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Abstract. This work introduces the minimax Laplace transform method, a modification of the
cumulant-based matrix Laplace transform method developed in [Tro11c] that yields both upper and
lower bounds on each eigenvalue of a sum of random self-adjoint matrices. This machinery is used
to derive eigenvalue analogs of the classical Chernoff, Bennett, and Bernstein bounds.

Two examples demonstrate the efficacy of the minimax Laplace transform. The first concerns
the effects of column sparsification on the spectrum of a matrix with orthonormal rows. Here, the
behavior of the singular values can be described in terms of coherence-like quantities. The second
example addresses the question of relative accuracy in the estimation of eigenvalues of the covariance
matrix of a random process. Standard results on the convergence of sample covariance matrices
provide bounds on the number of samples needed to obtain relative accuracy in the spectral norm,
but these results only guarantee relative accuracy in the estimate of the maximum eigenvalue. The
minimax Laplace transform argument establishes that if the lowest eigenvalues decay sufficiently
fast, Ω(ε−2κ2

`` log p) samples, where κ` = λ1(C)/λ`(C), are sufficient to ensure that the dominant
` eigenvalues of the covariance matrix of a N (0,C) random vector are estimated to within a factor
of 1± ε with high probability.

1. Introduction

The field of nonasymptotic random matrix theory has traditionally focused on the problem of
bounding the extreme eigenvalues of a random matrix. In some circumstances, however, we may
also be interested in studying the behavior of the interior eigenvalues. In this case, classical tools
do not readily apply. Indeed, the interior eigenvalues are determined by the min-max of a random
process, which is very challenging to control.

This paper demonstrates that it is possible to combine the matrix Laplace transform method
detailed in [Tro11c] with the Courant–Fischer characterization of eigenvalues to obtain nontrivial
bounds on the interior eigenvalues of a sum of random self-adjoint matrices. This approach expands
the scope of the matrix probability inequalities from [Tro11c] so that they provide interesting
information about the bulk spectrum.

As one application of our approach, we investigate estimates for the covariance matrix of a
centered stationary random process. We show that the eigenvalues of the sample covariance matrix
provide relative-error approximations to the eigenvalues of the covariance matrix. We focus on
Gaussian processes, but our arguments can be extended to other distributions. The following
theorem distills the results in section 7.

Theorem 1.1. Let C ∈ Rp×p be positive semidefinite. Fix an integer ` ≤ p and assume the tail
{λi(C)}i>` of the spectrum of C decays sufficiently fast that∑

i>`
λi(C) = O(λ1(C)).
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Let {ηj}nj=1 ⊂ Rp be i.i.d. samples drawn from a N (0,C) distribution. Define the sample covariance
matrix

Ĉn =
1

n

∑n

j=1
ηjη

∗
j .

Let κ` be the condition number associated with a dominant `-dimensional invariant subspace of C,

κ` =
λ1(C)

λ`(C)
.

If n = Ω(ε−2κ2
`` log p), then with high probability

|λk(Ĉn)− λk(C)| ≤ ελk(C) for k = 1, . . . , `.

Thus, assuming sufficiently fast decay of the residual eigenvalues, n = Ω(ε−2κ2
`` log p) samples

ensure that the top ` eigenvalues of C are captured to relative precision. Spectral decay of this
sort is encountered when, e.g., the residual eigenvalues of C decay like k−(1+δ) for some δ > 0 or
when they arise from measurements corrupted by low-power white noise.

We contrast Theorem 1.1 with established spectral norm error bounds for covariance estimation,
which do not exploit spectral decay and require that n = Ω(ε−2κ2

`p) samples be taken to capture the
top ` eigenvalues to relative precision (see section 7). The estimate in Theorem 1.1 can be sharpened
using information about the spectrum ofC and the desired failure probability or modified to account
for different types of spectral decay. The same tools used in the proof of the theorem can be used

to estimate λk(Ĉn −C).

1.1. Related Work. We believe that this paper contains the first general-purpose tools for study-
ing the full spectrum of a finite-dimensional random matrix. The literature on random matrix
theory (RMT) contains some complementary results, but they do not seem to apply with the same
generality. Methods from RMT fall into two rough categories: asymptotic methods and nonasymp-
totic methods. We discuss the relevant results from each in turn.

The modern asymptotic theory began in the 1950s when physicists observed that, on certain
scales, the behavior of a quantum system is described by the spectrum of a random matrix [Meh04].
They further observed the phenomenon of universality : as the dimension increases, the spectral
statistics become independent of the distribution of the random matrix; instead, they are deter-
mined by the symmetries of the distribution [Dei07]. Since these initial observations, physicists,
statisticians, engineers, and mathematicians have found manifold applications of the asymptotic
theory in high-dimensional statistics [Joh01, Joh07, El 08], physics [GMGW98, Meh04], wireless
communication [TV04, ST06], and pure mathematics [RS96, BK99], to mention only a few areas.

Asymptotic random matrix theory has developed primarily through the examination of specific
classes of random matrices. We mention two well-studied classes. Sample covariance matrices
take the form n−1BnB

∗
n, where the columns of Bn comprise n independent observations. Wigner

matrices are Hermitian matrices whose superdiagonal entries are independent, zero-mean, and have
unit variance and whose diagonal entries are i.i.d., real, and have finite variance.

The fundamental object of study in asymptotic random matrix theory is the empirical spectral
distribution function (ESD). Given a random Hermitian matrix A of order n, its ESD

FA(x) =
1

n
#{1 ≤ i ≤ n : λi(A) ≤ x}

is a random distribution function which encodes the statistics of the spectrum of A. Wigner’s
theorem [Wig55], the seminal result of the asymptotic theory, establishes that if {An} is a sequence
of independent, symmetric n × n matrices with i.i.d. N (0, 1) entries on and above the diagonal,
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then the expected ESD of n−1/2An converges weakly in probability, as n approaches infinity, to the
semicircular law given by

F (x) =
1

2π

∫ x

−∞

√
4− y2 1[−2,2](y) dy.

Thus, at least in the limiting sense, the spectra of these random matrices are well characterized.
Development of the classical asymptotic theory has been driven by the natural question raised by
Wigner’s result: to what extent is the semicircular law, and more generally, the existence of a
limiting spectral distribution (LSD) universal?

The literature on the existence and universality of LSDs is massive; we mention only the high-
lights. It is now known that the semicircular law is universal for Wigner matrices. Suppose that
{An} is a sequence of independent n×n Wigner matrices. Grenander established that if all the mo-

ments are finite, then the ESD of n−1/2An converges weakly to the semicircular law in probability
[Gre63]. Arnold showed that, assuming a finite fourth moment, the ESD almost surely converges
weakly to the semicircular law [Arn71]. Around the same time, Marc̆enko and Pastur determined
the form of the limiting spectral distribution of sample covariance matrices [MP67].

More recently, Tao and Vu confirmed the long-conjectured circular law hypothesis. Let {Cn} be
a sequence of independent n×n matrices whose entries are i.i.d. and have unit variance. Then the
ESD of n−1/2Cn converges weakly to the uniform measure on the unit disk, both in probability
and almost surely [TV10b].

Although the convergence rate of the ESD has considerable practical interest, it was not until 1993
that theoretical results became available when Bai showed that for Wigner matrices [Bai93a] and

sample covariance matrices [Bai93b] the expected ESDs of n−1/2An and n−1BnB
∗
n, respectively,

both converge pointwise at a rate of O(n−1/4). Later, Bai and coauthors established the pointwise

convergence in probability of the ESD of the normalized Wigner matrix n−1/2An [BMT97] and
greatly improved the convergence rates [BMT99, BMT02, BMY03]. The strongest result to date
is due to Bai et al., who have shown that, if the entries of the Wigner matrix possess finite sixth
moments, then pointwise convergence in probability of the ESD of n−1/2An occurs at the rate of
O(n−1/2) [BHPZ11].

Classically, individual eigenvalues have been studied through the limiting behavior of the ex-
tremal eigenvalues and the asymptotic joint distribution of several eigenvalues. Much is known
about the limiting distribution of the largest eigenvalues of Wigner and covariance matrices. Ge-
man showed that if the columns of Bn are drawn from a sufficiently regular distribution, then the
largest eigenvalue of the sample covariance matrix n−1BnB

∗
n converges almost surely to a limit

[Gem80]. Bai, Yin, and coauthors showed that the existence of a fourth moment is both necessary
and sufficient for the existence of such a limit [YBK88, BSY88]. They also identified necessary and
sufficient conditions for the existence of limits for the smallest and largest eigenvalues of a normal-
ized Wigner matrix n−1/2An [BY88b]. El Karoui has recently described the limiting behavior of
the leading eigenvalues of a large class of sample covariance matrices [El 07].

Less is known about the rate of convergence of the eigenvalues, but some results are available.
Write the eigenvalues of a self-adjoint matrixA in nonincreasing order λ1 ≥ . . . ≥ λn. For 1 ≤ j ≤ n,
the classical location γj of the jth eigenvalue of the normalized Wigner matrix n−1/2An is defined
via the relation ∫ γj

−∞
ρsc(x) dx =

j

n
,

where ρsc is the density associated with the semicircular law. Intuitively, the facts that F
1√
n
An →

F sc and F
1√
n
An(λj) = j/n suggest that 1√

n
λj → γj . Indeed, it follows from [BY88a, BY88b] that

λj =
√
nγj + o(

√
n)
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asymptotically almost surely. Under the assumption that the entries exhibit uniform subgaussian
decay, Erdös, Yau, and Yin have strengthened this result by showing that, up to log factors,
the eigenvalues of n−1/2An are within O(n−2/3) of their classical position with high probability
[EYY10]. More generally, Tao and Vu have established the universality of a result due to Gustavsson

[Gus05] in the complex Gaussian Wigner case: (log n)−1/2(
√
nλj −nγj) is asymptotically normally

distributed [TV11]. Further, they have shown that eigenvalues in the bulk of the spectrum (j =
Ω(n)) of a Wigner matrix satisfy

E|λj −
√
nγj |2 = O(n−c),

for some universal constant c > 0 [TV10a].
In contrast to the asymptotic theory, which remains to a large extent driven by the study of

particular classes of random matrices, the nonasymptotic theory has developed as a collection
of techniques for addressing the behavior of a broad range of random matrices. The nonasymp-
totic theory has its roots in geometric functional analysis in the 1970s, where random matrices
were used to investigate the local properties of Banach spaces [LM93, SD01, Ver10]. Since then,
the nonasymptotic theory has found applications in areas including theoretical computer science
[Ach03, Vem04, SS08], machine learning [DM05], optimization [Nem07, So09], and numerical linear
algebra [DM10, HMT11, Mah11].

As is the case in the asymptotic theory, the sharpest and most comprehensive results available
in the nonasymptotic theory concern the behavior of Gaussian matrices. The amenability of the
Gaussian distribution makes it possible to obtain results such as Szarek’s nonasymptotic analog of
the Wigner semicircle theorem for Gaussian matrices [Sza90] and Chen and Dongarra’s bounds on
the condition number of Gaussian matrices [CD05]. The properties of less well-behaved random
matrices can sometimes be related back to those of Gaussian matrices using probabilistic tools, such
as symmetrization; see, e.g., the derivation of Lata la’s bound on the norms of zero-mean random
matrices [Lat05].

More generally, bounds on extremal eigenvalues can be obtained from knowledge of the moments
of the entries. For example, the smallest singular value of a square matrix with i.i.d. zero-mean
subgaussian entries with unit variance is O(n−1/2) with high probability [RV08]. Concentration of
measure results, such as Talagrand’s concentration inequality for product spaces [Tal95], have also
contributed greatly to the nonasymptotic theory. We mention in particular the work of Achlioptas
and McSherry on randomized sparsification of matrices [AM01, AM07], that of Meckes on the norms
of random matrices [Mec04], and that of Alon, Krivelevich and Vu [AKV02] on the concentration of
the largest eigenvalues of random symmetric matrices, all of which are applications of Talagrand’s
inequality. In cases where geometric information on the distribution of the random matrices is
available, the tools of empirical process theory—such as the generic chaining, also due to Talagrand
[Tal05]—can be used to convert this geometric information into information on the spectra. One
natural example of such a case consists of matrices whose rows are independently drawn from a
log-concave distribution [MP06, ALPTJ11].

The noncommutative Khintchine inequality (NCKI), which bounds the moments of the norm of
a sum of fixed matrices modulated by random signs [LP86, LPP91], is a widely used tool in the
nonasymptotic theory. Despite its power, the NCKI is unwieldy. To use it, one must reduce the
problem to a suitable form by applying symmetrization and decoupling arguments and exploiting
the equivalence between moments and tail bounds. It is often more convenient to apply the NCKI in
the guise of a lemma, due to Rudelson [Rud99], that provides an analog of the law of large numbers
for sums of rank-one matrices. This result has found many applications, including column-subset
selection [RV07] and the fast approximate solution of least-squares problems [DMMS11]. The NCKI
and its corollaries do not always yield sharp results because parasitic logarithmic factors arise in
many settings.
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The current paper is ultimately based on the influential work of Ahlswede and Winter [AW02].
This line of research leads to explicit tail bounds for the maximum eigenvalue of a sum of random
matrices. These probability inequalities parallel the classical scalar tail bounds due to Bernstein and
others. Matrix probability inequalities allow us to obtain valuable information about the maximum
eigenvalue of a random matrix with very little effort. Furthermore, they apply to a wide variety
of random matrices. We note, however, that matrix probability inequalities can lead to parasitic
logarithmic factors similar to those that emerge from the NCKI.

Major contributions to the literature on matrix probability inequalities include the papers [CM08,
Rec09, Gro11]. We emphasize two works of Oliveira [Oli09, Oli10] that go well beyond earlier
research. The sharpest current results appear in the works of Tropp [Tro11c, Tro11b, Tro11a].
Recently, Hsu, Kakade, and Zhang [HKZ11] have modified Tropp’s approach to establish matrix
probability inequalities that depend on an intrinsic dimension parameter, rather than the ambient
dimension.

1.2. Outline. In section 2, we introduce the notation used in this paper and state a convenient
version of the Courant–Fischer theorem. In section 3, we use the Courant–Fischer theorem to
extend the Laplace transform technique from [Tro11c] to apply to all the eigenvalues of self-adjoint
matrices, thereby obtaining the minimax Laplace transform. We apply this technique in sections
4 and 5 to develop eigenvalue analogs of the classical Chernoff and Bernstein bounds. The final
two sections illustrate, using two familiar problems, that the minimax Laplace technique gives us
significantly more information on the spectra of random matrices than current approaches. In
section 6, we use the Chernoff bounds to quantify the effects of column sparsification on all the
singular values of matrices with orthogonal rows. In section 7, we consider the question of how
fast, in relative error, the eigenvalues of empirical covariance matrices converge.

2. Background and Notation

We establish the notation used in the sequel and state a convenient version of the Courant–Fischer
theorem.

Unless otherwise stated, we work over the complex field. The kth column of the matrix A is
denoted by ak, and the entries are denoted ajk or (A)jk. We define Mn

sa to be the set of self-
adjoint matrices with dimension n. The eigenvalues of a matrix A in Mn

sa are arranged in weakly
decreasing order: λmax (A) = λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) = λmin (A) . Likewise, singular values
of a rectangular matrixB with rank r are ordered s1(B) ≥ s2(B) ≥ · · · ≥ sr(B). The spectral norm
of a matrix B is expressed as ‖B‖. We often compare self-adjoint matrices using the semidefinite
ordering. In this ordering, A is greater than or equal to B, written A � B or B � A, when A−B
is positive semidefinite.

The expectation of a random variable is denoted by EX. We write X ∼ Bern(p) to indicate that
X has a Bernoulli distribution with mean p.

One of our central tools is the variational characterization of the eigenvalues of a self-adjoint
matrix given by the Courant–Fischer theorem. For integers d and n satisfying 1 ≤ d ≤ n, the
complex Stiefel manifold

Vnd = {V ∈ Cn×d : V ∗V = I}

is the collection of orthonormal bases for the d-dimensional subspaces of Cn, or, equivalently, the
collection of all isometric embeddings of Cd into Cn. Let A be a self-adjoint matrix with dimension
n, and let V ∈ Vnd be an orthonormal basis for a subspace of Cn. Then the matrix V ∗AV can be
interpreted as the compression of A to the space spanned by V .
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Proposition 2.1 (Courant–Fischer). Let A be a self-adjoint matrix with dimension n. Then

λk(A) = min
V ∈Vn

n−k+1

λmax (V ∗AV ) and (2.1)

λk(A) = max
V ∈Vn

k

λmin (V ∗AV ) . (2.2)

A matrix V− ∈ Vnk achieves equality in (2.2) if and only if its columns span a dominant k-
dimensional invariant subspace of A. Likewise, a matrix V+ ∈ Vnn−k+1 achieves equality in (2.1) if
and only if its columns span a bottom (n− k + 1)-dimensional invariant subspace of A.

The ± subscripts in Proposition 2.1 are chosen to reflect the fact that λk(A) is the minimum
eigenvalue of V ∗−AV− and the maximum eigenvalue of V ∗+AV+. As a consequence of Proposition
2.1, when A is self-adjoint, λk(−A) = −λn−k+1(A). This fact allows us to use the same techniques
we develop for bounding the eigenvalues from above to bound them from below.

3. Tail Bounds For Interior Eigenvalues

In this section we develop a generic bound on the tail probabilities of eigenvalues of sums of
independent, random, self-adjoint matrices. We establish this bound by supplementing the matrix
Laplace transform methodology of [Tro11c] with Proposition 2.1 and a new result, due to Lieb
and Seiringer [LS05], on the concavity of a certain trace function on the cone of positive-definite
matrices.

First we observe that the Courant–Fischer theorem allows us relate the behavior of the kth
eigenvalue of a matrix to the behavior of the largest eigenvalue of an appropriate compression of
the matrix.

Theorem 3.1. Let X be a random self-adjoint matrix with dimension n, and let k ≤ n be an
integer. Then, for all t ∈ R,

P {λk(X) ≥ t} ≤ inf
θ>0

min
V ∈Vn

n−k+1

{
e−θt · E tr eθV

∗XV
}
. (3.1)

Proof. Let θ be a fixed positive number. Then

P {λk(X) ≥ t} = P {λk(θX) ≥ θt} = P
{

eλk(θX) ≥ eθt
}

≤ e−θt · Eeλk(θX) = e−θt · E exp

{
min

V ∈Vn
n−k+1

λmax (θV ∗XV )

}
.

The first identity follows from the positive homogeneity of eigenvalue maps and the second from
the monotonicity of the scalar exponential function. The final two relations are Markov’s inequality
and (2.1).

To continue, we need to bound the expectation. Interchange the order of the exponential and
the minimum; then apply the spectral mapping theorem to see that

E exp

{
min

V ∈Vn
n−k+1

λmax (θV ∗XV )

}
= E min

V ∈Vn
n−k+1

λmax (exp(θV ∗XV ))

≤ min
V ∈Vn

n−k+1

Eλmax (exp(θV ∗XV ))

≤ min
V ∈Vn

n−k+1

E tr exp(θV ∗XV ).

The first inequality is Jensen’s. The second inequality follows because the exponential of a self-
adjoint matrix is positive definite, so its largest eigenvalue is smaller than its trace.

Combine these observations and take the infimum over all positive θ to complete the argument.
�
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We are interested in the case where the matrix X in Theorem 3.1 can be expressed as a sum of
independent random matrices. In this case, we use the following result to develop the right-hand
side of the Laplace transform bound (3.1).

Theorem 3.2. Consider a finite sequence {Xj} of independent, random, self-adjoint matrices with
dimension n and a sequence {Aj} of fixed self-adjoint matrices with dimension n that satisfy the
relations

EeXj � eAj . (3.2)

Let V ∈ Vnk be an isometric embedding of Ck into Cn for some k ≤ n. Then

E tr exp
{∑

j
V ∗XjV

}
≤ tr exp

{∑
j
V ∗AjV

}
. (3.3)

In particular,

E tr exp
{∑

j
Xj

}
≤ tr exp

{∑
j
Aj

}
. (3.4)

Theorem 3.2 is an extension of Lemma 3.4 of [Tro11c], which establishes the special case (3.4).
The proof depends upon a recent result due to Lieb and Seiringer [LS05, Thm. 3] that extends
Lieb’s earlier result [Lie73, Thm. 6].

Proposition 3.1 (Lieb–Seiringer 2005). Let H be a self-adjoint matrix with dimension k. Let
V ∈ Vnk be an isometric embedding of Ck into Cn for some k ≤ n. Then the function

A 7−→ tr exp {H + V ∗(logA)V }
is concave on the cone of positive-definite matrices in Mn

sa.

Proof of Theorem 3.2. First, note that (3.2) and the operator monotonicity of the matrix logarithm
yield the following inequality for each k:

logEeXk � Ak. (3.5)

Let Ek denote expectation conditioned on the first k summands, X1 through Xk. Then

E tr exp
{∑

j≤`
V ∗XjV

}
= EE1 · · ·E`−1 tr exp

{∑
j≤`−1

V ∗XjV + V ∗
(
log eX`

)
V
}

≤ EE1 · · ·E`−2 tr exp
{∑

j≤`−1
V ∗XjV + V ∗

(
logEeX`

)
V
}

≤ EE1 · · ·E`−2 tr exp
{∑

j≤`−1
V ∗XjV + V ∗

(
log eA`

)
V
}

= EE1 · · ·E`−2 tr exp
{∑

j≤`−1
V ∗XjV + V ∗A`V

}
.

The first inequality follows from Proposition 3.1 and Jensen’s inequality, and the second depends
on (3.5) and the monotonicity of the trace exponential. Iterate this argument to complete the
proof. �

Our main result follows from combining Theorem 3.1 and Theorem 3.2.

Theorem 3.3 (Minimax Laplace Transform). Consider a finite sequence {Xj} of independent,
random, self-adjoint matrices with dimension n, and let k ≤ n be an integer.

(i) Let {Aj} be a sequence of self-adjoint matrices that satisfy the semidefinite relations

EeθXj � eg(θ)Aj

where g : (0,∞)→ [0,∞). Then, for all t ∈ R,

P
{
λk

(∑
j
Xj

)
≥ t
}
≤ inf

θ>0
min

V ∈Vn
n−k+1

[
e−θt · tr exp

{
g(θ)

∑
j
V ∗AjV

}]
.
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(ii) Let {Aj : Vnn−k+1 →Mn
sa} be a sequence of functions that satisfy the semidefinite relations

EeθV
∗XjV � eg(θ)Aj(V )

for all V ∈ Vnn−k+1, where g : (0,∞)→ [0,∞). Then, for all t ∈ R,

P
{
λk

(∑
j
Xj

)
≥ t
}
≤ inf

θ>0
min

V ∈Vn
n−k+1

[
e−θt · tr exp

{
g(θ)

∑
j
Aj(V )

}]
.

The first bound in Theorem 3.3 requires less detailed information on how compression affects
the summands but correspondingly does not give as sharp results as the second.

In the following two sections, we use the minimax Laplace transform method to derive Chernoff
and Bernstein inequalities for the interior eigenvalues of a sum of independent random matrices.
Tail bounds for the eigenvalues of matrix Rademacher and Gaussian series, eigenvalue Hoeffding,
and matrix martingale eigenvalue tail bounds can all be derived in a similar manner; see [Tro11c]
for relevant details.

4. Chernoff bounds

Classical Chernoff bounds establish that the tails of a sum of independent nonnegative random
variables decay subexponentially. [Tro11c] develops Chernoff bounds for the maximum and mini-
mum eigenvalues of a sum of independent positive-semidefinite matrices. We extend this analysis
to study the interior eigenvalues.

Intuitively, the eigenvalue tail bounds should depend on how concentrated the summands are;
e.g., the maximum eigenvalue of a sum of operators whose ranges are aligned is likely to vary
more than that of a sum of operators whose ranges are orthogonal. To measure how much a
finite sequence of random summands {Xj} concentrates in a given subspace, we define a function
Ψ :

⋃
1≤k≤nVnk → R that satisfies

maxj λmax (V ∗XjV ) ≤ Ψ(V ) almost surely for each V ∈
⋃

1≤k≤n
Vnk . (4.1)

The sequence {Xj} associated with Ψ will always be clear from context. We have the following
result.

Theorem 4.1 (Eigenvalue Chernoff Bounds). Consider a finite sequence {Xj} of independent,
random, positive-semidefinite matrices with dimension n. Given an integer k ≤ n, define

µk = λk

(∑
j
EXj

)
,

and let V+ ∈ Vnn−k+1 and V− ∈ Vnk be isometric embeddings that satisfy

µk = λmax

(∑
j
V ∗+(EXj)V+

)
= λmin

(∑
j
V ∗−(EXj)V−

)
.

Then

P
{
λk

(∑
j
Xj

)
≥ (1 + δ)µk

}
≤ (n− k + 1) ·

[
eδ

(1 + δ)1+δ

]µk/Ψ(V+)

for δ > 0, and

P
{
λk

(∑
j
Xj

)
≤ (1− δ)µk

}
≤ k ·

[
e−δ

(1− δ)1−δ

]µk/Ψ(V−)

for δ ∈ [0, 1),

where Ψ is a function that satisfies (4.1).
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Theorem 4.1 tells us how the tails of the kth eigenvalue are controlled by the variation of the
random summands in the top and bottom invariant subspaces of

∑
j EXj . Up to the dimensional

factors k and n−k+1, the eigenvalues exhibit binomial-type tails. When k = 1 (respectively, k = n)
Theorem 4.1 controls the probability that the largest eigenvalue of the sum is small (respectively, the
probability that the smallest eigenvalue of the sum is large), thereby complementing the one-sided
Chernoff bounds of [Tro11c].

Remark 4.1. If it is difficult to estimate Ψ(V+) or Ψ(V−), one can resort to the weaker estimates

Ψ(V+) ≤ max
V ∈Vn

n−k+1

maxj ‖V ∗XjV ‖ = maxj ‖Xj‖

Ψ(V−) ≤ max
V ∈Vn

k

maxj ‖V ∗XjV ‖ = maxj ‖Xj‖ .

Theorem 4.1 follows from Theorem 3.3 using an appropriate bound on the matrix moment
generating functions. The following lemma is due to Ahlswede and Winter [AW02]; see also [Tro11c,
Lem. 5.8].

Lemma 4.2. Suppose that X is a random positive-semidefinite matrix that satisfies λmax (X) ≤ 1.
Then

EeθX � exp
(

(eθ − 1)(EX)
)

for θ ∈ R.

Proof of Theorem 4.1, upper bound. We consider the case where Ψ(V+) = 1; the general case fol-
lows by homogeneity. Define

Aj(V+) = V ∗+(EXj)V+ and g(θ) = eθ − 1.

Theorem 3.3(ii) and Lemma 4.2 imply that

P
{
λk

(∑
j
Xj

)
≥ (1 + δ)µk

}
≤ inf

θ>0
e−θ(1+δ)µk · tr exp

{
g(θ)

∑
j
V ∗+(EXj)V+

}
.

Bound the trace by the maximum eigenvalue, taking into account the reduced dimension of the
summands:

tr exp
{
g(θ)

∑
j
V ∗+(EXj)V+

}
≤ (n− k + 1) · λmax

(
exp

{
g(θ)

∑
j
V ∗+(EXj)V+

})
= (n− k + 1) · exp

{
g(θ) · λmax

(∑
j
V ∗+(EXj)V+

)}
.

The equality follows from the spectral mapping theorem. Identify the quantity µk; then combine
the last two inequalities to obtain

P
{
λk

(∑
j
Xj

)
≥ (1 + δ)µk

}
≤ (n− k + 1) · inf

θ>0
e[g(θ)−θ(1+δ)]µk .

The right-hand side is minimized when θ = log(1+δ), which gives the desired upper tail bound. �

Proof of Theorem 4.1, lower bound. As before, we consider the case where Ψ(V−) = 1. Clearly,

P
{
λk

(∑
j
Xj

)
≤ (1− δ)µk

}
= P

{
λn−k+1

(∑
j
−Xj

)
≥ −(1− δ)µk

}
. (4.2)

Apply Lemma 4.2 to see that, for θ > 0,

Eeθ(−V
∗
−XjV−) = Ee(−θ)V ∗−XjV− � exp

(
g(θ) · V ∗−(−EXj)V−

)
,

where g(θ) = 1− e−θ. Theorem 3.3(ii) thus implies that the latter probability in (4.2) is bounded
by

inf
θ>0

eθ(1−δ)µk · tr exp
{
g(θ)

∑
j
V ∗−(−EXj)V−

}
.
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Using reasoning analogous to that in the proof of the upper bound, we justify the first of the
following inequalities:

tr exp
{
g(θ)

∑
j
V ∗−(−EXj)V−

}
≤ k · exp

{
λmax

(
g(θ)

∑
j
V ∗−(−EXj)V−

)}
= k · exp

{
−g(θ) · λmin

(∑
j
V ∗−(EXj)V−

)}
= k · exp {−g(θ)µk} .

The remaining equalities follow from the fact that −g(θ) < 0 and the definition of µk.
This argument establishes the bound

P
{
λk

(∑
j
Xj

)
≤ (1− δ)µk

}
≤ k · inf

θ>0
e[θ(1−δ)−g(θ)]µk .

The right-hand side is minimized when θ = − log(1−δ), which gives the desired lower tail bound. �

5. Bennett and Bernstein inequalities

The classical Bennett and Bernstein inequalities use the variance or knowledge of the moments of
the summands to control the probability that a sum of independent random variables deviates from
its mean. In [Tro11c], matrix Bennett and Bernstein inequalities are developed for the extreme
eigenvalues of self-adjoint random matrix sums. We establish that the interior eigenvalues satisfy
analogous inequalities.

As in the derivation of the Chernoff inequalities of section 4, we need a measure of how concen-
trated the random summands are in a given subspace. Recall that the function Ψ :

⋃
1≤k≤nVnk → R

satisfies

maxj λmax (V ∗XjV ) ≤ Ψ(V ) almost surely for each V ∈
⋃

1≤k≤n
Vnk . (5.1)

The sequence {Xj} associated with Ψ will always be clear from context.

Theorem 5.1 (Eigenvalue Bennett Inequality). Consider a finite sequence {Xj} of independent,
random, self-adjoint matrices with dimension n, all of which have zero mean. Given an integer
k ≤ n, define

σ2
k = λk

(∑
j
E(X2

j )
)
.

Choose V+ ∈ Vnn−k+1 to satisfy

σ2
k = λmax

(∑
j
V ∗+E(X2

j )V+

)
.

Then, for all t ≥ 0,

P
{
λk

(∑
j
Xj

)
≥ t
}
≤ (n− k + 1) · exp

{
−

σ2
k

Ψ(V+)2
· h
(

Ψ(V+)t

σ2
k

)}
(i)

≤ (n− k + 1) · exp

{
−t2/2

σ2
k + Ψ(V+)t/3

}
(ii)

≤

(n− k + 1) · exp
{
−3

8 t
2/σ2

k

}
for t ≤ σ2

k/Ψ(V+)

(n− k + 1) · exp
{
−3

8 t/Ψ(V+)
}

for t ≥ σ2
k/Ψ(V+),

(iii)

where the function h(u) = (1 + u) log(1 + u)− u for u ≥ 0. The function Ψ satisfies (5.1) above.

Results (i) and (ii) are, respectively, matrix analogs of the classical Bennett and Bernstein
inequalities. As in the scalar case, the Bennett inequality reflects a Poisson-type decay in the tails
of the eigenvalues. The Bernstein inequality states that small deviations from the eigenvalues of
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the expected matrix are roughly normally distributed while larger deviations are subexponential.
The split Bernstein inequalities (iii) make explicit the division between these two regimes.

As stated, Theorem 5.1 estimates the probability that the eigenvalues of a sum are large. Using
the identity

λk

(∑
j
Xj

)
= −λn−k+1

(
−
∑

j
Xj

)
,

Theorem 5.1 can be applied to estimate the probability that eigenvalues of a sum are small.
To prove Theorem 5.1, we use the following lemma (Lemma 6.7 in [Tro11c]) to control the

moment generating function of a random matrix with bounded maximum eigenvalue.

Lemma 5.2. Let X be a random self-adjoint matrix satisfying EX = 0 and λmax (X) ≤ 1 almost
surely. Then

EeθX � exp((eθ − θ − 1) · E(X2)) for θ > 0.

Proof of Theorem 5.1. Using homogeneity, we assume without loss that Ψ(V+) = 1. This implies
that λmax (Xj) ≤ 1 almost surely for all the summands. By Lemma 5.2,

EeθXj � exp
(
g(θ) · E(X2

j )
)
,

with g(θ) = eθ − θ − 1.
Theorem 3.3(i) then implies

P
{
λk

(∑
j
Xj

)
≥ t
}
≤ inf

θ>0
e−θt · tr exp

{
g(θ)

∑
j
V ∗+E(X2

j )V+

}
≤ (n− k + 1) · inf

θ>0
e−θt · λmax

(
exp

{
g(θ)

∑
j
V ∗+E(X2

j )V+

})
= (n− k + 1) · inf

θ>0
e−θt · exp

{
g(θ) · λmax

(∑
j
V ∗+E(X2

j )V+

)}
.

The maximum eigenvalue in this expression equals σ2
k, thus

P
{
λk

(∑
j
Xj

)
≥ t
}
≤ (n− k + 1) · inf

θ>0
eg(θ)σ

2
k−θt.

The Bennett inequality (i) follows by substituting θ = log(1 + t/σ2
k) into the right-hand side and

simplifying.
The Bernstein inequality (ii) is a consequence of (i) and the fact that

h(u) ≥ u2/2

1 + u/3
for u ≥ 0,

which can be established by comparing derivatives.
The subgaussian and subexponential portions of the split Bernstein inequalities (iii) are verified

through algebraic comparisons on the relevant intervals. �

Occasionally, as in the application in section 7 to the problem of covariance matrix estimation,
one desires a Bernstein-type tail bound that applies to summands that do not have bounded
maximum eigenvalues. In this case, if the moments of the summands satisfy sufficiently strong
growth restrictions, one can extend classical scalar arguments to obtain results such as the following
Bernstein bound for subexponential matrices.

Theorem 5.3 (Eigenvalue Bernstein Inequality for Subexponential Matrices). Consider a finite
sequence {Xj} of independent, random, self-adjoint matrices with dimension n, all of which satisfy
the subexponential moment growth condition

E(Xm
j ) � m!

2
Bm−2Σ2

j for m = 2, 3, 4, . . . ,
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where B is a positive constant and Σ2
j are positive-semidefinite matrices. Given an integer k ≤ n,

set

µk = λk

(∑
j
EXj

)
.

Choose V+ ∈ Vnn−k+1 that satisfies

µk = λmax

(∑
j
V ∗+(EXj)V+

)
,

and define

σ2
k = λmax

(∑
j
V ∗+Σ2

jV+

)
.

Then, for any t ≥ 0,

P
{
λk

(∑
j
Xj

)
≥ µk + t

}
≤ (n− k + 1) · exp

{
− t2/2

σ2
k +Bt

}
(i)

≤

(n− k + 1) · exp
{
−1

4 t
2/σ2

k

}
for t ≤ σ2

k/B

(n− k + 1) · exp
{
−1

4 t/B
}

for t ≥ σ2
k/B.

(ii)

This result is an extension of [Tro11c, Theorem 6.2], which, in turn, generalizes a classical scalar
argument [DG98].

As with the other matrix inequalities, Theorem 5.3 follows from an application of Theorem 3.3
and appropriate semidefinite bounds on the moment generating functions of the summands. Thus,
the key to the proof lies in exploiting the moment growth conditions of the summands to majorize
their moment generating functions. The following lemma, a trivial extension of Lemma 6.8 in
[Tro11c], provides what we need.

Lemma 5.4. Let X be a random self-adjoint matrix satisfying the subexponential moment growth
conditions

E(Xm) � m!

2
Σ2 for m = 2, 3, 4, . . . .

Then, for any θ in [0, 1),

E exp(θX) � exp

(
θEX +

θ2

2(1− θ)
Σ2

)
.

Proof of Theorem 5.3. We note that Xj satisfies the growth condition

E(Xm
j ) � m!

2
Bm−2Σ2

j for m ≥ 2

if and only if the scaled matrix Xj/B satisfies

E
(
Xj

B

)m
� m!

2
·
Σ2
j

B2
for m ≥ 2.

Thus, by rescaling, it suffices to consider the case B = 1. We now do so.
By Lemma 5.4, the moment generating functions of the summands satisfy

E exp(θXj) � exp
(
θEXj + g(θ)Σ2

j

)
,
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where g(θ) = θ2/(2− 2θ). Now we apply Theorem 3.3(i):

P
{
λk

(∑
j
Xj

)
≥ µk + t

}
≤ inf

θ∈[0,1)
e−θ(µk+t) · tr exp

{
θ
∑

j
V ∗+(EXj)V+ + g(θ)

∑
j
V ∗+Σ2

jV+

}
≤ inf

θ∈[0,1)
(n− k + 1) · exp

{
− θ(µk + t) + θ · λmax

(∑
j
V ∗+(EXj)V+

)
+ g(θ) · λmax

(∑
j
V ∗+Σ2

jV+

)}
= inf

θ∈[0,1)
(n− k + 1) · exp

(
−θt+ g(θ)σ2

k

)
.

To achieve the final simplification, we identified µk and σ2
k. Now, select θ = t/(t + σ2

k). Then
simplication gives the Bernstein inequality (i).

Algebraic comparisons on the relevant intervals yield the split Bernstein inequalities (ii). �

6. An application to column subsampling

As an application of our Chernoff bounds, we examine how sampling columns from a matrix
with orthonormal rows affects the spectrum. This question has applications in numerical linear
algebra and compressed sensing. The special cases of the maximum and minimum eigenvalues
have been studied in the literature [Tro08, RV07]. The limiting spectral distributions of matrices
formed by sampling columns from similarly structured matrices have also been studied: the results
of [GH10] apply to matrices formed by sampling columns from any fixed orthogonal matrix, and
[Far10] studies matrices formed by sampling columns and rows from the discrete Fourier transform
matrix. We mention in particular [Rud99], the main result of which provides a uniform bound on
the tails of all singular values of the sampled matrix. The theorem proven in this section provides
bounds which reflect the differences in the tails of the individual singular values, and thus can be
viewed as an elaboration of the result in [Rud99].

Let U be an n × r matrix with orthonormal rows. We model the sampling operation using a
random diagonal matrix D whose entries are independent Bern(p) random variables. Then the
random matrix

Û = UD (6.1)

can be interpreted as a random column submatrix of U with an average of pr nonzero columns.

Our goal is to study the behavior of the spectrum of Û .
Recall that the jth column of U is written uj . Consider the following coherence-like quantity

associated with U :

τk = min
V ∈Vn

k

maxj ‖V ∗uj‖2 for k = 1, . . . , n. (6.2)

There does not seem to be a simple expression for τk. However, by choosing V ∗ to be the restriction
to an appropriate k-dimensional coordinate subspace, we see that τk always satisfies

τk ≤ min
|I|≤k

maxj
∑

i∈I
u2
ij .

The following theorem shows that the behavior of sk(Û), the kth singular value of Û , can be
explained in terms of τk.

Theorem 6.1 (Column Subsampling of Matrices with Orthonormal Rows). Let U be an n × r
matrix with orthonormal rows, and let p be a sampling probability. Define the sampled matrix Û
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according to (6.1), and the numbers {τk} according to (6.2). Then, for each k = 1, . . . , n,

P
{
sk(Û) ≥

√
(1 + δ)p

}
≤ (n− k + 1) ·

[
eδ

(1 + δ)1+δ

]p/τn−k+1

for δ > 0

P
{
sk(Û) ≤

√
(1− δ)p

}
≤ k ·

[
e−δ

(1− δ)1−δ

]p/τk
for δ ∈ [0, 1).

Proof. Observe, using (6.1), that

sk(Û)2 = λk(UD
2U∗) = λk

(∑
j
djuju

∗
j

)
,

where uj is the jth column of U and dj ∼ Bern(p). Compute

µk = λk

(∑
j
Edjuju∗j

)
= p · λk(UU∗) = p · λk(I) = p.

It follows that, for any V ∈ Vnn−k+1,

λmax

(∑
j
V ∗(Edjuju∗j )V

)
= p · λmax (V ∗V ) = p = µk,

so the choice of V+ ∈ Vnn−k+1 is arbitrary. Similarly, the choice of V− ∈ Vnk is arbitrary. We select
V+ to be an isometric embedding that achieves τn−k+1 and V− to be an isometric embedding that
achieves τk. Accordingly,

Ψ(V+) = maxj ‖V ∗+uju∗jV+‖ = maxj ‖V ∗+uj‖2 = τn−k+1, and

Ψ(V−) = maxj ‖V ∗−uju∗jV−‖ = maxj ‖V ∗−uj‖2 = τk.

Theorem 4.1 delivers the upper bound

P
{
sk(Û) ≥

√
(1 + δ)p

}
= P

{
λk

(∑
j
djuju

∗
j

)
≥ (1 + δ)p

}
≤ (n− k + 1) ·

[
eδ

(1 + δ)1+δ

]p/τn−k+1

for δ > 0 and the lower bound

P
{
sk(Û) ≤

√
(1− δ)p

}
= P

{
λk

(∑
j
djuju

∗
j

)
≤ (1− δ)p

}
≤ k ·

[
e−δ

(1− δ)1−δ

]p/τk
for δ ∈ [0, 1). �

To illustrate the discriminatory power of these bounds, let U be an n×n2 matrix consisting of n
rows of the n2 × n2 Fourier matrix and choose p = (log n)/n so that, on average, sampling reduces
the aspect ratio from n to log n. For n = 100, we determine upper and lower bounds for the median

value of sk(Û) by numerically finding the value of δ where the probability bounds in Theorem 6.1
equal 1/2. Figure 1 plots the empirical median value along with the computed interval. We see that
these ranges reflect the behavior of the singular values more faithfully than the simple estimates

sk(EÛ) = p.

7. Covariance Estimation

We conclude with an extended example that illustrates how this circle of ideas allows one to
answer interesting statistical questions. Specifically, we investigate the convergence of the individual
eigenvalues of sample covariance matrices, with errors measured in relative precision.

Covariance estimation is a basic and ubiquitious problem that arises in signal processing, graph-
ical modeling, machine learning, and genomics, among other areas. Let {ηj}nj=1 ⊂ Rp be i.i.d. sam-
ples drawn from some distribution with zero mean and covariance matrix C. Define the sample
covariance matrix

Ĉn =
1

n

∑n

j=1
ηjη

∗
j .
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Figure 1. [Spectrum of a random submatrix] The matrixU is a 102×104 submatrix
of the unitary DFT matrix with dimension 104, and the sampling probability p =
10−4 log(104). The kth vertical bar, calculated using Theorem 6.1, describes an
interval containing the median value of the kth singular value of the sampled matrix

Û . The black circles denote the empirical medians of the singular values of Û ,

calculated from 500 trials. The gray circles represent the singular values of EÛ .

An important challenge is to determine how many samples are needed to ensure that the empirical
covariance estimator has a fixed relative accuracy in the spectral norm. That is, given a fixed ε,
how large must n be so that

‖Ĉn −C‖ ≤ ε‖C‖? (7.1)

This estimation problem has been studied extensively. It is now known that for distributions with
a finite second moment, Ω(p log p) samples suffice [Rud99], and for log-concave distributions, Ω(p)
samples suffice [ALPTJ11]. More broadly, Vershynin [Ver11] conjectures that, for distributions
with finite fourth moment, Ω(p) samples suffice; he establishes this result to within iterated log
factors. In [SV11], Srivastava and Vershynin establish that Ω(p) samples suffice for distributions
which have finite 2 + ε moments, for some ε > 0, and satisfy an additional regularity condition.

Inequality (7.1) ensures that the difference between the kth eigenvalues of Ĉn and C is small,
but it requires O(p) measurements to obtain estimates of even a few of the eigenvalues. Specifically,
letting κ` = λ1(C)/λ`(C), we see that O(ε−2κ2

`p) measurements are required to obtain relative-
error estimates of the dominant ` eigenvalues of C using the results of [ALPTJ11, Ver11, SV11].
However, it is reasonable to expect that when the spectrum of C exhibits decay and ` � p,
much fewer than O(p) measurements should suffice for relative-error recovery of the dominant `
eigenvalues.

In this section, we derive a relative approximation bound for each eigenvalue of C that allows
us to confirm this intuition. For simplicity we assume the samples are drawn from a N (0,C)
distribution where C is full-rank, but the arguments can be extended to cover other distributions.

Theorem 7.1. Assume that C ∈Mp
sa is positive definite. Let {ηj}nj=1 ⊂ Rp be i.i.d. samples drawn

from a N (0,C) distribution. Define

Ĉn =
1

n

∑n

j=1
ηjη

∗
j .
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Write λk for the kth eigenvalue of C, and write λ̂k for the kth eigenvalue of Ĉn. Then for k =
1, . . . , p,

P
{
λ̂k ≥ λk + t

}
≤ (p− k + 1) · exp

(
−cnt2

λk
∑p

i=k λi

)
for t ≤ 4nλk,

and

P
{
λ̂k ≤ λk − t

}
≤ k · exp

(
−cnt2

λ1
∑k

i=1 λi

)
for t ≤ 4nλ1,

where the constant c is at least 1/32.

The following corollary provides an answer to our question about relative error estimates.

Corollary 7.2. Let λk and λ̂k be as in Theorem 7.1. Then

P
{
λ̂k ≥ (1 + ε)λk

}
≤ (p− k + 1) · exp

(
−cnε2∑p
i=k

λi
λk

)
for ε ≤ 4n,

and

P
{
λ̂k ≤ (1− ε)λk

}
≤ k · exp

(
−cnε2

λ1
λk

∑k
i=1

λi
λk

)
for ε ∈ (0, 1],

where the constant c is at least 1/32.

The first bound in Corollary 7.2 tells us how many samples are needed to ensure that λ̂k does
not overestimate λk. Likewise, the second bound tells us how many samples ensure that λ̂k does
not underestimate λk.

Corollary 7.2 suggests that the relationship of λ̂k to λk is determined by the spectrum of C in
the following manner. When the eigenvalues below λk are small compared with λk, the quantity∑p

i=k
λi/λk

is small, and so λ̂k is not likely to overestimate λk. Similarly, when the eigenvalues above λk are
comparable with λk, the quantity

λ1

λk

∑k

i=1
λi/λk

is small, and so λ̂k is not likely to underestimate λk.
We now have everything needed to establish Theorem 1.1.

Proof of Theorem 1.1 from Corollary 7.2. From Corollary 7.2, we see that

P
{
λ̂k ≤ (1− ε)λk

}
≤ p−β when n ≥ 32ε−2

(
λ1

λk

∑
i≤k

λi
λk

)
(log k + β log p).

Recall that κk = λ1(C)/λk(C). Clearly, taking n = Ω(ε−2κ2
`` log p) samples ensures that, with high

probability, each of the top ` eigenvalues of the sample covariance matrix satisfies λ̂k > (1− ε)λk.
Likewise,

P
{
λ̂k ≥ (1 + ε)λk

}
≤ p−β when n ≥ 32ε−2

(∑
i≥k

λi
λk

)
(log(p− k + 1) + β log p).

Assuming the stated decay condition, that∑
i>`

λi = O(λ1),
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we see that taking n = Ω(ε−2(`+κ`) log p) samples ensures that, with high probability, each of the

top ` eigenvalues of the sample covariance matrix satisfies λ̂k < (1 + ε)λk.
Combining these two results, we conclude that n = Ω(ε−2κ2

`` log p) ensures that the top ` eigen-
values of C are estimated to within relative precision 1± ε. �

Remark 7.1. The results in Theorem 7.1 and Corollary 7.2 also apply when C is rank-deficient:
simply replace each occurence of the dimension p in the bounds with rank(C).

7.1. Proof of Theorem 7.1. We now prove Theorem 7.1. This result requires supporting lemmas;
we defer their proofs until after a discussion of extensions to Theorem 7.1.

We study the error |λk(Ĉn) − λk(C)|. To apply the methods developed in this paper, we pass
to a question about the eigenvalues of a difference of two matrices. The first lemma accomplishes
this goal by compressing both the population covariance matrix and the sample covariance matrix
to a fixed invariant subspace of the population covariance matrix.

Lemma 7.3. Let X be a random self-adjoint matrix with dimension p, and let A be a fixed self-
adjoint matrix with dimension p. Choose W+ ∈ Vpp−k+1 and W− ∈ Vpk for which

λk(A) = λmax

(
W ∗

+AW+

)
= λmin

(
W ∗
−AW−

)
.

Then, for all t > 0,

P {λk(X) ≥ λk(A) + t} ≤ P
{
λmax

(
W ∗

+XW+

)
≥ λk(A) + t

}
(7.2)

and

P {λk(X) ≤ λk(A)− t} ≤ P
{
λmax

(
W ∗
−(−X)W−

)
≥ −λk(A) + t

}
. (7.3)

We apply this result with A = C and X = Ĉn. Because Ĉn is unbounded, we apply Theorem
5.3 to handle the estimates in (7.2) and (7.3). To use this theorem, we need the following moment
growth estimate for rank-one Wishart matrices.

Lemma 7.4. Let ξ ∼ N (0,G). Then for any integer m ≥ 2,

E (ξξ∗)m � 2mm!(trG)m−1 ·G.

With these preliminaries addressed, we prove Theorem 7.1.

Proof of upper estimate. First we consider the probability that λ̂k overestimates λk. Let W+ ∈
Vpp−k+1 satisfy

λk(C) = λmax

(
W ∗

+CW+

)
.

Then Lemma 7.3 implies

P
{
λk(Ĉn) ≥ λk(C) + t

}
≤ P

{
λmax

(
W ∗

+ĈnW+

)
≥ λk(C) + t

}
= P

{
λmax

(∑
j
W ∗

+(ηjη
∗
j )W+

)
≥ nλk(C) + nt

}
. (7.4)

The factor n comes from the normalization of the sample covariance matrix.
The covariance matrix of ηj is C, so that of W ∗

+ηj is W ∗
+CW+. Apply Lemma 7.4 to verify that

W ∗
+ηjηjW+ satisfies the subexponential moment growth bound required by Theorem 5.3 with

B = 2 tr(W ∗
+CW+) and Σ2

j = 8 tr(W ∗
+CW+) ·W ∗

+CW+.

In fact, W ∗
+CW+ is the compression of C to the invariant subspace corresponding with its bottom

p− k + 1 eigenvalues, so

B = 2
∑p

i=k
λi(C) and λmax

(
Σ2
j

)
= 8λk(C)

∑p

i=k
λi(C).
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We are concerned with the maximum eigenvalue of the sum in (7.4), so we take V+ = I in the
statement of Theorem 5.3 to find that

σ2
1 = λmax

(∑
j
Σ2
j

)
= nλmax

(
Σ2

1

)
= 8nλk(C)

∑p

i=k
λi(C) and

µ1 = λmax

(∑
j
W ∗

+E(ηjη
∗
j )W+

)
= nλmax

(
W ∗

+CW+

)
= nλk(C).

It follows from the subgaussian branch of the split Bernstein inequality of Theorem 5.3 that

P
{
λmax

(∑
j
W ∗

+(ηjη
∗
j )W+

)
≥ nλk(C) + nt

}
≤ (p− k + 1) · exp

(
−nt2

32λk(C)
∑p

i=k λi(C)

)
when t ≤ 4nλk(C). This provides the desired bound on the probability that λk(Ĉn) overestimates
λk(C). �

Proof of lower estimate. Now we consider the probability that λ̂k underestimates λk. The proof
proceeds similarly to the proof of the upper estimate. Let W− ∈ Vpk satisfy

λk(C) = λmin

(
W ∗
−CW−

)
.

Then Lemma 7.3 implies

P
{
λk(Ĉn) ≤ λk(C)− t

}
≤ P

{
λmax

(
W ∗
−(−Ĉn)W−

)
≥ −nλk(C) + nt

}
= P

{
λmax

(∑
j
W ∗
−(−ηjη∗j )W−

)
≥ −nλk(C) + nt

}
(7.5)

The factor n comes from the normalization of the sample covariance matrix.
The covariance matrix of ηj is C, so that of W ∗

−ηj is W ∗
−CW−. Apply Lemma 7.4 to verify

that for any integer m ≥ 2,

E(W ∗
−(−ηjη∗j )W−)m � E(W ∗

−ηjη
∗
jW−)m � 2mm! tr(W ∗

−CW−)m−1 ·W ∗
−CW−.

Thus, W ∗
−(−ηjη∗j )W− satisfies the subexponential moment growth bound required by Theorem

5.3 with

B = 2 tr(W ∗
−CW−) and Σ2

j = 8 tr(W ∗
−CW−) ·W ∗

−CW−.

In fact, W ∗
−CW− is the compression of C to the invariant subspace corresponding with its top k

eigenvalues, so

B = 2
∑k

i=1
λi(C) and λmax

(
Σ2
j

)
= 8λ1(C)

∑k

i=1
λi(C).

We are concerned with the maximum eigenvalue of the sum in (7.5), so we take V+ = I in the
statement of Theorem 5.3 to find that

σ2
1 = λmax

(∑
j
Σ2
j

)
= nλmax

(
Σ2

1

)
= 8nλ1(C)

∑k

i=1
λi(C) and

µ1 = λmax

(∑
j
W ∗
−E(−ηjη∗j )W−

)
= nλmax

(
W ∗
−(−C)W−

)
= −nλk(C).

It follows from the subgaussian branch of the split Bernstein inequality of Theorem 5.3 that

P
{
λmax

(∑
j
W ∗
−(−ηjη∗j )W−

)
≥ −nλk(C) + nt

}
≤ k · exp

(
−nt2

32λ1(C)
∑k

i=1 λi(C)

)

when t ≤ 4nλ1(C). This provides the desired bound on the probability that λk(Ĉn) underestimates
λk(C). �
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7.2. Extensions of Theorem 7.1. Results analogous to Theorem 7.1 can be established for other
distributions. If the distribution is bounded, the possibility that λ̂k deviates above or below λk
can be controlled using the Bernstein inequality of Theorem 5.1. If the distribution is unbounded
but has matrix moments that satisfy a sufficiently nice growth condition, the probability that λ̂k
deviates below λk as well as the probability that it deviates above λk can be bounded using a
Bernstein inequality analogous to that in Theorem 5.3.

Theorem 7.1 controls the error in the kth sample eigenvalue in terms of all the eigenvalues of
the covariance matrix, so it is most useful when the eigenvalues of the covariance matrix satisfy
decay conditions such as those given in the statement of Theorem 1.1. If such conditions are not
satisfied, the results of [ALPTJ11] on the convergence of empirical covariance matrices of isotropic

log-concave random vectors lead to tighter bounds on the probabilities that λ̂k overestimates or
underestimates λk.

To see the relevance of the results in [ALPTJ11], first observe the following consequence of the
subadditivity of the maximum eigenvalue mapping:

λmax

(
W ∗

+(X −A)W+

)
≥ λmax

(
W ∗

+XW+

)
− λmax

(
W ∗

+AW+

)
= λmax

(
W ∗

+XW+

)
− λk(A).

In conjunction with (7.2), this gives us the following control on the probability that λk(X) overes-
timates λk(A) :

P {λk(X) ≥ λk(A) + t} ≤ P
{
λmax

(
W ∗

+(X −A)W+

)
≥ t
}
.

In our application, X is the empirical covariance matrix and A is the actual covariance matrix.
The spectral norm dominates the maximum eigenvalue, so

P
{
λk(Ĉn) ≥ λk(C) + t

}
≤ P

{
λmax

(
W ∗

+(Ĉn −C)W+

)
≥ t
}

≤ P
{
‖W ∗

+(Ĉn −C)W+‖ ≥ t
}

= P
{
‖W ∗

+ĈnW+ − S2‖ ≥ t
}
,

where S is the square root of W ∗
+CW+. Now factor out S2 and identify λk(C) = ‖S2‖ to obtain

P
{
λk(Ĉ) ≥ λk(C) + t

}
≤ P

{
‖S−1W ∗

+ĈnW+S
−1 − I‖‖S2‖ ≥ t

}
= P

{
‖S−1W ∗

+ĈnW+S
−1 − I‖ ≥ t/λk(C)

}
.

Note that if η is drawn from a N (0,C) distribution, then the covariance matrix of the transformed
sample S−1W ∗

+η is the identity:

E
(
S−1W ∗

+ηη
∗W+S

−1
)

= S−1W ∗
+CW+S

−1 = I.

Thus S−1W ∗
+ĈnW+S

−1 is the empirical covariance matrix of a standard Gaussian vector in

Rp−k+1. By Theorem 1 of [ALPTJ11], it follows that λ̂k is unlikely to overestimate λk in rela-

tive error when the number n of samples is Ω(p − k + 1). A similar argument shows that λ̂k is
unlikely to underestimate λk in relative error when n = Ω(κ2

pk).

Similarly, for more general distributions, the bounds on the probability of λ̂k overestimating or
underestimating λk can be tightened beyond those suggested in Theorem 7.1 by using the results in
[ALPTJ11] or [Ver11]. Note, however, that one cannot use knowledge of spectral decay to sharpen
the results obtained from [ALPTJ11] and [Ver11] into estimates like those given in Theorem 1.1.

Finally, we note that the techniques developed in the proof of Theorem 7.1 can be used to

investigate the spectrum of the error matrices Ĉn −C.
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7.3. Proofs of the supporting lemmas. We now establish the lemmas used in the proof of
Theorem 7.1.

Proof of Lemma 7.3. The probability that λk(X) overestimates λk(A) is controlled with the se-
quence of inequalities

P {λk(X) ≥ λk(A) + t} = P

{
inf

W∈Vp
p−k+1

λmax (W ∗XW ) ≥ λk(A) + t

}
≤ P

{
λmax

(
W ∗

+XW+

)
≥ λk(A) + t

}
.

We use a related approach to study the probability that λk(X) underestimates λk(A). Our choice
of W− implies that

P {λk(X) ≤ λk(A)− t} = P

{
max
W∈Vp

k

λmin (W ∗XW ) ≤ λk(A)− t

}
≤ P

{
λmin

(
W ∗
−XW−

)
≤ λk(A)− t

}
= P

{
λmax

(
W ∗
−(−X)W−

)
≥ −λk(A) + t

}
.

This establishes the bounds on the probabilities of λk(X) deviating above or below λk(A). �

Proof of Lemma 7.4. Factor the covariance matrix of ξ as G = UΛU∗ where U is orthogonal and
Λ = diag(λ1, . . . , λp) is the matrix of eigenvalues of G. Let γ be a N (0, Ip) random variable. Then

ξ and UΛ1/2γ are identically distributed, so

E(ξξ∗)m = E
[
(ξ∗ξ)m−1ξξ∗

]
= E

[
(γ∗Λγ)m−1UΛ1/2γγ∗Λ1/2U∗

]
= UΛ1/2E

[
(γ∗Λγ)m−1γγ∗

]
Λ1/2U∗. (7.6)

Consider the (i, j) entry of the bracketed matrix in (7.6):

E
[
(γ∗Λγ)m−1γiγj

]
= E

[(∑p

`=1
λ`γ

2
`

)m−1
γiγj

]
. (7.7)

From this expression, and the independence of the Gaussian variables {γi}, we see that this matrix
is diagonal.

To bound the diagonal entries, use a multinomial expansion to further develop the sum in (7.7)
for the (i, i) entry:

E
[
(γ∗Λγ)m−1γ2

i

]
=
∑

`1+···+`p=m−1

(
m− 1

`1, . . . , `p

)
λ`11 · · ·λ

`p
p E

[
γ2`1

1 · · · γ2`p
p γ2

i

]
.

Denote the Lr norm of a random variable X by

‖X‖r = (E|X|r)1/r .

Since `1, . . . , `p are nonnegative integers summing to m − 1, the generalized AM-GM inequality
justifies the first of the following inequalities:

Eγ2`1
1 · · · γ2`p

p γ2
i ≤ E

(
`1|γ1|+ · · ·+ `p|γp|+ |γi|

m

)2m

=

∥∥∥∥ 1

m

(
|γi|+

∑p

j=1
`j |γj |

)∥∥∥∥2m

2m

≤
(

1

m

(
‖γi‖2m +

∑p

j=1
`j ‖γj‖2m

))2m

=

(
1 + `1 + . . .+ `p

m

)2m

‖g‖2m2m = E(g2m).
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The second inequality is the triangle inequality for Lr norms. Now we reverse the multinomial
expansion to see that the diagonal terms satisfy the inequality

E
[
(γ∗Λγ)m−1γ2

i

]
≤
∑

`1+···+`p=m−1

(
m− 1

`1, . . . , `p

)
λ`11 · · ·λ

`p
p E(g2m)

= (λ1 + . . .+ λp)
m−1E(g2m) = tr(G)m−1E(g2m). (7.8)

Estimate E(g2m) using the fact that Γ(x) is increasing for x ≥ 1 :

E
(
g2m

)
=

2m√
π

Γ(m+ 1/2) <
2m√
π

Γ(m+ 1) =
2m√
π
m! for m ≥ 1.

Combine this result with (7.8) to see that

E
[
(γ∗Λγ)m−1γγ∗

]
� 2m√

π
m! tr(G)m−1 · I.

Complete the proof by using this estimate in (7.6).
�
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[LP86] F. Lust-Piquard, Inégalités de Khintchine dans Cp (1 < p < ∞), C. R. Math. Acad. Sci. Paris 303
(1986), 289–292.

[LPP91] F. Lust-Piquard and G. Pisier, Noncommutative Khintchine and Paley Inequalities, Ark. Mat. 29 (1991),
241–260.

[LS05] E. H. Lieb and R. Seiringer, Stronger subadditivity of entropy, Phys. Rev. A 71 (2005), no. 6.
[Mah11] M. W. Mahoney, Randomized algorithms for matrices and data, Preprint, arXiv:1104.5557, 2011.
[Mec04] M. W. Meckes, Concentration of norms and eigenvalues of random matrices, J. Funct. Anal. 211 (2004),

508–524.
[Meh04] M. L. Mehta, Random Matrices, Third ed., Academic Press, 2004.
[MP67] V. A. Marc̆enko and L. A. Pastur, Distributions of eigenvalues for some sets of random matrices, Math.

USSR Sb. 1 (1967), 457–483.
[MP06] S. Mendelson and A. Pajor, On singular values of matrices with independent rows, Bernoulli 12 (2006),

761–773.
[Nem07] A. Nemirovski, Sums of random symmetric matrices and quadratic optimization under orthogonality

constraints, Mathem. Program. 109 (2007), 283–317.
[Oli09] R. I. Oliveira, Concentration of the adjacency matrix and of the laplacian in random graphs with inde-

pendent edges, Preprint, arXiv:0911.0600, 2009.



TAIL BOUNDS FOR EIGENVALUES OF RANDOM MATRICES 23

[Oli10] , Sums of random Hermitian matrices and an inequality due to Rudelson, Elect. Comm. in Probab.
15 (2010), 203–212.

[Rec09] B. Recht, A simpler approach to matrix completion, To appear in J. Mach. Learn. Res., 2009.
[RS96] Z. Rudnick and P. Sarnack, Zeros of principal L-functions and random matrix theory, Duke Math. J. 81

(1996), 269–322.
[Rud99] M. Rudelson, Random Vectors in the Isotropic Position, J. Funct. Anal. 164 (1999), no. 1, 60–72.
[RV07] M. Rudelson and R. Vershynin, Sampling from large matrices: An approach through geometric functional

analysis, J. Assoc. Comput. Mach. 54 (2007), no. 4.

[RV08] , The least singular value of a random square matrix is O(n−1/2), C. R. Math. Acad. Sci. Paris
346 (2008), 893–896.

[SD01] S. J. Szarek and K. R. Davidson, Handbook on the Geometry of Banach spaces, ch. Local operator theory,
random matrices, and Banach spaces, pp. 317–366, North Holland, 2001.

[So09] A. M. So, Moment inequalities for sums of random matrices and their applications in optimization, Math.
Program. (2009), 1–27.

[SS08] D. A. Spielman and N. Srivastava, Graph sparsification by effective resistances, Proc. 40th ACM Sym-
posium on Theory of Computing (STOC 2008), 2008.

[ST06] J. W. Silverstein and A. M. Tulino, Theory of Large Dimensional Random Matrices for Engineers, 2006
IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications, 2006, pp. 458–
464.

[SV11] N. Srivastava and R. Vershynin, Covariance Estimation for Distributions with 2 + ε Moments, Preprint,
arXiv:1106.2775, 2011.

[Sza90] S. J. Szarek, Spaces with large distance to `n∞ and random matrices, Amer. J. Math. 112 (1990), 899–942.
[Tal95] M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Inst. Hautes
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