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TAIL INDEX ESTIMATION FOR DEPENDENT DATA1

By Sidney Resnick2 and Catalin Stărică

Cornell University and University of Pennsylvania

A popular estimator of the index of regular variation in heavy-tailed
models is Hill’s estimator. We discuss the consistency of Hill’s estimator
when it is applied to certain classes of heavy-tailed stationary processes.
One class of processes discussed consists of processes which can be appro-
priately approximated by sequences of m-dependent random variables and
special cases of our results show the consistency of Hill’s estimator for (i) in-
finite moving averages with heavy-tail innovations, (ii) a simple stationary
bilinear model driven by heavy-tail noise variables and (iii) solutions of
stochastic difference equations of the form

Yt = AtYt−1 +Zt; −∞ < t <∞

where ��An;Zn�;−∞ < n < ∞� are iid and the Z’s have regularly vary-
ing tail probabilities. Another class of problems where our methods work
successfully are solutions of stochastic difference equations such as the
ARCH process where the process cannot be successfully approximated by
m-dependent random variables. A final class of models where Hill estima-
tor consistency is proven by our tail empirical process methods is the class
of hidden semi-Markov models.

1. Introduction. This paper discusses how to estimate the Pareto in-
dex or the index of regular variation for stationary dependent sequences. If
�Xt;−∞ < t <∞� is a stationary time series with the property that

P�Xt > x� ∼ x−αL�x�; x→∞;

L being a slowly varying function, then a key question in tail estimation is how
to estimate the index α. A popular estimator which arose in the iid context as
a conditional maximum likelihood estimator is Hill’s estimator [Hill (1975)],
which is defined as follows. For 1 ≤ i ≤ n, write X�i� for the ith largest value
of X1, X2; : : : ;Xn. Hill’s estimator based on the observations X1; : : : ;Xn is

HX
k;n =

1
k

k∑
i=1

log
X�i�
X�k+1�

:(1.1)

This estimator has been well studied when �Xn� is iid [Hall (1982), Ma-
son (1982, 1988), Mason and Turova (1994), de Haan and Resnick (1998),

Received September 1996; revised December 1997.
1Supported in part by NSF Grant DMS-94-00535 at Cornell University.
2Support from NSA Grant MDA904-95-H-1036.
AMS 1991 subject classifications. Primary 60G70; secondary 60G10.
Key words and phrases. Hill estimation, tail estimator, heavy tails, tail empirical process,

ARCH model, bilinear model, moving average, hidden Markov model.

1156



TAIL INDEX ESTIMATION 1157

Geluk et al. (1997), Davis and Resnick (1984), Häusler and Teugels (1985)
and Resnick and Stărică (1997a, b)] and our goal here is to better understand
its behavior when it is applied to stationary dependent sequences. Related
papers which study Hill’s estimator in the dependent case are Hsing (1991),
Rootzen, Leadbetter and de Haan (1990) and Rootzen (1995).

A great deal of time series analysis has been based on the assumption
that the structure of the series can be described by linear models. In the
traditional setting of a stationary time series with finite variance, every purely
nondeterministic process can be expressed as a linear process driven by an
uncorrelated input sequence. From a second-order point of view, linear models
are sufficient for data analysis. The situation is totally different when the
stationary series has heavy tails and perhaps infinite variance. In this case
we have no such confidence that heavy-tailed linear models are sufficiently
flexible and rich enough for modeling purposes and, in any case, for heavy-
tailed infinite-order moving averages it is already known [Resnick and Stărică
(1995) and see also Section 3] that Hill’s estimator is consistent. Thus in this
paper we concentrate on nonlinear models.

Linear models do not seem to describe adequately the underlying ran-
dom mechanism when heavy tails are present [Davis and Resnick (1996) and
Resnick (1998)]. Insistence upon modeling heavy-tailed data with linear time
series can be quite misleading [Feigin and Resnick (1996)]. A popular non-
linear alternative to the linear model is the bilinear process introduced by
Mohler (1973) and considered by Granger and Andersen (1978). To date, little
use has been made of bilinear models in heavy-tailed data analysis, though
Davis and Resnick (1996) present some evidence for their relevance. Other
worthy nonlinear models which we consider are two classes of random co-
efficient models, one of which includes the important example of the ARCH
process [Engle (1982)] and hidden semi-Markov models or random variables
defined on a semi-Markov chain. Such models have recently been used to fit
times between packet transmissions at a terminal in the stimulating paper
by Meier-Hellstern, Wirth, Yan and Hoeflin (1991).

Section 2 presents two general theorems which can be applied to prove the
consistency of Hill’s estimator for heavy-tailed stationary sequences. Section 3
applies one of the theorems to the case of processes which can be approximated
by m-dependent sequences. Among the examples considered are infinite-order
moving averages, simple bilinear processes and solutions of certain random
coefficient autoregressions. Section 4 applies the other theorem from Section 2
to a class of random coefficient autoregressions which includes the first-order
ARCH process. This result yields not only an estimator for the Pareto index
of the ARCH process but also an estimator of one of the scaling parameters.
Section 5 deals directly with hidden semi-Markov models using Laplace func-
tional methods.

The tail empirical measure plays a central role in our approach to proving
the consistency of Hill’s estimator. This method was also used in Resnick and
Stărică (1995). For using this method, we need the following notation. Let E x=
�0;∞� be the one point uncompactification of �0;∞� so that the compact sets of
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E are of the form Uc, where 0 ∈ U and U is an open set in �0;∞�. Suppose E is
the Borel σ-field on E. Let M+�E� be the space of positive Radon measures on
E endowed with the vague topology [Resnick (1987) and Kallenberg (1983)].
Let C+K�E� be the space of continuous, nonnegative functions on E = �0;∞�
with compact support. The vague topology on M+�E� can be generated by a
countable family of semi-norms

H =
{
pfxM+�E� → R+x pf�µ� = µ�f�; �f� ≤ 1; f ∈ C+K�E�

}

[Resnick (1987), Proposition 3.17 and Lemma 3.11], turning M+�E� into a
complete, separable, metric space. Convergence of µn ∈M+�E� to µ0 ∈M+�E�
in the vague topology is denoted µn→v µ0: For x ∈ E and A ∈ E define

εx�A� =
{

1; if x ∈ A;
0; if x ∈ Ac:

2. General consistency results. We now prove two general Hill esti-
mator consistency results for heavy-tailed stationary sequences. The first,
Proposition 2.1, is designed to be easily specialized for processes which
can be approximated by m-dependent sequences and this specialization
comes in Proposition 2.2. Proposition 2.3 is similar to Proposition 2.1 but
is better suited for application to the ARCH model (cf. Section 4). The
proofs of Propositions 2.1 and 2.3 use the standard big block–little block
technique explained carefully and exploited in Leadbetter, Lindgren and
Rootzen (1988). See also Hsing, Hüsler and Leadbetter (1988) as well as
Davis and Resnick (1988) where a parallel result for Poisson convergence
is given.

Proposition 2.1. Suppose for each n = 1, 2; : : : that �Xn; i; i ≥ 1� is a
stationary sequence of random elements of E. Let �k = k�n�� be a sequence
such that k → ∞, n/k → ∞. Suppose �Xn; i� satisfies the following two
conditions:

(i) For any f ∈ C+K�E�,

lim
n→∞

n

k2

k∑
j=2

E
(
f�Xn;1�f�Xn;j�

)
= 0:(2.1)

(ii) For any sequence �ln� such that ln→∞ and

ln
k
→ 0(2.2)
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and intervals

I1 = �1; k− ln�; I2 = �k+ 1;2k− ln�; : : : ; I�n/k�
= ���n/k� − 1�k; �n/k�k− ln�;

(2.3)

we have, for f ∈ C+K�E�,

lim
n→∞

E

(�n/k�∏
j=1

exp
{
−1
k

∑
i∈Ij

f�Xn; i�
})

−
�n/k�∏
j=1

E

(
exp

{
−1
k

∑
i∈Ij

f�Xn; i�
})
= 0:

(2.4)

Assume also that
n

k
P�Xn;1 ∈ ·� →v ν;(2.5)

where ν��x�� = 0 for any x ∈ �0;∞�. Then

νn x=
1
k

n∑
i=1

εXn; i
⇒ ν(2.6)

in M+�E�. Moreover, if Xn; i = Xi/bn, i = 1; : : : ; n, where �Xn; n ≥ 1� is
a sequence of stationary random variables and bn → ∞ and if ν satisfies∫∞

1 log�u�ν�du� <∞, it also follows that

HX
k;n x=

1
k

k∑
i=1

log
X�i�
X�k+1�

→P

∫ ∞
1

log�u�ν�du�:(2.7)

Remark. Condition (2.1) is implied by the condition that, for any x > 0,

lim
n→∞

n

k2

k∑
j=2

P�Xn;1 > x;Xn;j > x� = 0:(2.8)

This follows since if f ∈ C+K�E� and we set �c;∞� for the support of f and set
�f� = supE f�x�, then

f ≤ �f�1�c;∞�
and

E
(
f�Xn;1�f�Xn;j�

)
≤ �f�2P�Xn;1 > c;Xn;j > c�:

Proof. Suppose f ∈ C+K�E�. To show (2.6), it suffices to show [Kallenberg
(1983) and Resnick (1987)]

lim
n→∞

E exp
{
−1
k

n∑
i=1

f�Xn; i�
}
= exp�−ν�f��:(2.9)
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For typographical ease, we write fi = f�Xn; i� and p = �n/k�. Then

Ij =
{
�j− 1�k+ 1; : : : ; jk− ln

}
;

I∗j = �jk− ln + 1; : : : ; jk�; j = 1; : : : ; p− 1;
(2.10)

and

Ip = ��p− 1�k+ 1; : : : ; pk− ln�; I∗p = �pk− ln + 1; : : : ; n�:(2.11)

We have
∣∣∣∣E exp

{
−1
k

n∑
i=1

fi

}
− exp�−ν�f��

∣∣∣∣

≤
∣∣∣∣E exp

{
−1
k

n∑
i=1

fi

}
−E exp

{
−1
k

p∑
j=1

∑
i∈Ij

fi

}∣∣∣∣

+
∣∣∣∣E exp

{
−1
k

p∑
j=1

∑
i∈Ij

fi

}
−
(
E exp

{
−1
k

∑
i∈Ij

fi

})p∣∣∣∣

+
∣∣∣∣
(
E exp

{
−1
k

∑
i∈Ij

fi

})p
−
(
E exp

{
−1
k

k∑
i=1

fi

})p∣∣∣∣

+
∣∣∣∣
(
E exp

{
−1
k

k∑
i=1

fi

})p
− exp�−ν�f��

∣∣∣∣

= I+ II+ III+ IV:
Let us look at the individual terms in turn.

We have

I ≤

∣∣∣∣∣∣
E exp

{
−1
k

p∑
j=1

(∑
i∈Ij

fi +
∑
i∈I∗j

fi

)}∣∣∣∣∣∣

≤ E

∣∣∣∣∣∣
1− exp

{
−1
k

p∑
j=1

∑
i∈I∗j

fi

}∣∣∣∣∣∣

≤
p∑
j=1

∑
i∈I∗j

1
k
Efi

≤ pln
1
k
Ef1 ∼

ln
k

n

k
Ef1

∼ ln
k
ν�f� → 0
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as n→∞ from (2.2) and (2.5). Term III is handled very similarly:

III ≤ p
∣∣∣∣∣E exp

{
−1
k

∑
i∈I1

fi

}
−E exp

{
−1
k

k∑
i=1

fi

}∣∣∣∣∣

≤ pE
∣∣∣∣∣1− exp

{
−1
k

∑
i∈I∗1

fi

}∣∣∣∣∣

≤ pln
k
Ef1 → 0:

Term II goes to 0 because of condition (2.4).
For term IV, we set yi = 1− exp�−�1/k�fi� and observe

E exp
{
−1
k

k∑
i=1

fi

}
= E

k∏
i=1

�1− yi�

≤ 1−E
k∑
i=1

yi +E
∑

1≤i<j≤k
yiyj

≤ 1− kEy1 + k
k∑
l=2

Ey1yl

and thus
(
E exp

{
−1
k

k∑
i=1

fi

})p
≤
(

1− kp�Ey1 −
∑k
l=2 Ey1yl�

p

)p
:

Now

kp
k∑
l=2

Ey1yl ∼ n
k∑
l=2

E

(
1− exp

{
−1
k
f1

})(
1− exp

{
−1
k
fl

})

≤ n

k2

k∑
l=2

Ef1fl→ 0

by (2.1). Also

kpEy1 ∼ nE
(

1− exp
{
−1
k
f1

})
≤ n
k
Ef1 → ν�f�

and

nE

(
1− exp

{
−1
k
f1

})
≥ nE

(
f1

k
− f2

1

2k2

)

∼ ν�f� − 1
2k
ν�f2� → ν�f�:
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Thus we conclude

lim sup
n→∞

(
E exp

{
−1
k

k∑
i=1

fi

})p
≤ exp�−ν�f��:

A slightly simpler argument gives

lim inf
n→∞

(
E exp

{
−1
k

k∑
i=1

fi

})p
≥ exp�−ν�f��

and this completes the proof of (2.9).
To prove (2.7), we make use of Proposition 2.4 of Resnick and Stărică (1995)

which shows that the convergence of the tail measure implies the consistency
of Hill’s estimator. 2

Proposition 2.1 will be applied primarily to proving the consistency of Hill’s
estimator for stationary processes which can be approximated by truncated
versions which are m-dependent. In order for this approximation strategy to
be successful, the truncated m-dependent approximation must carry enough
information about the tail behavior of the marginal distribution of the original
process �Xt�. This is true of the processes considered in the examples in
Section 3 and false for certain random coefficient models such as the ARCH
process considered in Section 4. The adaptation of Proposition 2.1 to processes
which can be successfully approximated by m-dependent processes is given
next.

Proposition 2.2. Suppose, for each n ≥ 1, m ≥ 1, �X�m�n; i ; i ≥ 1� is a
stationary sequence of m-dependent random elements of E and, for each n ≥ 1,
�Xn; i; i ≥ 1� is a stationary sequence of random elements of E. Suppose there

exist Radon measures ν�m� on E and a sequence k = k�n�, k→∞ and n/k→
∞, such that, for any fixed m ≥ 1,

n

k
P
(
X
�m�
n; i ∈ ·

)
→v ν

�m�(2.12)

as n→∞. Suppose further that

ν�m�→v ν(2.13)

as m→∞. Finally, assume that

lim
m→∞

lim sup
n→∞

n

k
P
(∣∣X�m�n;1 −Xn;1

∣∣ > ε
)
= 0(2.14)

for all ε > 0. Then

1
k

n∑
i=1

εXn; i
⇒ ν(2.15)

in M+�E�.
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Moreover, if Xn; i = Xi/bn, i = 1; : : : ; n, where �Xn; n ≥ 1� is a stationary

sequence, bn→∞ and ν satisfies
∫∞

1 log�u�ν�du� <∞, then

HX
k;n x=

1
k

k∑
i=1

log
X�i�
X�k+1�

→P

∫ ∞
1

log�u�ν�du�:(2.16)

Proof. We first show that, for any fixed m,

1
k

n∑
i=1

ε
X
�m�
i; n
⇒ ν�m�(2.17)

by checking that the hypotheses of Proposition 2.1 hold for �X�m�n; i ; i ≥ 1�.
Since (2.12) holds, we need only check conditions (2.1) and (2.4). Condition
(2.4) holds trivially since, for l�n� > m,

{∑
i∈Ij

f
(
X
�m�
i; n

)
; j = 1; : : : ; p

}

are independent random variables. To check condition (2.1), note that

n

k2

k∑
j=2

P
(
X
�m�
n;1 > x;X

�m�
n;j > y

)

≤ n

k2

( m∑
j=2

P
(
X
�m�
n;1 > x;X

�m�
n;j > y

)
+

k∑
j=m+1

P
(
X
�m�
n;1 > x;X

�m�
n;j > y

))

≤ n

k2

m∑
j=2

P
(
X
�m�
n;j > y

)
+ n
k
P
(
X
�m�
n;1 > x

)
P
(
X
�m�
n;1 > y

)

= �m− 1�n
k2

P
(
X
�m�
n;1 > y

)
+ k
n

n2

k2
P
(
X
�m�
n;1 > x

)
P
(
X
�m�
n;1 > y

)

= m− 1
k

(
ν�m�

(
�y;∞�

)
+ o�1�

)
+ k
n

(
ν�m�

(
�x;∞�

)
ν�m�

(
�y;∞�

)
+ o�1�

)
:

Therefore

lim
n→∞

n

k2

k∑
j=2

P
(
X
�m�
n;1 > x;X

�m�
n;j > y

)
→ 0;

which completes the proof of (2.17).
The proof of (2.15) follows from a converging together argument similar

to the proof of Proposition 3.3 in Resnick and Stărică (1995). The conclusion
(2.16) follows from Proposition 2.4 of Resnick and Stărică (1995) which shows
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that the convergence of the tail measure implies the consistency of Hill’s esti-
mator. 2

For dealing with the ARCH process in Section 4, it is better to have a version
of Proposition 2.1 adapted for use with sets rather than C+K�E� functions. This
is given next.

Proposition 2.3. Suppose all the assumptions of Proposition 2.1 hold ex-
cept that in place of condition (2.4) we assume

lim
n→∞

∣∣∣∣∣E
�n/k�∏
j=1

(
1− 1

k

∑
i∈Ij

f�Xn; i�
)
−
�n/k�∏
j=1

E

(
1− 1

k

∑
i∈Ij

f�Xn; i�
)∣∣∣∣∣ = 0(2.18)

for any function f of the form f = ∑s
h=1 βh1�xh;∞� where βh > 0, h = 1; : : : ; s,

and xh > 0, h = 1; : : : ; s. Then the conclusions of Proposition 2.1 hold.

Proof. We will use the fact that νn ⇒ ν in M+�E� provided
(
νn�I1�; : : : ; νn�Is�

)
⇒
(
ν�I1�; : : : ; ν�Is�

)
; n→∞;(2.19)

in Rs for any s and any intervals Ii = �xi;∞�; i = 1;2; : : : ; s [Kallenberg
(1983)]. Using multivariate Laplace transforms, we must show that, for any
positive β1; : : : ; βs and f =∑s

h=1 βh1�xh;∞�,

E exp
(
−1
k

n∑
i=1

f�Xn; i�
)
→ exp

(
−ν�f�

)
:(2.20)

Define blocks Ij, I
∗
j as in Proposition 2.1 and decompose

∣∣∣∣E exp
(
−1
k

n∑
i=1

f�Xn; i�
)
− exp

(
−ν�f�

)∣∣∣∣

≤
∣∣∣∣∣E exp

(
−1
k

n∑
i=1

f�Xn; i�
)
−E exp

(
−1
k

p∑
j=1

∑
i∈Ij

f�Xn; i�
)∣∣∣∣∣

+
∣∣∣∣∣E exp

(
−1
k

p∑
j=1

∑
i∈Ij

f�Xn; i�
)
−E

p∏
j=1

(
1− 1

k

∑
i∈Ij

f�Xn; i�
)∣∣∣∣∣

+
∣∣∣∣∣E

p∏
j=1

(
1− 1

k

∑
i∈Ij

f�Xn; i�
)
−

p∏
j=1

E

(
1− 1

k

∑
i∈Ij

f�Xn; i�
)∣∣∣∣∣

+
∣∣∣∣
(

1− 1
p

p�k− ln�
k

Ef�Xn;1�
)p
− exp

(
−ν�f�

)∣∣∣∣

= I+ II+ III+ IV:
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Term I is controlled as in Proposition 2.1. For II, denote Q x= ∑
h βh =

supE f�x� and we have

II ≤ E
p∑
j=1

∣∣∣∣∣exp
(
−1
k

∑
i∈Ij

f�Xn; i�
)
− 1+ 1

k

∑
i∈Ij

f�Xn; i�
∣∣∣∣∣

≤ p

2k2
E

(k−ln∑
i=1

f�Xn; i�
)2

≤ n

2k2
Ef2�Xn;1� +

n

k2

k∑
j=2

Ef�Xn;1 �f�Xn;j�:

By condition (2.1) and (2.5), it follows that limn→∞ II = 0: Condition (2.18) is
equivalent to limn→∞ III = 0: By (2.5) and (2.2),

(
1− 1

p

p�k− ln�
k

Ef�Xn;1�
)p
→ exp

(
−ν�f�

)
;

and the conclusion (2.6) of the proposition follows. The rest is the same as in
Proposition 2.1. 2

3. Examples. We now consider three examples of heavy-tailed, depen-
dent, stationary processes which have m-dependent approximations and in
each case we apply Proposition 2.2 to demonstrate the consistency of Hill’s
estimator. The three classes of processes are:

1. infinite-order moving averages of iid heavy-tailed random variables,
2. bilinear processes driven by heavy-tailed innovations and
3. processes satisfying a simple stochastic difference equation with random

coefficients.

The first two processes are constructed using a sequence �Zt;−∞ < t <∞�
of iid random variables which, for simplicity, we take to be positive. These
random variables have regularly varying tail probabilities; that is, for x > 0,

P�Z1 > x� =x 1−F�x� =x F̄�x� = x−αL�x�; α > 0;(3.1)

where L is a slowly varying function at ∞.

3.1. Infinite order moving averages. Suppose that the sequence �ci; i≥0�∈
R∞ contains at least one positive number and satisfies

0 <
∞∑
j=0

�cj�δ <∞(3.2)



1166 S. RESNICK AND C. STĂRICĂ

for some 0 < δ < α ∧ 1. Then [cf. Cline (1983)] almost surely
∑∞
j=0 cjZj

converges absolutely and

lim
x→∞

P
(∑∞

j=0 cjZj > x
)

P�Z1 > x�
=
∞∑
j=0
cj>0

cαj(3.3)

so that
∑∞
j=0 cjZj also has regularly varying tail probabilities.

Define the moving average of order infinity processes, denoted MA(∞), by

Xt =
∞∑
j=0

cjZt−j; −∞ < t <∞:(3.4)

Causal ARMA processes can be represented in the form (3.4) [Brockwell and
Davis (1991), Chapter 3]. The consistency of the Hill estimator for MA(∞)
processes was considered in detail in Resnick and Stărică (1995). See also
Resnick and Stărică (1997b).

3.2. The simple bilinear model. Let Xt be the stationary bilinear model

Xt = cXt−1Zt−1 +Zt; −∞ < t <∞;(3.5)

where c > 0 is a positive constant satisfying

cα/2EZ
α/2
1 < 1:(3.6)

Using the bilinear recursion formula (3.5), Xt can be written as an infinite se-
ries whose convergence is guaranteed by (3.6) [see Davis and Resnick (1996)],

Xt =
∞∑
j=0

cjX
�j�
t ;(3.7)

where

X
�0�
t = Zt; X

�j�
t =

(j−1∏
i=1

Zt−i

)
Z2
t−j; j ≥ 1:

Corollaries 2.3 and 2.4 of Davis and Resnick (1996) show that

lim
x→∞

P
(∑m

j=0 c
jX
�j�
t > x

)

P�Z2
1 > x�

=
m∑
j=1

cjα/2
(
EZ

α/2
1

)j−1
(3.8)

and

lim
x→∞

P
(∑∞

j=0 c
jX
�j�
t > x

)

P�Z2
1 > x�

=
∞∑
j=1

cjα/2
(
EZ

α/2
1

)j−1

= cα/2

1− cα/2EZα/2
1

:

(3.9)
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3.3. Solutions of stochastic difference equations. Let �Yt;−∞ < t <∞� be
a process which satisfies the stochastic difference equation

Yt = AtYt−1 +Zt; −∞ < t <∞;(3.10)

where ��An;Zn�;−∞ < n < ∞� are iid R2
+-valued random pairs [cf. Vervaat

(1979) and Grincevicius (1975)]. For the case which we consider here, Z1 will
have regularly varying tail probabilities and the tail of Z1 is heavier than that
of A1. We assume the pair �A0;Z0� satisfies

EAα
0 < 1; EA

β
0 <∞(3.11)

for some 0 < α < β and, as usual,

P�Z0 > x� = x−αL�x�;(3.12)

where L is a slowly varying function at ∞. By iterating (3.10) we find, for
t ≥ 1,

Yt =
∞∑
j=0

( t∏
i=t−j+1

Ai

)
Zt−j x=

∞∑
j=0

Y
�j�
t(3.13)

(where
∏t
i=t+1 Ai = 1). It is suggestive to write also

Yt =
∞∑
t=0

Ct; jZt−j; t ≥ 1;

where Ct; j =
∏t
i=t−j+1 Ai so that the process is a random coefficient MA(∞)

process. Furthermore [Resnick and Willekens (1990), Theorem 2.1, and
Grincevicius (1975)]

lim
x→∞

P
(∑m

j=0Y
�j�
t > x

)

P�Z0 > x�
=

m∑
j=1

(
EAα

0

)j−1(3.14)

and

lim
x→∞

P
(∑∞

j=0Y
�j�
t > x

)

P�Z0 > x�
=
∞∑
j=1

�EAα
0�j−1 = 1

1−EAα
0
:(3.15)

We now state the result which applies Proposition 2.2 and yields weak
consistency of Hill’s estimator for these three processes.

Corollary 3.1. Suppose �Zt� are iid positive random variables satisfy-
ing (3.1). The Hill estimator is consistent for α−1 when applied to either the
MA(∞) process of Section 3.1 or the solution of the random coefficient difference
equation described in Section 3.3. For the simple bilinear process described in
Section 3.2, the Hill estimator is consistent for 2/α.
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Proof. We apply Proposition 2.2. The key in each case is that each process
can be approximated by an m-dependent sequence.

To prove the assertion for the simple bilinear process, let k→∞, n/k→∞
and define bn such that

n

k
P�X1 > bn� → 1; n→∞:(3.16)

For m ≥ 1, let X�m�n; i x=
∑m
j=0 c

jX
�j�
i /bn. Define Xn; i x=

∑∞
j=0 c

jX
�j�
i /bn. Since

by (3.8) and (3.9) we have, for x > 0,

n

k
P

(∑m
j=0 c

jX
�j�
1

bn
> x

)
→

∑m
j=1 c

jα/2
(
EZ

α/2
1

)j−1

∑∞
j=1 c

jα/2
(
EZ

α/2
1

)j−1x
−α/2;

we may define the measures ν�m� of Proposition 2.2 by

ν�m�
(
�x;∞�

)
x=

∑m
j=1 c

jα/2
(
EZ

α/2
1

)j−1

∑∞
j=1 c

jα/2
(
EZ

α/2
1

)j−1x
−α/2:

Note that ν�m�→v ν, where ν��x;∞�� = x−α/2. Since

lim
m→∞

lim
n→∞

n

k
P
(
�X�m�n;1 −Xn;1� > ε

)
= lim

m→∞
lim
n→∞

n

k
P

(∑∞
j=m+1 c

jX
�j�
1

bn > ε

)

= lim
m→∞

∑∞
j=m+1 c

jα/2
(
EZ

α/2
1

)j−1

∑∞
j=1 c

jα/2
(
EZ

α/2
1

)j−1 ε−α/2 = 0;

condition (2.14) of Proposition 2.2 is also verified which proves consistency.
The proofs of the results for the MA(∞) process and the solution of the

stochastic difference equation are similar. 2

We simulated the bilinear process to get a sample of size 5000 using Pareto-
distributed Z’s satisfying

P�Z1 > x� = x−1; x > 1:

In Figure 1 we give a plot, called the Hill plot, of ��k;H−1
k;n�;1 ≤ k ≤ 5000�.

The graph hovers between 0.5 and 0.6. The correct answer is 0.5.

4. Tail estimation for solutions of stochastic difference equations
and ARCH processes. In this section we consider tail estimation for the
process �Yt;−∞ < t <∞� which satisfies the stochastic difference equation

Yt = AtYt−1 +Bt; −∞ < t <∞;(4.1)

where ��An;Bn�;−∞ < n < ∞� are iid R2
+-valued random pairs. In contrast

to Section 3, we will now make different assumptions on the tail behavior
of the pair �An;Bn� which preclude truncating the series solution of (4.1).
Solutions to (4.1) include as a particular case the first-order autoregressive
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Fig. 1.

conditional heteroscedastic (ARCH) process introduced by Engle (1982). The
first-order ARCH process is defined by

ξt =Xt

(
β+ λξ2

t−1

)1/2
; −∞ < t <∞;(4.2)

where �Xt� are iid N�0;1� random variables, β > 0, 0 < λ < 1. Thus �ξ2
t �

satisfies (4.1) withAt = λX2
t ,Bt = βX2

t . [Higher-order ARCH processes would
satisfy higher-order versions of (4.1) but these are not considered here.]

It is known [Kesten (1973), Vervaat (1979) and Goldie (1991)] that if there
exists α > 0 with

EAα
0 = 1; EAα

0 log+A0 <∞; 0 < EBα0 <∞;(4.3)

if B0/�1 −A0� is nondegenerate and if the conditional distribution of logA0
given A0 6= 0 is nonlattice, then there exists a constant c > 0 such that, as
x→∞,

P�Yt > x� ∼ cx−α:(4.4)

Furthermore [cf. de Haan, Resnick, Rootzen and de Vries (1989), page 220]
under the assumptions (4.3) there exist a γ and c0 such that 0 < γ < α,
0 < c0 < 1

EA
γ
0 = c0 < 1:(4.5)

By iterating (4.1) we find, for t ≥ 1,

Yt =
∞∑
j=0

( t∏
i=t−j+1

Ai

)
Bt−j x=

∞∑
j=0

Y
�j�
t(4.6)
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(where
∏t
i=t+1 Ai = 1). If we iterate (4.1) t− s times for s < t, we get

Yt =
t−s−1∑
j=0

Y
�j�
t +

( t∏
k=s+1

Ak

)
Ys x= Ys; t

t +5ts+1Ys;(4.7)

where

5ts+1 = AtAt−1 · · ·As+1(4.8)

and

Y
s; t
t = Bt +AtBt−1 +AtAt−1Bt−2 + · · · +AtAt−1 · · ·As+2Bs+1:(4.9)

Observe that Ys; t
t and Ys are independent random variables as are 5ts+1

and Ys.
We begin with a lemma designed to help us check conditions (2.1) and (2.4)

for the solution of the stochastic difference equation (4.1).

Lemma 4.1. Assume (4.3) holds and that ε > 0 is given. Suppose i1 <
i2 < · · · < is and xi > 0 for i = 1; : : : ; s. Recall the definition of γ and c0
from (4.5).

(a) We have that
∣∣∣∣∣P�Yi1

> x1; : : : ;Yis
> xs� −

s∏
l=1

P�Yil
> xl�

∣∣∣∣∣

≤
s−1∑
q=1

(s−q∏
j=1

P�Y0 > xj�P�Y0 ∈ �xs−q+1 − ε; xs−q+1 + ε��

×
s∏

j=s−q+2

P�Y0 > xj − ε�
)

+
s∑

j=2

P�5ij−ij−1

1 Y0 > ε�:

(4.10)

(b) There exists M =M�x1; x2; : : : ; xs� and K =K�x1; : : : ; xs� such that, for
n large enough,

∣∣∣∣P
(
Yi1

>

(
n

k

)1/α

x1; : : : ;Yis
>

(
n

k

)1/α

xs

)

−P
(
Yi1

>

(
n

k

)1/α

x1

)
· · ·P

(
Yis

>

(
n

k

)1/α

xs

)∣∣∣∣

≤Kε�s− 1�Ms−1
(
k

n

)s
+ ε−γEYγ

0

(
k

n

)γ/α s∑
j=2

c
ij−ij−1

0 :

(4.11)
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(c) There exists C <∞ such that

P�Y1 > �n/k�1/αx;Yt > �n/k�1/αy�
≤ P�Y0 > �n/k�1/αx�P�Y0 > �n/k�1/α�y− ε�� +C�k/n�ct−1

0 :
(4.12)

Proof. The conclusion of (a) follows from an induction argument. To keep
the notation simple, we prove (a) for s = 2 and then derive the result for s = 3.
The basic ingredient of the proof is the observation in (4.7). We have, for s < t,
x > 0, y > 0,

P�Ys > x;Yt > y�
= P�Ys > x;Ys; t

t +5ts+1Ys > y�

≤ P�Ys > x;Ys; t
t +5ts+1Ys > y;5

t
s+1Ys ≤ ε�

+P�Ys > x;5ts+1Ys > ε�

≤ P�Ys > x�P�Ys; t
t > y− ε� +P�Ys > x;5ts+1Ys > ε�(4.13)

≤ P�Ys > x�P�Yt > y− ε� +P�Ys > x;5ts+1Ys > ε�(4.14)

≤ P�Ys > x�P�Yt > y� +P�Y0 > x�P�y− ε < Y0 ≤ y�
+P�5t−s1 Y0 > ε�:

This shows that

P�Ys > x;Yt > y� −P�Ys > x�P�Yt > y�
≤ P�Y0 > x�P�Y0 ∈ �y− ε; y�� +P�5t−s1 Y0 > ε�:

From (4.14) we also get

P�Ys > x;Yt > y� ≤ P�Y0 > x�P�Y0 > y− ε�
+P�Y0 > x;5

t−s
1 Y0 > ε�:

(4.15)

We will use (4.15) in the proof of �c�.
The other half of the inequality in �a� is derived as follows:

P�Ys > x�P�Yt > y+ ε�
≤ P�Ys > x�P

(
Y
s; t
t +5ts+1Ys > y+ ε;5ts+1Ys ≤ ε

)

+P
(
5ts+1Ys > ε

)

≤ P
(
Ys > x;Y

s; t
t > y

)
+P

(
5ts+1Ys > ε

)

≤ P
(
Ys > x;Yt > y

)
+P

(
5t−s1 Y0 > ε

)
:

(4.16)

Hence

−P�Y0 > x�P�y < Y0 < y+ ε� −P�5t−s1 Y0 > ε�
≤ P�Ys > x;Yt > y� −P�Ys > x�P�Yt > y�
≤ P�Y0 > x�P�y− ε < Y0 ≤ y� +P

(
5t−s1 Y0 > ε

)
:
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The conclusion of (a) for s = 2 follows. Based on the case s = 2, we will now
prove the inequality for s = 3. For s < t < u and x > 0, y > 0 and z > 0, we
have

P�Ys > x;Yt > y;Yu > z�
≤ P�Ys > x;Yt > y�P

(
Yt; u
u > z− ε

)
+P

(
5ut+1Yt > ε

)

≤ P�Ys > x�P�Yt > y�P
(
Yt; u
u > z− ε

)

+P�Y0 > x�P�y− ε < Y0 ≤ y�P�Yt; u
u > z− ε�

+P�5t−s1 Y0 > ε� +P�5u−t1 Y0 > ε�
≤ P�Ys > x�P�Yt > y�P�Yu > z�
+P�Y0 > x�P�Y0 > y�P

(
Y0 ∈ �z− ε; z�

)

+P�Y0 > x�P�y− ε < Y0 ≤ y�P�Y0 > z− ε�
+P�5t−s1 Y0 > ε� +P�5u−t1 Y0 > ε�:

For the other half of the inequality, use (4.16) and independence to get

P�Ys > x�P�Yt > y�P�Yu > z+ ε�
≤ P�Ys > x�P�Yt > y�P�Yt; u

u > z� +P
(
5ut+1Yt > ε

)

≤ P�Ys > x;Yt > y�P�Yt; u
u > z�

+P�Ys > x�P
(
Yt ∈ �y;y+ ε�

)
P�Yt; u

u > z�
+P

(
5t−s1 Y0 > ε

)
+P

(
5u−t1 Y0 > ε

)

≤ P�Ys > x;Yt > y;Yu > z�
+P�Y0 > x�P

(
Y0 ∈ �y− ε; y��P�Y0 > z− ε

)

+P�5t−s1 Y0 > ε� +P�5u−t1 Yt > ε�:
Therefore

−P�Y0 > x�P�Y0 > y�P�Y0 ∈ �z; z+ ε��
−P�Y0 > x�P�Y0 ∈ �y− ε; y��P�Y0 > z− ε�
−P�5t−s1 Y0 > ε� −P�5u−t1 Yt > ε�
≤ P�Ys > x;Yt > y;Yu > z� −P�Ys > x�P�Yt > y�P�Yu > z�
≤ P�Y0 > x�P�Y0 > y�P�Y0 ∈ �z− ε; z��
+P�Y0 > x�P�Y0 ∈ �y− ε; y��P�Y0 > z− ε�
+P�5t−s1 Y0 > ε� +P�5u−t1 Y0 > ε�:

To prove (b), we note that since the inequality in (a) holds whenever xi > 0,
i = 1; : : : ; s, and ε > 0 (provided xi − ε > 0; i = 1; : : : ; s), we may replace
xi by �n/k�1/αxi and ε by �n/k�1/αε to get a valid inequality. The inequality
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in (b) then results from the one in (a) by using c0 = EAγ
0 < 1, P�Y0 > x� ∼

cx−α, x→∞ and Markov’s inequality. To see this, note that the upper bound
becomes

s−1∑
q=1

(s−q∏
j=1

P

[
Y0

�n/k�1/α > xj
]
P

[
Y0

�n/k�1/α ∈
(
xs−q+1 − ε; xs−q+1 + ε

]]

×
s∏

j=s−q+2

P

[
Y0

�n/k�1/α > xj − ε
])

(4.17)

+
s∑

j=2

P

[
5
ij−ij−1

1 Y0 >

(
n

k

)1/α

ε

]
:

Note that by Markov’s inequality

s∑
j=2

P

[
5
ij−ij−1

1 Y0 >

(
n

k

)1/α

ε

]
≤
(
k

n

)γ/α
ε−γ

s∑
j=2

E
(
5
ij−ij−1

1 Y0
)γ

=
(
k

n

)γ/α
ε−γ

s∑
j=2

c
ij−ij−1

0 EY
γ
0 :

Furthermore, for n sufficiently large and some constant K =K�x1; : : : ; xs�,

n

k
P

[
Y0 >

(
n

k

)1/α

�xj − ε�
]
≤M; j = 1; : : : ; s;

n

k
P

[
Y0 ∈

(
n

k

)1/α

�xs−q+1 − ε; xs−q+1 + ε�
]
≤ ε; j = 1; : : : ; s;

and therefore the first summation in (4.17) is bounded by

s−1∑
q=1

s−q∏
j=1

k

n
MεK

k

n

s∏
j=s−q+2

k

n
M =

s−1∑
q=1

(
k

n

)s−q
Ms−qεK

k

n

(
k

n

)q−1

Mq−1

=Kε�s− 1�Ms−1
(
k

n

)s
;

which verifies (4.11).
To prove (c), substitute in (4.15) s = 1 and replace ε, x and y by �n/k�1/αε;

�n/k�1/αx and �n/k�1/αy. The desired result is shown if we prove

P

[
Y0 >

(
n

k

)1/α

x;5t−1
1 Y0 >

(
n

k

)1/α

ε

]
≤ ck

n
ct−1

0 :(4.18)

The probability on the left-hand side of 4.18 is
∫ ∞
x
P
[
5t−1

1 > εu−1]P
[

Y0

�n/k�1/α ∈ du
]
≤ ct−1

0 ε−γ
∫ ∞
x
uγP

[
Y0

�n/k�1/α ∈ du
]
;
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and since

n

k
P

[
Y0 >

(
n

k

)1/α

u

]
→ u−α;

we get from Karamata’s theorem that

∫ ∞
x
uγ
n

k
P

[(
n

k

)−1/α

Y0 ∈ du
]
→
∫ ∞
x
uγαu−α−1 du <∞

and thus, for all large n, the probability on the left-hand side of 4.18 is bounded
by Cct−1

0 �k/n�, as was to be proven. 2

Lemma 4.2. Assume (4.3) holds and let �Yt� be the solution of (4.1). Then
condition (2.1) or (2.8) holds for the array �Yt/�n/k�1/α�; that is,

lim
n→∞

n

k2

k∑
j=2

P

(
Y1 >

(
n

k

)1/α

x;Yj >

(
n

k

)1/α

y

)
= 0(4.19)

for any x > 0, y > 0. If, in addition, one chooses ln such that ln/k→ 0 and

n

k
= o�ln�;(4.20)

then condition (2.18) also holds; that is,

lim
n→∞

∣∣∣∣E
p∏
j=1

(
1− 1

k

∑
i∈Ij

f

(
Yi

�n/k�1/α
))

−
p∏
j=1

E

(
1− 1

k

∑
i∈Ij

f

(
Yi

�n/k�1/α
))∣∣∣∣ = 0;

(4.21)

where p = �n/k�, Ij, j = 1; : : : ; p, are defined in (2.3) and the function f is of
the form given in Proposition 2.3.

Proof. To check condition (2.1), use (c) of Lemma 4.1:

n

k2

k∑
j=2

P

(
Y1 >

(
n

k

)1/α

x;Yj+1 >

(
n

k

)1/α

y

)

≤ n�k− 1�
k2

P

(
Y0 >

(
n

k

)1/α

x

)
P

(
Y0 >

(
n

k

)1/α

�y− ε�
)

+C1
k

k∑
j=2

c
j−1
0 → 0

as n→∞.
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To prove condition (4.21) holds, note that
∣∣∣∣E

p∏
j=1

(
1− 1

k

∑
i∈Ij

f

(
Yi

�n/k�1/α
))
−

p∏
j=1

E

(
1− 1

k

∑
i∈Ij

f

(
Yi

�n/k�1/α
))∣∣∣∣

≤
p∑
u=2

1
ku

∑
1≤j1<j2<:::<ju≤p

∑
i1∈Ij1

∑
i2∈Ij2

: : :
∑

iu∈Iju

∣∣∣∣E
( u∏
v=1

f

(
Yiv

�n/k�1/α�

)
−

u∏
v=1

Ef

(
Yiv

�n/k�1/α
)∣∣∣∣:

(4.22)

Also due to the definition of f one has

E

( u∏
v=1

f

(
Yiv

�n/k�1/α
))
−

u∏
v=1

Ef

(
Yiv

�n/k�1/α
)

=
s∑

h1=1

: : :
s∑

hu=1

βh1
: : : βhu

∣∣∣∣P
(

Yi1

�n/k�1/α > xh1
; : : : ;

Yiu

�n/k�1/α > xhu
)

−P
(

Yi1

�n/k�1/α > xh1

)
· · ·P

(
Yiu

�n/k�1/α > xhu
)∣∣∣∣:

(4.23)

From (4.11) it follows that
∣∣∣∣P
(

Yi1

�n/k�1/α > xh1
; : : : ;

Yiu

�n/k�1/α > xhu
)
−

u∏
j=1

P

( Yij

�n/k�1/α > xhj
)∣∣∣∣

≤Kε�u− 1�Mu

(
k

n

)u
+ ε−γEYγ

0

(
k

n

)γ/α
�u− 1�cln0 :

If we denote Q x= max�βhx h = 1; : : : ; s�, then one can bound (4.22) by

p∑
u=2

1
ku

∑
1≤j1<j2<···<ju≤p

∑
i1∈Ij1

∑
i2∈Ij2

· · ·
∑

iu∈Iju
�sQ�u

(
ε�u− 1�

(
M
k

n

)u

+ ε−γEYγ
0

(
k

n

)γ/α
�u− 1�cln0

)

≤
p∑
u=2

1
ku

(p
u

)
�k− ln�u�sQ�u

×
(
εK�u− 1�Mu

(
k

n

)u
+ ε−γEYγ

0

(
k

n

)γ/α
�u− 1�cln0

)

≤Kε
p∑
u=2

(p
u

)
�u− 1��sQM�u�k/n�u

+ ε−γEYγ
0

(
k

n

)γ/α
c
ln
0

p∑
u=2

(p
u

)
�u− 1��sQ�u
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=Kε
(
sQMpk

n

(
1+ sQMk

n

)p−1

−
(

1+ sQMk

n

)p
+ 1

)

+ ε−γEYγ
0

(
k

n

)γ/α
c
ln
0

(
psQ

{
�1+ sQ�p−1 − 1

}
−
[
�1+ sQ�p − 1− psQ

])

= A+B:
When n→∞, B goes to 0, due to (4.20), and A→ ε��sQM−1� exp�sQM�+1�.
Letting ε→ 0 ends the proof for condition (4.21). 2

Proposition 4.1. Assume (4.3) holds and let �Yt� be the solution of (3.10).
Choose k�n� such that there exists �l�n�� satisfying 2.2 and 4.20; that is,

n

k
= o�l�n�� and l�n� = o�k�:

Then the Hill estimator applied to the sequence Yt is consistent; that is,

1
k

k∑
i=1

log
Y�i�
Y�k+1�

→P

1
α
:(4.24)

Remark. Possible choices of �k�n�� include n = o�k3/2� and k = nβ for
0:5 < β < 1:

Proof. The choice of k makes sure that (2.2) and (4.20) hold. The conclu-
sion then follows from Proposition 2.1. 2

For the ARCH process �ξt� given by (4.2), we have

P�ξ2
t > x� ∼ cx−α; x→∞;

where α satisfies

E�λX2
t �α = 1;

with �Xt� being iid N�0;1� random variables. Equivalently, α satisfies

0
(
α+ 1

2

)
= √π�2λ�−α:

Thus the Hill estimator applied to �ξ2
1; : : : ; ξ

2
t � is consistent for α−1 and a

consistent estimator for λ is obtained from solving

0
(
α̂+ 1

2

)
= √π�2λ̂�−α̂

for λ̂, where α̂ is the estimate of α given by the reciprocal of the Hill estimator.
We simulated 7000 data from the ARCH(1) model using β = 1 and λ = 0:5.

In this case, the true value of α for �ξ2
t � is α ≈ 2:365: Figure 2 displays the Hill

plots which indicate an estimate of α in the neighborhood of 2.1 or 2.2. The
AltHill plot in the display is ��θ;H−1

�nθ�; n;0 ≤ θ ≤ 1� and the AltsmooHill plot
smooths the AltHill plot. See Resnick and Stărică (1997a) for a discussion of
such plots.
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Fig. 2. Hill plots of ARCH2 when λ = 0:5.

5. Hidden Markov models. A heavy-tailed hidden Markov model is pro-
posed in Meier-Hellstern, Wirth, Yan and Hoeflin (1991) to model the times
between transmission of packets at a source. We show the Hill estimator is
consistent when applied to such models.

The model has the following ingredients. Let �Jn; n ≥ 0� be an ergodic, m-
state Markov chain on the state space �1;2; : : : ;m�. Suppose the transition
probability matrix of this chain is P = �pij;1 ≤ i; j ≤ m� and that the
stationary distribution is π ′ = �π1; : : : ; πm�: Now suppose, for i = 1; : : : ;m, we
are given holding time distributions �q�i�n ; n ≥ 1� concentrating on �1;2; : : :�
and that, for i = 1; : : : ;m, �D�i�n ; n ≥ 0� are iid with common distribution
�q�i�n �. Define �Vn; n ≥ 0� by

Vj =





J0; if 0 ≤ j < D�J0�
0 ;

J1; if D�J0�
0 ≤ j < D�J0�

0 +D�J1�
1 ;

J2; if D�J0�
0 +D�J1�

1 ≤ j < D�J0�
0 +D�J1�

1 +D�J2�
2 ;

:::
:::

Thus

Vj =
∞∑
k=0

Jk1[∑k−1
l=0 D

�Jl�
l ≤j<∑k

l=0 D
�Jl�
l

]:
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The next ingredient we need are distributions F1; : : : ;Fm on R+ and iid uni-
form random variables with support �0;1� which we call �Un; n ≥ 0�: Define,
for n ≥ 0,

Xn = F←Vn
�Un�(5.1)

and assume �Un�, �Jn�, �D
�i�
n ; n ≥ 0;1 ≤ i ≤m� are all independent.

So changes of state follow the Markov chain �Jn� and a transition from i
to j occurs with probability pij. Having entered state i, the system stays in
state i for k time units with probability q�i�k :While in state i, random variables
which we think of as interarrivals are generated from distribution Fi.

Proposition 5.1. Suppose �Jn� is a stationary, ergodic Markov chain and
that

ED
�i�
n <∞; i = 1; : : : ;m:(5.2)

Suppose, for α > 0,

F̄1�x� ∼ x−αL�x�; x→∞;(5.3)

and

lim
x→∞

F̄j�x�
F̄1�x�

= 0; j = 2; : : : ;m:(5.4)

Define the quantile function

b�t� =
(

1
1−F1

)←
�t�:

If k→∞, n/k→∞, then

1
k

n∑
i=1

εXi/b�n/k� ⇒ ν;

where

ν��x;∞�� = θ1x
−α

and, for k = 1; : : : ;m;

θk =
ED

�k�
1 πk

E
∑m
j=1D

�j�
1 πj

:

Furthermore, the Hill estimator applied to �Xt� is consistent for α−1.

Proof. The proof uses Laplace functionals. For f ∈ C+K�E�, we need to
show

9n�f� x= E exp
{
−1
k

n∑
j=1

f

(
Xj

b�n/k�

)}
→ exp�−ν�f�� = exp

{
−
∫
E
f�x�ν�dx�

}
:
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Define, for n ≥ 0;

N
�j�
n =

n∑
l=0

1�Vl=j�; j = 1; : : : ;m;

µ�j��n� =
n∑
l=0

1�Jl=j�; j = 1; : : : ;m:

Because �Xn� is conditionally independent given �Vn� [see (5.1)], we have

9n�f� = E
(
E

(
exp

{
−1
k

n∑
j=1

f

(
Xj

b�n/k�

)}∣∣∣∣V0; : : : ;Vn

))

= E
m∏
j=1

(∫
E

exp
{−f�x�

k

}
Fj

(
b

(
n

k

)
dx

))N�j�n
:

(5.5)

We now study the behavior of N�j�n and we will prove that, as n→∞,

N
�n�
n

n
→P θj; j = 1; : : : ;m:(5.6)

The semi-Markov process �Vj� changes states at times �Sn� where

Sn =
n∑
q=0

D
�Jq�
q

and, as n→∞, we have

Sn
n

d= 1
n

m∑
k=1

µ�k��n�∑
i=1

D
�k�
i

=
m∑
k=1

∑µ�k��n�
i=1 D

�k�
i

µ�k��n�
µ�k��n�
n

→
m∑
k=1

ED
�k�
1 πk:

Now we define the process inverse to �Sn� as

M�t� = sup�nx Sn ≤ t�

so that, as t→∞,

M�t�
t
→ 1

∑m
k=1ED

�k�
1 πk

:
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The relevance of �Sn� and �M�t�� is that

N
�k�
n

n
≤ 1
n

M�n�+1∑
q=1

�Sq −Sq−1�1�Jq−1=k�

= 1
n

M�n�+1∑
q=1

D
�k�
q 1�Jq−1=k�

d= 1
n

µ�k��M�n�+1�∑
q=0

D
�k�
q

=
∑µ�k��M�n�+1�
q=0 D

�k�
q

µ�k��M�n� + 1�
µ�k��M�n� + 1�
M�n� + 1

M�n� + 1
n

→ ED
�k�
1 πk

∑m
j=1ED

�j�
1 πj

:

A lower bound is obtained similarly and this proves (5.6).
Note that because of (5.4) we have, for x > 0, that

n

k
F̄j

(
b

(
n

k

)
x

)
→ 0; j = 2; : : : ;m:

Thus, for 2 ≤ j ≤m;

1 ≥
(∫
E

exp
{−f�x�

k

}
Fj

(
b

(
n

k

)
dx

))N�j�n

=
(

1−
∫
E�1− exp�−f�x�/k�Fj�b�n/k�dx�

n

)N�j�n

≥
(

1−
∫
E f�x��n/k�Fj�b�n/k�dx�

n

)n�N�j�n �/n

→ exp�−0� = 1;

since

∫
E
f�x�n

k
Fj

(
b

(
n

k

)
dx

)
→ 0 if f ∈ C+K�E�:

For j = 1 we claim

∫
E

(
1− exp

{−f�x�
k

}
nF1

(
b

(
n

k

)
dx

)
→ ν�f�(5.7)
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and, assuming this is true, we get

(∫
E

exp
{−f�x�

k

}
F1

(
b

(
n

k

)
dx

))N�1�n

=
(

1−
∫
E�1− exp�−f�x�/k��nF1�b�n/k�dx�

n

)n�N�1�n /n�

→ exp�−ν�f��:

(5.8)

To verify (5.7), observe that

∫
E

(
1− exp

{−f�x�
k

})
nF1

(
b

(
n

k

)
dx

)
≤
∫
E
f�x�n

k
F1

(
b

(
n

k

)
dx

)
→ ν�f�

and

∫
E

(
1− exp

{−f�x�
k

})
nF1

(
b

(
n

k

)
dx

)

≥
∫
E

(
f�x�
k
− f

2�x�
k2

)
nF1

(
b

(
n

k

)
dx

)

= ν�f� + o�1� − 1
k

∫
E
f2�x�n

k
F1

(
b

(
n

k

)
dx

)

= ν�f� + o�1� + 1
k
O�1�

→ ν�f�:

This proves (5.7).
Thus the factors in 9n�f� in (5.5) not corresponding to state 1 converge

to 1, while the factor from state 1 converges to the correct limit. The desired
result follows from dominated convergence after taking expectations. 2
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