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We analyze the degree of anchoring of inflation expectations
in the euro area during the post-crisis period, with a focus on
the time span from 2014 onwards when long-term beliefs have
substantially drifted away from the policy target. Using a new
estimation technique, we look at tail co-movements between
short- and long-term distributions of inflation expectations,
estimated from daily quotes of inflation derivatives. We find
that, during 2014, average correlations between short- and
long-term inflation expectations rose sharply; moreover, nega-
tive tail events impacting short-term beliefs have been increas-
ingly channeled to long-term views, triggering both downward
revisions in expectations and upward changes in uncertainty.
Overall, our results signal a risk of downside de-anchoring of
long-term inflation expectations.
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1. Introduction

Headline inflation in the euro area has been falling since 2012 and
became negative at the end of 2014. The five-year, five-year forward
(5y5y forward) inflation swap rate, a commonly used indicator of
medium- to long-term inflation expectations, has fallen well below
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2 percent since September 2014; on September 4, the phrase infla-
tion expectations for the euro area over the medium to long term
continue to be firmly anchored was abandoned for the first time
in the monetary policy statements of the European Central Bank.
Inflation expectations persistently below the 2 percent level may sug-
gest a loss of confidence in the ability of the monetary authority to
achieve its inflation target; if inflation expectations are de-anchored,
then consumption and investment could be postponed, leading to a
deflationary spiral.

In this paper we analyze whether there has been a downside de-
anchoring of long-term inflation expectations in the euro area after
the global financial crisis. We propose a new method of assessing
the degree of anchoring of expectations that overcomes weaknesses
in standard techniques used to measure the pass-through of expecta-
tions. Looking at a set of indicators that includes the co-movement
between extreme changes in long- and short-term market-based infla-
tion expectations, we find that signs of downside de-anchoring have
emerged in 2014.

Ordinary pass-through models of inflation expectations assume
that when expectations are firmly anchored to the central bank’s
target, long-term expectations should be quite stable, not reacting
(as short-term expectations do) to inflation or macro data releases;
according to this claim, linear correlations of long-term expectations
with short-term expectations provide insights on the sensitivity of
long-term beliefs and might reveal possible signs of de-anchoring.
However, linear correlations may not be sufficient to assess the
degree of anchoring for two main reasons: first of all, they measure
average correlations while, in times of falling expectations and inter-
est rates close to the zero lower bound, concomitant downswings in
short- and long-term expectations could be more informative than
concomitant upswings to identify a de-anchoring below the target;
secondly, they disregard the pass-through of uncertainty and, in gen-
eral, variations in the entire distribution of long-term expectations.1

1Even when long-term expectations are relatively stable, the uncertainty
around these expectations might be significantly volatile. In light of that, as
pointed out by many authors, inflation targeting should help anchor market per-
ceptions of the entire distribution of long-term expectations (e.g., Gürkaynak,
Levin, and Swanson 2010).
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On the grounds of the aforementioned elements, we investi-
gate possible signs of de-anchoring by estimating the co-movement
between changes in breakeven inflation (proxying risk-neutral infla-
tion expectations) as well as between variations in the dispersion
around these prices, at different maturities.

The whole investigation relies on inflation swaps and options
(caps and floors). Without further identification assumptions, esti-
mates based on their market quotes jointly represent inflation expec-
tations and the inflation risk premium attached to them: while
inflation risk premia are also informative, as well as expectations,
in assessing the degree of anchoring, we choose not to extract risk
premia and to loosely refer to breakeven inflation as inflation expec-
tations throughout the analysis.2

The analysis is carried out in two steps: in the first one, we derive
the option-implied probability distributions of future inflation one,
two, three, five, seven, and ten years ahead on a daily basis in the
period between October 2009 and February 2015 using the semi-
nonparametric technique of Taboga (2016); secondly, we evaluate
the co-movement between short- and long-term expectations and
standard deviations using (i) linear correlations and (ii) tail corre-
lations (i.e., correlations between extreme variations in short- and
long-term expectations or long- and short-term standard deviations)
based on the theory of copulas and on the TailCor estimator of Ricci
and Veredas (2013).

We find that, during 2014, the co-movement between the short-
and long-term distributions of expected inflation was asymmetric: on
the one hand, long-term expectations reacted more to downswings
than to upswings in short-term ones; on the other hand, the stan-
dard deviation of the distribution of long-term expectations reacted
more to increases than to decreases in short-term uncertainty. This
joint evidence suggests that signs of de-anchoring have emerged.

A growing literature investigating anchoring in the most recent
period is reporting mixed results. Strohsal and Winkelmann (2015)
find more firmly anchored inflation expectations in the euro area
than in the United States as of 2011; moreover, estimates based on
inflation swaps and options suggest only mild reactions of inflation

2A discussion of the role of risk premia in market-based estimates is provided
in section 2.2.
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beliefs to macroeconomic announcements during the crisis (Autrup
and Grothe 2014) and post-crisis period (Scharnagl and Stapf 2015
and Speck 2016). Our result is in line with Ehrmann (2014), who
studies the stability of long-term beliefs in a panel of countries before
and after inflation targeting: under persistently low inflation, he finds
that a sign of downside de-anchoring with respect to a target is
that inflation expectations get revised down in response to lower-
than-expected inflation but do not respond to higher-than-expected
outturns. Our result is also coherent with the findings in Lyziak
and Paloviita (2016) such that longer-term inflation forecasts have
become somewhat more sensitive to shorter-term forecasts and to
actual HICP inflation.

The most common method used to assess the degree of anchoring
in one economy involves testing the sensitivity of inflation expecta-
tions to surprises in macro news (the news-regression approach of
Gürkaynak, Sack, and Swanson 2005). While news regressions heav-
ily depend on how the surprise component of each announcement is
estimated, our approach is totally market based, so it is free from
identification issues.3 In addition to the newly designed technique
to evaluating anchoring, we also contribute to the option literature
by providing robust estimates of euro-area inflation densities and by
applying copula-based and TailCor methods to option-implied data.

This paper is organized as follows. In section 2, we describe the
data set of inflation swaps and options on euro-area inflation (section
2.1) and the derivation of option-implied distributions of future infla-
tion (section 2.2). Section 3 presents the measures employed to assess
the degree of anchoring (section 3.1) and describes the building
blocks of the empirical analysis (section 3.2). In section 4 we present
the estimates of the option-implied distributions of inflation and dis-
cuss the evolution of deflation probabilities, quantiles, means, stan-
dard deviations, and skewness for the available maturities (section
4.1); the measures of anchoring are computed on inflation swaps
and standard deviations of the estimated distributions and results
are discussed in section 4.2. Section 5 concludes.

3The link between tail co-movements and anchoring is first investigated in
Antunes (2015), where coefficients of tail dependence between daily revisions
of short- and long-term inflation swaps are constructed using different types of
bivariate copulas.
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2. Option-Implied Distributions of Future Inflation

2.1 Swaps and Options on Euro-Area Inflation

The market for inflation-linked derivatives has witnessed a consider-
able development in the past few years. The most popular inflation
derivatives include inflation swaps and inflation options (caps and
floors). An inflation swap is a derivative contract in which two parties
agree to exchange a fixed amount of money with a floating amount
linked to realized inflation on particular dates in the future. An
inflation cap is a derivative contract in which the holder has the
right to receive compensation payments at the end of each period
in which the inflation rate exceeds an agreed-upon strike rate. The
contract involves no obligations when the realized inflation is below
the strike. In exchange for the contingent future payment, the holder
pays a price (option premium) upfront. A floor is a derivative con-
tract that gives the holder the right to receive payments at the end
of each period in which the inflation rate falls below the predeter-
mined strike. Inflation swaps, caps, and floors can be zero coupon or
year-on-year. Zero-coupon contracts consist of a single compensation
payment at maturity, while year-on-year ones include intermediate
payments depending on the level of the inflation rate in each year of
the reference period.

The underlying of quoted swaps and options is euro-area
HICPxT, lagged by three months in order to be known at the matu-
rity date of the option.4 Bloomberg provides quotes for both zero-
coupon and year-on-year swaps and options on euro-area inflation;
for our purpose, we only rely on prices of zero-coupon contracts
between October 2009 and February 2015.

The degree of liquidity of caps and floors is not easy to assess;
according to Smith (2012), euro-area inflation option markets are
more liquid than the U.K. and U.S. ones. Scharnagl and Stapf (2015),
whose analysis is also based on zero-coupon options, check for their
degree of liquidity by calculating put-call parities and show that no
arbitrage violations arise for at-the-money options. In addition, it is
worth mentioning that we adopt an estimation methodology (based

4Since the HICPxT is not observed daily, the fixed leg of an inflation swap
contract over the same horizon, which is traded daily, is taken as a proxy.
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on Taboga 2016) that is robust to outliers: pricing errors due to low
liquidity should not have a significant impact on the results.

2.2 Extraction of Option-Implied Probability Distributions

The extraction of risk-neutral probability distributions from option
quotes is based on the semi-nonparametric method developed in
Taboga (2016). In what follows we briefly describe the estimation
methodology; see appendix 1 for a more detailed description. The
probability distribution of future inflation is assumed to have a dis-
crete support;5 then, in the absence of arbitrage opportunities there
exists a finite set of positive state prices such that the price of any
derivative contract on inflation can be expressed as a function of
those state prices. Risk-neutral distributions can be simply obtained
by rescaling once state prices are estimated. The method assumes
that state prices are interpolated by a spline function, which is
proved to be equivalent to a set of linear restrictions. The linearity
of the problem allows for the derivation of computationally inex-
pensive estimators. In particular, a least absolute deviations (LAD)
estimator can be obtained through a linear programming problem.
In addition, this methodology allows for the incorporation of uni-
modality restrictions on the estimators of state prices. Unimodality
of risk-neutral distributions obtained from state prices is a desirable
property, and in the previous literature it was not dealt with.6

In addition to the computational convenience, the advantages of
this methodology include its robustness to outliers, which are known
to contaminate data on option prices. Despite the lack of information
on the liquidity of option quotes, the robustness of the methodology
supports confidence in the estimated state prices.

Throughout the paper, we need to bear in mind that proba-
bility distributions extracted from option quotes are risk neutral by
assumption, i.e., they are not adjusted for investors’ risk preferences.

5Assuming that the probability distribution of future inflation is discrete does
not reduce significantly the scope of the methodology; in fact, continuous distri-
butions can be arbitrarily approximated by discrete ones; moreover, most pric-
ing algorithms require discretization at some stage; finally, market prices are
inherently discrete.

6As explained in Taboga (2016), multimodality is often an artifact due to
estimation procedures rather than an authentic feature of the data.
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Risk-neutral distributions incorporate an inflation risk premium in
addition to the expectation of future inflation, as well as a liquid-
ity premium. Concerning the inflation risk premium, term structure
estimates show that risk premia are significantly volatile, especially
on long maturities.

However, inflation risk premia, whose identification gave mixed
results in the literature in terms of magnitude and sign, are infor-
mative, as well as expectations, in assessing the degree of anchoring:
indeed, the investors’ willingness to pay large premia in order to pro-
tect themselves against a scenario of persistently low inflation would
also signal high risks in terms of the central bank’s credibility and
ability to bring inflation back to target.7 Bauer and Christensen
(2014) point out that risk-neutral probabilities are useful for pol-
icy analysis, as policymakers are worried about extreme outcomes
just like investors. As stated by Kocherlakota (2013), policy deci-
sionmaking should take into account the evolution of risk-neutral
probabilities, since it reflects changes in market participants’ views
about future possible outcomes.

For these reasons, we choose to not extract risk premia and
consider breakeven inflation (and their probability distributions)
throughout the analysis, loosely referring to those as inflation
expectations.

3. Co-movement between Short- and
Long-Term Moments

3.1 Measures of Average and Tail Co-movement

The co-movement between two random variables can be studied
in various ways. One standard measure is the Pearson correlation,
which estimates the average level of co-dependence. There are some
important limits of such a measure: first of all, it does not take
into account non-linear relationships between variables; secondly, it
does not distinguish between different types of variations (large and

7The heterogeneity of the available estimates of inflation risk premia is high-
lighted also by Pericoli (2012), who provides a comparison of some estimates
found in the literature and shows that there indeed are stark differences among
them.
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small, positive and negative), which are relevant in our assessment
of de-anchoring.

In order to detect the co-dependence between extreme variations
in short- and long-term expectations, we then turn to two differ-
ent indicators of tail co-movement: the coefficient of conditional tail
dependence, estimated through copulas, and the TailCor index.

3.1.1 Coefficient of Conditional Tail Dependence

The coefficients of conditional upper and lower tail dependence are
defined as follows:8

Definition 1. Let X and Y be two random variables with marginal
distributions FX(x) and FY (y). Let xk denote the k-th quantile of
variable X and let yk be the k-th quantile for Y . The conditional
upper tail dependence is defined as

λU = lim
k→1

Pr{Y > yk|X > xk};

the conditional lower tail dependence is defined as

λL = lim
k→0

Pr{Y ≤ yk|X ≤ xk}.

Intuitively, λU measures the asymptotic probability of having
large outcomes in variable Y , conditional on observed large realiza-
tions for variable X. One way to compute the coefficients of con-
ditional tail dependence is through copulas; copula functions are a
special class of multivariate cumulative distribution functions that
allow for separating the modeling of the marginal distributions from
the dependence structure between the variables.9 The advantage of
using this approach is that for some choices of copula functions, the
coefficient of conditional tail dependence can be retrieved in closed
form.

8The coefficient of tail dependence was first introduced in the finance literature
by Embrechts, Lindskog, and McNeil (2003).

9See appendix 2 for copula definition and main properties, and Nelsen (2006)
for a detailed exposition of the theory and practical aspects of copulas.
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Estimating the coefficients of conditional tail dependence
through copulas involves (i) choosing the appropriate copula func-
tion; (ii) estimating the parameters that maximize the fit of the
chosen copula to the data; and (iii) computing the coefficient of
tail dependence as a function of the estimated parameters using the
closed-form expression.

In particular, we use a Student’s t-copula, which belongs to the
class of elliptical distributions and displays symmetric tail depen-
dence and potentially very heavy tails. The Student’s t-copula is
preferred to other copula distributions because of its good fit to
inflation swap data in terms of log-likelihood, Akaike information
criterion, and Bayesian information criterion (see Antunes 2015).
In general, for elliptical distributions, λU = λL, and in particular,
for the Student’s t-copula, the coefficients of lower and upper tail
dependence are

λU = λL = 2tν+1

(

−
√

ν + 1

√

1 − ρ

1 + ρ

)

,

where tν+1 denotes the distribution function of a univariate Stu-
dent’s t-distribution with ν+1 degrees of freedom and ρ is the linear
correlation. The stronger the linear correlation ρ and the lower the
degrees of freedom ν, the stronger is the tail dependence. However,
the coefficient of tail dependence can be positive even if ρ is not.

The copula-based coefficient of conditional tail dependence is an
asymptotic and parametric indicator; although its asymptotic nature
could be a drawback when the estimation is performed in small sam-
ples, this measure is widely used in the literature and its quantitative
interpretation is quite straightforward (it is defined as the limit of a
conditional probability and hence takes values in the interval [0,1]).

3.1.2 TailCor Dependence Measure

As an alternative to the parametric tail dependence measure implied
by copulas, we consider the TailCor index introduced by Ricci and
Veredas (2013). This can be implemented under mild assumptions
and presents several advantages: (i) it is non-parametric and inde-
pendent of specific distributional assumptions; (ii) it performs well
also in small samples, without relying on asymptotic theory; (iii)
it allows to disentangle whether the evidence of tail correlations is
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Figure 1. Diagrammatic Representation of TailCor
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Source: Ricci and Veredas (2013, figure 1 on p. 34).
Notes: The figure shows scatter plots, along with the 45-degree line, where Xj

and Xk are positively related (the pairs are depicted with circles). The left plot
shows a linear relation, while the right plot shows a non-linear relation. Pro-
jecting the observations onto the 45-degree line produces the random variable
Z(jk), depicted with squares. For illustrative purposes, the projection is shown
only for the observations on the tails, but in the estimation it is done for all the
observations.

caused by variables that are linearly correlated and/or non-linearly
correlated; (iv) it is exact for any cutoff point of the tail; and (v) it
can be computed for tails that are fatter than, equal to, or thinner
than those of the Gaussian distribution.

In the following we briefly explain the intuition underlying this
dependence measure using a graphical approach. The formal defini-
tion is provided in appendix 3, while technical details can be found in
Ricci and Veredas (2013). The intuition underlying TailCor is that if
two standardized random variables Xj and Xk are positively related
(linearly and/or non-linearly), most of the time pairs of observations
have the same sign. This means that looking at the scatter plot of
the random variables (see figure 1), most of the pairs of observations
(depicted with dots) concentrate in the northeast and southwest
quadrants. When we project all the pairs on the 45-degree line, we
get a new random variable Z(jk) (depicted with squares). The degree
of dispersion of the projected dots depends on the strength of the
relationship between the tails of the two random variables: if the
relation is strong, the cloud is stretched around the 45-degree line
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and the projected dots are very dispersed. The TailCor measure is
equal—up to a normalization—to the difference between upper and
lower tail quantiles of Z(jk).

The TailCor index can be decomposed into the sum of two com-
ponents, which disentangle the degree of dependence between lower
tails (DownTailCor) and between upper tails (UpTailCor) of the dis-
tributions of the two variables. Using the notation introduced above,
DownTailCor is proportional to the difference between the median of
the projected variable Z(jk) and its lower tail quantile, while UpTail-
Cor is proportional to the difference between the upper tail quantile
of Z(jk) and its median.

Theoretically, the TailCor index takes values between 0 and infin-
ity; however, the actual range of variation in most financial applica-
tions is very small. The fatter the tails of the bivariate distribution,
the higher the exceedance of the largest attained value over

√
2,

which is the largest value under a bivariate Gaussian.

3.2 Data Transformation

In this section we describe the empirical strategy used to measure the
co-movement between short- and long-term distributions of future
inflation. In particular, we investigate the co-dependence between
expectations and between the dispersion around expectations at dif-
ferent horizons; expectations are proxied by spot and forward infla-
tion swap rates, while the dispersion of market beliefs is proxied
by the standard deviation of option-implied distributions extracted
using the LAD method (see section 2.2).10

In order to compute the co-movement measures described in the
previous section, we first apply a data transformation procedure to
all time series of forward inflation swaps and option-implied stan-
dard deviations. We denote by {Yt} the generic time series of data.
The procedure involves the following steps:

10Proxying expectations with forward inflation swaps allows for tracking of
short- and long-term expectations on non-overlapping horizons (e.g., one year
ahead after one year versus five years ahead after five years). In our estimate
we want to rely only on market data—without making any assumption on the
inflation process; hence we cannot estimate forward densities and, in particular,
their standard deviations.
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• We take the first difference in order to get daily variations:
Xt = Yt − Yt−1.

• We filter the time series using an AR(1)-GARCH(1,1) model
of the following form in order to eliminate persistence and
heteroskedasticity, which could induce spurious dependence
between variables:11

Xt = µt + σtεt, εt iid ∼ N(0, 1)

µt = λXt−1

σ2
t = a0 + a(Xt−1 − µt−1)

2 + bσ2
t−1;

we denote the filtered daily revisions by {xt}.
• We map {xt} into numbers between 0 and 1 through their

empirical marginal cumulative distribution function F̃x.12 The
standardized time series is denoted by {ut}.

The resulting filtered and standardized daily changes are used to
compute our co-movement indicators.

4. Results

The data set includes daily closing quotes of zero-coupon inflation
swaps and options from the first available trading day, i.e., October
5, 2009, until February 18, 2015 (source: Bloomberg). We consider
swaps and options with maturity equal to one, two, three, five, seven,
and ten years. Concerning options, we use strike rates ranging from
1 to 6 percent for caps and strikes from −2 to 3 percent for floors.
Forward inflation swaps such as the 1y1y, the 1y2y, and the 5y5y
swaps are computed from quoted spot rates.

4.1 Option-Implied Distributions

For each date in the sample and each maturity horizon, we extract
the unimodal LAD estimator of state prices and derive the cor-
responding risk-neutral distribution, thus getting a time series of

11A similar approach is adopted by Christoffersen et al. (2012) to capture
dynamic dependence across equity markets.

12This transformation, which is equivalent to a ranking, is required for copula
estimation.
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Figure 2. Option-Implied Risk-Neutral Distributions of
Annual Euro-Area Inflation over a Ten-Year Horizon

Notes: Option-implied distributions are extracted using the LAD estimator with
unimodal restrictions from daily quotes between September 2011 and February
2015. The x-axis corresponds to the annual inflation rate (percentage points); the
y-axis indicates the time interval (days).

implied distributions. For instance, figure 2 shows the time evolu-
tion of risk-neutral distributions of inflation on a ten-year horizon, as
extracted from options data in the period September 2011–February
2015. The plot highlights the tendency of the distributions to become
more and more concentrated over time, as well as a shift of the mean
towards lower inflation rates.

Figure 3 shows the mean of the option-implied distributions for
maturities of one, two, three, five, seven, and ten years. Inflation
expectations, as proxied by the expected value of option-implied dis-
tributions, have been decreasing since 2012 for all maturities, with
sharper falls for shorter horizons. The contraction of investors’ beliefs
halted around mid-January 2015 for all horizons.

Appendix 1 proves that for a one-year maturity the expected
value of the implied distribution coincides with the fixed leg of an
inflation swap having the same maturity. Comparing the time series
of expected values derived from our estimates with quoted infla-
tion rates, we obtain a very accurate match. For maturities longer
than one year, the quoted inflation swap rate must be equal to a
non-linear function of the implied distribution: this is confirmed
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Figure 3. Means of Option-Implied Risk-Neutral Inflation
Distributions (percentage points)

2010 2011 2012 2013 2014 2015
−1

0

1

2

3

1 year

2 years

3 years

2010 2011 2012 2013 2014 2015
−1

0

1

2

3

5 years

7 years

10 years

Notes: Option-implied distributions are extracted using the LAD estimator with
unimodality restriction. Daily quotes of inflation caps and floors from October
2009 to February 2015 are taken from Bloomberg.

by the results of our estimates. Figure 4 shows that the difference
between the quoted inflation swap rate (red line) and the one implied
by our probability distributions (blue line) is negligible for all matu-
rities.13 Although the estimation methodology we adopt does not
force this matching through a constraint, we still recover it in quoted
prices: this confirms the robustness and reliability of the approach.

Figure 5 shows the evolution of the standard deviation of option-
implied distributions over time. This gives insights on the degree of
uncertainty in market expectations of future inflation: the higher
the standard deviation, the more dispersed are investors’ beliefs
and/or the more difficult it is to forecast inflation. The figure shows
that uncertainty has been decreasing since 2012 for all maturities,
like option-implied means. In general, the lowering of the standard

13Colors are shown in the online version available at http://www.ijcb.org.
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Figure 4. Market Quotes of Inflation Swap Rates (Red
Line) and Inflation Swap Rates Implied by the Probability

Distributions Embedded in Option Prices (Blue Line)
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Notes: Market quotes and inflation swap rates are shown at one-, two-, three-,
five-, seven-, and ten-year maturities. Option-implied distributions are extracted
using the LAD estimator with unimodal restrictions. Daily quotes of inflation
swaps and inflation options from October 2009 to February 2015 are taken from
Bloomberg.

deviation of inflation distributions does not have a univocal interpre-
tation: if expectations are far from the target, it indicates a higher
concentration of beliefs around an undesirable outcome. In the con-
text of long-term inflation expectations falling below the target, the
attenuation of uncertainty around those expectations can then be
seen as an indicator of diminished credibility of monetary policy.

Figure 6 shows that the skewness of option-implied risk-neutral
inflation expectations for short horizons (one, two, and three years)
became negative in the past few months after a gradual decline.
For unimodal distributions such as the ones we estimated, a nega-
tive skewness indicates that the lower tail is fatter or longer than
the upper tail; the most recent developments of this indicator for
horizons up to three years point towards a predominance of the left
tail, suggesting that market views are unbalanced towards negative
inflation outcomes. Concerning maturities of five, seven, and ten
years, even though the skewness has decreased from mid-2013 until
January 2015, it has always remained positive.
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Figure 5. Standard Deviations of Option-Implied
Risk-Neutral Inflation Distributions (percentage points)
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Notes: The upper panel shows maturities of one, two, and three years; the lower
panel shows maturities of five, seven, and ten years. Option-implied distributions
are extracted using the LAD estimator with unimodality restriction. Daily quotes
of inflation caps and floors from October 2009 to February 2015 are taken from
Bloomberg.

Figures 3, 5, and 6 highlight that a notable change in market-
based inflation expectations has occurred, starting around mid-
January 2015: expected values of inflation went up, standard devi-
ations had a small rebound and skewness increased, especially for
longer maturities. This can be interpreted as an effect of market
agents anticipating the announcement of the quantitative easing
program by the European Central Bank (January 22, 2015).

Figure 7 shows the risk-neutral probabilities of the average
annual inflation rate over different time horizons falling below zero.
Deflation probabilities at all maturities increased sharply in the last
few months of 2014; for maturities up to three years, the rise started
earlier—in the last quarter of 2013. Around mid-January 2015, the
increase halted and deflation probabilities decreased for all time hori-
zons. On the other hand, the probability that the average annual
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Figure 6. Skewnesses of Option-Implied Risk-Neutral
Inflation Distributions at Different Maturities

(percentage points)
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Notes: One-, two-, three-, five-, seven-, and ten-year maturities are shown.
Option-implied distributions are extracted using the LAD estimator with uni-
modality restriction. Daily quotes of inflation caps and floors from October 2009
to February 2015 are taken from Bloomberg.

inflation rate at time different maturities falls between 1.5 and 2
percent shrank during 2014 and rebounded in early 2015 (figure 8).

Having estimated option-implied distributions, we can calculate
confidence bands around the mean of expected future inflation. This
allows to assess the significance of the decline in short- and long-term
inflation expectations observed since 2012. Figure 9 shows the con-
fidence bands for the expected value of option-implied probability
distributions of future inflation using the 5th and 95th percentiles of
the distributions, over one-, five-, seven-, and ten-year horizons. The
upper limit of the confidence band fell below 2 percent for maturities
up to seven years; this can be interpreted as the negative gap between
expectations and the 2 percent rate being statistically significant at
the 10 percent level.14

14In figure 9 we compare the level of inflation expectations with the 2 per-
cent reference level for illustrative purposes, even though the policy objective of
the European Central Bank entails the inflation rate being below, but close to,
2 percent over the medium term.
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Figure 7. Risk-Neutral Probability that the Average
Annual Inflation Rate at Different Maturities Is Negative
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Notes: One-, two-, three-, five-, seven-, and ten-year maturities are shown.
Option-implied distributions are extracted using the LAD estimator with uni-
modality restriction. Daily quotes of inflation caps and floors from October 2009
to February 2015 are taken from Bloomberg.

4.2 Anchoring of Long-Term Expectations

In order to construct our indicators, we select a set of measures
for short- and long-term expectations from forward inflation swaps
and option-implied standard deviations. Short-term expectations are
proxied by the one-year spot, the 1y1y forward, and the five-year
spot rates, while long-term ones are 5y5y forward inflation swaps;
concerning dispersions, we compare one-year versus seven-year, one-
year versus ten-year, and two-year versus ten-year standard devia-
tions. Summary statistics for levels, daily changes, filtered values,
and mapped values of each variable are reported in table 1. Vari-
ables in levels, both expectations and the dispersion of expectations,
are all strongly persistent: high autocorrelations of variables in first
differences are removed by the AR-GARCH filtering.
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Figure 8. Risk-Neutral Probability that the Average
Annual Inflation Rate at Different Maturities Falls

between 1.5 and 2 Percent
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Notes: One-, two-, three-, five-, seven-, and ten-year maturities are shown.
Option-implied distributions are extracted using the LAD estimator with uni-
modality restriction. Daily quotes of inflation caps and floors from October 2009
to February 2015 are taken from Bloomberg.

We report results based on our three measures of co-movement:
the Pearson correlation coefficient (average co-movement); the coef-
ficient of tail co-movement estimated with the Student’s t static
bivariate copula and the TailCor index (two measures of average co-
movement in the tails); and the UpTailCor and DownTailCor indexes
which track co-movements over time in upper and lower tails. Every
statistic is computed using rolling windows of 250 business days
of observations; nonetheless, the conclusions we draw are robust to
different window lengths.

Results for mean expectations are depicted in figures 10–13.
The third panel in figure 10 shows a decline in average correlations
between five-year and 5y5y expectations during 2013 and the first
half of 2014; a steady increase is then evident from the end of July
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Figure 9. Confidence Bands for the Mean
of the Option-Implied Probability Distributions

of Future Inflation
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Notes: Confidence bands at the 10 percent level and at one-, five-, seven-, and
ten-year maturities are shown.

2014 up to levels close to 60 percent. A similar upward trend for
linear correlations is observed in the same period using the other
proxies of short-term expectations (first two panels).

These results highlight that an increase in average correlations
has happened since the second half of 2014. To investigate further
signs of de-anchoring, we look at the path of the copula-based coef-
ficient of tail dependence and at the one of the TailCor index: while
the first delivers mixed results (figure 11), the TailCor index suggests
that the observed increase in average correlations reflects, at least in
part, an increased correlation in the tails (figure 12). To detect pos-
sible asymmetries across correlations between left tails with respect
to those between right tails, we look separately at each tail using
the decomposition of TailCor. Figure 13 depicts the dynamics of
the UpTailCor (upper-tail correlation; blue line) and DownTailCor
(lower-tail correlation; red line); all panels show that the Down-
TailCor index increases between early 2014 and early 2015, while
the UpTailCor started to rise only towards the end of 2014. This
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Table 1. Summary Statistics

Obs. Mean Std. Dev. Autocorr.

A. Mean Expectations

π1y 1,404 1.36 0.60 1.00
Δπ1y 1,403 −0.00 0.06 −0.12
x1y 1,403 −0.00 1.00 −0.01
u1y 1,403 0.50 0.29 −0.02

π1y1y 1,404 1.47 0.41 0.99
Δπ1y1y 1,403 −0.00 0.06 −0.33
x1y1y 1,403 −0.00 1.00 −0.05
u1y 1,403 0.50 0.29 0.00

π5y 1,404 1.62 0.37 1.00
Δπ5y 1,403 0.00 0.03 0.01
x5y 1,403 −0.01 1.00 0.00
u5y 1,403 0.50 0.29 0.02

π5y5y 1,404 2.24 0.22 0.99
Δπ5y5y 1,403 −0.00 0.03 −0.16
x5y5y 1,403 −0.00 1.00 0.01
u5y5y 1,403 0.50 0.29 0.05

B. Option-Implied Standard Deviations

σ1y 1404 1.26 1.01 0.61
Δσ1y 1403 −0.00 0.89 −0.20
xsd

1y 1403 0.00 1.01 −0.03
usd

1y 1403 0.50 0.29 0.01

σ2y 1404 1.30 0.74 0.74
Δσ2y 1403 −0.00 0.54 −0.26
xsd

2y 1403 −0.00 1.00 −0.03
usd

2y 1403 0.50 0.29 −0.01

σ7y 1404 1.46 0.39 0.80
Δσ7y 1403 −0.00 0.24 −0.01
xsd

7y 1403 0.01 1.01 0.02
usd

7y 1403 0.50 0.29 0.10

σ10y 1404 1.51 0.30 0.98
Δσ10y 1403 −0.00 0.06 −0.21
xsd

10y 1403 0.04 1.00 −0.03
usd

10y 1403 0.50 0.29 0.06
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Figure 10. Pearson Correlation Coefficient on Short-Term
versus Medium- to Long-Term Market-Based

Inflation Expectations
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Notes: Short-term mean expectations are one year ahead, one year ahead after
one year (1y1y forward inflation swap) and five years ahead, while medium- to
long-term expectations are five years ahead after five years (5y5y forward). The
coefficient is computed using 250 business days rolling windows. Bootstrapped
confidence intervals are obtained with 1,000 replications. Sample: October 5, 2009
to February 19, 2015.

Figure 11. Index of Tail Co-movement Using the
Student’s t-Copula on Short-Term versus Medium-

to Long-Term Mean Inflation Expectations
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Notes: The index ranges from 0 (no tail dependence) to 1. This index indi-
cates the average co-movement on both upper and lower tails. Short-term mean
expectations are one year ahead, one year ahead after one year (1y1y forward
inflation swap) and five years ahead, while medium- to long-term expectations
are five years ahead after five years (5y5y forward). Values are computed using
200 business days rolling windows. Sample: October 5, 2009 to February 19, 2015.
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Figure 12. TailCor Index Computed on Short-Term versus
Medium- to Long-Term Mean Inflation Expectations
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Notes: It takes values between 0 and +∞; under Gaussianity and uncorrelation,
the index takes the value 1. This measure indicates the average co-movement in
both upper and lower tails. Short-term mean expectations are one year ahead,
one year ahead after one year (1y1y forward inflation swap) and five years ahead,
while medium- to long-term expectations are five years ahead after five years
(5y5y forward). Values are computed using 250 business days rolling windows.
Bootstrapped confidence intervals are obtained with 1,000 replications. Sample:
October 5, 2009 to February 19, 2015.

evidence suggests that the correlation in the lower tail has increased
earlier than the one in the upper tail: according to our interpreta-
tion, in 2014 negative events affecting short-term views have been
transmitted to long-term expectations more than positive surprises.
This stylized fact suggests that some de-anchoring may be occurring,
and further investigation is needed.

Figures 14–17 trace the co-movement in option-implied standard
deviations. Based on the rolling estimates of the Pearson coefficient,
there is no clear evidence of increased correlation between short-
and long-run standard deviations during the last part of the sample
(figure 14). Interpreting the standard deviation as the uncertainty of
market agents around their mean expectations, this points to mixed
evidence on the transmission of average uncertainty towards longer
maturities.

However, the analysis of tail co-movements gives interesting
results. While the dynamics of the TailCor index for short- ver-
sus long-term standard deviations in the last period is not robust
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Figure 13. UpTailCor (Blue Line) and DownTailCor
(Red Line) Computed between Short-Term and Medium-

to Long-Term Mean Expectations
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Notes: Short-term mean expectations are one year ahead, one year ahead after
one year (1y1y forward inflation swap) and five years ahead, while medium- to
long-term expectations are five years ahead after five years (5y5y forward). Val-
ues are computed using 250 business days rolling windows; ξ = 0.85, τ = 0.75.
Bootstrapped confidence intervals are obtained with 1,000 replications. Sample:
October 5, 2009 to February 19, 2015.

to the choice of the employed proxies (see figure 16), the copula-
based coefficient of tail dependence suggests a strong recent increase
in tail co-movements (e.g., 1y-10y and 2y-10y couples—second and
third panels of figure 15). Moreover, the inspection of UpTailCor
and DownTailCor leads to opposite results with respect to the one
obtained about mean expectations: the UpTailCor increases more
than the DownTailCor during most of 2014. This suggests a stronger
transmission from upper tail variations of short-term standard devia-
tion to upper tail variations in long-term ones, implying that positive
shocks to uncertainty have been longer lasting than shocks reducing
uncertainty.

To sum up, the joint reading of the results for average expec-
tations and option-implied standard deviations gives some useful



Vol. 14 No. 1 Tail Co-movement in Inflation Expectations 59

Figure 14. Pearson Correlation Coefficient on Standard
Deviations of Short-Term versus Long-Term

Option-Implied Distributions
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Notes: Pairs of short-term versus medium- to long-term inflation expectations
are one year ahead versus seven years ahead, one year ahead versus ten years
ahead, and two years ahead versus ten years ahead. The coefficient is computed
using 250 business days rolling windows. Bootstrapped confidence intervals are
obtained with 1,000 replications. Sample: October 5, 2009 to February 19, 2015.

Figure 15. Index of Tail Co-movement Using the
Student’s t-Copula on Standard Deviations of Short-Term

versus Long-Term Option-Implied Distributions
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Notes: The index ranges from 0 (no tail dependence) to 1. This index indicates
the average co-movement on both upper and lower tails. Pairs of short-term ver-
sus medium- to long-term inflation expectations are one year ahead versus seven
years ahead, one year ahead versus ten years ahead, and two years ahead versus
ten years ahead. Sample: October 5, 2009 to February 19, 2015.

insights. During 2014, average correlations between short- and long-
term inflation expectations have increased sharply; moreover, down-
swings in short-term expectations, possibly reflecting bad macro
news or worse-than-expected data readings, have been increasingly
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Figure 16. TailCor Index Computed on Short-Term versus
Medium- to Long-Term Mean Inflation Expectations
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Notes: This measure indicates the average co-movement on both upper and lower
tails. Pairs of short-term versus medium- to long-term inflation expectations are
one year ahead versus seven years ahead, one year ahead versus ten years ahead,
and two years ahead versus ten years ahead. Values are computed using 250 busi-
ness days rolling windows. Bootstrapped confidence intervals are obtained with
1,000 replications. Sample: October 5, 2009 to February 19, 2015.

Figure 17. UpTailCor (Blue Line) and DownTailCor
(Red Line) Computed between Short-Term and Medium-

to Long-Term Mean Inflation Expectations
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Notes: Pairs of short-term versus medium- to long-term inflation expectations
are one year ahead versus seven years ahead, one year ahead versus ten years
ahead, and two years ahead versus ten years ahead. Values are computed using
250 business days rolling windows; ξ = 0.85, τ = 0.75. Bootstrapped confi-
dence intervals are obtained with 1,000 replications. Sample: October 5, 2009
to February 19, 2015.
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channeled to long-term views, igniting downward revisions in aver-
age expectations and upward revisions in uncertainty. These results
point to a risk of downside de-anchoring of long-term inflation expec-
tations from the “below but close to” 2 percent target.

5. Conclusions

In this paper we propose a new method to detect possible signs of de-
anchoring of inflation expectations from the medium- to long-term
objective of the monetary authority. Like the commonly used pass-
through approach, our technique is totally market based and does
not require any identification of the surprise component incorporated
in inflation readings and other macroeconomic announcements. By
looking at co-movements in the tails, we assess the sensitivity of long-
term expectations to extreme shocks hitting short-term ones, both
positive and negative. Although a departure of long-term expecta-
tions from the monetary policy target can occur also with stable
short-term views, a high degree of co-movement with short-term
expectations can be seen as a sufficient condition for de-anchoring.

Applying the new estimation technique of Taboga (2016) to daily
quotes of inflation caps and floors for the euro area, we are able
to recover the entire probability distributions assigned by market
participants to future inflation at different horizons. Focusing on
mean expectations and on the dispersion of market beliefs, we look
at their evolution over time, making comparisons between the long-
and short-end of each term structure. In addition, we calculate confi-
dence bands around the mean of expected future inflation in order to
assess the significance of the decline in short- and long-term expecta-
tions observed since 2012. Using inflation swaps and option implied-
standard deviations, we also compute linear and tail correlations
between short-and long-term expectations and dispersions around
them; tail co-movements are measured by copula-based coefficients
of tail dependence and by the TailCor indexes.

Computing confidence bands from the estimated distributions,
we find that, at the end of 2014, the upper limit of such bands fell
below 2 percent for maturities up to seven years, indicating that
the negative gap between expectations and the 2 percent inflation
rate was statistically significant at the 10 percent level at the end
of our sample period. During 2014, average correlations between



62 International Journal of Central Banking January 2018

short- and long-term inflation expectations have increased sharply;
moreover, downswings in short-term expectations, possibly reflect-
ing bad macro news or worse-than-expected data readings, have been
increasingly channeled to long-term views, igniting downward revi-
sions in average expectations and upward revisions in uncertainty.
Taken together, the evidence based on confidence bands and correla-
tions leads one to conclude that some signs of downside de-anchoring
of long-term inflation expectations from the 2 percent target are
there and should not be overlooked.

While market-based measures of long-term inflation expectations
have been unusually low in the euro area since 2013, during 2014
they also declined in the United States and in the United Kingdom.15

Even though broader international trends may in part be responsible
for this common pattern, the level of anchoring of inflation expec-
tations could be different in the three economies. Further avenues
of research could include extending the estimation of option-implied
distributions to U.S. and U.K. data and assessing tail co-movements
within countries.

Appendix 1. LAD Method

Extraction of Option-Implied Distributions

In what follows, a quick description of the estimation method to
derive option-implied probability distribution functions elaborated
in Taboga (2016) is given. Let I be the stochastic value of the aver-
age annual inflation rate over a given time horizon. We assume
that I has a discrete probability distribution with finite support,
RI = {i1, . . . , in}. In the absence of arbitrage, there exists an
n-dimensional vector of positive state prices π = (π1, . . . , πn) such
that the price Π(f) of any derivative contract on I having payoff
f = f(I) can be written as

Π(f) =
n

∑

j=1

πjf(ij).

15Ciccarelli and Garcia (2015) investigate possible spillovers of inflation expec-
tations across countries, finding substantial spillovers from euro-area long-term
expectations onto international ones—in particular, U.S. ones—since August
2014.
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In particular, the price of a zero-coupon cap with strike k and matu-
rity T = M years is given by

n
∑

j=1

πj((1 + ij)
M − (1 + k)M )+,

whereas the price of a zero-coupon floor with strike k and maturity
T = M years equals

n
∑

j=1

πj((1 + k)M − (1 + ij)
M )+.

Suppose we have the market quotes of NC caps with strikes
{kC

1 , . . . , kC
NC

} and NP floors with strikes {kP
1 , . . . , kP

NP
}. Let C be

the NC × 1 vector of cap quotes and P be the NP × 1 vector of put
quotes. Let FC and FP be NC × n and NP × n matrices of payoffs,
defined as

FC,ij = (sj − KC
i )+ and FP,ij = (KP

i − sj)
+.

Having set

Y =

[

C
P

]

and X =

[

FC

FP

]

,

we can express the option prices as

Y = Xπ. (1)

Since in practice market quotes encompass an error term,16 the
empirical version of equation (1) is

Y 0 = Xπ + ε, (2)

where Y 0 is the vector of observed market prices and ε is a vec-
tor of pricing errors. Our goal is to estimate the vector of positive
state prices π given that we observe Y 0 and we know the payoff

16Pricing errors can arise for various reasons, including the bounce between bid
and ask quotes, price discreteness, and state prices due to illiquidity.
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X; the risk-neutral probability distribution of I is then obtained by
rescaling,

ρ =
π

∑n
j=1 πj

. (3)

State prices are parameterized using a spline curve; Taboga (2016)
shows that this is equivalent to imposing a set of linear equality
restrictions. With no loss of generality, we assume that the support
RI of the distribution is equally spaced:

ij = i1 + (j − 1)δ, δ > 0 and j = 1, . . . , n.

Moreover, we assume that there exists a (piecewise cubic and twice
continuously differentiable) spline function π : [s1, sn] �→ R+ which
interpolates the state prices:

π(sj) = πj , j = 1, . . . , n.

The number of knot points of the spline function π is NT < n − 4;
the first four elements of RI cannot be knot points. De Boor’s (1978)
B-spline construction implies that the first derivative of π is piece-
wise quadratic, the second derivative is piecewise linear, the third
is a stepwise constant function, and the fourth is a function that is
zero everywhere except at knot points. The latter condition trans-
lates into a linear constraint on the state prices associated with knot
points:

NDπ = 0, (4)

where N is a (n− 4−NT )× (n− 4) selection matrix whose rows are
vectors of the Euclidean basis of R

n−4, D = Dn−3Dn−2Dn−1Dn,
and Dk is the (k − 1) × k first-difference matrix

Dk =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

...
...

...
0 0 · · · 0 −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (5)
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The LAD estimator of state prices is based on equation (2) and on
the set of linear restrictions (4). An estimator minimizing absolute
pricing errors is preferred to a least-squares estimator because of
its computational convenience and robustness to outliers, which are
known to contaminate data on option prices. The LAD estimator
π̂LAD of the state prices is the solution of the minimization problem

π̂LAD = arg min
π

NC+NP
∑

i=1

wi|Y 0
i − Xiπ| (6)

s.t. NDπ = 0, π ≥ 0,

where Y 0
i and Xi are the rows of Y 0 and X, respectively, and

wi are weights assigned to pricing errors. In our estimates we set
wi = 1/

√

Y 0
i : this choice applies a dampening factor to deeply out-

of-the-money options, which tend to have larger pricing errors in
percentage terms.

The minimization problem can be written as a linear program-
ming (LP) problem:

min
z

dT z (7)

s.t. Az = b, z ≥ 0,

where

d =

⎡

⎣

w
w
0

⎤

⎦ and z =

⎡

⎣

ε+

ε−

π

⎤

⎦

are (2NC + 2NP + n) × 1 vectors, w is the (NC + NP ) × 1 vector
of weights, ε+ and ε− are the positive and negative parts of the
(NC + NP ) × 1 vector of pricing errors, and

A =

[

I −I X
0 0 ND

]

and b =

[

Y 0

0

]

.

The solution of the LP problem can be found by standard and com-
putationally inexpensive LP algorithms. The LAD estimator π̂LAD

is then given by the last n components of the LP solution ẑ.
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Once we have computed the LAD estimator π̂LAD, we can get
a new estimator π̂U fulfilling a unimodality condition. Since the
risk-neutral distributions are obtained by rescaling the state prices,
the unimodality of π implies the unimodality of the risk-neutral
distribution ρ. Let

ϕ(π) = arg max
i

πi and g(π) = (g1(π), . . . , gn−1(π))

s.t. gi(π) =

{

1 if i < ϕ(π)
−1 if i ≥ ϕ(π)

.

The set of vectors that satisfy unimodality is U = {π ∈ R
n
+ :

(Dnπ) ◦ g(π) ≥ 0}, where Dn is the first-difference matrix defined
in (5) and ◦ denotes the Hadamard or entrywise product. The uni-
modal LAD estimator π̂U is then the solution of the minimization
problem

min
π

NC+NP
∑

i=1

wi|Y 0
i − Xiπ| (8)

s.t. NDπ = 0, π ≥ 0 and π ∈ U.

A way to solve the problem (8) using a Bayesian version of the LAD
estimator is detailed in Taboga (2016).

Inflation Swap Rates in Terms of State Prices

Let sM be the fixed leg of a zero-coupon inflation swap with matu-
rity M years. Let IM be the (stochastic) annual rate of inflation
over the next M years. Taking expectations under the risk-neutral
measure Q, the following condition must hold:

E
Q
0 [DM ((1 + sM )M − (1 + IM )M )] = 0, (9)

where DM is the discount factor for the time interval [0, M ]. Rewrit-
ing equation (9) in terms of state prices and taking into account that

E
Q
0 [DM ] =

∑

j πj , we get

⎛

⎝

n
∑

j=1

πj

⎞

⎠ (1 + sM )M −
n

∑

j=1

(1 + ij)
Mπj = 0.
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Since the risk-neutral distribution d is given by dj = πj/
∑

k πk,
there follows that

sM =

⎛

⎝

n
∑

j=1

dj(1 + ij)
M

⎞

⎠

1/M

− 1. (10)

For M = 1, this equivalence boils down to

s1 =
n

∑

j=1

djij ;

the inflation swap rate equals the mean of the option-implied distri-
bution d. For M > 1, equation (10) states that the inflation swap
rate is a non-linear function of the probability distribution extracted
from inflation options having the same maturity.

Appendix 2. Copula Functions

Definition 2 (Copula Function). A copula is an n-dimensional
distribution function C : [0, 1]n → [0, 1] of a random vector
(U1, . . . , Un), where the marginal law of Ui is the uniform distrib-
ution on [0, 1] for all i ∈ {1, . . . , n}.

Copula functions are very popular in the study of multivariate
distribution functions thanks to their role in imposing a dependence
structure on predetermined marginal distributions. Their impor-
tance derives from Sklar’s theorem, which proves that any multi-
variate distribution function can be characterized by a copula and
that copula functions, together with univariate marginal distribu-
tion functions, can be used to construct multivariate distribution
functions.

Theorem 1 (Sklar’s Theorem). Let H be an n-dimensional distrib-
ution function with marginals F1, . . . , Fn. Then an n-copula C exists
such that, for each x ∈ Rn,

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

If the marginals F1, . . . , Fn are all continuous, then C is unique;
otherwise C is univocally determined on (RanF1 ×RanF2 ×RanFn)
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(where RanFi denotes the rank of Fi). Conversely, if C is an n-
copula and F1, . . . , Fn are distribution functions, then the function
H defined above is an n-dimensional distribution function with mar-
ginals F1, . . . , Fn.

The proof of this theorem can be found, e.g., in Nelsen (2006).
The main feature of Sklar’s theorem is that for continuous multi-

variate distribution functions, the univariate marginals and the mul-
tivariate dependence structure can be separated and the dependence
structure can be represented by a copula.

Let F be a univariate distribution function. Let us recall that the
generalized inverse of F is defined as F−1(t) = inf{x ∈ R|F (x) ≥ t}
for each t in [0, 1], with the usual convention that inf(∅) = −∞.

An important corollary of Sklar’s theorem, which is fundamental
in the study of copulas and their applications, is the following:

Corollary 1. Let H be an n-dimensional distribution function
with continuous marginals F1, . . . , Fn and copula C. Then for each
u ∈ [0, 1]n,

C(u1, . . . , un) = H(F−1
1 (u1), . . . , F

−1
n (un)).

In the following we recall the Student’s t-copula that we use in
the paper.

Definition 3 (Student’s t-Copula). The Student’s t-copula can be
written as

Cρ,ν(u, v) =

∫ t−1

ν
(u)

−∞

∫ t−1

ν
(v)

−∞

1

2π(1 − ρ2)1/2

×
{

1 +
x2 − 2ρxy + y2

ν(1 − ρ2)

}−(ν+2)/2

dsdt,

where ρ and ν are the parameters of the copula, and t−1
ν is the inverse

of the standard univariate Student’s t-distribution with ν degrees of
freedom, expectation 0, and variance ν

ν−2 .

Student’s t-copula allows for joint fat tails. Increasing the value
of ν decreases the tendency to exhibit extreme co-movements. The
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Student’s t-dependence structure supports joint extreme movements
regardless of the marginal behavior of the individual variables.

Appendix 3. TailCor Measures

Let Xjt be the j-th element of the random vector Xt. Denote by Qτ
j

its τ -th quantile for 0 < τ < 1, and let IQRτ
j = Qτ

j − Q1−τ
j be the

τ -th interquantile range. Let Yjt be the standardized version of Xjt:

Yjt =
Xjt − Q0.50

j

IQRτ
j

.

By standard trigonometric arguments, the projection of (Yjt, Ykt)
onto the 45-degree line is

Z
(jk)
t =

1√
2
(Yjt + Ykt),

and the tail interquantile range is

IQR(jk)ξ = Q(jk)ξ − Q(jk)1−ξ,

where Q(jk)ξ is the ξ-th quantile of Zjk
t . The larger ξ is, the further

we explore the tails.
TailCor is then defined as follows (Ricci and Veredas 2013):

Definition 4 (TailCor). Under technical assumptions, TailCor
between Xjt and Xkt is

TailCor(jk)ξ := sg(ξ, τ)IQR(jk)ξ,

where sg(ξ, τ) is a normalization such that under Gaussianity and
linear uncorrelation TailCor(jk)ξ = 1, the reference value.

A table with values of sg(ξ, τ) for a grid of reasonable variables
for τ and ξ can be found in Ricci and Veredas (2013), appendix T.

When interest lies in the tail of one side of the distribution,
downside TailCor and upside TailCor can be used:

Definition 5 (Downside TailCor). Downside TailCor is defined as

TailCor(jk)ξ− := sg(ξ, τ)IQR(jk)ξ−,

where IQR(jk)ξ− = Q(jk)0.50 − Q(jk)1−ξ.
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Definition 6 (Upside TailCor). Upside TailCor is defined as

TailCor(jk)ξ+ := sg(ξ, τ)IQR(jk)ξ+,

where IQR(jk)ξ+ = Q(jk)ξ − Q(jk)0.50.

The estimation procedure consists of four simple steps that can
be followed under technical assumptions:

(i) Standardize Xjt and Xkt.

(ii) Estimate the IQR of the projection: ˆIQR
(jk)ξ

Ẑ,T .

(iii) Find the normalization sg(ξ, τ) from the table.

(iv) Compute ˆTailCor
(jk)ξ

Ẑ,T = sg(ξ, τ) ˆIQR
(jk)ξ

Ẑ,T .
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