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ABSTRACT

Significant changes in the insurance and financial markets are giving increasing attention to the

need for developing a standard framework for risk measurement. Recently, there has been growing

interest among insurance and investment experts to focus on the use of a tail conditional

expectation because it shares properties that are considered desirable and applicable in a variety of

situations. In particular, it satisfies requirements of a “coherent” risk measure in the spirit developed

by Artzner et al. (1999). This paper derives explicit formulas for computing tail conditional

expectations for elliptical distributions, a family of symmetric distributions that includes the more

familiar normal and student-t distributions. The authors extend this investigation to multivariate

elliptical distributions allowing them to model combinations of correlated risks. They are able to

exploit properties of these distributions, naturally permitting them to decompose the conditional

expectation, and allocate the contribution of individual risks to the aggregated risks. This is

meaningful in practice, particularly in the case of computing capital requirements for an institution

that may have several lines of correlated business and is concerned about fairly allocating the total

capital to these constituents.

1. INTRODUCTION

Consider a loss random variable X whose distri-
bution function is denoted by FX(x) and whose
tail function is denoted by F! X(x) ! 1 " FX(x).
This may refer to the total claims for an insurance
company or to the total loss in a portfolio of
investment for an individual or institution. The
tail conditional expectation (TCE) is defined to
be

TCEX# xq$ ! E#X!X " xq$ (1)

and is interpreted as the expected worse losses.
Given the loss will exceed a particular value xq,
generally referred to as the q-th quantile with

F! X# xq$ ! 1 # q,

the TCE defined in equation (1) gives the ex-
pected loss that can potentially be experienced.
This index has been initially recommended by
Artzner et al. (1999) to measure both market and
nonmarket risks, presumably for a portfolio of
investments. It gives a measure of a right-tail risk,
one with which actuaries are very familiar be-
cause insurance contracts typically possess expo-
sures subject to “low-frequency but large-losses,”
as pointed out by Wang (1998). Furthermore,
computing expectations based on conditional tail
events is a very familiar process to actuaries be-
cause many insurance policies also contain de-
ductible amounts below which the policyholder
must incur, and reinsurance contracts always in-
volve some level of retention from the ceding
insurer.

A risk measure % is a mapping from the ran-
dom variable that generally represents the risk to
the set of real numbers:

% : X 3 R.

It is supposed to provide a value for the degree of
risk or uncertainty associated with the random
variable. A risk measure is said to be a coherent
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risk measure if it satisfies the following proper-
ties:

1. Subadditivity: For any two risks X1 and X2,
we have

%#X1 $ X2$ % %#X1$ $ %#X2$.

This property requires that combining risks
will be less risky than treating the risks sep-
arately. It means that there has to be some-
thing gained from diversification.

2. Monotonicity: For any two risks X1 and X2

where X1 % X2 with probability 1, we have

%#X1$ % %#X2$.

This says that the value of the risk measure
is greater for risks considered more risky.

3. Positive Homogeneity: For any risk X and
any positive constant &, we have

%#&X$ ! &%#X$.

If the risk exposure of a company is propor-
tionately increased or decreased, then its
risk measure must also increase or decrease
by an equal proportionate value. To illus-
trate, an insurer may buy a quota share re-
insurance contract, whereby risk X is re-
duced to &X. The insurer must also decrease
its risk measure by the same proportion.

4. Translation Invariance: For any risk X and
any constant ', we have

%#X $ '$ ! %#X$ $ '.

This says that increasing (or decreasing) the
risk by a constant (risk not subject to uncer-
tainty) should accordingly increase (or de-
crease) the risk measure by an equal
amount.

Artzner et al. (1999) demonstrated that the tail
conditional expectation satisfies all requirements
for a coherent risk measure. When compared to the
traditional value-at-risk (VAR) measure, the tail
conditional expectation provides a more conserva-
tive measure of risk for the same level of degree of
confidence (1 " q). To see this, note that

VARX#1 # q$ ! xq

and, since we can rewrite formula (1) as

TCEX# xq$ ! xq $ E#X # xq!X " xq$,

then

TCEX# xq$ & VARX#1 # q$

because the second term is clearly non-negative.
Artzner and his co-authors also showed that the
VAR does not satisfy all requirements of a coher-
ent risk measure. In particular, it violates the
subadditivity property.

For the familiar normal distribution N((, )2),
with mean ( and variance )2, it was noticed by
Panjer (2002) that

TCEX# xq$ ! ( $ "
1

)
*#xq # (

) $
1 # +#xq # (

) $%)2, (2)

where *" and +" are, respectively, the density
and cumulative distribution functions of a stan-
dard normal N(0, 1) random variable. We extend
this result to the larger class of elliptical distribu-
tions to which the normal distribution belongs.
This family consists of symmetric distributions
for which the student-t, exponential power, and
logistic distributions are other familiar examples.
Furthermore, this rich family of symmetric dis-
tributions allows for greater flexibility than just
the normal distribution in capturing heavy, or
even short, tails. This is becoming of more impor-
tance in financial risk management where the
industry is observing empirical distributions of
losses that exhibit tails that appear “heavier”
than that of normal distributions.

In this paper, we show that, for univariate el-
liptical distributions, tail conditional expecta-
tions have the form

TCEX# xq$ ! ( $ & ! )2, (3)

where

& !

1

)
fZ*#xq # (

) $
F! Z#xq # (

) $ )Z
2. (4)

Z is the spherical random variable that generates
the elliptical random variable X, and has variance
)Z

2 , -, and fZ*(x) is the density of another
spherical random variable Z* corresponding to Z.
For the case of the normal distribution, Z* ! Z
and is, therefore, a standard normal random vari-
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able with )Z
2 ! 1 and equation (3) coinciding with

equation (2). We also consider the important case
when the variance of X does not exist. In general,
though, we find that we can express & in equation
(4) as

& !

1

)
G! #1

2
zq

2$
F! Z# zq$

,

where G! is a tail-type function involving the cu-
mulative generator later defined in this paper.
This generator plays an important role in devel-
oping the tail conditional expectation formulas
for elliptical distributions.

The use of the tail conditional expectation to
compute capital requirements for financial insti-
tutions has recently been proposed. See, for ex-
ample, Wang (2002). It has the intuitive interpre-
tation that it provides the expected amount of a
loss given that a shortfall occurs. The amount of
shortfall is measured by a quantile from the loss
distribution. Furthermore, by the additivity prop-
erty of expectation, it allows for a natural alloca-
tion of the total capital among its various constit-
uents:

E#S!S " sq$ ! &
k!1

n

E#Xk!S " sq$,

where S ! X1 . . . . . Xn and sq is the qth
quantile of S. Thus, we see that E(Xk!S / sq) is the
contribution of the k-th risk to the aggregated
risks. Panjer (2002) examined this allocation for-
mula in the case where the risks are multivariate
normal. We advance this formula in the general
framework of multivariate elliptical distributions.
This class of distributions is widely becoming
popular in actuarial science and finance, because
it contains many distributions (e.g., multivariate
stable, student, etc.) that have heavier tails than
normal. Notice that the phenomenon of heavy tail
behavior of distributions is very relevant in the
insurance and financial context.

Moreover, elliptical distributions, except nor-
mal, can well model another important phenom-
enon in insurance and financial data analyzing
tail dependence discussed in Embrechts et al.
(1999, 2001) and Schmidt (2002). Embrechts et
al. (1999, 2001) also proved the significant result
that the elliptical class preserves the property of

the Markowitz variance-minimizing portfolio to
be minimum point of coherent measures. In ad-
dition, Bingham and Kiesel (2002) propose a
semiparametric model for stock-price and asset-
return distributions based on elliptical distribu-
tions because, as the authors observed, Gaussian
or normal models provide mathematical tractabil-
ity but are inconsistent with empirical data.

The rest of the paper is organized as follows. In
Section 2, we provide a preliminary discussion
about elliptical distributions and find that ellipti-
cally distributed random variables are closed un-
der linear transformations. We also give examples
of known multivariate distributions belonging to
this class. In Section 3, we develop tail condi-
tional expectation formulas for univariate ellipti-
cal distributions. Here, we introduce the notion of
a cumulative generator, which plays an important
role in evaluating TCE. In Section 4, we exploit
the properties of elliptical distributions, which
allows us to derive explicit forms of the decom-
position of TCE of sums of elliptical risks into
individual component risks. We give concluding
remarks in Section 5.

2. THE CLASS OF ELLIPTICAL

DISTRIBUTIONS

Elliptical distributions are generalizations of the
multivariate normal distributions and, therefore,
share many of its tractable properties. This class
of distributions was introduced by Kelker (1970)
and was widely discussed in Fang et al. (1987).
This generalization of the normal family seems to
provide an attractive tool for actuarial and finan-
cial risk management because it allows a multi-
variate portfolio of risks to have the property of
regular varying in the marginal tails.

Let 0n be a class of functions 1(t) : [0, -)3 R

such that function 1 (¥i!1
n ti

2) is an n-dimensional
characteristic function (Fang et al. 1987). It is
clear that

0n ! 0n"1 · · · ! 01.

Consider an n-dimensional random vector X !
(X1, X2, . . . , Xn)T.

DEFINITION 1

The random vector X has a multivariate elliptical
distribution, written as X 2 En(", #, 1), if its
characteristic function can be expressed as
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*X#t$ ! exp#itT"$1#
1

2
tT#t$ (5)

for some column-vector ", n 3 n positive-definite
matrix #, and for some function 1(t) $ 0n, which
is called the characteristic generator.

From X 2 En(", #, 1), it does not generally
follow that X has a density fX(x), but, if the den-
sity exists, it has the following form:

fX#x$ !
cn

'!#!
gn(12 #x # "$T#"1#x # "$), (6)

for some function gn" called the density genera-
tor. The condition

*
0

-

xn/ 2"1gn# x$ dx ' - (7)

guarantees gn(x) to be the density generator
(Fang et al. 1987, Chap. 2.2). If the density gen-
erator does not depend on n, which may happen
in many cases, we drop the subscript n and sim-
ply write g. In addition, the normalizing constant
cn can be explicitly determined by transforming
into polar coordinates, and the result is

cn !
4#n/ 2$

#25$n/ 2 (*
0

-

xn/ 2"1gn# x$ dx)"1

. (8)

The detailed evaluation of this result is given in
the appendix. One may also similarly introduce
the elliptical distribution by the density generator
and then write X 2 En(", #, gn).

From equation (5), it follows that, if X 2 En(",
#, gn) and A is some m 3 n matrix of rank m % n
and b some m-dimensional column-vector, then

AX $ b + Em#A" $ b, A#AT, gm$. (9)

In other words, any linear combination of ellipti-
cal distributions is another elliptical distribution
with the same characteristic generator 1 or from
the same sequence of density generators g1, . . . ,
gn, corresponding to 1. Therefore, any marginal
distribution of X is also elliptical with the same
characteristic generator. In particular, for k ! 1,
2, . . . , n, Xk 2 E1((k, )k

2, g1) so that its density
can be written as

fXk
# x$ !

c1

)k

g1(1

2 #x # (k

)k
$2) . (10)

If we define the sum S ! X1 . X2 . . . . . Xn !
eTX, where e ! (1, . . . , 1)T is a column vector of
ones with dimension n, then it immediately fol-
lows that

S + E1#e
T", eT#e, g1$. (11)

Note that condition (7) does not require the
existence of the mean and covariance of vector X.
Later, we give the example of a multivariate ellip-
tical distribution with infinite mean and variance.
It can be shown by a simple transformation in the
integral for the mean that

*
0

-

g1# x$ dx ' - (12)

guarantees the existence of the mean, and then
the mean vector for X 2 En(", #, gn) is E(X) ! ".
If, in addition,

!16#0$! ' -, (13)

the covariance matrix exists and is equal to

Cov#X$ ! "16#0$# (14)

(Cambanis et al. 1981), then the characteristic
generator can be chosen such that

16#0$ ! "1, (15)

so that the covariance above becomes

Cov#X$ ! #.

Notice that condition (13) is equivalent to the
condition 70

- 8x g1(x) dx , -.
We now consider some important families of

elliptical distributions.

2.1 Multivariate Normal Family

An elliptical vector X belongs to the multivariate
normal family, with the density generator

g#u$ ! e"u (16)

(which does not depend on n). We shall write X 2
Nn(", #). It is easy to see that the joint density of
X is given by

fX#x$ !
cn

'!#!
exp(" 1

2
#x # "$T#"1#x # "$).

From equation (8), it immediately follows that
the normalizing constant is given by cn !
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(25)"n/2. It is well-known that its characteristic
function is

*X#t$ ! exp#itT" #
1

2
tT#t$

so that the characteristic generator is

1#t$ ! e"t.

Notice that choosing the density generator in
equation (16) automatically gives 16(0) ! "1
and, hence, # ! Cov(X).

2.2 Multivariate Student-t Family

An elliptical vector X is said to have a multivariate
student-t distribution if its density generator can
be expressed as

gn#u$ ! #1 $
u

kp
$"p

, (17)

where the parameter p / n/2 and kp is some
constant that may depend on p. We write X 2
tn(", #; p) if X belongs to this family. Its joint
density therefore, has the form

fX#x$ !
cn

'!#! (1 $
#x # "$T#"1#x # "$

2kp
)"p

.

Using equation (8), it can be shown that the nor-
malizing constant is

cn !
4# p$

4# p # n/ 2$
#25kp$"n/ 2.

Here we introduce the multivariate student-t in
its most general form. A similar form to it was
considered in Gupta and Varga (1993); they
called this family “Symmetric Multivariate Pear-
son Type VII” distributions. Taking, for example,
p ! (n . m)/2, where n and m are integers, and
kp ! m/2, we get the traditional form of the
multivariate student-t distribution with density

fX#x$ !
4##n $ m$/2$

#5m$n/ 24#m/2$'!#!

(1 $
#x # "$T#"1#x # "$

m )"#n.m$/ 2

. (18)

In the univariate case where n ! 1, Bian and
Tiku (1997) and MacDonald (1996) suggested
putting kp ! (2p " 3)/2 if p / 3/2 to get the
so-called generalized student-t (GST) univariate
distribution with density. This normalization

leads to the important property that Var(X) ! )2.
Extending this to the multivariate case, we sug-
gest keeping kp ! (2p " 3)/2 if p / 3/2; then this
multivariate GST has the advantage that

Cov#X$ ! #.

In particular, for p ! (n . m)/2, we suggest,
instead of equation (18), considering

fX#x$ !
4##n $ m$/2$

95#n $ m # 3$:n/ 24#m/2$'!#!

(1 $
#x # "$T#"1#x # "$

n $ m # 3 )"#n.m$/ 2

because it also has the property that the covari-
ance is Cov(X) ! #. If 1/2 , p % 3/2, the variance
does not exist and we have a heavy-tailed multi-
variate distribution. If 1/2 , p % 1, even the
expectation does not exist. In the case where p !
1, we have the multivariate Cauchy distribution
with density

fX#x$ !

4#n $ 1

2 $
5#n.1$/ 2'!#!

91 $ #x # "$T#"1#x # "$:"#n.1$/ 2.

2.3 Multivariate Logistic Family

An elliptical vector X belongs to the family of
multivariate logistic distributions if its density
generator has the form

g#u$ !
e"u

#1 $ e"u$2 .

Its joint density has the form

fX#x$ !
cn

'!#!

exp9"
1

2
#x # "$T#"1#x # "$:

;1 $ exp9"
1

2
#x # "$T#"1#x # "$:<2

,

where the normalizing constant can be evaluated
using equation (8) as follows:

cn !
4#n/ 2$

#25$n/ 2 (*
0

-

xn/ 2"1
e"x

#1 $ e"x$2 dx)"1

.

We observe that this normalizing constant has
been mistakenly printed in both Fang et al.
(1987) and Gupta and Varga (1993). Further sim-
plification of this normalizing constant suggests
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that, first, by observing that (e"x/(1 . e"x)2) !
¥j!1

- ("1)j"1je"jx, we can rewrite it as follows:

cn !
4#n/ 2$

#25$n/ 2 ( &
j!1

-

#"1$j"1 *
0

-

xn/ 2"1je"jx dx)"1

!
4#n/ 2$

#25$n/ 2 ( &
j!1

-

#"1$j"1j1"n/ 2 *
0

-

yn/ 2"1e"y dy)"1

!
4#n/ 2$

#25$n/ 2 ( &
j!1

-

#"1$j"1j1"n/ 24#n/2$)"1

! #25$"n/ 2 ( &
j!1

-

#"1$j"1j1"n/ 2)"1

.

If X belongs to the family of multivariate logistic
distributions, we shall write X 2 MLn(", #).

2.4 Multivariate Exponential
Power Family

An elliptical vector X is said to have a multivariate
exponential power distribution if its density gen-
erator has the form

g#u$ ! e"rus

, for r, s " 0.

The joint density of X can be expressed in the form

fX#x$ !
cn

'!#!
exp," r

2s 9#x # "$T#"1#x # "$:s-,
where the normalizing constant is given by

cn !
4#n/ 2$

#25$n/ 2 #*
0

-

xn/ 2"1e"rxs

dx$"1

!
4#n/ 2$

#25$n/ 2 #*
0

- 1

s
y#1/s$#n/ 2"s$e"ry d y$"1

!
4#n/ 2$

#25$n/ 2 # 1

rs
r1"n/#2s$ *

0

-

yn/#2s$"1e"y d y$"1

!
s4#n/ 2$

#25$n/ 24#n/#2s$$
rn/#2s$.

When r ! s ! 1, this family of distributions clearly
reduces to the multivariate normal family. When
s ! 1 alone, this family reduces to the original Kotz

multivariate distribution suggested by Kotz (1975).
If s ! 1/2 and r ! 82, we have the family of double
exponential or Laplace distributions.

Figure 1 displays a comparison of the bivariate
densities for some of the well-known elliptical
distributions discussed in this section.

3. TCE FORMULAS FOR UNIVARIATE

ELLIPTICAL DISTRIBUTIONS

This section develops tail conditional expectation
formulas for univariate elliptical distributions,
which, as a matter of fact, coincide with the class of
symmetric distributions on the line R. Recall that
we denote by xq the q-th quantile of the loss distri-
bution FX(x). Because we are interested in consid-
ering the tails of symmetric distributions, we sup-
pose that q / 1/2 so that, clearly,

xq " (. (19)

Now suppose g(x) is a non-negative function on
[0, -), satisfying the condition that

*
0

-

x"1/ 2g# x$dx ' -.

Then (see Section 2) g(x) can be a density gen-
erator of a univariate elliptical distribution of a
random variable X 2 E1((, )2, g) whose density
can be expressed as

fX# x$ !
c

)
g(1

2 #x # (

) $2) , (20)

where c is the normalizing constant.
Note that, because X has an elliptical distribu-

tion, the standardized random variable Z !
(X " ()/) will have a standard elliptical (often
called spherical) distribution function

FZ# z$ ! c *
"-

z

g#
1

2
u2$du,

with mean 0 and variance

)Z
2

! 2c *
0

-

u2g#
1

2
u2$du ! "16#0$,

if condition (13) holds. Furthermore, if the gen-
erator of the elliptical family is chosen such that
condition (15) holds, then )Z

2 ! 1.
Define the function

60 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 7, NUMBER 4



G# x$ ! c *
0

x

g#u$du, (21)

which we call the cumulative generator. This

function G plays an important role in our deriva-

tion of tail conditional expectations for the class

of elliptical distributions. Note that condition

(12), which guarantees the existence of the ex-

pectation, can equivalently be expressed as

G#-$ ' -.

Define

G! # x$ ! G#-$ # G# x$.

Theorem 1

Let X 2 E1((, )2, g) and G be the cumulative
generator defined in equation (21). Under condition
(12), the tail conditional expectation of X is given by

TCEX# xq$ ! ( $ & ! )2, (22)

where & is expressed as

& !

1

)
G! #1

2
zq

2$
F! X# xq$

!

1

)
G! #1

2
zq

2$
F! Z# zq$

(23)

and zq ! (xq " ()/). Moreover, if the variance of
X exists, or equivalently if equation (13) holds,
then (1/)Z

2)G! (
1

2
z2) is a density of another spheri-

cal random variable Z* and & has the form

Figure 1

Comparing Bivariate Densities for Some Well-Known Elliptical Distributions

61TAIL CONDITIONAL EXPECTATIONS FOR ELLIPTICAL DISTRIBUTIONS



& !

1

)
fZ*# zq$

F! Z# zq$
)Z

2. (24)

PROOF

Note that

TCEX#xq$ !
1

F! X#xq$
*

xq

-

x !

c

)
g(12 ##x # ($/)$2) dx

and, by letting z ! (x " ()/), we have

TCEX# xq$

!
1

F! X# xq$
*

zq

-

c#( $ )z$ g#1

2
z2$dz

!
1

F! X# xq$ ((F! X# xq$ $ c) *
zq

-

zg#1

2
z2$dz) ,

! ( $ & ! )2,

where

& !
1

F! X# xq$
!

c

) *
#1/ 2$ zq

2

-

g#u$ du !

1

)
G! #1

2
zq

2$
F! Z# zq$

,

which proves the result in equation (23).
Now to prove equation (24), suppose condition

(13) holds; that is, the variance of X exists and

1

2
)Z

2
! c *

0

-

z2g#
1

2
z2$ dz ! *

0

-

zdG#
1

2
z2$ ' -.

Then, [G(
1

2
z2)/G(-)] ! FZ̃(z) is a distribution

function of some random variable Z̃ with expec-
tation given by

E#Z̃$ !
1

G#-$ *
0

-

zdG#1
2

z2$ ! *
0

- (1 #

G#
1

2
z2$

G#-$
) dz

!
1

2
)Z

2
1

G#-$
, -.

Consequently,

*
0

-

G! #
1

2
z2$ dz !

1

2
)Z

2

and (1/)Z
2)G! (

1

2
z2) ! fZ*( z) is a density of

some symmetric random variable Z*, defined

on R. e

It is clear that equation (22) generalizes the tail

conditional expectation formula derived by Pan-

jer (2002) for the class of normal distributions to

the larger class of univariate symmetric distribu-

tions. We now illustrate Theorem 1 by consider-

ing examples for some well-known symmetric dis-

tributions, which include the normal distribution.

For the normal distribution, we exactly replicate

the formula developed by Panjer (2002).

1. Normal distribution. Let X 2 N((, )2) so

that the function in equation (20) has the form

g(u) ! exp("u). Therefore,

G#x$ ! c *
0

x

g#u$ du ! c *
0

x

e"u du ! c#1 # e"x$

and

1

)
G! #12 zq

2$ !
c

)
exp#" 1

2
zq

2$! c

)
'25*#zq$

!
1

)
*#zq$,

where it is well-known that the normalizing

constant is c ! (825)"1. Thus, for the normal

distribution, we find )Z
2 ! 1 and

& !

1

)
*#zq$

1 # +#zq$
, (25)

where *" and +" denote the density and

distribution functions, respectively, of a

standard normal distribution. Notice that Z*

in Theorem 1 is simply the standard normal

variable Z.

2. Student-t distribution. Let X belong to the

univariate student-t family with a density gen-

erator expressed as in equation (17) so that

G#x$ ! cp *
0

x

g#u$ du ! cp *
0

x #1 $
u

kp
$"p

du

! cp

kp

p # 1 (1 # #1 $
x

kp
$1"p), p / 1,

Here we denote the normalizing constant by cp

with the subscript p to emphasize that it de-

pends on the parameter p. Recall from Section

2.2 that cp can be expressed as
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cp !
4#p$

'2kp 4#1/2$4#p # 1/2$

!
4#p$

'25kp 4#p # 1/2$
. (26)

Note that the case where p ! 1 gives the

Cauchy distribution for which the mean does

not exist and, therefore, its TCE also does

not exist. Now considering the case only

where p / 1; we get

1

)
G! #1

2
zq

2$!
cp

)

kp

p # 1
#1 $

zq
2

2kp
$"p.1

. (27)

• Classical student-t distribution. Putting

p ! (m . 1)/2 and kp ! m/2, m ! 1, 2, 3, . . . ,

we obtain the univariate student-t distribu-

tion with m degrees of freedom (cf. equation

18). Then for m / 2, we obtain from equation

(27) that

& !

1

) ' m

m # 2
fZ#' m # 2

m
zq; m # 2$

F! Z#zq; m$
,

where fZ(!; m) denotes the density of a stan-

dardized classical student-t distribution with

m degrees of freedom. If m ! 2, the variance

does not exist and we have

& !

1

)

1

'2
fZ# 1

'2
zq; 1/2$

F! Z#zq; 2$
,

where

fZ#x; 1/2$ !
1

#1 $ x2$1/2 ,

which we note is not a density. The case

where m ! 1 represents the Cauchy distri-

bution for which its TCE does not exist.

• Generalized student-t distribution. For

comparing student-t distributions with differ-

ent power parameters p, it is more natural to

have a choice of the normalized coefficient kp

that leads to equal variances. The GST family

has

kp ! .
2p # 3

2
, if p " 3/2

1

2
, if 1/2 ' p % 3/2

. (28)

In the case where p / 3/2, the variance of X

exists and is equal to Var(X) ! )2, that is, )Z
2

! 1 (see Section 2.2). In the case where 1/2 ,
p % 3/2, the variance does not exist and one
can put kp ! 1/2. In Landsman and Makov
(1999) and Landsman (2002), credibility for-
mulas were examined for this family. Figure 2
shows some density functions for the gener-
alized student-t distributions with different
parameter values of p. The values of ( and )
are chosen to be 0 and 1, respectively. The
smoothed curve in the figure corresponds to
the case of the standard normal distribution.
From equation (27), we have

1

)
G! #1

2
zq

2$ !
1

)

cp

cp"1

kp

#p # 1$

! fZ#'kp"1

kp

zq; p # 1$ , (29)

where fZ(!; p) denotes the density of a stan-
dardized GST with parameter p, and
kp"1 ! 1/2, cp"1 ! 1/82kp"1 ! 1 when
0 , p " 1 % 1/2. For p / 3/2 (the variance
of X exists) from equation (26), it follows
that

cp

cp"1

!
4#p$4#p # 3/2$

4#p # 1/2$4#p # 1$ 'kp"1

kp

!
#p # 1$

#p # 3/2$ 'kp"1

kp

, (30)

and then, from equations (29), (30), and
(28),

1

)
G! #1

2
zq

2$!
1

)
! 'kp"1

kp

fZ#'kp"1

kp

zq; p # 1$. (31)

Moreover, when p / 5/2, p " 1 / 3/2, so that
we can re-express equation (31) as follows:

1

)
G! #1

2
zq

2$ !
1

)
! '2p # 5

2p # 3
fZ#'2p # 5

2p # 3
zq; p # 1$.

Thus, we have

& !

1

) '2p # 5

2p # 3
! fZ#'2p # 5

2p # 3
zq; p # 1$

F! Z#zq; p$
(32)

and Z* is simply a scaled standardized GST
with parameter p " 1. Notice that (see, e.g.,
Landsman and Makov 1999) when p3 -, the
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GST distribution tends to the normal distri-
bution. It is clear from equation (32) that &
will tend to that of the normal distribution in
equation (25).

For 3/2 , p % 5/2, 1/2 , p " 1 % 3/2, and
taking into account equation (28), we have

kp"1

kp

!
1

2p # 3
,

and

& !

1

) ' 1

2p # 3
! fZ#' 1

2p # 3
zq; p # 1$

F! Z#zq; p$
.

Now, considering the case where 1 , p %

3/2, we have 0 , p " 1 % 1/2, (kp"1/kp) !
1 and, therefore,

& !

1

)
fZ#zq; p # 1$

F! Z#zq; p$
.

Notice that, in this case, fZ(zq; p " 1)
preserves the form of the density for GST,
but it is not a density function because

7"-
- fZ(x; p " 1) dx diverges. In Figure 3,

we provide a graph relating & and the pa-
rameter p, for p / 1, and q ! 0.95, for the
GST distribution. The dotted line in the
figure is the limiting case (p 3 -), which is
exactly that of the normal distribution.

3. Logistic distribution. As earlier described,
for this class of distribution, the density gen-
erator has the form g(u) ! [e"u/(1 . e"u)2].
Therefore,

G#x$ ! c *
0

x e"u

#1 $ e"u$2 du ! c9#1 $ e"x$"1
# 1/2:,

where it can be verified that the normalizing
constant c ! 1/2. Thus,

1

)
G! #1

2
zq

2$ !
1

2)
91 # #1 $ e"#1/ 2$ zq

2

$"1:

!
1

2)

1

'25 e"#1/2$zq
2

1

'25
$

1

'25
e # #1/2$zq

2

Figure 2

Density Functions for the Generalized Student-t Distribution

64 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 7, NUMBER 4



!
1

2

1

)
*# zq$

#'25$ # 1
$ *# zq$

,

where *" is the density of a standard normal

distribution. Therefore, for a logistic random

variable, we have the expression for &:

& ! (1

2

1

#'25$"1
$ *#zq$

)
1

)
*#zq$

F! Z#zq$
,

which resembles that for a normal distribu-

tion but with a correction factor.

4. Exponential power distribution. For

an exponential power distribution with a

density generator of the form g(u) !

exp("rus) for some r, s / 0, we have

G#x$ ! c *
0

x

e"rus

du

! c#sr1/s$ # 1*
0

rxs

w1/s # 1e # w dw

! c#sr1/s$ # 14#rxs;1/s$,

where

4#z; 1/s$ ! *
0

z

w1/s"1e"w dw (33)

denotes the incomplete gamma function.

One can determine the normalizing constant

to be

c !
sr1/#2s$

'2 4#1/#2s$$
(34)

by a straightforward integration of the den-

sity function. In effect, we have

1

)
G! #12 zq

2$
!('2r1/s 4(1/(2s)))]"1,4(1/s)"4(r#1

2
zq

2$ s

;1/s)-
and

& !
1

F! Z#zq$

1

'2r1/s 4(1/(2s)))

,4(1/s) " 4(r#12 zq
2$s

; 1/s)-. (35)

Figure 3

The Relationship between % and the Parameter p for the GST distribution
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It is clear that, when s ! 1 and r ! 1, the
density generator for the exponential power
reduces to that of a normal distribution.
From equation (34), it follows that c !
(825)"1, and from equation (35), it follows
that

& !
1

1 # +#zq$
#'25$"1(1 # 4#12 zq

2; 1$)
!

1

1 # +# zq$
#'25$"191 # #1 # e"#1/2$zq

2
$:

!

1

)
*# zq$

1 # +# zq$
,

which is exactly that of a normal distribution.
The Laplace or double exponential distribu-
tion is another special case belonging to the
exponential power family. In this case, s ! 1/2
and r ! 82. From equation (35), it follows
that

& !
1

F! Z#zq$

1

2)
94#2$ # 4#!zq!; 2$:

!
1

F! Z#zq$

1

2) #1 # *
0

!zq!

we"w dw$
!

1

F! Z#zq$

1

2)
e"!zq!#1 $ !zq!$

! 2
1

F! Z#zq$

1

)
fZ*#zq$,

where fZ*(z) !
1

2
fZ(z)(1 . !z!) !

1

4
e"!z!(1 . !z!)

is density of the new random variable Z*, and
)Z

2 ! 2 is a variance of standard double expo-
nential distribution that well confirms with
equation (24).

4. TCE AND MULTIVARIATE ELLIPTICAL

DISTRIBUTIONS

Let X ! (X1, X2, . . . , Xn)T be a multivariate ellip-
tical vector, that is, X 2 En(", #, gn). Denote the
(i, j) element of # by )ij so that # ! /)ij/ i, j!1

n .
Moreover, let

FZ# z$ ! c1 *
0

z

g1#
1

2
x2$ dx

be the standard one-dimensional distribution func-
tion corresponding to this elliptical family and

G# x$ ! c1 *
0

x

g1#u$ du (36)

be its cumulative generator. From Theorem 1 and
equation (10), we observe immediately that the
formula for computing TCEs for each component
of the vector X can be expressed as

TCEXk
# xq$ ! (k $ &k ! )k

2,

where

&k !

1

)k

G! #1

2
zk,q

2 $
F! Z# zk,q$

and zk,q !
xq # (k

)k

,

or

&k !

1

)k

fZ*# zq$

F! Z# zq$
)Z

2,

if )Z
2 , -.

4.1 Sums of Elliptical Risks

Suppose X 2 En(", #, gn) and e ! (1, 1, . . . , 1)T

is the vector of ones with dimension n. Define

S ! X1 $ · · · $ Xn ! &
k!1

n

Xk ! eTX, (37)

which is the sum of elliptical risks. We now state
a theorem for finding the TCE for this sum.

Theorem 2

The TCE of S can be expressed as

TCES#sq$ ! (S $ &S ! )S
2 (38)

where (S ! eT" ! ¥k!1
n (k, )S

2 ! eT#e ! ¥i, j!1
n

)ij and

&S !

1

)S

G! #1

2
zs,q

2 $
F! Z# zS,q$

, (39)

with zS,q ! (sq " (S)/)S. If the covariance matrix of
X exists, &S can be represented by equation (24).
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PROOF

It follows immediately from equation (11) that
S 2 En(eT", eT#e, g1), and the result follows
using Theorem 1. e

4.2 Portfolio Risk Decomposition
with TCE

When uncertainty is attributable to different sources,
it is often natural to ask how to decompose the total
level of uncertainty from these sources. Frees
(1998) suggested methods for quantifying the de-
gree of importance of various sources of uncertainty
for insurance systems. In particular, he showed the
effectiveness of the use of a coefficient of determi-
nation in such decompositions and applied it in
situations involving risk exchanges and risk pooling.

For our purposes, suppose that the total loss or
claim is expressed as in equation (37), where one
can think of each Xk as the claim arising from a
particular line of business or product line, in the
case of insurance, or the loss resulting from a
financial instrument or a portfolio of investments.
As noticed by Panjer (2002), from the additivity
of expectation, the TCE allows for a natural de-
composition of the total loss:

TCES#sq$ ! &
k!1

n

E#Xk!S " sq$. (40)

Note that this is not equivalent in general to the
sum of the TCEs of the individual components.
This is because

TCEXk
#sq$ ( E#Xk!S " sq$.

Instead, we denote this as

TCEXk!S#sq$ ! E#Xk!S " sq$,

the contribution to the total risk attributable to risk
k. It can be interpreted as follows: In the case of a
disaster as measured by an amount at least as large
as the quantile of the total loss distribution, this
refers to the average amount that would be due to
the presence of risk k. Panjer (2002) obtained im-
portant results for this decomposition in the case
where the risks have a multivariate normal distri-
bution. In this paper, we extend his results for the
more general multivariate elliptical class to which
the multivariate normal family belongs.

To develop the formula for decomposition, first,
we need the following two lemmas.

Lemma 1

Let X 2 En(", #, gn). Then for 1 % k % n, the
vector Xk,S ! (Xk, S)T has an elliptical distribu-
tion with the same generator, that is, Xk,S 2
E2("k,S, #k,S, g2), where "k,S ! ((k, ¥j!1

n (j)
T,

#k,S ! #)k
2 )kS

)kS )S
2 $,

and )k
2 ! )kk, )kS ! ¥j!1

n )kj, )S
2 ! ¥i, j!1

n )ij.

PROOF

Define the matrix A as

A ! #0 0 · · · 1 · · · 0 0
1 1 · · · 1 · · · 1 1$,

which consists of 0’s in the first row, except the
k-th column which has a value of 1, and all of 1’s
in the second row. Thus, it is clear that

AX ! #Xk, S$T
! Xk,S.

It follows from equation (9) that

AX + E2#A", A#AT, g2$

where its mean vector is

"k,S ! A" ! #(k, &
j!1

n

(j$T

and its variance-covariance structure is

#k,S ! A#AT
! " )k

2 &
j!1

n

)kj

&
j!1

n

)kj )S
2 %.

Thus, we see that Xk,S 2 E2("k,S, #k,S, g2). e

Lemma 2

Let Y ! (Y1, Y2)T 2 E2(", #, g2) such that con-
dition (12) holds. Then

TCEY1!Y2
# yq$ ! E#Y1!Y2 " yq$

! (1 $ &2 ! )1)2=12,

where

&2 !

1

)2

G! #1

2
z2,q

2 $
F! Z# z2,q$

and =12 ! ()12/)1)2), )1 ! 8)11, )2 ! 8)22, and
z2,q ! (yq " (2/)2).
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PROOF

First note that, by definition, and from equation
(6), we have

E#Y1!Y2 " yq$ !
1

F! Y2
#yq$

*
"-

- *
yq

-

y1 fY#y1, y2$ dy2dy1

!
1

F! Z# z2,q$
*

"-

- *
yq

-

y1

c2

'!#!

) g2(12 #y # "$T#"1#y # "$) dy2dy1

!
1

F! Z# z2,q$
) I, (41)

where I is the double integral in equation (41). In
the bivariate case, we have

!#! ! 0)1
2 )12

)12 )2
2 0 ! #1 # =12

2 $)1
2)2

2

and

#y # "$T#"1#y # "$ !
1

#1 # =12
2 $ (#y1 # (1

)1
$2

# 2=12#y1 # (1

)1
$#y2 # (2

)2
$ $ #y2 # (2

)2
$2)

!
1

#1 # =12
2 $ ,(#y1 # (1

)1
$ # =12#y2 # (2

)2
$)2

$ #1 # =12
2 $#y2 # (2

)2
$2-.

Using the transformations z1 ! (y1 " (1)/)1 and
z2 ! (y2 " (2)/)2, and the property that the
marginal distributions of multivariate elliptical
distribution are again elliptical distributions with
the same generator, we have

I !
c2

'1 # =12
2 *

z2,q

- *
"-

-

) #(1 $ )1z1$ g2(1

2

# z1 # =12z2$
2

#1 # =12
2 $

$
1

2
z2

2)dz1dz2

! (1F! Z# z2,q$ $ )1I6, (42)

where

I6 ! *
z2,q

- *
"-

-

c2

z1

'1 # =12
2

) g2(1

2

# z1 # =12z2$
2

#1 # =12
2 $

$
1

2
z2

2)dz1dz2

is the double integral in the second term of the
previous equation. After transformation z6 !
(z1 " =12z2)/81 " =12

2 we get

I6 ! '1 # =12
2 *

z2,q

- *
"-

-

c2#z6 $
=12z2

'1 # =12
2 $

) g2(1

2
# z62

$ z2
2$) dz6dz2. (43)

By noticing that the integral of odd function

*
"-

-

z6c2g29
1

2
# z62

$ z2
2$: dz6 ! 0,

and again using the property of the marginal el-
liptical distribution, giving

*
"-

-

c2g29
1

2
# z62

$ z2
2$: dz6 ! c1g1#

1

2
z2

2$,

we have in equation (43)

I6 ! *
z2,q

-

=12z2c1g1#1

2
z2

2$ dz2

! =12 *
#1/ 2$ z2,q

2

-

c1g1#u$ du

! =12)2

1

)2

G! #1

2
z2,q

2 $ , (44)

and the result in the theorem then immediately
follows from equations (41), (42), and (44). e

Using these two lemmas, we obtain the follow-
ing result.

Theorem 3

Let X ! (X1, X2, . . . , Xn)T 2 En(", #, gn) such
that condition (12) holds, and let S ! X1 . . . . .
Xn. Then the contribution of risk Xk, 1 % k % n,
to the total TCE can be expressed as
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TCEXk!S#sq$ ! (k $ &S ! )k)S=k,S, (45)

for k ! 1, 2, . . . , n,

where =k,S ! ()k,S/)k)S), and &S is the same as in
Theorem 2.

PROOF

The result immediately follows from Lemma 2 by
simply putting Y ! (Xk, S)T and using Lemma 1.e

Let us observe that, at the same time, matrix #
coincides with the covariance matrix up to a con-
stant (see equation 14). The index

=ij !
)ij

')ii ')jj

,

defined as the ratio of elements of matrix #, is
really a correlation coefficient between Xi and Xj.
The same can be said about =k,S.

Notice that, if we take the sum of TCEXk!S(sq) in
equation (45), we have

&
k!1

n

TCEXk!S#sq$ ! &
k!1

n

(k $ &S &
k!1

n

)k)S=k,S

! (S $ &S &
k!1

n

)k,S

! (S $ &S ! )S
2,

because, from Lemma 1, we get that

&
k!1

n

)k,S ! &
k!1

n

&
j!1

n

)kj ! )S
2,

which gives the result for the TCE of a sum of
elliptical risks, as given in equation (38). It was
demonstrated in Panjer (2002) that, in the case of
a multivariate normal random vector, that is, X 2
Nn(", #), we have

E#Xk!S " sq$ ! (k $ "
1

)S

*#sq # (S

)S
$

1 # +#sq # (S

)S
$%

) )k
2#1 $ =k,"k

)"k

)k
$, (46)

where Panjer used the negative subscript "k to
refer to the sum of all the risks excluding the k-th

risk; that is, S"k ! S " Xk. Therefore, according
to this notation, we have

=k,"k

)"k

)k

!
)k,"k

)k)"k

)"k

)k

!
)k,"k

)k
2

!
Cov#Xk, S # Xk$

)k
2 !

)k,S

)k
2 # 1.

Thus, the formula in equation (46) becomes

E#Xk!S " sq$ ! (k $ "
1

)S

*#sq # (S

)S
$

1 # +#sq # (S

)S
$%)k)S=k,S,

which equation (45) gives in the case of multivar-
iate normal distributions. Consequently, equa-
tion (45) generalizes equation (46) for the class of
elliptical distributions.

5. CONCLUSION

In this paper, we have developed an appealing
way to characterize the TCEs for elliptical dis-
tributions. In the univariate case, the class of
elliptical distributions consists of the class of
symmetric distributions, which include familiar
distributions like normal and student-t. This
class can easily be extended into the multivar-
iate framework by simply characterizing distri-
butions either in terms of the characteristic
generator or the density generator.

This paper studied this class of multidimen-
sional distributions rather extensively to allow
the reader to understand them more thor-
oughly, particularly since many of the proper-
ties of the multivariate normal are shared by
this larger class. Thus, those wishing to use
multivariate elliptical distributions in their
practical work may find this paper self-con-
tained.

Furthermore, this paper defines the cumula-
tive generator resulting from the definition of
the density generator, and uses this generator
quite extensively to generate formulas for
TCEs. We also know that TCEs naturally permit
a decomposition of this expectation into indi-
vidual components consisting of the individual
risks making up the multivariate random vec-
tor.
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We extended TCE formulas developed for the

univariate case into the case where there are

several risks, which, when taken together, be-

have like an elliptical random vector. We fur-

ther extended the results into the case where

we then decompose the TCEs into individual

components making up the sum of the risks. We

are able to verify, using the results developed in

this paper, the formulas that were investigated

and developed by Panjer (2002) in the case of

the multivariate normal distribution.

APPENDIX

In this appendix, we prove equation (8); that is,

the normalizing constant in the density of a mul-

tivariate elliptical random variable can be ex-

pressed as

cn !
4#n/ 2$

#25$n/ 2 (*
0

-

xn/ 2"1gn# x$ dx)"1

.

We prove this by transformation from the rectan-

gular to polar coordinates in several dimensions.

This is not common knowledge to actuaries and this

procedure is not readily available in calculus text-

books. The polar transformation considered in what

follows has been suggested by Anderson (1984).

The transformation from rectangular to polar coor-

dinates in several dimensions is the following:

x1 ! r sin >1

x2 ! r cos >1 sin >2

x3 ! r cos >1 cos >2 sin >3

· · ·
· · ·
xn"1 ! r cos >1 cos >2 · · · cos >n"2 sin >n"1

xn ! r cos >1 cos >2 · · · cos >n"2 cos >n"1,

where "5/2 , >k % 5/2 for k ! 1, 2, . . . , n " 2,

and "5 , >n"1 % 5. It can be shown that

xTx ! &
k!1

n

xk
2

! r2

and that the Jacobian of the transformation is

!J! ! 0 ?# x1, . . . , xn$

?#>1, . . . , >n"1, r$
0

! rn"1 cosn"2 >1 cosn"3 >2 · · · cos >n"2.

Thus, for the density in equation (6) to be valid, it
must integrate to 1. Without loss of generality, we
consider the case where " ! 0 and # ! In (the
identity matrix). Therefore,

*
"-

- *
"-

-

· · · *
"-

-

fX#x$ dx

! *
"-

- *
"-

-

· · · *
"-

-

cngn#
1

2
xTx$ dx

! cn *
"5/ 2

5/ 2

· · · *
"5

5 *
0

-

rn"1 cosn"2 >1 cosn"3 >2

· · · cos >n"2gn#
1

2
r2$ d>1 · · · d>n"1dr

! cn ! 1
k!1

n"2 *
"5/ 2

5/ 2

(cos >k)
n"#k.1$ d>k ! *

"5

5

d>n"1

) *
0

-

rn"1gn#
1

2
r2$ dr.

By letting u ! cos2 >k so that du ! 2 cos >k sin
>kd>k and recognizing that we get a beta function,
it can be shown that

*
"5/ 2

5/ 2

(cos >k)
n"k"1 d>k !

49
1

2
#n # k$:4#

1

2
$

49
1

2
#n # k $ 1$:

!

49
1

2
#n # k$:'5

49
1

2
#n # k $ 1$:

.

Furthermore, we have

*
0

-

rn"1gn#
1

2
r2$ dr ! *

0

-

9#2x$1/ 2:n"2gn# x$ dx

! 2n/ 2"1 *
0

-

xn/ 2"1gn# x$ dx.
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Finally, we have

cn ! , 1
k!1

n"2 49
1

2
#n # k$:'5

49
1

2
#n # k $ 1$:

! 25

! 2n/ 2"1 *
0

-

xn/ 2"1gn# x$ dx-"1

! (4#1$5n/ 2"1

4#n/2$
! 25 ! 2n/ 2"1 *

0

-

xn/ 2"1gn#x$ dx)"1

! ( #25$n/ 2

4#n/ 2$ *
0

-

xn/ 2"1gn# x$ dx)"1

,

and the desired result follows immediately.
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every time. Hence, understanding when one ap-
proach should be preferred to the other is an
important and interesting area of research. Bra-
zauskas and Kaiser (2004) have made a first and
very important step in addressing the issues in
the context of risk measures in actuarial science.

The parametric approach requires the re-
searcher to have sufficient confidence in the cho-
sen parametric form of the population distribu-
tion function F, and there are many of these
forms to choose from (cf., e.g., Kleiber and Kotz
2003). When facing this challenge, one might
wonder if the nonparametric approach would be
applicable. The answer naturally depends on the
sample size n. In turn, determining whether the
sample size is sufficiently large depends on the tails
of the population distribution F and on the dis-
tortion function g or, more specifically, on the
distortion parameter r (cf., e.g., the table on p. 50
in Jones and Zitikis 2003).

Brazauskas and Kaiser (2004) have done foun-
dational research toward a better understanding
of the relationship between the sample size n, the
distortion parameter r, and the distribution func-
tion F. For example, they argue that, for a certain
class of distribution functions, if the distortion
parameter r is at least 0.85, then the sample size
n should at least be 500. Naturally, for smaller
values of r one needs to have larger sample sizes
to achieve reliable statistical inferential results.
Indeed, the smaller the distortion parameter r is,
the more distorted the distribution function F
becomes in the sense that its tails are made
heavier. It would certainly be of theoretical and
practical interest to obtain a (guiding) formula for
choosing n depending on the value of r, along the
lines of the suggestion “if r ! 0.85, then n ! 500”

by Brazauskas and Kaiser (2004). This is impor-
tant and interesting. Indeed, in the automobile
insurance business, for example, we would expect
to have sample sizes well beyond a million or
several millions. This would allow the researcher
to use smaller than, say, r ! 0.85 values of the
distortion parameter and still have reliable statis-
tical inferential results using the nonparametric
approach suggested by Jones and Zitikis (2003).
If, however, the formula relating the values of r
and n would, for a desired value of r, suggest a
larger than practically available sample size n,
then the parametric approach should be em-
ployed.
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“Tail Conditional Expectations
for Elliptical Distributions,”
Zinoviy M. Landsman and
Emiliano A. Valdez, October 2003

MARTIN BILODEAU*

1. INTRODUCTION

Artzner et al. (1999) introduced tail conditional
expectations (TCEs) for actuarial applications as
a measure of right-tail risk or expected worse
losses. For a portfolio of correlated risks, Panjer
(2001) examined the allocation of the k-th risk to
the aggregated risks in the case where the risks
are jointly multivariate normal. Landsman and
Valdez (2003) developed expressions similar to
those of Panjer (2001) for the richer class of
elliptical distributions that contains the normal
distribution. The authors should be congratulated
for bringing elliptical distributions forward as a
tool for modeling TCEs. The discussion will point
out some limitations and difficulties associated
with elliptical distributions for modeling TCEs. It
will also show that the statistical estimation of
TCE expressions is not a trivial problem. I will use
the same notations as the authors.

2. LIMITATIONS OF ELLIPTICAL

DISTRIBUTIONS FOR TCES

2.1 Equal Kurtosis

The extension of Landsman and Valdez (2003) is
a compromise between flexibility and parsimony

* Martin Bilodeau, Ph.D., A.S.A., is in the Département de mathé-

matiques et de statistique of the Université de Montréal, C.P.

6128, Succursale Centre-ville, Montréal, Canada H3C 3J7, e-mail:

bilodeau@dms.umontreal.ca.
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of the model. It offers more flexibility than the
normal family of distributions while maintaining
simplicity of the model. This class, however, is
still not rich enough to model aggregated risks
where the individual risks may have different tail
behavior. This holds since all marginal distribu-
tions of a multivariate elliptical distribution have
the same kurtosis (see Muirhead 1982).

2.2 Inconsistency of Some Elliptical
Families

A difficulty encountered with the evaluation of
aggregated-risk TCEs is the inconsistency of sev-
eral elliptical distributions (see Kano 1994). An
elliptical distribution is just a spherical distribu-
tion that is rescaled and then relocated; so the
inconsistency can be presented in terms of spher-
ical distributions. Some spherical distributions
are consistent. For example, if the n-vector X is
distributed as Nn(0, I), then the marginal X1 has
an N(0, 1) distribution. Similarly, if X is distrib-
uted as a classical Student’s tn(0, I, ") on " de-
grees of freedom, then X1 has a t1(0, 1, ") dis-
tribution. Generally a family possesses the
consistency property if and only if

!
#$

$

cn%1gn%1 " #
j!1

n%1

xj
2$dxn%1 " cngn " #

j!1

n

xj
2$ .

However, if X belongs to the multivariate logistic
family

fX& x' " cn

exp&#
1

2
x!x'

(1 # exp&#
1

2
x!x')2

,

then the density of X1 is not

fX1
&u' " c1

exp&#
1

2
u2'

(1 # exp&#
1

2
u2')2

.

The same type of inconsistency holds for the
multivariate power exponential family

fX& x' " cn exp(#
1

2
&x!x's)

for which, in particular for s ! 0.5, E[X1
2] ! 4(n %

1). This implies the rather odd fact that the dis-
tribution of any marginal loss depends on the
number of losses considered in the portfolio.

The multivariate logistic and power exponential
families have a generating function gn! unre-
lated to n. The only consistent spherical distri-
bution with gn unrelated to n is the normal
distribution.

Kano (1994) also showed that the absolutely
continuous elliptical distributions that are consis-
tent are the scale mixtures of normal distribu-
tions with a mixing distribution F! unrelated to
the dimension n. Such distributions are always
leptokurtic (heavier tail than normal) like the
Student’s t-distribution. Fortunately the lepto-
kurtic distributions are the most widely used in
applications. Stable laws with characteristic func-
tion *(t!t) ! exp[+(t!t)s/2] with + , 0, 0 , s $ 2,
whose functional form is unrelated to n, are also
consistent. The case s ! 2 is the normal law, and
s ! 1 corresponds to the Cauchy law.

In terms of TCEs, if X follows an En[-, ., gn] dis-
tribution representing the joint density of n correlated
losses, evaluations of aggregated risks TCES(sq) and
individual components TCEXk%S(sq) necessitate
the marginal spherical density c1g1(

1

2
x2). This

marginal density is trivial to obtain only for con-
sistent elliptical distributions. Finally, I would
like to stress that the formulas developed by
the authors do not exclude the use of an incon-
sistent family. However, the use of an inconsis-
tent family may be questionable. Moreover it may
be difficult to find the marginal univariate density
for X1.

2.3 Statistical Estimation

The TCE formulas developed by the authors de-
pend on the unknown location parameter - and
scatter parameter .. The problem of their statis-
tical estimation remains. The discussion now
moves toward statistical estimation of the pro-
posed models. TCES(sq) and individual compo-
nents TCEXk%S(sq) are functions, say, h(-, .), of
the unknown parameters. Based on an indepen-
dent and identically distributed (iid) sample of
size N of correlated losses, the unknown param-
eters are estimated, and the plug-in estimate
h(-̂, .̂) can be obtained. Which estimator of
the unknown parameters should be used? How
can we produce standard errors for construct-
ing confidence intervals for TCEs? The frame-
work for estimation proposed here will be gen-
eral to encompass unbiased estimators,
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elliptical maximum likelihood estimators, and
affine invariant robust estimators.

3. FRAMEWORK FOR ESTIMATION

Let Xi ! (Xi1, . . . , Xin)!, i ! 1, . . . , N, be an iid
sample from the En[-, ., gn] distribution. When
second moments exist, the covariance is neces-
sarily given by cov(Xi) ! /., for some constant /.
The estimators -̂ and .̂ will be assumed asymp-
totically independent with normal asymptotic
distributions

&N &-̂ % -' ¡
d

Nn&0, 0.', (1)

&N &vec&.̂' % vec&.'' ¡
d

Nn2&0, 11&I # Kn'&. " .'

# 12vec&.'(vec&.')!', (2)

for some constants 0, 11, and 12. The vec of a
matrix is obtained by stacking into a vector the
columns of the matrix. The matrix Kn is the com-
mutation matrix (see Magnus and Neudecker
1979), and R is the usual Kronecker product of
matrices. The scalars 0, 11, and 12 can be com-
puted for a given elliptical distribution.

3.1 Unbiased Estimators

The usual unbiased estimators are the sample
mean and sample covariance matrix

X" "

#i!1
N Xi

N
,

S "

#i!1
N &Xi % X" '&Xi % X" '!

N % 1
.

If the underlying distribution is non-normal but
elliptical, the simple estimators -̂ ! X" and .̂ !
/#1S can be used. Their asymptotic distribution,
assuming finite fourth-order moments, can be
found in Muirhead (1982) or Bilodeau (1999).
They are of the form (1) and (2) with 0 ! /, 11 !
1 % 2, and 12 ! 2. The scalar 2 is a kurtosis
parameter. In particular, the normal distribution
has / ! 1 and 2 ! 0, whereas for the multivariate
Student t on " degrees of freedom, / ! "/(" # 2)
and 2 ! 2/(" # 4). However, if the underlying
distribution is elliptical but non-normal, the use

of these simple unbiased estimators will not be
very efficient.

3.2 Elliptical Maximum Likelihood
Estimators

A more efficient alternative is to use the maxi-
mum likelihood estimator (MLE) for the particu-
lar elliptical distribution. Kent and Tyler (1991)
obtained conditions for the existence and unic-
ity of the MLE for a given elliptical distribu-
tion. They also give a fixed-point algorithm that
converges to the unique solution. Let u(s) !
#g3n(s/2)/gn(s/2) and *(s) ! su(s). Start with ar-
bitrary initial values -(0) and .(0). The iterative
equations

-&m%1'
"

ave(u&si
&m''Xi)

ave(u&si
&m'')

,

.&m%1'
" ave(u&si

&m''&Xi % -&m''&Xi % -&m''!),

m ! 0, 1, 2, . . . , where

si
&m'

" &Xi % -&m''!&.&m''#1&Xi % -&m''

is the squared Mahalanobis distance between Xi

and the location -(m), converge to the MLE. The
notation ave[!] means averaging over i ! 1, . . . ,
N. The asymptotic distributions are again of the
form (1) and (2) with

0 "

n

E(su2&s')
,

11 "

n&n # 2'

E(*2&s')
,

12 "

#211&1 % 11'

2 # n&1 % 11'
,

and where s has density

4n/ 2sn/ 2#1cngn&s/ 2'

5&n/ 2'
, s & 0.

This is, in fact, the density of the squared ra-
dius of the underlying spherical distribution. A
detailed derivation of the asymptotic distribution
can also be found in Bilodeau (1999). The expres-
sion for u(s) was adapted to fit the definition of
elliptical distribution of Landsman and Valdez
(2003). The elliptical MLE, while being very effi-
cient, is not robust to outliers.
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3.3 Robust Estimators

If it is suspected that the database contains out-
lying observed vectors of correlated losses, and
that inference is geared toward finding TCEs for
the majority of the data, excluding the outliers,
then high-breakdown robust estimation may offer
an attractive solution. Depending on the software
used, the possibilities for robust estimation are
numerous. An excellent survey of robust methods
can be found in Rousseeuw and Leroy (1987).
Examples of affine invariant robust estimators are
the M estimator, S estimator, and minimum co-
variance determinant estimator. Their asymp-
totic distributions all share the same form (1) and
(2). Other affine invariant robust estimators, such
as the minimum volume ellipsoid estimator, exist
that are not asymptotically normal (see Davies
1992). Thus, care should be taken in the choice of
a robust estimator.

4. ASYMPTOTIC VARIANCE OF THE

ESTIMATOR OF TCES

Aggregated-risk TCES(sq) and individual-com-
ponent TCEXk%S(sq) are smooth functions, say,
h(-, .). They are estimated by h(-̂, .̂) using one
selection of an estimator from those presented in
the previous section. Cramér’s theorem states
that

&N (h&-̂, .̂' % h&-, .') ¡
d

N&0, +2',

where

+2
" +-

2
# +.

2 .

The asymptotic variance has two terms. The first
one is due to the estimation of -,

+-
2

" " 6h

6-$!

&0.'
6h

6-
,

whereas the second one takes into account the
estimation of .,

+.
2

" 'vec"6h

6.$(
!

711&I # Kn'&. " .'

# 12 vec&.'(vec&.')!8'vec"6h

6.$(.
The complete derivations of these two terms is

technical and lengthy. It uses techniques well

known by researchers in the field of robust mul-
tivariate statistics. The reader interested in deriv-
ing the latter term should know the derivative
with respect to a symmetric matrix (see Srivas-
tava and Khatri 1979, p. 37),

6h

6.
" "1

2
&1 # 9ij'

6h

61ij
$ .

It contains the elements of the usual gradient
corrected for symmetry because the elements of
. are not functionally independent (1ij ! 1ji).
Only the final results are given here. The results
are stated in terms of the quantities

aq "

c1g1&
1

2
zS,q

2 '( zS,qF" Z& zS,q' % G" &
1

2
zS,q

2 ')

F" Z
2& zS,q'

,

bq "

c1g1&
1

2
zS,q

2 ' zS,q
2 F" Z& zS,q'

% G" &
1

2
zS,q

2 '(c1g1&
1

2
zS,q

2 ' zS,q # F" Z& zS,q')

21S
3F" Z

2& zS,q'
.

It should be remarked that the asymptotic vari-
ance +2 depends also on the unknown parameters
- and .. The plug-in estimate +̂2 can be used
to construct a (1 # /) confidence interval for
h(-, .),

h&-̂, .̂' ' z// 2

+̂

&N
,

where z//2 is the quantile of a N(0, 1) distribution.
According to Slutsky’s theorem, this confidence
interval has, at least asymptotically, the correct
coverage probability.

4.1 Asymptotic Variance of the
Estimator of TCES(sq)

The asymptotic variance of the estimator of the
aggregated-risk TCES(sq) has two variance terms,
given by

+-
2

" 0&1 # aq'
21S

2,

+.
2

" &:S # bq1S
2'21S

4&211 # 12'.

4.2 Asymptotic Variance of the
Estimator of TCEXk)S(sq)

The asymptotic variance of the estimator of the
individual-component TCEXk%S(sq) has two vari-
ance terms, given by
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+-
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2

1S
2 $ &2 # aq'( ,

+.
2

" 11(:S
2&1S

21kk # 1k,S
2 ' # 4:Sbq1S

21k,S
2

# 2bq
21k,S

2 1S
4) # 121k,S

2 &:S # bq1S
2'2.

5. A NUMERICAL EXAMPLE

The asymptotic variance expressions are illus-

trated by a simulated example. The model as-

sumed for the correlated losses is the Student’s t

on " degrees of freedom, tn(-, ., "), with n ! 3,

" ! 7, and

- " &1, 2, 3'!,

. " " 1 0.2 #0.4
0.2 1 0.7

#0.4 0.7 1
$.

The sample sizes N considered are 30, 50, 100,

and 200. The cutoff point sq ! 11 for the right-tail

was chosen arbitrarily. The simulation estimates

the exact variance of the estimator of ;N

TCES(sq) by generating 100,000 samples of each

size. The estimators of - and . used are the

simple unbiased estimators. This estimate of ex-

act variance is compared in Table 1 to the asymp-

totic variance obtained in Section 4.

When the elliptical MLE is used instead, the

asymptotic variance can be evaluated by nu-

merical integration of the expressions for 0 and

11 in Section 3.2. The asymptotic variance is

then 0.87. This gives an asymptotic relative

efficiency (ratio of asymptotic variances) of

the unbiased estimator to the elliptical MLE of

only 69%.
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AUTHORS’ REPLY

We thank Professor Martin Bilodeau for pointing
out some of the difficulties one will face when
modeling TCEs based on the elliptical distribu-
tions related to the inconsistency of some distri-
butions. His comments, as well as the important
issue of statistical inference, nicely complement
the results of our paper. We are glad to find that
he offers procedures for finding efficient estima-
tors for the class of elliptical distributions. We
therefore wish to thank him for his discussion of
our paper.

With respect to his comments about the incon-
sistency of some members of the elliptical class,
let us note that by defining the elliptical family in
terms of the characteristic generator (which does
not depend on the dimension n of the random

Table 1

Variance of the Estimator of ;N TCES(sq)

N Variance

30 1.19
50 1.21

100 1.24
200 1.25
$ 1.26
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vector, although the corresponding density gen-

erator may depend on n), one can automatically

get out of the problem of inconsistency. Further-

more, we are pleased to find the nice asymptoti-

cally effective estimators for expectations, covari-

ance matrices, and TCEs. We wish to emphasize

only that the problem becomes essentially more

complicated in the case when the covariance ma-

trix does not exist. Then, in this case, the matrix

S (using the notation of Professor Bilodeau) be-

comes an inconsistent estimator of the matrix .
(up to multiplication by any constant), although

the vector x"n remains a consistent but very inef-

fective estimator of the location vector !. In the

case where the expectations do not exist, x"n is

already an inconsistent estimator of the vector !.

In the univariate case, the problem of estimating

the location parameter - has been discussed in

Landsman and Youn (2003). Here the sample

median has been suggested as an initial value, -0,

in the iterative process of estimating -. When the

covariance matrix contains elements that are in-

finite, it appears that the problem of finding an

effective estimator of . is not well documented in

literature. However, one can suggest using the

sample quantiles as a basis for the estimation (see

Landsman 1996).

We again thank Professor Bilodeau for his dis-

cussion of the statistical estimation of TCEs and

for providing the nice numerical example at the

end. We would like to add a reference to Csörgõ

and Zitikis (1996). In this paper the effective

nonparametric estimation of the mean residual

life functional, something closely related to TCEs,

was considered.
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CSÖRGÕ, MIKLÓS, AND RICǍRDAS ZITIKIS. 1996. “Mean Residual Life

Processes,” Annals of Statistics 24(4): 1717–39.

LANDSMAN, ZINOVIY M. 1996. “Sample Quantiles and Additive Sta-

tistics: Information, Sufficiency, Estimation,” Journal of

Statistical Planning and Inference 52: 93–108.

LANDSMAN, ZINOVIY M., AND HEEKYUNG YOUN. 2003. “Credibility For-

mula for the Generalized Student Family.” Proceedings of

the 7th International Congress of Insurance: Mathe-

matics & Economics. Online at http://isfa.univ-lyon1.fr/

IME2003/cadres.htm.

“Valuation of Equity-Indexed
Annuities under Stochastic
Interest Rates,” X. Sheldon Lin
and Ken Seng Tan, October 2003

MARK D. J. EVANS*
The paper presents an analysis of equity index an-
nuities reflecting the impact of stochastic interest.
This is an important topic. The paper presents ex-
tensive formulaic and numerical development. I
would like to add some comments regarding the
interpretation of some of the results.

1. REMARK 1C

Remark 1c contains the comment, “This is to be
expected because the more volatile the fund is,
the greater the appreciation of the fund.” While
this statement is not likely to lead the careful
reader astray, a more precise statement is, “This
is to be expected because the more volatile the
fund is, the greater the expected appreciation of
the fund given that it exceeds the strike.”

2. REMARK 1F

Remark 1f discusses the interaction between inter-
est rate volatility and the correlation between inter-
est rates and index returns. For the negatively cor-
related cases, the participation rates increase
initially with the volatility of the interest rates. As
the volatility of the interest rate increases further,
the participation rate drops. There is a simple rea-
son for this, which is not captured in the paper.
There are two forces at work. First, negative corre-
lation dampens volatility, thereby reducing option
costs and increasing participation rates. This tends
to be a first order effect and thus behaves in approx-
imately a linear fashion.

The second force at work is the convexity of
options. Mathematically, this corresponds to the
second derivative of option price with respect to
interest rate. From Taylor’s series, this effect is
proportional to the square of the change in inter-
est rates. This can be seen easily from Table 1
where the correlation is 0. The difference in
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