisson process with rate �, and their stay in the system constitutes an
i.i.d. sequence of random variables (Bi)i∈�, distributed as some generic
non-negative random variable B. With N (t) denoting the number of jobs
in the system, the random process A(t) records the load imposed on the
system in [0, t ], i.e., A(t) := ∫ t

0 N (s)ds.
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78 Mandjes and Ż uraniewski

It is known that, in stationarity, the number of jobs in the system obeys
a Poisson distribution with mean � := ��B; importantly, this distribution is
insensitive in the higher moments of the job duration B. The distribution
of A(t), however, can be expressed only implicitly. Recognizing that A(t)
can be decomposed in terms of the sum of the contributions of (i) the jobs
that were already present at time 0 (the number of which being Poisson
distributed with mean �) and (ii) the jobs arriving in (0, t) (the number of
which being Poisson distributed with mean �t), the Laplace transform of
A(t) can be given explicitly. This enables the computation of all moments
of A(t). The computation of the distribution of A(t) is less straightforward
though.

Contribution

It is known that �A(t) = �t ; in the sequel we sometimes write A�(t)
rather than A(t) if we wish to emphasize the dependence on the system
load �. We thus have that A(t)/t converges to �, and it is not hard to find
the corresponding central limit theorem. It is less understood, however,
how to find the exact asymptotics of the tail distribution of A(t)/t , i.e.,
how to find an explicit function f (·) such that

f (t) ∼ p�(t) := �(A�(t) > �t(1 + �)),

for t large and � > 0; identifying the tail asymptotics of A(t)/t is the
main contribution of this paper. As we are dealing with a rare-event
probability here, the suitable theory to be used is large-deviations theory.
The complication, however, lies in the fact that A(t) does not have i.i.d.
increments (i.e., it is not a Lévy process). If that would have been the
case, then the classical Bahadur–Rao asymptotics would have been directly
applicable (see Theorem 3.7.4 in Ref.[2]). We will argue, though, that it
is possible to write A(t) as the sum of i.i.d. random variables, but these
random variables depend on t . The main contribution of our work is to
show that it is possible to adapt the proof of the Bahadur–Rao result
to this setting, thus identifying the exact asymptotics f (·). The proof
relies on a change-of-measure argument, in conjunction with delicate
Berry–Esseen-type estimates.

To the best of our knowledge, our result is among the first results
on exact asymptotics for sample means of t i.i.d. random variables, each
of them (mildly) depending on t . Here we note that there is already a
body of powerful results on rough, logarithmic asymptotics that apply here,
most notably the celebrated Gärtner–Ellis result;[6,9,13] these can be used to
find the limiting value of t−1 · log p�(t). We remark that throughout this
paper is assumed that the job durations are ‘light tailed’, i.e., their moment
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Tail Asymptotics of the M/G/∞ Model 79

generating function is finite in some open neighborhood of 0. In our
paper, we also briefly discuss what happens in heavy-tailed cases.

Renormalizing time such that �B = 1, we have that � = �. An
alternative asymptotic regime is that of � tending to ∞, keeping t fixed:
how does p�(t) behave for � large? In this case, it is possible to write A�(t)
as the sum of i.i.d. increments (that do not depend on �), and as a result
the Bahadur–Rao result applies here. We determine what these asymptotics
look like in this regime. Through numerical experiments we assess the
differences between the asymptotic regimes, for a set of representative job
duration distributions.

Literature

Our approach heavily relies on the seminal work by Bahadur and
Rao,[2] and in particular the proof of this result as presented in Ref.[5];
a substantially more general result is due to Höglund.[10] There are close
connections to the vast body of literature that is devoted to asymptotic
expansions of Poisson sums of i.i.d. random variables; in this respect we
mention the results in Refs.[4,7]

Organization

This paper is organized as follows. In Section 2 the model is introduced
in detail. Also, a set of preliminaries is given (with emphasis on large
deviations results). Section 3 contains the main results, most notably the
exact asymptotics of p�(t) for t large. Section 4 indicates what happens
when � is large. Numerics are provided that give insight into the accuracy
of the resulting approximations. Section 4 also contains a brief discussion
of the case that the service times are heavy-tailed.

2. MODEL, PRELIMINARIES AND GOAL

Model

We consider a model in which jobs arrive according to a Poisson
process with rate � > 0. While in the system, they generate traffic at a
(normalized) rate 1, for a duration that is distributed as a generic random
variable B. The durations are independent of each other, and independent
of the arrival process. It is assumed that B has a finite moment generating
function in some open neighborhood of 0, so that a fortiori also the mean
�B is finite. Denote the instantaneous load imposed on the system, i.e.,
��B, by �. This model is commonly referred to as the M/G/∞ input
model. Let N (t) be the number of jobs in the system at time t ; it is
a classical result that its equilibrium distribution is Poisson with mean �
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80 Mandjes and Ż uraniewski

(see p. 181 Ref.[14]). Denote the load imposed on the system in the interval
[0, t ] by

A(t) :=
∫ t

0
N (s)ds�

In this paper we study A(t), where it is assumed that the M/G/∞ system
is in equilibrium at time 0.

Computation of the Moment Generating Function

In principle, A(t) is uniquely characterized by its moment generating
function (mgf). We now show how to compute this mgf. We decompose
A(t) into A−(t) and A+(t). Here A−(t) is the contribution due to the jobs
arriving in (0, t ], and A+(t) due to the jobs that were already present at
time 0. Due to the stationarity of the arrival process, A−(t) and A+(t)
are independent. The mgf s of both A−(t) and A+(t) can be computed.
Regarding A+(t), recall that the number of jobs present at time 0 has a
Poisson distribution with mean �. The distribution of its residual life time
Br is given by Theorem 3.10 in Ref.[11]

�(Br > t) = 1
�B

∫ ∞

t
�(B > s)ds�

Distinguishing between the situation that the job leaves before time t and
is still present at time t , we readily obtain

log�e�A+(t) = log
∞∑
k=0

e−� �
k

k!
[ ∫ t

0
e�s fBr (s)ds + e �t�(Br > t)

]k

= �Vt(�), where Vt(�) :=
∫ t

0
e�s fBr (s)ds + e �t�(Br > t) − 1�

This means that if e �t�(Br > t) → 0 as t → ∞, then

log�e�A+(t) → �(�e�B
r − 1) = �

(
MB(�) − 1
� · �B

− 1
)
, (1)

where MB(�) := �e�B .
We now focus on A−(t). First recall that the number of arriving jobs

has a Poisson distribution with mean �t . Observe that any job that has
entered the system in the time interval (0, t ], it has done so at a time
epoch that is uniformly distributed on this interval (and, in addition, the
arrival epochs of the individual jobs, conditional on the number of jobs,
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Tail Asymptotics of the M/G/∞ Model 81

are independent). Again distinguishing between the jobs that have left by
time t and the jobs that are still present, we obtain

log�e�A−(t)

= log
∞∑
k=0

e−�t (�t)
k

k!
[ ∫ t

0

1
t

∫ t−s

0
fB(r )e�rdrds +

∫ t

0

1
t

∫ ∞

t−s
fB(r )e�(t−s)drds

]k

�

Routine calculations yield:

log�e�A−(t) = �Wt(�), (2)

where

Wt(�) := −t +
∫ t

0
(t − s)fB(s)e�sds +

∫ t

0
e�s�(B > s)ds�

Instantaneous Input

We now consider a related model, namely the model in which the
arriving jobs feed their work immediately into the system. Let �A(t) be the
input process for the corresponding model with instantaneous input (i.e.,
compound Poisson). Then it requires a trivial computation to show that,
for any t ≥ 0,

log�e��A(t) = t�(�), where �(�) := �MB(�) − �;

observe that �A(t) has (being a compound Poisson process) independent
and identically distributed increments (unlike A(t)).

Law of Large Numbers, Central-Limit Theorem

It is readily verified that, as t → ∞,

� exp
(
�

�A(t) − �t√
t

)
→ exp

(
�2

2
�2

)
, with �2 := ��B2�

This implies, apart from �A(t)/t converging to � almost surely, that

�A(t) − �t

�
√
t

→dN (0, 1),

with N (0,1) being a standard-Normal random variable, and ‘→d’ denoting
convergence in distribution.
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82 Mandjes and Ż uraniewski

The next question is: does A(t) obey the same law of large numbers and
central-limit theorem as its instantaneous-input counterpart �A(t)? To this
end, we determine

lim
t→∞

� exp
(
�
A(t) − �t√

t

)
�

It is first observed from Eq. (1) that

lim
t→∞

� exp
(
�
A+(t)√

t

)
= 0�

Bearing in mind Eq. (2), and using

lim
t→∞

�

∫ t

0
e�s/

√
t�(B > s)ds = �,

and

lim
t→∞

(
− �t + �

∫ t

0
(t − s)fB(s)e�s/

√
tds − ��

√
t
)

= lim
t→∞

(
− �t + �

∫ t

0
(t − s)fB(s)

(
1 + �s√

t
+ �2s2

2t

)
ds − ��

√
t
)

= −� + �2

2
�2,

we conclude that A(t) has the same law of large numbers and central-limit
theorem as �A(t).

Remark 1. Later we will use that A−(t) also obeys a central-limit theorem.
It is a matter of straightforward calculus to verify that �−(t) := �A−(t)
satisfies

lim
t→∞

�−(t) − �t = −�2

2
,

whereas v−(t) := �arA−(t) is such that

lim
t→∞

v−(t) − �2t = −2
3
��B3�

An argument similar to the one used above then yields

lim
t→∞

� exp
(
�
A−(t) − �−t√

v−(t)

)
= exp

(
�2

2

)
,
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Tail Asymptotics of the M/G/∞ Model 83

resulting in asymptotic Normality. For later reference, we include here the
corresponding Berry–Esseen-type estimate. Define by 	(·) the distribution
function of a standard normal random variable, and by 
(·) the
corresponding density, and let �(x) := (1 − x2)
(x). Then for some finite,
positive m,

√
t
(
sup
x

(
�

(
A−(t) − �−t√

v−(t)
≤ x

)
− 	(x) − m

6
√
t
�(x)

))
→ 0, (3)

as t → ∞ (see Section III.11 in Ref.[15]; cf. Eq. XVI.4.1 in Ref.[8]).

Large Deviations

Now that we have seen that �A(t) and A(t) have the same law of large
numbers and central-limit theorem, we may wonder whether they have the
same large deviations. To this end, let us first compute the exponential
decay rate of the probability that A(t)/t exceeds an extreme value, i.e.,
some value larger than �. First observe that Eq. (2) implies that

lim
t→∞

1
t
log�e�A−(t) = lim

t→∞

(
− � + �

∫ ∞

0

(
1 − r

t

)
1[0,t)(r )fB(r )e�rdr

)
,

which equals, by virtue of ‘monotone convergence’,

−� + �

∫ ∞

0
fB(r )e�rdr = �(�)�

From Eq. (1), we conclude that the contribution of A+(t) can be neglected
in the sense that also

lim
t→∞

1
t
log�e�A(t) = �(�)�

It now follows from the Gärtner–Ellis result (see Theorem 2.3.6 in Ref.[5])
that A(t)/t obeys the following logarithmic asymptotics:

Lemma 2.1. The logarithmic asymptotics of A(t)/t are, for a > �, given by

lim
t→∞

1
t
log�

(
A(t)
t

> a
)

= −I (a) := − sup
�

(�a − �(�))�

It is immediate from the Gärtner–Ellis theorem that �A(t)/t satisfies the
same large deviations as A(t)/t , i.e., there is exponential decay with rate
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84 Mandjes and Ż uraniewski

function I (·). Unlike A(t), however, �A(t) has independent and identically
distributed increments; assuming for ease that t is integer, we can write

�A(t) =
t∑

i=1

Xi , with Xi := �A(i − 1, i),

with �A(�, �) the traffic generated in this instantaneous-input system
between time epochs � and �. Realizing that their distribution coincides
with that of a Poisson(�) number of independent jobs (each of them
distributed as the random variable B), it follows that log� exp(�Xi) =
�(�). Now the so-called Bahadur–Rao result (see Theorem 3.7.4 Ref.[2])
can be applied to find the exact asymptotics of �A(t)/t :

lim
t→∞

√
t e tI (a) · �

(�A(t)
t

> a
)

= Ca ,

where

Ca :=
(

√
2��′′()

)−1 =
(

√
2��M ′′

B ()

)−1

,

where  ≡ a solves �′() = a. The goal of this note is to find the exact
asymptotics of A(t)/t , thus answering the question whether A(t)/t has the
same exact asymptotics as �A(t)/t . The next section will reveal that the
respective exact asymptotics differ by a constant.

3. EXACT ASYMPTOTICS

We mentioned above that A(t) does not have i.i.d. increments, being
the reason why we cannot directly use Bahadur–Rao to compute the exact
asymptotics of A(t)/t . More precisely: the A(i − 1, i) (with A(�, �) the
amount of traffic entering between � and � in our gradual-input system)
are identically distributed but not independent. Interestingly, however, we
can still write A−(t) as the sum of t i.i.d. increments (assuming for ease t
to be integer). The price to be paid is that these increments depend on t .
This is done as follows.

Let Xi be constructed as follows. First we draw Ni from a Poisson
distribution with mean �. Then each of these Ni corresponds to an arrival
at a uniformly distributed epoch in (0, t ]; say the j -th arrives at time Tij .
Then Xi is the amount of traffic generated by these Ni jobs in (0, t ]. This
can be alternatively written as

Xi :=
Ni∑
j=1

min�t − Tij ,Bij�,
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Tail Asymptotics of the M/G/∞ Model 85

with the Bij i.i.d., distributed as the random variable B. Then the Xi are
i.i.d., and A−(t) equals

∑t
i=1 Xi ; this is essentially due to the fact that the

sum of t independent Poisson processes with rate � is a Poisson process
with rate t�.

The fact that A(t) is now written as the sum of t i.i.d. random variables
does, however, not mean that we can use the Bahadur–Rao result now, as
in our setting the i.i.d. increments Xi depend on t (and this is why we write
in the sequel Xi(t) rather than just Xi). Our goal is now to enhance the
Bahadur–Rao result so that it also covers our setting.

Our proof essentially mimics the line of reasoning of the Bahadur–Rao
result in Dembo and Zeitouni (see Theorem 3.7.4 in Ref.[5]). We start,
however, with a number of results on the mgf of X (t), where X (t)
is a generic random variable distributed as the Xi(t)’s. Relying on
computations similar to those leading to Eq. (2), we get that

�t(�) := log�e�X (t) = −� + �

∫ t

0

(
1 − s

t

)
fB(s)e�sds + � · 1

t

∫ t

0
e�s�(B > s)ds�

We observe that for any � ≥ 0, we have that �t(�) ↑ �(�). It is an easy
verification that

�(�) − �t(�) ∼ �

t

( ∫ ∞

0
sfB(s)e�sds −

∫ ∞

0
e�s�(B > s)ds

)
= �

t
· �(�);

(4)

here

�(�) := M ′
B(�) + 1

�
− 1

�
· MB(�) ≥ 0,

where the last inequality (being valid for � > 0) follows from MB(�) −
�M ′

B(�) ≤ MB(0) = 1, due to the convexity of MB(�). Likewise,

�′(�) − �′
t(�) ∼ �

t
· �(�), with

�(�) := M ′′
B (�) − 1

�2
+ 1

�2
· MB(�) − 1

�
· M ′

B(�)�

Now sample the Xi(t) under a new measure under which the density
f (·) of the Xi(t) is replaced by the density g (·), given through g (x) =
f (x) · exp(x − �t()). The standard change-of-measure identity yields,
in self-evident notation:

�
(
A−(t)

t
≥ a

)
= �g

(
e−A−(t)+t�t () · 1�A−(t)≥at�

)
= e t(�t ()−at ) · �g

(
e−(A−(t)−tat ) · 1�A−(t)≥at�

)
;
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86 Mandjes and Ż uraniewski

here we use the notation at := �′
t(); recall that a = �′(). Now note that

Eq. (4) implies that

lim
t→∞

exp(t(�t() − at))
exp(t(�() − a))

= e−��() · e ��()�

In order to get into a central-limit scaling, we define

Yi(t) := Xi(t) − at√
�′′

t ()
, W (t) := 1√

t
·

t∑
i=1

Yi(t)�

Hence, with Ft(·) the distribution function of W (t) under g ,

�g

(
e−(A−(t)−tat ) · 1�A−(t)≥at�

) = �g

(
e−

√
�′′
t ()

√
tW (t) · 1{

W (t)≥(a−at )
√
t/
√

�′′
t ()

})

=
∫ ∞

(a−at )
√
t/
√

�′′
t ()

e−
√

�′′
t ()

√
txdFt(x)�

Now we can finish the proof as in Ref.[5] (Thm. 3.7.4), using Eq. (3) as the
counterpart of Eq. (3.7.8) in Ref.[5]. As a result, we can essentially replace
the distribution function Ft(·) by that of a standard Normal random
variable (i.e., one first replaces Ft(·) by the standard Normal distribution
function adjusted by some error term, and then one uses dominated
convergence to prove that the error term has no impact, similarly to the
proof of Theorem 3.7.4 in Ref.[5] It follows that, for t → ∞, with N (�, �2)

denoting, as usual a Normally distributed random variable with mean �

and variance �2,

∫ ∞

(a−at )
√
t/
√

�′′
t ()

e−
√

�′′
t ()

√
txdFt(x)

∼
∫ ∞

(a−at )
√
t/
√

�′′
t ()

e−
√

�′′
t ()

√
txd	(x)

= 1√
2�

e
1
2 

2�′′
t ()t

∫ ∞

(a−at )
√
t/
√

�′′
t ()

e− 1
2 (x+

√
�′′
t ()

√
t)2dx

= e
1
2 

2�′′
t ()t�

(
N

(
−

√
�′′

t ()
√
t , 1

)
>

(a − at)
√
t√

�′′
t ()

)

∼
(
1 − 	

(

√
�′′

t ()
√
t + ��()√

�′′
t ()

√
t

))
e

1
2 

2�′′
t ()t ∼ e−��()


√
2��′′()

· 1√
t
;
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Tail Asymptotics of the M/G/∞ Model 87

in the last step the standard estimate 1 − 	(x) ∼ (2�x2)−1/2e−x2/2 (as
x → ∞) was applied.[1] Combining the above results, we arrive at the
following proposition.

Proposition 3.1. The exact asymptotics of A−(t)/t are, for a > �, given by

lim
t→∞

√
t e tI (a) · �

(
A−(t)

t
> a

)
= Ca · e−��()�

Remark 2. It is an easy exercise in calculus to show that we can rewrite

��() = a − �


(MB() − 1)�

As remarked earlier, ��() ≥ 0; this makes sense, as the exceedance
probabilities should be lower than in the instantaneous-input model (to
see this, recall that A(t) ≤ �A(t)).

We conclude by considering the exact asymptotics of A(t)/t . These can
be determined in essentially the same way. Now A(t) can be written as the
sum of X̌1 up to X̌t , where

X̌i :=
Ni∑
j=1

min�t − Tij ,Bij� +
Mi∑
j=1

min�t ,Br
ij�, (5)

with Ni and the Bij as before, and Mi a Poisson random variable with
mean �/t and the Br

ij i.i.d., distributed as the random variable Br ; in
addition, both sums in (5) are independent. Let X̌ (t) denote the generic
random variable distributed as the X̌i(t)’s. In the proof, we again get that

(�(�) − log�e�X̌ (t)) · t

goes to a constant, say 
̌(�), when t grows large; it is easily verified that


̌(�) = �(�) − 1
�
log�e�A+(∞) = �(�) −

(
MB(�) − 1

�
− �B

)
�

Theorem 3.2. The exact asymptotics of A(t)/t are, for a > �, given by

lim
t→∞

√
t e tI (a) · �

(
A(t)
t

> a
)

= Ca · e−��() · �e A+(∞)�

A next question is whether the asymptotics of the instantaneous-input
model �A(t) and those of the gradual-input model A(t) are ‘ordered’,
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88 Mandjes and Ż uraniewski

as we have that e−��() · �e A+(∞) is always smaller or larger than 1. This
makes sense as in the gradual-input model traffic arrives more smoothly
than in the instantaneous-input model. It is not a property that is a priori
clear, though: A(t) equals �A(t), increased by the contribution of the flows
present at time 0, and decreased by the part of the flows that enters the
system after time t . The next proposition formalizes the ordering.

Proposition 3.3. As t → ∞,

�
(
A(t)
t

> a
)/

�
(�A(t)

t
> a

)
→ e−��() · �e A+(∞) < 1�

Proof. First check that the criterion e−��() · �e A+(∞) < 1 can be rewritten
as

MB() − 1


>
M ′

B() + M ′
B(0)

2
= M ′

B() + �B
2

,

which can in turn be written as

H1() := 2(MB() − 1) < (M ′
B() + �B) =: H2()� (6)

The rest of the proof is devoted to establishing this inequality for  > 0.
To this end, first observe that M ′

B(·) is convex. Hence M ′′
B () >

(M ′
B() − M ′

B(0))/, which is equivalent to

M ′
B() − M ′′

B () < �B�

This implies (6), as H1(0) = H2(0) = 0 and

H ′
1() = 2M ′

B() < M ′
B() + M ′′

B () + �B = H ′
2()�

This proves the stated. �

4. DISCUSSION AND NUMERICS

In this section we consider a second asymptotic regime: we show
that the exact asymptotics of p�(t) for � follow immediately from the
Bahadur–Rao result. We also provide a numerical study to assess the quality
of the various approximations.

Large-Load Estimates

Renormalize time such that �B = 1, implying that � = �. We now
derive the asymptotics of p�(t) for fixed t and � large. Assume for ease for
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Tail Asymptotics of the M/G/∞ Model 89

the moment that � ∈ �. It is trivial to see that A�(t) can be equivalently
written as

∑�

i=1 Zi(t), where the Zi(t) are i.i.d. with log mgf equal to

Ut(�) := Vt(�) + Wt(�);

recall that Vt(�) and Wt(�) were defined in Section 2. The Bahadur–Rao
result then entails that, for s > t ,

lim
�→∞

√
� e �J (s) · �

(
A�(t)
�

≥ s
)

= Ks , (7)

where J (s) := sup�(�s − Ut(�)), and

Ks :=
(
�
√
2�U ′′

t (�)
)−1

,

where � ≡ �s solves U ′
t (�) = s.

Numerical Example: M/M/∞
In this example we consider the case of exponentially distributed jobs

(with mean 1/�). The goal is to compare the long-timescale asymptotics
of Theorem 3.2, the large-load asymptotics presented above, a Normal
approximation, and simulation-based estimates.

• We first consider the long-timescale regime. It is readily verified that

I (a) := sup
�

(
�a − ��

� − �

)
= (

√
�a − √

�)2,

such that  = � − √
��/a. Elementary calculus yields

�′′() = �M ′′
B () = 2

a3/2√
��

,

and

Ca =
(
��

a

)1/4 1
2
√
�

·
√
1
�

1
√
�a − √

�
; �() = a

�
−

√
a
��

�

Noting that

log�e A+(∞) =
√
�

�
(
√
�a − √

�),
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90 Mandjes and Ż uraniewski

we eventually obtain that, as t → ∞,

�
(
A�(t)
t

≥ a
)

∼ Ca√
t
e−(t+1/�)(

√
�a−√

�)2

∼ �
(�A�(t)

t
≥ a

)
· e−(1/�)(

√
�a−√

�)2 � (8)

• Let us now consider the large-load estimates. To this end, we first
compute

Vt(�) = �

� − �

(
1 − e−(�−�)t

)
,

Wt(�) = − �

(� − �)2
(
1 − e−(�−�)t

) + t
�

� − �
�

Recalling that we took � = 1, it follows that

Ut(�) = t
�

1 − �
−

(
�

1 − �

)2(
1 − e−(1−�)t

)
�

Straightforward algebra leads to expressions for U ′
t (�) and U ′′

t (�). Now
Eq. (7) enables us to compute the large-load asymptotics.

• A third approximation that we consider here is the Normal
approximation

�(A�(t) ≥ �t(1 + �)) ≈ 	

(
− �t�√

�arA�(t)

)
,

with 	(·) being the standard Normal distribution function. From the
above formulae we also obtain that �arA�(t) = �′′

t (0) = 2�(t − 1 + e−t),
cf.[3,12].

Tables

In Table 1 we present numerical results for � = 0�01. In the simulation
results, the experiment was terminated at the moment that a relative
efficiency (defined as the ratio of the confidence interval’s half length and
the estimate) is below 10%; we chose a confidence of 95%. It is observed
that for (relatively) large � and t , and � small, all three approximations are
more or less equal. This can be understood as follows.
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Tail Asymptotics of the M/G/∞ Model 91

TABLE 1 Numerical results, � = 0�01

� = 5 � = 50 � = 100 � = 150

t = 100 Sim 4�57 · 10−1 2�90 · 10−1 2�53 · 10−1 1�91 · 10−1

large t 2�49 · 100 7�04 · 10−1 4�39 · 10−1 3�16 · 10−1

large � 2�48 · 100 7�00 · 10−1 4�37 · 10−1 3�14 · 10−1

Norm 4�37 · 10−1 3�08 · 10−1 2�39 · 10−1 1�92 · 10−1

t = 1000 Sim 2�76 · 10−1 5�57 · 10−2 1�26 · 10−2 3�25 · 10−3

large t 7�04 · 10−1 7�26 · 10−2 1�48 · 10−2 3�48 · 10−3

large � 7�04 · 10−1 7�26 · 10−2 1�48 · 10−2 3�48 · 10−3

Norm 3�08 · 10−1 5�68 · 10−2 1�26 · 10−2 3�07 · 10−3

t = 2000 Sim 2�27 · 10−1 1�30 · 10−2 8�69 · 10−4 5�75 · 10−5

large t 4�40 · 10−1 1�48 · 10−2 8�69 · 10−4 5�89 · 10−5

large � 4�40 · 10−1 1�48 · 10−2 8�69 · 10−4 5�89 · 10−5

Norm 2�40 · 10−1 1�27 · 10−2 7�81 · 10−4 5�35 · 10−5

Based on the standard approximation 	(x) ≈ x−1(2�)−1/2 exp(− 1
2x

2),
we have that the Normal approximation gives

�(A�(t) ≥ �t(1 + �)) ≈ 1
�
√
��t

e− 1
4 (�t)�

2
� (9)

Now consider the long-timescale approximation, with a = (�/�)(1+ �).
It is elementary to verify that for small � it holds that

√
�(1 + �) − √

�
approximately equals 1

2

√
��. Inserting this into (8), we obtain expression

(9) for large � and t and small � . Regarding the large-load approximation,
first verify that � can be approximated by 1 − (1 + �)−1/2. With 1 − (1 +
�)−1/2 ≈ �/2 for � small, Eq. (7) yields that in this regime the large-load

TABLE 2 Numerical results, � = 0�2

� = 1 � = 5 � = 8

t = 50 Sim 1�52 · 10−1 1�45 · 10−2 2�82 · 10−3

large t 2�51 · 10−1 1�75 · 10−2 3�43 · 10−3

large � 2�48 · 10−1 1�73 · 10−2 3�39 · 10−3

Norm 1�56 · 10−1 1�19 · 10−2 2�14 · 10−3

t = 100 Sim 8�85 · 10−2 1�14 · 10−3 6�23 · 10−5

large t 1�13 · 10−1 1�27 · 10−3 6�35 · 10−5

large � 1�12 · 10−1 1�26 · 10−3 6�31 · 10−5

Norm 7�76 · 10−2 7�41 · 10−4 2�91 · 10−5

t = 150 Sim 4�49 · 10−2 1�02 · 10−4 1�30 · 10−6

large t 5�83 · 10−2 1�06 · 10−4 1�36 · 10−6

large � 5�81 · 10−2 1�06 · 10−4 1�35 · 10−6

Norm 4�11 · 10−2 5�10 · 10−5 4�43 · 10−7
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92 Mandjes and Ż uraniewski

TABLE 3 Numerical results, � = 0�5

� = 1 � = 2 � = 3 � = 4 � = 5

t = 10 Sim 1�20 · 10−1 6�07 · 10−2 3�15 · 10−2 1�53 · 10−2 7�42 · 10−3

large t 2�06 · 10−1 8�35 · 10−2 3�91 · 10−2 1�94 · 10−2 9�97 · 10−3

large � 1�94 · 10−1 7�81 · 10−2 3�63 · 10−2 1�79 · 10−2 9�13 · 10−3

Norm 1�19 · 10−1 4�78 · 10−2 2�06 · 10−2 9�21 · 10−3 4�20 · 10−3

t = 25 Sim 4�46 · 10−2 9�53 · 10−3 2�11 · 10−3 5�58 · 10−4 1�37 · 10−4

large t 6�10 · 10−2 1�16 · 10−2 2�55 · 10−3 5�93 · 10−4 1�43 · 10−4

large � 5�96 · 10−2 1�13 · 10−2 2�48 · 10−3 5�75 · 10−4 1�38 · 10−4

Norm 3�56 · 10−2 5�36 · 10−3 8�89 · 10−4 1�54 · 10−4 2�74 · 10−5

t = 50 Sim 1�06 · 10−2 5�82 · 10−4 3�89 · 10−5 2�81 · 10−6 1�68 · 10−7

large t 1�22 · 10−2 6�56 · 10−4 4�08 · 10−5 2�69 · 10−6 1�83 · 10−7

large � 1�21 · 10−2 6�48 · 10−4 4�02 · 10−5 2�65 · 10−6 1�80 · 10−7

Norm 5�78 · 10−3 1�78 · 10−4 6�10 · 10−6 2�20 · 10−7 8�17 · 10−9

approximation equals (9) as well; here it is also used that U ′′
t (�) ≈ 2t(1 +

�)3/2 ≈ 2t .
In Table 2 we present results for � = 0�2. We observe that in this

parameter setting the large-deviations-based approximations outperform,
for small probabilities, the Normal approximation. Finally in Table 3 the
case � = 0�5 is considered. It shows that the long-timescale and large-load
approximations differ more than in the previous tables, particularly for
‘moderate’ values of t . The Normal approximation is in some cases very
inaccurate: it is in specific cases more than one order of magnitude off.
In both tables we again used 10% relative efficiency and 95% confidence.

Heavy Tails

The analysis presented in this paper relates to the case of light-tailed
jobs, as we assume the moment generating function to be finite in an open
neighborhood of 0. In the heavy-tailed case the event under consideration
will be essentially caused by a number of jobs present during a substantial
part of the interval [0, t ]. We now sketch the heuristics of this scenario;
a rigorous treatment is beyond the scope of this paper. We focus on the
case that �(B > x) ∼ L(x)x−� for some � > 1 and a slowly-varying L(·), i.e.,
L(tx)/L(x) → 1 as x → ∞, for any t > 0. In this situation we say that the
tail distribution of B is regularly varying with index �; it is known that Br

is regularly varying with index � − 1.
Due to the law of large numbers, with overwhelming probability an

amount of traffic in the order of �t will be generated in the interval [0, t ].
In order to make sure that �t(1 + �) is generated, the number of ‘long
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Tail Asymptotics of the M/G/∞ Model 93

jobs’, on top of the volume �t , should be ���. The probability of this
scenario roughly equals

(
�

(
Br >

��t
���

))���
,

which is regularly varying with index ��� · (� − 1). To make this statement
rigorous, one has to show that all other scenarios that lead to the event of
interest are asymptotically negligible.
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