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This paper is concerned with statistics that scan a multidimensional spatial region to detect a signal

against a noisy background. The background is modelled as independent observations from an

exponential family of distributions with a known `null' value of the natural parameter, while the signal

is given by independent observations from the same exponential family, but with a different value of

the parameter on a particular subregion of the spatial domain. The main result is an extension to

multidimensional time of the method of Pollak and Yakir, which relies on a change of measure

motivated by change-point analysis, to evaluate approximately the null distribution of the likelihood

ratio statistic. Both large-deviation and Poisson approximations are obtained.
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1. Introduction

Maxima of random ®elds arise in various scienti®c contexts. Our interest is motivated

especially by statistical problems of searching a region for a deterministic signal against a

noisy background. Examples are found in Levin and Kline (1985), who are concerned with

transient increases in the rate of spontaneous abortions in epidemiological data; in Giller

(1994), who discusses a search of the celestial sphere for an anomalously large astronomical

point source of muons; in Karlin et al. (1990), who are concerned with searching the

sequence of amino acids in a protein to ®nd segments of anomalously large electrical charge

or degree of hydrophobicity; and in Rabinowitz (1994), who is interested in `hot-spots' of

disease incidence in a geographically de®ned region.

Although many methods have been developed to deal with one-dimensional indexing sets

± see, for example, Pickands (1969), Siegmund (1985) and Woodroofe (1976; 1982) ± the

number of methods that has proved useful in higher dimensions is comparatively small. The

®rst of these chronologically is Qualls and Watanabe's (1973) and Bickel and Rosenblatt's

(1973) multidimensional extension of Pickands's (1969) method. These authors studied

continuous-parameter Gaussian processes, and their approximation involves a constant

which is dif®cult to evaluate. Hogan and Siegmund (1986) adapted the method to discrete-

parameter processes and showed that one can ®nd easily computable expressions for the

constant for a large number of ®elds that behave locally as sums of independent one-

dimensional random walks. Siegmund (1988; 1992) extended to higher dimensions the
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method of Woodroofe (1976; 1982) and enlarged the number of examples for which explicit

results have been obtained. Aldous (1989) obtained similar results (in their continuous index

set versions) from his Poisson clumping heuristic.

The purpose of this paper is to extend the method recently introduced by Pollak and

Yakir (1998) from one-dimensional to multidimensional indexing sets. This method starts

from a likelihood ratio identity motivated by ideas related to change-point problems. Since

it is based on an exact representation of the required probability, one can more easily `see'

the answer than with the methods mentioned above, which produce the answer only as the

result of a substantial amount of computation. The representation is valid for either discrete

or continuous indexing sets.

To motivate our results, we consider the following class of statistical problems. A ®nite

subset I of the standard d-dimensional lattice (usually d � 1, 2 or 3) indexes independent

random variables Xu, u 2 I . Over most of the region I the X u have a `null' distribution,

say standard normal or Bernoulli with known p � p0, perhaps 1
2
. Over a relatively small

subset A of I , which may be empty, the distribution of the X u belongs to the same

parametric family but has a different value of the parameter, say normal with mean ì. 0

and variance 1, or Bernoulli with p . p0. Our goal is to test whether indeed A is empty, in

which case Xu has the null distribution for all u 2 I .

Assume for a moment that A, if non-empty, is known. The likelihood ratio test statistic

for a general multidimensional exponential family of distributions can be conveniently

expressed as follows. We denote the log-likelihood for a single observation from the

exponential family by exp[hè, xi ÿ ø(è)] dF(x). Without loss of generality, we assume that

the null value of è is è � 0, and that ø(0) � 0, _ø(0) � 0. Let nA denote the cardinality of

A, SA � Óu2A X u, and �X A � SA=nA. Let j(x) � supè[hè, xi ÿ ø(è)]. The likelihood ratio

statistic is nAj( �X A).

Usually we will not know the location, size or shape of A; and we propose to use as our

test statistic the maximum of nAj( �X A) over a suitable collection of candidate sets. To this

end let J be a collection of subsets j of I . For each j 2 J let Sj � Óu2 j X u, and denote

by nj the cardinality of j. Also let �X j � Sj=nj. Consider the `scan' statistic

max
j2J

njj( �X j): (1)

The probability under the null distribution that (1) exceeds a threshold a is the p-value of

this statistic.

The following special case is typical and will be considered in detail below. Suppose I
is the m 3 m square in the positive quadrant of the plane with one vertex at the origin.

Suppose also that A, if non-empty, is a rectangle with its sides parallel to the coordinate

axes. Then (1) is the likelihood ratio statistic when J denotes all subrectangles of I ,

indexed in some convenient way, say by their lower left-hand corner, length and width. A

simpler statistic arises if one regards the dimensions of the rectangle A as known, so J
consists simply of translations of a rectangle of ®xed length and width. For the particular

case of normal Xu, j(x) � kxk2=2 and (1) becomes max j2J kSjk2=2nj. The approximate p-

value of this statistic when I is one-dimensional has been given by Siegmund and

Venkatraman (1995).
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This paper is organized as follows. In Section 2 we introduce a fundamental likelihood

ratio identity and indicate heuristically how it allows us to obtain a tail approximation to

the desired probability under large-deviation scaling. The approximation involves a constant

that in general is quite complicated, but simpli®es in special cases. In Section 3 we discuss

some examples and an alternative formulation involving a Poisson approximation, which

requires a substantially more intricate proof. Technical lemmas are given in Section 4, and a

heuristic discussion of the case of multidimensional è is given in Section 5. For

completeness we give a slight generalization of an argument of Hogan and Siegmund

(1986) in one appendix and a useful algebraic identity in another.

2. Likelihood ratio identity and a basic approximation

We continue with the notation and assumptions of the preceding section. In particular, to

simplify the exposition, we assume that I is the m 3 m square described there, although that

plays no essential role in what follows. We also assume until further notice that the

exponential family is one-dimensional and that the alternatives to the null value of è � 0 are

positive. Let a . 0. Assume that J consists of rectangles indexed by u 2 I and having sides

of length ri, i � 1, 2. There are necessarily some technical assumptions relating the values of

m, a and the ri, about which we will have more to say later. Convenient assumptions for this

section are that the ri are uniformly bounded below and above by multiples of a and m , ac

for some c . 1. These assumptions will be weakened in Section 4. Since the function taking

è into ç(è) � è _ø(è)ÿ ø(è) is non-negative and convex, for each j the equation

ç(è j) � a=nj (2)

has at most one positive solution, which we assume exists, at least for all suf®ciently large nj.

Putting ó 2
0 � �ø(0), we see that è j � (2a=ó 2

0 nj)
1=2 � O(aÿ1=2) uniformly in j as a!1.

De®ne the probability Pj to be such that Xu, u 2 j, have parameter value è j while

otherwise X u has the null parameter value 0. Then the log-likelihood of Pj relative to the

null probability P is

l j � è jSj ÿ njø(è j),

which under Pj has expectation equal to njç(è j) � a. It is readily shown that

max
j2J

njj( �X�j ) > a
� �

� max
j2J

l j > a
n o

: (3)

Let Q � Ó j2J Pj. The likelihood ratio of Q relative to P is Ó j2J exp (l j) and hence

P max
j2J

njj( �X�j ) > a
� �

� Ó jE j 1=Ók exp(l k); max
j2J

l j > a
h i

: (4)

It follows by elementary algebra that the term on the right-hand side of (4) indexed by j can

be rewritten as

exp(ÿa)E j

exp(max l k)

Ók exp(l k)
exp ÿ(l j ÿ a�max

k
(l k ÿ l j)

h i
; l j ÿ a�max

k
(l k ÿ l j) > 0

� �
, (5)
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where the summation and the maxima extend over k 2 J .

The analysis of (5) proceeds via several approximations, valid asymptotically as a!1.

For the technical steps to justify these approximations, see Section 4. The ®rst

approximation is the replacement of the summation and maxima over k 2 J by a smaller

set of indices J ( j, t) that are close to j in the sense that the distance of each edge of k

from the corresponding edge of j is no more than t � c log a or some other function that

grows slowly with a (cf. Lemma 2 in Section 4). Then within this range of k, we can

replace l k by ~l k � è jSk ÿ nkø(è j) (Lemma 4). (Obviously ~l k also depends on j, although

this is suppressed in the notation.) Then l j is replaced by ~lh, where h is the intersection of

all k 2 J ( j, t) (cf. Lemmas 6, 7 and expression (21)). The fraction in the expectation in

(5) can be rewritten as

exp(max~l k ÿ l j)

Ók exp(~l k ÿ l j)
, (6)

which is easily seen to be independent of ~l h. Finally, the approximation for maxk(l k ÿ l j),

namely maxk(~l k ÿ ~lh), is also independent of ~lh and hence can be shown to be negligible. It

follows that the expectation in (5) is approximately the product

E j

exp(max~l k ÿ l j)

Ók exp(~l k ÿ l j)

" #
3 E j expfÿ(~lh ÿ a)g; ~lh ÿ a > 0

� �
: (7)

Recalling that a � njç(è j) � E j(l j) � nj n
ÿ1
h E j(~lh), so E j(~lh) � a� O(t), we see from a

local central limit theorem if, for example, the X u have a density function, that the second

expectation in (7)

� 1=è j[2ðnj �ø(è j)]
1=2

(cf. Lemma 9), so from (5) we ®nd that (4)

� [4ða]ÿ1=2 exp(ÿa)Ó jE j

exp(max l k)

Ók exp(l k)

� �
: (8)

We now turn to evaluation of the ®nal expectation in (8), or equivalently evaluation of

Ó jE j

exp(max l k ÿ l j)

Ók exp(l k ÿ l j)

� �
: (9)

From the preceding argument we see that the summation and max can be restricted to the

relatively small set J ( j, t) described above, while l k can be replaced by ~l k. Let m0 � 2t, so

there are asymptotically m4
0 rectangles in J ( j, t). The term in (9) subscripted by j is

approximately equal to

Ei

exp(maxk l k ÿ li)

Ók exp(l k ÿ li)

� �
for all i 2 J ( j, t), except for a relatively small number of indices i near the boundaries of

J ( j, t). Hence the preceding display
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� mÿ4
0 ÓiEi

exp(maxk l k ÿ l j)

Ók exp(l k ÿ l j)

� �
, (10)

where the indices i and k run over J ( j, t). Let Q � Ói Pi, so dQ=dPj � Ók exp(l k ÿ l j).

Then (10)

� mÿ4
0 E j exp max

k
(l k ÿ l j)

n o
,

which up to a factor of 1� å, where å can be arbitrarily small, is bounded above and below

by

mÿ4
0 Eh exp max

k
(~l k ÿ ~lh)

n o
� mÿ4

0 Eh exp max
k

[è j(Sk ÿ Sh)ÿ (nk ÿ nh)ø(è j)]
n o

: (11)

The random ®eld in the last expression consists of a sum of four independent one-

dimensional random ®elds that arise from the enlargement of h in each direction. A slight

generalization of an argument of Hogan and Siegmund (1986) shows that (11)

�
Y2

ä�1

[räç(è j)í(r
1=2

ä ó0è j)]
2, (12)

where r1 and r2 are the lengths of the sides of the rectangle j, ó 2
0 � �ø(0) � var(Xu), and the

function í(:) is de®ned by Siegmund (1985, p. 82), where there is also a simple

approximation for small x.

We now substitute (12) into (9); and using the fact that ç(è j) � a=nj, we approximate the

multiple sum by a multiple integral. This shows that (9)

� m2a2

�1
(2a=m)1=2

(xÿ 2a=mx)í2(x) dx

 !2

:

Substitution of this result into (8) yields our ®nal approximation:

P max
j2J

njj( �X�j ) > a
� �

� m2a3=2 exp(ÿa)[4ð]ÿ1=2

�1
(2a=m)1=2

(xÿ 2a=mx)í2(x) dx

 !2

: (13)

See Siegmund and Venkatraman (1995) for a version of this result for a one-dimensional

search involving normally distributed observations.

3. Examples and discussion

Although we have given the preceding argument for the case that J consists of rectangles of

variable width, with minor variations the approximation (8) is valid for very general J .

However, an appropriate strategy for evaluating (9) will depend on more speci®c

assumptions. If J consists of translations of a ®xed set, for example a circle or a rectangle,

then except for possible edge effects the terms in (9) are all equal, so it is necessary to

calculate only one of them, which might be accomplished by simulation if other methods fail.
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If the search sets consist of rectangles of ®xed dimensions, say r1, r2, so nj � n � r1 r2 and

likewise è j � è is constant in j, then the increments l k ÿ l j assume the particularly simple

form è(Sk ÿ Sj). Instead of the right-hand side of (11) we obtain the much simpler expression

mÿ2
0 E j exp max

k
è(Sk ÿ Sj)

n o
:

The random ®eld Sk ÿ Sj is approximately the sum of two independent two-sided random

walks corresponding to shifting j to the right or left and shifting it up or down. The

increment of the random walk corresponding to a unit shift to the right or left is distributed

as the the sum of two independent random variables, the ®rst having the distribution of a sum

of r2 independent variables with parameter 0 and the second having the distribution of the

negative of a sum of r2 independent variables with parameter è. In place of (12) we obtainY2

ä�1

[2räç(è)íf(2rä)1=2ó0èg]:

Since this expression does not depend on j, the ®nal approximation becomes

2ðÿ1=2 m2a3=2(r1 r2)ÿ1 exp(ÿa)
Y2

ä�1

íf2(a=rä)1=2g: (14)

For circular search regions no such simple evaluation seems possible, although for Gaussian

®elds one can use Slepian's inequality and inscribed and circumscribed squares to obtain

upper and lower approximations.

The speci®c form of the approximation in Section 2 is a consequence of the asymptotic

normalization introduced above. It has the advantage of being relatively simple to evaluate,

since there are easily computed, good approximations for the function í (Siegmund 1985).

However, there are alternative asymptotic formulations leading to approximations that

depend more heavily on the underlying distribution. Indeed, even the formulation of Section

2 leads to more complicated approximations when the indexing set is one-dimensional,

since then the increments Sk ÿ Sj need not contain a large number of terms, hence need not

be approximately normally distributed.

To consider one other possibility, suppose that the Xu are in®nitely divisible and that in

principle one might observe the process Sj over a continuous set of rectangles j. A speci®c

case of interest is a Poisson random ®eld. (Gaussian ®elds are irrelevant to these

considerations; one obtains the same approximation regardless of the normalization.) Since

in practice we make observations at a discrete set of points, assume that the possible

distributions of X u have cumulant generating function Äø(è), where Ä is a small parameter

that re¯ects the size of the pixel u in the indexing ®eld. For example, the pixels may be

squares of area Ä. The functional equation de®ning è j becomes njÄç(è j) � a. If Ä is

assumed proportional to aÿ1, then for rectangles having sides proportional to a, è j is

bounded away from 0; and the increments Sk ÿ Sj for k close to j will not be

asymptotically normal but will involve the parent class of in®nitely divisible distributions.

A consequence is that the function corresponding to í above will depend on the underlying

distribution and may be substantially more dif®cult to evaluate. For rectangles of ®xed
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dimensions, only a few evaluations are necessary, but for rectangular scanning sets of

variable size the additional numerical computation can be onerous. If Ä is of smaller order

than aÿ1, the approximation will be the same as for a continuous scan. See Loader (1991)

and Tu (1997) for analyses of Poisson random ®elds using this normalization in conjuncton

with the method of Siegmund (1988).

A still different formulation is appropriate when the baseline value of è, taken here to be

zero, is unknown. The likelihood ratio statistic would be

max
j
fnjj(Sj=nj)� (jI j ÿ nj)j[(SI ÿ Sj)=(jI j ÿ nj)]ÿ jI jj(SI =jI j)g,

and to obtain a p-value that is free of unknown nuisance parameters we would evaluate the

exceedance probability conditionally given the value of SI . The probability Pj can be de®ned

as follows. Let P denote conditional probability given that SI � jI jî0. De®ne parameters î1

as solutions of the equation

max
j
fnjj(î1)� (jI j ÿ nj)j[(jI jî0 ÿ njî1)=(jI j ÿ nj)]ÿ jI jj(î0)g � a:

For each of the two values of î1, say î1 . î0, the probability Pj is de®ned as the conditional

probability given SI � jI jî0 that is in the exponential family generated by P and gives Sj

the mean value njî1. For the special case of unit-variance normally distributed Xu, so

j(x) � x2=2, simple algebra shows that î1 � î0 � b[(1ÿ nj=jI j)=nj]
1=2, where a � b2=2,

and

l j � b[Sj ÿ njî0]=[nj(1ÿ nj=jI j)]1=2 ÿ b2=2:

There are technical assumptions in our discussion relating the size of the rectangles

j 2 J , the threshold a and the size of the search region de®ned by m. Although these

assumptions may not be restrictive in applications, which typically involve a ®xed value of

m and search regions that we choose, there are nevertheless mathematical questions about

the importance of the assumptions. The analysis indicated above applies to the case of large

deviations, that is, m is small enough that (14) or the right-hand side of (13) converges to

0. In the case that m is proportional to a the requirement that the sides of the rectangles be

bounded by ca poses no restriction; but if m is of larger order of magnitude, it is natural to

ask if we can remove the assumed upper bounds on the size of the rectangles, so the

scanning sets can take up a positive fraction of the search region.

A similar issue arises if m is so large that (14) or the right-hand side of (13) converges

to a positive limit, say ë. Then one asks if a Poisson approximation holds, that is, the

corresponding probability converges to 1ÿ exp(ÿë). This is easily shown to be true in the

case of (14), where the scanning sets are of ®xed dimensions and there obviously are no

`long-range' dependencies. The case of (13) is substantially more delicate if one also asks,

as seems natural in this case, whether the condition that the lengths of the sides of the

rectangles have upper bounds of ca can also be dropped. Then long-range dependencies

might conceivably be important, and the Poisson parameter is not proportional to the

product of the number of rectangles and the probability that an arbitrary rectangle exceeds

the threshold. In the special case of one search dimension and Gaussian X u a Poisson
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approximation was given by Siegmund and Venkatraman (1995). In Section 4 we prove

such a Poisson approximation for the random ®eld of Section 2.

It is also possible to remove the assumed lower bound on the lengths of the sides of the

scanning rectangles, as we show in Section 4.

4. A more precise treatment

In this section we make more precise the argument leading to (7) and (8) in Section 2. It will

be apparent that the argument is quite general up to the application of a local limit theorem,

where one must deal with the speci®c distribution of Xu.

Given two points x � (x1, x2) and y � (y1, y2), we say that x < y if x1 < y1 and x2 < y2.

With each pair of points in the grid, x and y, such that x < y, a rectangle of grid points can

be associated. The points in the rectangle are all points u such that x , u < y. Given a

collection of rectangles J , denote a particular member by j. Thus, j � (x, y], for some x,

y 2 I . Let, also, r1 � y1 ÿ x1 and r2 � y2 ÿ x2 and de®ne nj � j(x, y]j � r1 3 r2Ðthe

cardinality of the rectangle (x, y]. We investigate the case where the collection J contains

all rectangles with åa < r1 < ca and åa < r2 < ca, for some 0 , å, c ,1. These bounds

on the lengths of the sides of the rectangles will be removed in the arguments following the

statement of Theorem 1. Initially we also assume that m � O(ac) for some c . 1.

Throughout this section we will introduce various constants. The exact values of these

constants do not affect the ®nal result. All that is needed is that they are positive but small

(in which case they will be denoted by å) or that they are large (in which case they will be

denoted by c). Hence, for example, two cs appearing in the same proof may correspond, as

a matter of fact, to two different numbers.

Lemma 1.

P max
i2J

li > a
� � �X

j2J

E j

1P
i2J expflig ; max

i2J
li > a

� �
:

Proof. This is just a formal restatement of (4), which was proved in Section 2. h

Con®ne attention now to a given rectangle j. We will prove that

a1=2 eaE j

1P
i2J expflig ; max

i2J
li > a

� �

� E j

maxi2J expfligP
i2J expflig a1=2 exp ÿ max

i2J
li ÿ a

� �n o
; max

i2J
li > a

" #
(15)

can be approximated, when a is large, by a constant. The constant may depend on j, but by

virtue of the assumption that ri < ca, i � 1, 2, it is bounded away from 0. (This is apparent

198 D. Siegmund and B. Yakir



from the explicit evaluation given in the preceding section.) In addition, the approximation is

uniformly accurate for all rectangles j 2 J .

The proof will proceed in two steps. In the ®rst step it will be shown that the term in

(15) can be replaced with a similar term, for which the maximization and summation is

with respect to a smaller set of rectangles ± the rectangles in the vicinity of j. In the

second step this term will be approximated by a constant.

De®ne, for t � c log a, a neighbourhood of j � (x, y] by

J ( j, t) � f(u, v] : jui ÿ xij, t, jvi ÿ yij, t, i � 1, 2g:

Lemma 2. Let å. 0 be given. Then, uniformly in j 2 J ,

a1=2 eaE j

1P
i2J expflig ; max

i2J
li > a

� �
< a1=2 eaE j

1P
i2J ( j, t) expflig ; max

i2J ( j, t)
li > a

� �
� å

(16)

and

a1=2 eaE j

1P
i2J expflig ; max

i2J
li > a

� �

>
1

1� å
a1=2 eaE j

1P
i2J ( j, t) expflig ; max

i2J ( j, t)
li > a

� �
ÿ å, (17)

provided that a is large enough.

Proof. On the one hand, since the random variable in (15) is bounded by a1=2,

a1=2 eaE j

1P
i2J expflig ; max

i2J
li > a

� �
< a1=2 eaE j

1P
i2J expflig ; max

i2J ( j, t)
li > a

� �
� a1=2 Pj(maxi2J li . maxi2J ( j, t) li)

< a1=2 eaE j

1P
i2J ( j, t) expflig ; max

iJ ( j, t)
li > a

� �
� a1=2 Pj(maxi=2J ( j, t) l j . 0):

On the other hand,

a1=2 eaE j

1P
i2J expflig ; max

i2J
li > a

� �
> a1=2 eaE j

1P
i2J expflig ; max

i2J ( j, t)
li > a

� �

>
1

1� å
a1=2 eaE j

1P
iJ ( j, t) expflig ; max

i2J ( j, t)
li > a

� �
ÿ a1=2 Pj(

P
i=2J ( j, t) expfli ÿ l jg > å):
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The proof now follows from Lemma 4 below and the assumption that m increases at

most algebraically with a so jJ j � O(ac) for some c . 0. h

Lemma 3. Let

k � k( j, i) � k((x, y], (u, v]) � j((x, y]n(u, v]) [ ((u, v]n(x, y])j
be the number of points in the symmetric difference between the rectangles j � (x, y] and

i � (u, v]. Then

Pj(li ÿ l j > ÿåk=a) < expfÿåk=ag,
for some positive å and for all i 2 J .

Proof. By an exponential Markov inequality

Pjfli ÿ l j > ÿåk=ag < exp(åk=2a)E exp[(li � l j)=2]:

We now write the sums involved in li � l j as sums over the disjoint sets in j, jni and i \ j to

evaluate this expectation in terms of the function ø. The convexity of ø implies that we

obtain an upper bound if we replace ø[(èi � è j)=2] by [ø(èi)� ø(è j)]=2. The asymptotic

relations ø(èi) � ó 2
0è

2
i =2 and èi � (2a=ó 2

0 ni)
1=2 now allow us to complete the proof. h

De®ne, for all i 2 J ( j, t),

~li � ~li( j) � è jSi ÿ niø(è j):

In the next lemma we claim that li can be replaced by ~li.

Lemma 4. Let å. 0 be given. Then, uniformly in j 2 J ,

a1=2 eaE j

1P
i2J ( j, t) expflig ; max

i2J ( j, t)
li > a

� �

<
1� å

1ÿ å
a1=2 eaE j

1P
i2J ( j, t) expf~lig

; max
i2J ( j, t)

~li > aÿ å

" #
� å (18)

and

a1=2 eaE j

1P
i2J ( j, t) expflig ; max

i2J ( j, t)
li > a

� �

>
1ÿ å

1� å
a1=2 eaE j

1P
i2J ( j, t) expf~lig

; max
i2J ( j, t)

~li > a� å

" #
ÿ å, (19)

provided that a is large enough.

Proof. It is suf®cient to prove that

Pj(maxi2J ( j, t)j~li ÿ lij. å) < å=a1=2,

which is established in the following lemma. h
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Lemma 5. Pj(maxi2J ( j, t)j~li ÿ lij. å) < å=a1=2.

Proof. Note that

Pj max
i2J ( j, t)

j~li ÿ lij. å
� �

<
X

i2J ( j, t)

Pj(j~li ÿ lij. å)

and

li ÿ ~li � ni[(èi ÿ è j) �X i ÿ (ø(èi)ÿ ø(è j))]:

From _ç(è) � è�ø(è) and the assumed lower bound ni > å2a2, it follows that

èi ÿ è j � a

è j �ø(è j)

1

ni

ÿ 1

nj

� �
� O(t=a3=2):

Chebyshev's inequality and the approximation

ni[(èi ÿ è j) _ø(è j)ÿ (ø(èi)ÿ ø(è j))] � ÿni �ø(è j)(èi ÿ è j)
2=2 � O(t2=a)

can be used to establish the proof. h

One can represent the leading term in Lemma 4 as (cf. (15))

a1=2 eaE j

1P
i2J ( j, t) expf~lig

; max
i2J ( j, t)

~li > a

" #

� E j

maxi2J ( j, t) expf~ligP
i2J ( j, t) expf~lig

a1=2 exp ÿ max
i2J ( j, t)

~li ÿ a
� �� �

; max
i2J ( j, t)

~li > a

" #
: (20)

Preparing for the second step of showing that this term can be approximated by a

constant, the next two lemmas demonstrate that the event fmaxi2J ( j, t)
~li > ag can be

intersected with two events. The ®rst of the two is the event fmaxi2J ( j, t)
~li < a� log ag;

the second is given following Lemma 6.

Lemma 6. For any a . 1,

a1=2 eaE j

1P
i2J ( j, t) expf~lig

; max
i2J ( j, t)

~li > a� log a

" #
< 1=a1=2:

Proof. This inequality is true for the random variables, hence a fortiori for the expectation.

h

Now let x t � (x1 � t, x2 � t), y t � (y1 ÿ t, y2 ÿ t) and de®ne h � (x t, y t]. Note that h �
\i2J ( j, t)(u, v]. The second of the two aforementioned events is

fmaxi2J ( j, t)
~li ÿ ~lh < åa1=2g:
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Lemma 7. Let å. 0 be given. Then

a1=2 Pj max
i2J ( j, t)

~li ÿ ~lh > åa1=2
� �

< å:

Proof. For any i 2 J ( j, t), by the martingale property of a sequence of likelihood ratios and

the Markov inequality

Pj(~li ÿ ~l j > åa1=2=2) < expfÿåa1=2=2g,
so

Pj(maxi2J (i, t)
~li ÿ ~l j > åa1=2=2) < (2t)4 expfÿåa1=2=2g:

Hence it suf®ces to show that the Pj-probability of the event f~l j ÿ ~lh > åa1=2=2g is bounded,

when a is large, by å=(2a1=2). This is the content of Lemma 8 below. h

Lemma 8. Pj(~l j ÿ ~l h > åa1=2=2) , å=(2a1=2).

Proof. Note that h � j. Hence,

~l j ÿ ~lh �
X
i2 jnh

[è j X i ÿ ø(è j)]:

Now, X
i2 jnh

[è j X i ÿ ø(è j)] � è j

X
i2 jnh

[X i ÿ _ø(è j)]� (nj ÿ nh)a

nj

,

since è j _ø(è j)ÿ ø(è j) � ç(è j) � a=nj. The Markov inequality can be used to establish the

proof. h

Lemmas 6 and 7 can be summarized by saying that the term

a1=2 eaE j

1P
i2J ( j, t) expf~lig

; max
i2J ( j, t)

~li > a

" #
can be approximated, up to a o(1) term, by yet another representation:

E j

maxi2J ( j, t) expf~ligP
i2J ( j, t) expf~lig

3 a1=2 exp ÿ ~lh � max
i2J ( j, t)

~li ÿ ~lh ÿ a
� �� �

; A1 \ A2

" #
, (21)

where

A1 � fa < ~lh �maxi2J ( j, t)
~li ÿ ~lh < a� log ag

A2 � f0 < maxi2J ( j, t)
~li ÿ ~l h < åa1=2g:
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The main ingredient in the second step is achieved in the following lemma, where we

compute the conditional expectation of expfÿ(~lh �maxi2J ( j, t)
~li ÿ ~lh ÿ a)g given

maxi2J ( j, t) expf~ligP
i2J ( j, t) expf~lig

� maxi2J ( j, t) expf~li ÿ ~lhgP
i2J ( j, t) expf~li ÿ ~lhg

� y

and

max
i2J ( j, t)

f~li ÿ ~l hg � z:

Note that by independence the conditional distribution of Sh, hence ~lh, is the same as the

unconditional distribution.

Lemma 9. De®ne ~a � aÿ z, for 0 < z < åa1=2. Let ó 2
0 � �ø(0) denote the null variance of

X u, and assume that the è j distribution of Sh satis®es a local limit theorem. Then, for large

a, ����E j a1=2 expfÿ(~lh ÿ ~a)g; ~a < ~lh < ~a� log a]ÿ (1=2ðó 2
0)1=2

���� < å,

"

where ~l h � è jSh ÿ nhø(è j). This approximation holds uniformly in z.

Proof. To consider one speci®c case, suppose the distribution of X u is lattice with span 1.

The argument is virtually the same if the distribution has an integrable characteristic function,

so its density obeys a local central limit theorem. A Taylor expansion of ç(è) around è � 0

can be used to show that

jè j=(2a=nj)
1=2 ÿ óÿ1

0 j < å,

provided that a is large. The probability Pj(Sh � s) is approximated by a normal density. In

particular, up to a factor of 1� å the approximation is 1=(2ðnhó 2
0)1=2, for all s in a

neighbourhood of the mean of Sh of radius ån
1=2
h , so���� a1=2 Pj(Sh � s)

(a=nh)1=2
ÿ 1

2ðó 2
0

� �1=2
���� < å:

It follows that

E j[a
1=2 expfÿ(~lh ÿ ~a)g; ~a < ~lh < ~a� log a]

< (1=2ðó 2
0)1=2(1� å)(a=nh)1=2

X1
s�1

expfÿ(1ÿ å)(2a=nhó
2
0)1=2sg,

and
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E j[a
1=2 expfÿ(~lh ÿ ~a)g; ~a < ~lh < ~a� log a]

> (1=2ðó 2
0)1=2(1ÿ å)(a=nh)1=2

X1
s�2

expfÿ(1� å)(2a=nhó
2
0)1=2sg:

h

Lemmas 1 to 9 can be summarized in the following theorem.

Theorem 1. For the scanning statistic computed over J (all rectangles (x, y] which satisfy

åa < yi ÿ xi < ca, i � 1, 2) we have that

a1=2 ea P max
j2J

l j > a
� �

(22)

and

1

4ð

� �1=2X
j2J

E j

maxi2J expfligP
i2J expflig

" #
(23)

are asymptotically equivalent.

We now remove the technical conditions that åa , yi ÿ xi , ca for i � 1, 2. We ®rst

consider the comparatively simple lower bound. We decompose J 0 � f j : min(r1, r2) , åa,

max(r1, r2) , cag as follows. Let c9 diverge slowly to 1 with a and set J 01 �
f j : nj . c9a, r1 , åa, åa < r2 , cag, J 02 � f j : nj . c9a, åa < r1 , ca, r2 , åag, J 03 �
f j : nj . c9a, r1 , åa, r2 , åag and J 04 � f j : nj < c9ag. With regard to J 04, observe that

the number of rectangles with nj , c9a and maximum dimension less than ca is no more

than m2c9a log(c2a=c9) � o[m2a3=2]. Since Pfl j . ag < exp(ÿa), the simple Bonferroni

bound suf®ces to show that these rectangles make a negligible contribution to the total.

Also

P max
j2J 03

l j > a
� �

< Ó j2J 03
P(l j > a):

There are at most å2 m2a2 terms in this sum, each of which is (uniformly) O[aÿ1=2 exp(ÿa)]

by a local limit theorem. Finally, writing j � j1 3 j2, where j1 and j2 are the projections of j

on the respective coordinate axes, we have

P max
j2J 01

l j > a
� � � P max

j2J 02

l j > a
� �

< åmaP max
f j1:åa<r1 , cag

l j13(0,r2] > a
� � � åm2a3=2 eÿa K,

for some K ± the `one-dimensional' constant, which can derived in the same way as we

derive the `two-dimensional' constant in the argument give above.

Remark. The preceding argument works in dimensions 2 and more, but if I is one-

dimensional, a more delicate argument involving the probabilities of very large deviations is

required. We do not discuss that case.
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To remove the condition that yi ÿ xi , ca, i � 1, 2, we consider ®rst the simpler case that

I is one-dimensional. Now let J 0 � f j 2 J : nj < cag, and set J 1 � f j 2 J : nj . cag.
The arguments given above apply to the maximum taken over J 0, so it suf®ces to show

that the probability of the maximum over J 1 is negligible.

We shall at the same time consider the possibility that m is so large that the right-hand

side of (13), or the analogous quantity when I is one-dimensional, namely ma1=2 eÿa,

converges to a limit ë and show that a Poisson approximation applies, that is, the

probability (4) converges to 1ÿ exp(ÿKë). Given the previous results in the case that m is

of order ac, the general blocking argument of Arratia et al. (1989) or a direct

decomposition into almost independent blocks of size ca along the lines of Siegmund

and Venkatraman (1995) shows that a Poisson approximation holds as claimed when the

maximization is restricted to J 0. Hence, as above, it suf®ces to show that maximizing over

J 1 produces a negligible probability.

The following lemma will be useful.

Lemma 10. Let X1, X 2, . . . , X m be independent and identically distributed with E(X 1) � 0

from a distribution that can be embedded in an exponential family. De®ne Sn �
Pn

u�1 X u.

Then

E exp max
1<n<m

[èSn ÿ nø(è)]
n o

< 1� è

ëÿ è

� �
exp mè

ø(ë)

ë
ÿ ø(è)

è

� �� �

for all 0 , è, ë.

Proof. Note that

E exp max
1<n<m

[èSn ÿ nø(è)]
n o
� E exp max

1<n<m

è

ë
(ëSn ÿ nø(ë))� nè

ø(ë)

ë
ÿ ø(è)

è

� �� �� �

< exp mè
ø(ë)

ë
ÿ ø(è)

è

� �� �
E exp (è=ë) max

1<n<m
(ëSn ÿ nø(ë))

n o
:

Now, by Doob's inequality,

�F(x) � P0 max
1<n<m

[ëSn ÿ nø(ë)] > x
� �

< eÿx:

Integration by parts yields
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E exp
è

ë
max

1<n<m
(ëSn ÿ nø(ë))

� �
�
�1

0

e(è=ë)x d(ÿ�F(x))

� 1� è

ë

�1
0

e(è=ë)x �F(x) dx

< 1� è

ëÿ è
,

which completes the proof. h

Let å. 0. We de®ne below a subset ~J 1 � J 1 such that for every i 2 J 1 there exists

j 2 ~J 1 such that the cardinality of the symmetric difference between the two is no more

than ånj=a. We then show that

P max
j2J 1

l j > a
� �

< j ~J 1jaÿ1=2 eÿa: (24)

The set ~J 1 can be constructed in the following way. Let ms � ca(1� å=a)s, so

ms�1 � ms(1� å=a), for s � 1, 2, . . . , S � minfs : ms > mg. The set ~J 1 consists of all

translations of (1, ms] by tåms=a, for all 0 < t < (am)=(åms) and all s. It is easy to see

that

j ~J 1j <
XS

s�1

am

åca(1� å=a)s
,

am

å2c
: (25)

Inequalities (24) and (25) together yield the desired result by choosing c so large that the

right-hand side of (24) is less than å.

We now turn to the proof of (24). For any interval j 2 J 1, which by an abuse of

notation we denote ( j, j� nj], let ~n be maxfms : ms < njg and let ~j �
maxftå~n=a : tå~n=a < jg. It follows that ( ~j, ~j� ~n] belongs to ~J 1 and yet the cardinality

of the symmetric difference is no more than 2å(1� å)~n=a. Note, also, that ~n < nj. As a

consequence we see that for each j 2 ~J 1 there exists a subset J ( j) � J 1 such that

[ j2 ~J 1
J ( j) � J 1 and the following hold: for each i 2 J ( j), ni > nj; the size of the

symmetric difference of i and j is no more than ånj=a; and the left end-point of i is to the

right of the left end-point of j.

Obviously

P max
j2J 1

l j > a
� �

<
X
j2 ~J 1

P max
i2J ( j)

li > a
� �

:

For a given j 2 ~J 1, let h denote the intersection of all i 2 J ( j) and consider the collection

of likelihood ratios f~li : i 2 J ( j)g, where ~li � ~li(h) � èhSi ÿ niø(èh). Note that in the event

fèiSi ÿ niø(èi) > ag
èhSi ÿ niø(èh) > èiSi ÿ niø(èi)� ni[ø(èi)ÿ ø(èh)]

> aÿ ä,
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since èh > èi yet ni < (1� 2å=a)nh. Hence, fmaxi2J ( j) li > ag � fmaxi2J ( j)
~li > aÿ äg.

Observe that maxi2J ( j)
~li < lh � M1 � M2, where M1 and M2 are maxima of partial sums

associated with the increments ~li ÿ lh at the left and right end-points of h, respectively. In

particular, M1 and M2 are independent of lh and of each other. Hence, putting ~a � aÿ ä, we

see that

P max
i2J ( j)

li > a
� �

< P lh � M1 � M2 > ~a� �,

which by a change of measure equals

eÿ~aEh[exp(M1 � M2)exp[ÿ(lh � M1 � M2 ÿ ~a)]; lh � M1 � M2 > ~a]:

By conditioning on M1 � M2 and using arguments parallel to those in Lemmas 6±9, we see

that uniformly on fM1 � M2 , a1=2g,
Eh[exp[ÿ(l h � M1 � M2 ÿ ~a)]; lh � M1 � M2 > ~ajM1 � M2] < caÿ1=2

for some constant c and all large enough a. Now take è � èh, ë � 2èh in Lemma 10, and

expand ø(ë) about èh. Recalling that ç(èh) � a=nh, we see that Eh[exp(M1 � M2)] is

bounded. These approximations holds uniformly in j 2 ~J 1, which proves (24).

We now consider the more complicated case of a two-dimensional random ®eld. The

relation of m and a appropriate for a Poisson approximation is m2a3=2 exp(ÿa)! ë for

some 0 , ë,1. We begin with two lemmas.

Lemma 11. Let fX u: u 2 I g be independent and identically distributed with mean 0 from a

distribution that can be embedded in an exponential family. De®ne Sj �
P

u2 j X u and

nj � j jj for j 2 J �. Let m1 � maxfj jj : j 2 J �g and m2 � jJ �j. Then

E exp max
j2J �

[èSj ÿ njø(è)]
� �

< 1� m2è

ëÿ è

� �
exp m1è

ø(ë)

ë
ÿ ø(è)

è

� �� �
for all 0 , è, ë.

Proof. We use the same argument as in the proof of Lemma 10 with the trivial additional

observation that

�F(x) � P0 max
j2J �

[ëSj ÿ njø(ë)] > x
� �

< m2 eÿx:

h

Lemma 12. Let fXu : u 2 I g be as in the previous lemma. De®ne Sj �
P

u2 j X u and

nj � j jj for j 2 J �. Let m1 � maxfj jj : j 2 J �g and m2 � jJ �j. Then

P max
j2J

[èSj ÿ njø(è)] > ä
� �

< m2 expfm1ø(ë)ÿ ëä=èg

for all 0 , è, ë.
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Proof. Observe that

P max
j2J

[èSj ÿ njø(è)] > ä
� �

<
X
j2J

P(ëSj > ëä=è),

and apply an exponential Markov inequality. h

Let us divide the index set J into ®ve disjoint subsets:

J 0 � fr1 < ca, r2 < cag,
J 1 � fr1 , åa, r2 . cag,
J 2 � fr1 . ca, r2 , åag,
J 3 � fåa < r1 < ca, r2 . cag,
J 4 � fr1 . ca, åa < r2 < cag,
J 5 � fr1 . ca, r2 . cag:

We will show that the statistic calculated by maximizing over J is well approximated by the

statistic obtained by maximizing only over J 0, for which it suf®ces to show that the

probabilities associated with the maxima over J 1, . . . , J 5 are small compared to

m2a3=2 exp(ÿa). Consider approximations of the last four subsets along the lines of the

corresponding subsets in the one-dimensional case discussed above. In these de®nitions s and

t are integers that run from 1 to an appropriate S and T de®ned as above for the one-

dimensional case. Let

~J 1 � fx1 < m, r1 , åa, r2 � ca(1� å=a)s, x2 � tr2å=ag,
~J 2 � fr1 � ca(1� å=a)s, x1 � tr1å=a, x2 < m, r2 , åag,
~J 3 � fr1 � åa(1� å=a)s, x1 � tr1å=a, r2 � ca(1� å=a)s, x2 � tr2å=ag,
~J 4 � fr1 � ca(1� å=a)s, x1 � tr1å=a, r2 � åa(1� å=a)s, x2 � tr2å=ag,
~J 5 � fr1 � ca(1� å=a)s, x1 � tr1å=a, r2 � ca(1� å=a)s, x2 � tr2å=ag:

Note that j ~J 1j � j ~J 2j, m2a2=(åc), j ~J 3j � j ~J 4j, m2a2=(å5c) and j ~J 5j, m2a2=(å2c2). It

follows that the claim can be proved, provided we can show that a1=2 ea P0(maxi2J ( j) li > a)

is bounded (uniformly in j 2 ~J 1 [ � � � [ ~J 5).

Consider, ®rst, the sets ~J 1 and ~J 2. We can take the index sets J ( j) to be linear in

these cases, so the argument given above can be applied.

Regarding the sets ~J 3, ~J 4 and ~J 5, one can bound the maximum over the two-

dimensional set J ( j) by ~l h plus the sum of three random variables. The ®rst random

variable, M1, is the maximum of partial sums related to observations in the rectangles with

one edge equal to those edges of h that are parallel to the x-axis. The second random
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variable, M2, is associated with edges of h parallel to the y-axis. The third random

variable, M3, is associated with partial sums of random variables in the rectangles with

corners touching h. Note that the number of observations in each of these rectangles is at

most nh=a2.

The random variables M1 and M2 are treated by an application of Lemma 10, as above.

For M3 we treat differently the case n � nj < c1a3, were c1 is large enough to assure that

1=(å2c1) belongs to the natural parameter space, and the case n . c1a3. In the former case

the expectation of E0 expfM1 � M2 � M3g �
Q3

i�1 E0 expfM ig is bounded. The bound

follows from the bound on E0 expfM1g and E0 expfM2g derived above and from a bound

on E0 expfM3g derived below. In the latter case the probability of the event under

investigation is bounded by the sum of the probability of the event fl j � M1�
M2 > aÿ 4g and the probability of the event fM3 > 4g. The ®rst probability is bounded

with the aid of the moment generating function of M1 and M2 as before. The probability of

the second event is shown below to be negligible.

In order to show that E0 expfM3g is bounded when n < c1a3, we apply Lemma 2 with

m1 � m2 � n=a2 and è � (2a=n)1=2. It follows that miè � O[(n=a3)1=2], which is bounded

by assumption. Choosing any ë in the interior of the natural parameter space in Lemma 11

would establish the required result.

Regarding the probability of the event fM3 . 4g when n . a3, we can use Lemma 12

with ë � [a=m1]1=2 � [a3=n]1=2 and ä � 4. It can be shown that 4ë=è � 2 . 21=2a, whereas

m1ø(ë) � a=2. The last claim follows since m2 � o(ea).

5. Multidimensional exponential families

Now assume that the X u have a distribution belonging to a multidimensional exponential

family, which we write as exp[hè, xi ÿ ø(è)]dF(x), where as above we assume ø has been

standardized so that ø(0) � 0, _ø(0) � 0. Let ç(è) � hè, _ø(è)i ÿ ø(è). In this section we

indicate heuristically the modi®cations appropriate to generalize our earlier approximations.

For simplicity we assume that è is two-dimensional.

From the convexity of ç it follows that the equation (2) has as its solution a convex

curve è j � è j(ù), parametrized by the angular coordinate ù of the point è. A very useful

result in the calculations to follow is obtained by differentiating (2) with respect to ù to

obtain

(Dè j)
T �ø(è j)è j � 0, (26)

where D denotes differentiation with respect to ù and the superscript T denotes transpose.

For any interval j 2 J and any ù let the probability Pj,ù be de®ned by the likelihood

ratio

l j,ù � [hè j, Sji ÿ njø(è j)]:

Similarly, let Pj be de®ned by
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l j � log (2ð)ÿ1

�2ð

0

exp[l j,ù] dù

( )
: (27)

Let è̂ j � è j(ù̂) be the maximum likelihood estimator of è restricted to the curve è j. We

have the equivalence (cf. (3))

max
j

njj( �X j) > a
n o � max

j
[hè̂ j, Sji ÿ njø(è̂ j)] > a

� �
: (28)

Generalizing (4) and (5), we have the representation

2ð ea P max
j2J

njj( �X j) > a
n o � 2ð eaÓ jE j 1=Ók exp(l k); max

k
nkj( �X k) > a

h i
� Ó j

�2ð

0

E j,ù
exp(maxk l k)

Ók exp(l k)
exp ÿ l j �max

k
(l k ÿ l j)ÿ a

h in o
; max

k
nkj( �X k) > a

� �
dù: (29)

To analyse (29), we begin with the linear Taylor series approximation

njj( �X j)ÿ a � hè j, Sji ÿ njø(è j)ÿ a� O p(1) � hè j, Sj ÿ nj _ø(è j)i � O p(1): (30)

By a Laplace expansion of (27) we obtain

e l j � exp[hè̂ j, Sji ÿ njø(è̂ j)]=[2ðnj(Dè j)
T �ø(è j)(Dè j)]

1=2: (31)

Using a Taylor series approximations of _ø(è̂ j) and l j,ù̂ along with (26) we see that

hè̂ j, Sji ÿ njø(è̂ j)ÿ a � hè̂ j, Sj ÿ nj _ø(è̂ j)i � hè j, Sj ÿ nj _ø(è j)i � O p(1): (32)

Substitution of (30) and (31) into (29) and arguing as in the preceding sections suggests that

the expectation in (29)

� E j,ù
exp[maxk(l k ÿ l j)]

Ók exp(l k ÿ l j)

� �
(Dè j)

T �ø(è j)(Dè j)

èT
j
�ø(è j)è j

( )1=2

: (33)

Calculations similar to those in the proof of Lemma 5, but more complicated, show that in

the expectation in (33) l k ÿ l j can be replaced asymptotically by hè̂ j, Sk ÿ Sjiÿ
(nk ÿ nj)ø(è̂ j), which in turn can be replaced by a similar expression with the true values

è j in place of the estimators è̂ j. Hence this expectation can be evaluated as above to yield the

appropriate multidimensional version of (12) given in Appendix A (cf. (A1)).

We are now in a position to approximate the sum in (29) by an integral. Let Ó0 � �ø(0),

and let v � (cosù, sinù)T, so è � kèkv. Substituting the expressions obtained in the

preceding paragraph and using the algebraic relation

detf�ø(è j)gkè jk4 � (Dè j)
T �ø(è j)(Dè j)è

T
j
�ø(è j)è j (34)

proved in Appendix B, we see from (2) that the right-hand side of (29) is
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� m2a2[det(Ó0)]1=2

�2ð

0

�m=a

0

(1=x2 ÿ a=mx)í2[(2vTÓ0v=x)1=2]dx

( )2

(vTÓ0v)ÿ1dù: (35)

In the special case that m� a, this can be simpli®ed to

m2a2[det(Ó0)]1=2

�2ð

0

�1
0

yí2(y) dy

� �2

(vTÓ0v)ÿ3 dù:

Appendix A: Evaluating (11)

For completeness, we give here, in the form needed for this paper, an argument of Hogan and

Siegmund (1986) which is important for the evaluation of (11). Let Y1, . . . , Yn, . . . be

independent random variables with probability distribution from the exponential family

exp[hè, xi ÿ ø(è)]dF(x). We assume that distribution of Y1 when è � 0 has been centred, so

that _ø(0) � 0; and we write Pè to emphasize dependence of the probability on è. Let

ç(è) � hè, _ø(è)i ÿ ø(è) and Sn � Y1 � � � � � Yn.

Assume that r!1, è! 0 in such a way that rø(è) converges to a positive constant.

Suppose also that n!1, but slowly compared to r. Then, following Hogan and Siegmund

(1986), we shall show that

nÿ1E0 max
0 , k<n

[èSrk ÿ rkø(è)]
n o � rç(è)í[(rèTÓ0è)1=2], (A1)

where Ó0 � �ø(0) and í(:) is the function de®ned by Siegmund (1985, p. 82).

To prove (A1), we begin by noting that by integration by parts and a standard likelihood

ratio identity the left-hand side of (A1)

� nÿ1

�1
0

ex P0 max
k<n

[hè, Srki ÿ rkø(è)] > x
n o

dx

� nÿ1

�1
0

Eèfexp[ÿ(hè, Srôi ÿ rôø(è)ÿ x)]; ô < ngdx, (A2)

where

ô � ôx � minfk : hè, Srki ÿ rkø(è) > xg:
Under the probability Pè the random variable hè, Srki ÿ rkø(è) has expectation rkç(è)

and variance rkèT �ø(è)è, both of which converge (for ®xed k) to positive constants. Hence

by a simple law of large numbers argument Pè(ô < n) converges to 0 for

n , (1ÿ å)x=rç(è) and to 1 for n . (1� å)x=rç(è). It follows that (A2) is asymptotically

bounded above and below by

(1� å)rç(è)lim
x

Eèfexp[ÿ(hè, Srôi ÿ rôø(è)ÿ x)]g: (A3)

The increments hè, Sri ÿ rø(è) are easily seen by the central limit theorem to be

asymptotically normally distributed with mean rèTÓ0è=2 and variance rèTÓ0è, so the limit
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in (A3) is the same as it would be for Gaussian random walk, which is one way of de®ning

the function í (Siegmund 1985, Chapter 8).

Appendix B: Proof of (34)

To simplify the notation, let Ó � �ø(è j), a � è j, and b � Dè j. In this notation equation (26)

becomes aTÓb � 0. It is easy to see by writing è j � kè jk(cosù, sinù)T and differentiating

that det(a, b) � kè jk2. Hence

(aTÓa)(bTÓb) � det[(a, b)TÓ(a, b)] � det(Ó)[det(a, b)]2 � det(Ó)kè jk4,

which is equivalent to (34).
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