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We study the tail behavior of the distribution of certain subadditive
functionals acting on the sample paths of Lévy processes. The functionals
we consider have, roughly speaking, the following property: only the points
of the process that lie above a certain curve contribute to the value of
the functional. Our assumptions will make sure that the process ends
up eventually below the curve. Our results apply to ruin probabilities,
distributions of sojourn times over curves, last hitting times and other
functionals.

1. Introduction. Both in the theory and in applications of stochastic processes
one is often interested in two types of questions: When does the process X =
{X(t), t ≥ 0} lie above a certain deterministic function (curve) µ= {µ(t), t ≥ 0},
and given the process exceeds this curve, what are its values? For example, what
can be said about the distribution of the biggest excess of the process over the curve
and, if both the process and the function are measurable, what is the distribution
of the time the process spends above the curve?

In this paper, we outline a general approach to the asymptotic tail behavior of
the distributions of these and other subadditive functionals acting on an infinitely
divisible process with “not too light” tails. (The latter notion will be made
precise soon.) We focus on a particular class of infinitely divisible processes, the
well-known Lévy processes, and we consider the distributional tails of various
subadditive functionals of their paths. These examples will show in detail how
successfully this method works and how general it is.
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Let X be an infinitely divisible process without Gaussian component and Lévy
measure ν. Following Maruyama (1970), the distribution of X is characterized as
follows:

Eei〈β,X〉 = exp
{∫

R[0,∞)

(
ei〈β,α〉 − 1− i〈β,τ (α)〉)ν(dα)+ i〈β,γ 〉

}
,

(1.1)
β ∈R

([0,∞)).

Here ν is the projective limit of the Lévy measures corresponding to the finite
dimensional distributions of X and γ ∈ R

[0,∞). The symbol R
([0,∞)) denotes the

space of real functions β defined on [0,∞) such that β(t)= 0 for all but finitely
many t , and 〈β,α〉 =∑t∈[0,∞) β(t)α(t). Finally, τ (α)(t)= α(t)1(|α(t)| ≤ 1).

Some examples of the measurable functionals φ: R
[0,∞)→ (−∞,∞] on X we

consider are

φsup(α)= sup
t≥0
[α(t)]+, φ(α)= sup{t > 0 :α(t) > 0},

(1.2)

φ(α)=
∫ ∞

0
[α(s)]p+ ds,

where y+ = max(0, y) and p ∈ (0,1]. The supremum functional φsup has gained
particular importance in the context of queuing and insurance, where one is
interested in quantitative measures for the excesses of X over high level thresholds,
which event is interpreted as buffer overflow or ruin in the different contexts.
The above functionals have in common that they are subadditive, that is, for any
α1, α2 ∈R

[0,∞),

φ(α1 + α2)≤ φ(α1)+ φ(α2).

If, with probability 1, φ(X− µ) <∞ is finite, it makes sense to measure the
thickness of the distributional tail P (φ(X− µ) > u) for large u. Suppose this tail
does not decay “too fast” as u→∞ and define

ψ(u)= ν({α :φ(α −µ) > u}).(1.3)

The subadditivity of the functional φ, the presence of heavy tails and the logic
of large deviations, saying that unlikely events happen in the most likely way,
lead one to the conjecture that ψ(u) and P (φ(X− µ) > u) are equivalent in the
following sense:

lim
u→∞

P (φ(X−µ) > u)

ψ(u)
= 1.(1.4)

Indeed, relations of type (1.4) were proved in the theory of laws with so-called
subexponential tails. For example, Embrechts, Goldie and Veraverbeke (1979)
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considered the overall supremum of Lévy processes, and Rosiński and Samorod-
nitsky (1993) studied very general subadditive functionals.

The setup in the latter paper is, in fact, close to the present one. However, there
is one crucial difference: the functionals in Rosiński and Samorodnitsky (1993)
were assumed to be bounded by an almost surely finite pseudonorm of the process.
Hence these processes are, in a certain sense, bounded “from above and below.”
This assumption is far away from the situation in the present paper. Our functionals
are akin to the supremum of a negative drift random walk over the entire infinite
horizon. In this sense, they are bounded “only from one side.”

The validity of relation (1.4) has been established for the overall supremum
functional φsup and some particular classes of processes with subexponential tails.
Those include Lévy processes with a negative linear drift [see Embrechts and
Veraverbeke (1982)] and symmetric α-stable processes, α ∈ (1,2), with stationary
ergodic increments and negative linear drift. In general, the precise circumstances
under which (1.4) is valid for subadditive functionals are not known, even in the
particular case of Lévy processes. The results of the present paper provide a further
step in the process of understanding the tail equivalence relation (1.4) for heavy
tailed processes. Once again, we will focus on Lévy processes and a large family
of subadditive functionals φ and deterministic functions µ.

The proof of our main result (Theorem 3.1) shows that we use the “heavy
tail large deviations heuristics.” This means that large values of the functional
φ(X − µ) are essentially due to one very large jump of the Lévy process that
occurs early enough, before the negative drift took it “too far down.” Since Lévy
processes are well described by Poisson processes, we make extensive use of the
latter tool. In particular, we show that the large deviation idea can be made precise
by considering the “large and occurring early enough” jumps and the “small or
occurring too late” jumps of the underlying Poisson process separately. This leads
one to a decomposition of the Lévy process into two independent processes.
We show that the process which represents the small jumps is asymptotically
negligible; that is, this process will not contribute to the asymptotic tail behavior of
φ(X− µ). The crucial part in this decomposition is the process which represents
the large jumps of the Lévy process. It has representation as a compound Poisson
sum of paths. We show that the tail behavior of φ(X−µ) is essentially determined
by a single term in that sum.

In related work Hüsler and Piterbarg (1999) considered the tail behavior
of the supremum functional φsup of certain Gaussian processes, including
fractional Brownian motion, with negative (not necessarily linear) drift. The
Gaussian nature of the underlying process causes exponential decay of the tails
P (φsup(X−µ) > u).

This paper is organized as follows. In Section 2 we give a reasonably transparent
set of assumptions we impose on the family of the subadditive functionals φ, the
function (curve) µ and the distribution of the Lévy processes X. There we also
start looking at some basic examples of subadditive functionals which were the
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motivation for our research. The conditions include regular variation of µ and
of the tails of the Lévy measure of X. However, our main theorem holds under
assumptions more general than regular variation and can be substantially relaxed.
For the ease of presentation, a set of such conditions is given in Section 4, where
we also relate the parameters of µ, X and φ. The most general conditions under
which we could prove the main theorem are stated in Section 7. The main result on
the asymptotic behavior of the tails P (φ(X−µ) > u) is formulated in Section 3. It
describes one situation when relation (1.4) is valid. In this section we also continue
the discussion of examples which we started in Section 2 and give additional
examples. We explicitly calculate the tail asymptotics for a number of important
subadditive functionals acting on Lévy processes. Among those are the functionals
in (1.2), but also, for example, the sojourn time of a Lévy process above a curve.
The main steps of the proof are given in Section 5. However, the proof is quite
technical and therefore we postpone various calculations until Section 6.

2. Assumptions and notation. Throughout this paper, C stands for a generic
positive constant C. Its value will be allowed to change from appearance to
appearance, even if we do not mention it explicitly.

Let X = {X(t), t ≥ 0} be a Lévy process, that is, a real-valued process with
stationary and independent increments, and Lévy measure ρ on R. We refer the
reader to Bertoin (1996) and Sato (1999) for encyclopedic treatments of Lévy
processes. In particular, one can find detailed proofs of the properties we mention
and use below.

Specifically, the marginal distributions of a Lévy process are determined by the
characteristic function which, in turn, is determined by its one-dimensional Lévy
measure and drift. If the Lévy process has finite means, we will assume the mean
to be zero, and so write the characteristic function in the form

EeiθX(1) = exp
{∫ ∞
−∞

(eiθx − 1− iθx)ρ(dx)

}
, θ ∈R,(2.1)

whereas in the case of infinite mean, the drift turns out to be unimportant for our
applications, and we will assume that the characteristic function of the process has
the form

EeiθX(1) = exp
{∫ ∞
−∞

(
eiθx − 1− iθx1(|x| ≤ 1)

)
ρ(dx)

}
, θ ∈R.(2.2)

We always take a version of X with all sample paths in the Skorohod space
D[0,∞), that is, with paths which are right-continuous at every t ≥ 0 and have
left limits at every t > 0. This version of X is automatically measurable; this
feature will become useful because we will have many opportunities to integrate
the sample paths of X.
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If one writes the characteristic function of a Lévy process process X in the form
(1.1), then the corresponding Lévy measure ν has the form

ν(A)=
∫ ∞

0

∫ ∞
−∞

1(x1[s,∞) ∈A)ρ(dx) ds,(2.3)

for any measurable set A⊂R
[0,∞). Therefore the function ψ in (1.3) turns into

ψ(u)=
∫ ∞

0

∫ ∞
−∞

1
(
φ(x1[s,∞)−µ) > u

)
ρ(dx) ds, u > 0.(2.4)

We denote the right tail of the one-dimensional Lévy measure ρ by

H(u)= ρ
([u,∞)

)
, u > 0.

Since we aim at readability, we will not assume the most general sufficient
conditions under which our results hold. However, these assumptions can be
substantially relaxed. A set of such conditions can be found in Section 7 and the
corresponding proofs are available in an extended version of the present paper in
Braverman, Mikosch and Samorodnitsky (2000).

2.1. Assumptions on the Lévy measure ρ. We assume that the following hold:

H is regularly varying with exponent−α for some α > 0;(2.5)

there is a constant C > 0 such that

ρ
(
(−∞, −t])≤ Cρ

([t,∞)
)

for all t ≥ 1.(2.6)

2.2. Assumptions on the drift µ. We assume that

µ is regularly varying with exponent β for some β > max(α−1, 0.5).(2.7)

2.3. Assumptions on the subadditive functional φ. Let φ: R
[0,∞)→[0,∞] be

a measurable subadditive functional satisfying the following conditions:

1. The functional “lives off only positive values of its argument”—This means
that

φ(0)= 0, and if α(t)≤ 0 for all t > t0, some t0, then
(2.8)

φ(α)= φ(α1[0,t0]).
Here α1[0,t0] = {α(t)1[0,t0](t), t ≥ 0}.

2. The functional is finite on locally bounded functions that are eventually
nonpositive—This means that

φ(α)= φ(α1[0,t0]) <∞ if α(t)≤ 0 for all t > t0, some t0,
(2.9)

and sup
t≤t0

α(t) <∞.



74 M. BRAVERMAN, T. MIKOSCH AND G. SAMORODNITSKY

3. Monotonicity—This means that

if α(t)≤ β(t) for all t, then φ(α)≤ φ(β)(2.10)

and

φ(cα)≤ φ(α) for all c ∈ [0,1] and α ∈R
[0,∞).(2.11)

Notice that (2.11) is implied by (2.10) if α(t)≥ 0 for all t ≥ 0.

The reader who wants to learn about some relevant examples of subadditive
functionals φ satisfying the above conditions is referred to Section 3.

2.4. Function T (s, u). Crucial information describing the behavior of the tail
probability P (φ(X−µ) > u) is contained in the following function. For s ≥ 0 and
u > 0 define

T (s, u)= inf{x > 0 :φ(x1[s,∞)−µ) > u},(2.12)

and denote

T (u)= T (0, u).

To get some feeling about the behavior of these functions, let us consider several
examples. In these examples we assume, for simplicity, that the drift function µ is
monotone. Our main theorem below is applicable to these examples irrespective
of µ being monotone. See the discussion below.

EXAMPLE 2.1. One of the interesting subadditive functionals is the overall
supremum

φsup(α)= sup
t≥0

α(t).

It has numerous applications, among which are use in insurance mathematics for
describing eventual ruin [see Embrechts, Klüppelberg and Mikosch (1997)] and
in queuing for the buffer overflow [see Prabhu (1998)]. It is clear that φsup is a
subadditive functional, and that in this case

T (s, u)= µ(s)+ u.(2.13)

EXAMPLE 2.2. Here one considers the time the process spends above zero:

φsojourn(α)=
∫ ∞

0
1
(
α(t) > 0

)
dt.

It is, once again, clear that φsojourn is a subadditive functional. Furthermore, in this
case

T (s, u)=µ0(s + u),(2.14)

where µ0 is a certain nondecreasing regularly varying function equivalent to µ;
see Lemma 3.2(ii) below.
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EXAMPLE 2.3. Here we consider the last hitting time of zero:

φlast(α)= sup{t > 0 :α(t)≥ 0}.
It is not difficult to see that this functional is subadditive and that, in this case,

T (s, u)=max
(
µ(s), µ0(u)

)
,(2.15)

with µ0 as above.

In the examples above one can compute the function T (s, u) explicitly, and our
main result, Theorem 3.1, applies to these examples. It turns out, however, that
one does not really need to be able to compute the function T (s, u) explicitly, and
in some of the further examples below such explicit computation is awkward, or
impossible. It is enough to check a few properties of this function; see (4.1)–(4.4)
below.

3. The main results. Here we give our main result which was announced in
Section 1. The main steps of its proof are given in Section 5. Since the proof is
quite technical, we collect some auxiliary results in Section 6.

First recall the definition of the quantity ψ(u) from (2.4).

THEOREM 3.1. Let X be a Lévy process, µ a deterministic drift function and
φ a subadditive measurable functional satisfying the following conditions:

(i) The assumptions on the Lévy measure, µ and φ in Section 2 hold.
(ii) The function T (s, u) either is one of those given in (2.13)–(2.15) or, more

generally, satisfies (4.1)–(4.4) below.
(iii) For α > 1 and 0 < α ≤ 1 in (2.5) the characteristic function of the process

is given by (2.1) and (2.2), respectively.
(iv) ψ(u) is regularly varying (at infinity) with exponent−α < 0.

Then ψ(u) and P (φ(X−µ) > u) are equivalent:

lim
u→∞

P (φ(X−µ) > u)

ψ(u)
= 1.(3.1)

We now apply Theorem 3.1 to compute the asymptotic behavior of the tail
probabilities P (φ(X−µ) > u) for the examples introduced above, as well as some
additional examples.

For easy reference we first collect several well-known facts on regularly varying
functions which will be used frequently below. The reader is referred to Bingham,
Goldie and Teugels (1987) for proofs and more information. Let

µ←(u)= sup{t > 0 :µ(t)≤ u}, u > 0,(3.2)

be the generalized inverse of µ.



76 M. BRAVERMAN, T. MIKOSCH AND G. SAMORODNITSKY

LEMMA 3.2. (i) Let µ be regularly varying at infinity with positive exponent
of regular variation. Then there are monotone functions µ∗ and µ∗ such that

µ∗(t)≤ µ(t)≤ µ∗(t) for all t ≥ 0 and lim
t→∞

µ∗(t)
µ∗(t)

= 1.(3.3)

(ii) Let µ and η be regularly varying with positive exponent α of regular
variation and such that limt→∞µ(t)/η(t) = 1 (i.e., µ and η are asymptotically
equivalent). Then their generalized inverses are regularly varying with exponent
1/α and asymptotically equivalent as well. Moreover, let

µ0(x)= inf{y > 0 :µ←(y) > x}, x > 0.

Then

lim
x→∞

µ0(x)

µ(x)
= 1.(3.4)

(iii) (Potter’s bounds) Let µ be regularly varying with a positive exponent α
of regular variation. For every C > 1 and ε > 0 there is s0 = s0(C, ε) such that,
for all s, t ≥ s0,

µ(t)

µ(s)
≤C max

((
t

s

)α+ε
,

(
t

s

)α−ε)
.(3.5)

3.1. The overall supremum. Here we consider the overall supremum func-
tional of Example 2.1.

THEOREM 3.3. Assume (2.5)–(2.7). Then

P
(
φsup(X−µ) > u

)= P
(
sup
t≥0

(
X(t)−µ(t)

)
> u

)
(3.6)

∼
∫ ∞

0
H
(
µ(s)+ u

)
ds ∼C(α,β)µ←(u)H(u)

as u→∞. Here C(α,β)= α
∫∞

0 z1/β(1+ z)−(1+α) dz.

REMARK 3.4. In this paper we deal with “powerlike” tails and, hence, the
theorem above is stated under the assumptions of regular variation. We conjecture,
however, that the first asymptotic equivalence in (3.6) holds in greater generality,
perhaps under the assumption of subexponentiality of the tail of H . In fact, if α > 1
and µ(t) = µt , for some µ > 0, is a linear function, then the first asymptotic
equivalence in (3.6) is just the classical result for the ruin probability as proved
by Embrechts and Veraverbeke (1982):

P

(
sup
t≥0

(
X(t)−µ(t)

)
> u

)
∼ 1

µ

∫ ∞
u

H(s) ds,

and the latter result is known to hold when H has a subexponential right tail.
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In fact, it is quite possible that the curve µ may be allowed to belong to a wider
class of functions as well.

PROOF OF THEOREM 3.3. The first step is to note that it is enough to prove
the theorem in the case when µ is a monotone function. Since all the terms in (3.6)
are, obviously, monotone in µ, parts (i) and (ii) of Lemma 3.2 show that, knowing
that the theorem holds for monotone functions, implies its validity in general.

Assume, therefore, that µ is a monotone function. Note that in our case it
follows from (2.13), (4.5) and regular variation of H that

ψ(u)∼
∫ ∞

0
H
(
µ(s)+ u)

)
ds

as u→∞, which together with Theorem 3.1 establishes the first asymptotic
equivalence in (3.6). Furthermore, by Potter’s bounds [Lemma 3.2(iii)], we see,
further, that

ψ(u)∼ uαH(u)

∫ ∞
0

(
µ(s)+ u)

)−α
ds = αuαH(u)

∫ ∞
0

µ←(u)(y + u)−(α+1) dy.

Since µ← is, according to Lemma 3.2(ii), regularly varying, the second asymptotic
equivalence in (3.6) is a standard exercise in integration of regularly varying
functions.

It turns out that the assumptions (4.1), (4.3) and (4.4) are satisfied in this case.
Indeed, (4.1) is trivially true, while for every 0 < δ < 1,∫ ∞

0
H
(
δT (s, δu)

)
ds =

∫ ∞
0

H
(
δ
(
µ(s)+ δu

))
ds

(3.7)
≤
∫ ∞

0
H
(
δ2(µ(s)+ u

))
ds := Iδ(u).

Since we have already proved that I1(u) is regularly varying, by Potter’s bounds,
there is a θ > 0 such that I1(u)≥ Cu−θ for all u≥ 1, while for any 0 < δ < 1 and
u≥ δ−2,

Iδ(u)≤ Cδ−θ I1(u).

In the case 1≤ u < δ−2 we write

Iδ(u)=
∫
µ(s)≤δ−2

+
∫
µ(s)>δ−2

:= I
(1)
δ (u)+ I

(2)
δ (u).

Using Potter’s bounds in the same way as before shows that

I
(1)
δ (u)≤ Cδ−θ I1(u).
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Moreover, since H is the tail of a Lévy measure, we know that, for some C > 0,
H(y)≤ Cy−2 for all 0 < y ≤ 2. Therefore, by the regular variation of µ,

I
(1)
δ (u)≤ Cδ−4u−2

∫ ∞
0

1
(
µ(s)≤ δ−2)ds ≤ Cδ−θ1

for some θ1 > 0. Putting everything together establishes that, for some C > 0 and
θ2 > 0, ∫ ∞

0
H
(
δT (s, δu)

)
ds ≤ Cδ−θ2

∫ ∞
0

H
(
T (s, u)

)
ds

for all u ≥ 1 and 0 < δ < 1. This is, of course, more than enough to prove (4.4).
Finally, the assumption (4.3) is an immediate consequence of (3.7) and Potter’s
bounds. �

3.2. The time the process spends above zero. In this section we consider the
sojourn time above zero of Example 2.2.

THEOREM 3.5. Assume (2.5)–(2.7). Then

P
(
φsojourn(X−µ) > u

)= P

(∫ ∞
0

1
(
X(t)−µ(t) > 0

)
dt > u

)
(3.8)

∼
∫ ∞
u

H
(
µ(s)

)
ds ∼ C(α,β)uH(µ(u))

as u→∞. Here C(α,β)= (αβ − 1)−1.

PROOF. We may and will assume that µ is monotone. Furthermore, we may
assume that µ(0)≥ 1. Indeed, let

µ̃(t)=max
(
µ(t), 1+ log(1+ t)

)
, t ≥ 0.

Then µ̃(0)≥ 1, µ̃(t) ∼ µ(t) as t→∞, and it is easy to check that monotonicity
and subadditivity of the functional φsojourn imply that

P
(
φsojourn(X−µ) > u

)∼ P
(
φsojourn(X− µ̃) > u

)
as u→∞.

Note that in this case T (s, u) is given by (2.14) [with µ0 as in Lemma 3.2(ii)],
and so it follows from that part of the lemma, (4.5) and regular variation of H that

ψ(u)∼
∫ ∞
u

H
(
µ(s)

)
ds

as u→∞.
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Once again, the conditions (4.1), (4.3) and (4.4) hold in this case. Indeed, (4.1)
follows from Proposition 4.2. Furthermore, we have∫ ∞

0
H
(
δT (s, δu)

)
ds =

∫ ∞
δu

H
(
δµ0(s)

)
ds = δ

∫ ∞
u

H
(
δµ0(δs)

)
ds := Iδ(u).

Note that the assumption µ(0)≥ 1 implies that µ0(0)≥ 1. Therefore, if 0 < δ < 1
and u ≥ 1/δ we can use Potter’s bounds and the fact that H(y) ≤ Cy−2 for all
0 < y ≤ 2 to see that for some C > 0 and θ > 0 we have

Iδ(u)≤ Cδ−θ I1(u),

whereas if 1≤ u < 1/δ, then

Iδ(u)≤ Cδ−θ
(
1+ I1(u)

)
.

The already established regular variation at infinity of I1(u) implies now that

Iδ(u)≤ Cδ−θ I1(u)

for all 0 < δ < 1 and u≥ 1, which is, once again, more than enough to prove (4.4).
The assumption (4.3) is an immediate consequence of Potter’s bounds. �

3.3. The last hitting time of zero. In this section we consider the last hitting
time functional of Example 2.3.

THEOREM 3.6. Assume (2.5)–(2.7). Then

P
(
φlast(X−µ) > u

)= P
(
sup{t > 0 :X(t)≥ µ(t)}> u

)
(3.9)

∼ uH
(
µ(u)

)+ ∫ ∞
u

H
(
µ(s)

)
ds ∼ C(α,β)uH

(
µ(u)

)
as u→∞. Here C(α,β)= 1+ (αβ − 1)−1.

PROOF. The proof is similar to the one for Theorem 3.5. Without loss of
generality we may and will assume that µ is monotone increasing and µ(0),
µ0(0)≥ 1.

Notice that

φlast(x1[s,∞) −µ)=
{

0, if x ≤ µ(s),

µ←(x), if x > µ(s).

Therefore T (s, u) is given by (2.15), and so we may conclude that

ψ(u)∼ uH
(
µ0(u)

)+ ∫ ∞
u

H
(
µ(s)

)
ds,(3.10)

which together with Karamata’s theorem concludes the proof of the theorem. �
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In this case the conditions (4.1), (4.3) and (4.4) hold as well, with (4.1) following
from Proposition 4.2. Furthermore, we have, by (2.15),∫ ∞

0
H
(
δT (s, δu)

)
ds = δuH

(
δµ0(δu)

)+ ∫ ∞
δu

H
(
δµ(δs)

)
ds

=:H1(δu)+H2(δu).

It clearly suffices to show that each term H1(u) and H2(u) satisfies (4.3) and
(4.4). For H2(u) this was proved in the proof of Theorem 3.5. Now turn to H1(u).
Let δ ∈ (0,1). Then it follows from Potter’s bounds and regular variation of µ and
H that for u > 1/δ, say,

H1(δu)≤ CδθH1(u),

where θ is a real constant. For small u≤ 1/δ one can again proceed as in the proof
of Theorem 3.5. Making use of the fact that H is the tail of a one-dimensional
Lévy measure and that µ(0)≥ 1, we see that

H1(δu)≤ C[δu]H(δ)≤ C[δu]δ−2 ≤ Cδ−1uH
(
µ0(u)

)= CH1(u). �

3.4. Integral of a nonnegative subadditive function. The functional φsojourn of
Theorem 3.5 is a particular case of a more general group of subadditive functionals
obtained by appropriate space-dependent weighting of the positive values of a
process. Consider a nondecreasing nonnegative function f such that f (x) = 0
for x ≤ 0 and

f (x1+ x2)≤ f (x1)+ f (x2) for x1, x2 > 0,

and let

φI (f )(α)=
∫ ∞

0
f
(
α(t)

)
dt.(3.11)

It is clear that φI (f ) is a subadditive functional. We will not address here the
question of what functionals φI (f ) fit in the framework of the theory developed
in the present paper. Instead, we will briefly consider the class of functionals
corresponding to the power functions

f (x)= [x+]p, 0≤ p ≤ 1.(3.12)

We will denote the corresponding functional by φp(α). The case p = 0
corresponds to the functional φsojourn.

The tail behavior of the distribution of the functional φp(α) is described in the
following theorem. Its proof is very similar to that of Theorem 3.5, but quite a bit
longer. We omit the argument.
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THEOREM 3.7. Assume (2.5)–(2.7). Then, for every 0 <p ≤ 1,

P
(
φp(X−µ) > u

)= P

(∫ ∞
0
[X(t)−µ(t)]p+ dt > u

)
(3.13)

∼ C(α,β,p)u
(
F←(u)

)−p
H
(
F←(u)

)
as u→∞. Here

F(x)= xpµ←(x), x > 0,

and C(α,β,p) is a finite positive constant given by

C(α,β,p)=
∫ ∞

0
y(t)−αt−αβ dt,

where y(t) = h−1(t−(1+pβ)), t > 0, and h is a strictly increasing continuous
function on [1,∞) given by

h(y)= pyp
∫ 1

1/y

(
(yz)β − 1

)
(z− 1)p−1 dt.

3.5. The supremum of the integral of the process. Here we consider the
subadditive functional

φsupint(α)= sup
v>0

∫ v

0
α(t) dt.

Unlike other functionals considered in this section, this functional is affected by
the negative values of the process. The tail behavior of this functional is described
in the theorem below. Its proof, once again, is very similar to that of the previous
results, but longer. We will omit its argument as well.

THEOREM 3.8. Assume (2.5)–(2.7). Then

P
(
φsupint(X−µ) > u

)= P

(
sup
v≥0

∫ v

0

(
X(t)−µ(t)

)
dt > u

)
(3.14)

∼ C(α,β)µ←1 (u)H

(
u

µ←1 (u)

)
as u→∞. Here

µ1(x)=
∫ x

0
µ(y) dy, x > 0,

and C(α,β) is a finite positive constant given by

C(α,β)=
∫ ∞

0
y(t)−αt−α dt,
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where y(t)= h−1(4β(1+β)t1+β), t > 0, and h is a strictly increasing continuous
function on [0,∞) given by

h(y)= y1+β

(1+ y)β
.

4. More general conditions on the function T (s, u). Let T (s, u) and T (u)

be as above. The following assumptions are needed to replace the explicit
computation of the function T (s, u) which we were able to perform in some of
the examples above:

1. Relation between T (s, u) and T (u)—There is A1 > 0 such that

T (s, u)≤A1[µ(s)+ T (u)] for all s, u > 0.(4.1)

2. A scaling property—There are positive functions g(δ) and h(δ), 0 < δ ≤ 1,
satisfying

h(δ)→ 1 as δ ↑ 1,
∣∣log

(
g(δ)

)∣∣≤O(δ−1) as δ ↓ 0(4.2)

and such that, for every u > u(δ) and 0 < δ ≤ 1,∫ ∞
0

H
(
δT (s, δu)

)
ds ≤ h(δ)

∫ ∞
0

H
(
T (s, u)

)
ds,(4.3)

and, for every u≥ u0 and 0 < δ ≤ 1,∫ ∞
0

H
(
δT (s, δu)

)
ds ≤ g(δ)

∫ ∞
0

H
(
T (s, u)

)
ds.(4.4)

4.1. Some implications of the assumptions. We collect some particular conse-
quences of the assumptions on the Lévy measure, the drift µ and the functional φ
in Section 2 and on the function T (s, u) in Section 4. All these assumptions are
assumed to hold in the following lemma.

LEMMA 4.1. The following statements hold:

(i) With probability 1, for every γ > 0, φ(|X| − γµ) < ∞ and therefore
φ(X− γµ) <∞.

(ii) For every ε > 0 and u > 0, γ > 0,∫ ∞
0

H

(
1+ ε

γ
T (s, u)

)
ds

≤
∫ ∞

0

∫ ∞
0

1
(
φ(γ x1[s,∞)−µ) > u

)
ρ(dx) ds(4.5)

≤
∫ ∞

0
H

(
1

γ
T (s, u)

)
ds.
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(iii) There is a u1 ≥ 0 such that, for every ε > 0 and u > u1,∫ ∞
0

H
(
εT (s, u)

)
ds <∞.(4.6)

(iv) For every γ > 0,

φ(γ x1[s,∞)−µ) <∞ outside a set of measure zero
(4.7)

with respect to ρ × Leb.

(v) There exists β1 > 0 such that, for every u≥ 2,

H(u)≥ u−β1 and µ(u)≤ uβ1 .(4.8)

(vi) There is a constant A2 > 0 such that, for all s, t ≥ t0 and sufficiently large
t0 > 0,

µ(s + t)≤A2[µ(s)+µ(t)].(4.9)

PROOF. (i) Observe first that if β > max(α−1,0.5), we conclude from the
regular variation of H and µ [see (2.5), (2.7)], and standard a.s. limit results
[law of the iterated logarithm when E[X(1)]2 <∞, generalized strong laws of
large numbers when E[X(1)]2 =∞; see Stout (1974)] that X(t)/tβ−δ→ 0 a.s. as
t→∞ for positive δ provided that β − δ > max(0.5, α−1). Therefore

|X(t)| − εµ(t)≤ |X(t)| −Ctβ−δ→−∞.

So we may conclude from (2.9) that φ(|X|− εµ) <∞ a.s. (with the usual conven-
tion of taking pointwise absolute values of a function).

(ii) This statement follows from the definition (2.12) of the function T .
(iii) Regular variation of µ with a positive index implies the following

quasimonotonicity condition: there is a C ∈ (0,1] and t0 ≥ 0 such that

inf
s≥t µ(s)≥ Cµ(t) for all t ≥ t0.(4.10)

Now it follows from (2.8), (4.10) and (2.10) that T (s, u)≥max(Cµ(s), T (u)) for
all s ≥ t0 and that T (u) > 0 for every sufficiently large u (say, u > u1). Hence∫ ∞

0
H
(
εT (s, u)

)
ds ≤ (t0 + 1)H

(
εT (u)

)+ ∫ ∞
t0+1

H
(
Cεµ(s)

)
ds.

The right-hand integral is finite by virtue of (2.5) and (2.7).
(iv) Relation (4.7) follows from (2.7) and (2.9).
(v) The inequalities (4.8) are immediate consequences of the regular variation

property of H and µ.
(vi) Relation (4.9) is an immediate consequence of the regular variation

of µ. �
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4.2. How do we verify condition (4.1)? Here is an easily verifiable sufficient
condition for (4.1).

PROPOSITION 4.2. Assume that the following conditions hold:

(i) The subadditive functional φ satisfies (2.8)–(2.11).
(ii) There exists γ > 0 such that, for all 0 < c < 1,

φ(cx1[0,∞)−µ)≤ cγ φ(x1[0,∞)−µ).(4.11)

(iii) There exists a > 0 such that, for every s, x > 0,

φ(x1[s,∞)−µs)≥ φ(ax1[0,∞)−µ),(4.12)

where µs(t)= µ((t − s)+).
(iv) µ is nondecreasing.

Then (4.1) holds.

In fact, condition

φ(cα)≤ cγ φ(α) for every 0 < c < 1(4.13)

implies, and is more restrictive than, (2.11) and (4.11). Indeed, if (4.13) holds,
monotonicity of φ implies

φ(cx1[0,∞)−µ)= φ
(
c(x1[0,∞)− c−1µ)

)
≤ cγ φ(x1[0,∞) − c−1µ)≤ cγ φ(x1[0,∞)−µ).

Moreover, many of the functionals of interest have the property

φ(x1[s,∞)−µs)= φ(x1[0,∞) −µ),(4.14)

which implies (4.12).
The proof of the proposition is based on the following property of the

function T (u).

LEMMA 4.3. There is a constant B > 0 such that, for all u, v > 0,

T (u+ v)≤B[T (u)+ T (v)].(4.15)

PROOF. By monotonicity of φ, for every ε > 0,

φ
([T (u)+ T (v)+ ε]1[0,∞) −µ

)≥max(u, v)≥ u+ v

2
,

which implies that

T

(
u+ v

2

)
≤ T (u)+ T (v).(4.16)
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Let u > 0 and suppose that T (2u) > 0. By the scaling property (4.11) we have, for
every ε > 0,

u > 1
2φ
(
(1− ε)T (2u)1[0,∞)−µ

)≥ φ
(
2−1/γ (1− ε)T (2u)1[0,∞)−µ

)
,

which means that

2−1/γ T (2u)≤ T (u).

On the other hand, if T (2u)= 0, then this relation is trivial. The above relation,
together with (4.16), yields the desired relation (4.15). �

PROOF OF PROPOSITION 4.2. It follows from (4.9) (in which we assume,
without loss of generality, that A2 ≥ 1), µ(t)≤A2[µ(t − s)+µ(s)] for s < t , and
so

µ1[s,∞) ≤A2[µs +µ(s)1[s,∞)],
implying by monotonicity of φ that

r(x, s) := φ(x1[s,∞)−µ1[s,∞))≥ φ
(
A2
[(
x/A2−µ(s)

)
1[s,∞)−µs

])
.

Now (2.11) and (4.12) yield

r(x, s)≥ φ
((
x/A2 −µ(s)

)
1[s,∞)−µs

)
(4.17)

≥ φ
(
a[x/A2 −µ(s)]1[0,∞)−µ

)
.

Now it follows from subadditivity that

φ(x1[s,∞)−µ)≥ φ
(
a[x/A2 −µ(s)]1[0,∞)−µ

)− φ(µ1[0,s)).

Let ε > 0 and choose x := (1+ ε)A2[µ(s)+ a−1T (u)]. Then, by (4.17),

φ
(
(1+ ε)A2[µ(s)+ a−1T (u)]1[s,∞)−µ

)≥ u− (µ1[0,s)),

which implies that

T
(
s, u− φ(µ1[0,s))

)≤A2[µ(s)+ a−1T (u)],
and, after a change of variable and with (4.15),

T (s, u) ≤ A2
[
µ(s)+ a−1T

(
u+ φ(µ1[0,s))

)]
≤ A2

[
µ(s)+ a−1BT (u)+ a−1BT

(
φ(µ1[0,s))

)]
(4.18)

=:A2
[
µ(s)+ a−1BT (u)

]+ a−1A2BT
(
g(s)

)
.

It remains to estimate the last term in (4.18). If it is nonzero, according to (2.12)
we have

φ
(1

2T
(
g(s)

)
1[0,∞)−µ

)≤ g(s).(4.19)
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Assume that

T
(
g(s)

)
> 4µ(s).

Using (4.11), (2.8) and monotonicity of φ we obtain

φ
(1

2T
(
g(s)

)
1[0,∞)−µ

)≥ φ
(
2µ(s)1[0,∞)−µ

)
(4.20)

≥ φ
(
2µ(s)1[0,s)−µ1[0,s)

)
.

But 2µ(s)−µ(t)≥ µ(s)≥ µ(t) for 0≤ t < s, and so (4.20) is at least

φ(µ1[0,s))= g(s).

However, this contradicts (4.19).
Hence T (g(s)) ≤ 4µ(s) for all s ≥ 0, which together with (4.18) gives

us (4.1). �

5. Proof of Theorem 3.1. Since we have checked that the conditions (4.1),
(4.3) and (4.4) are satisfied when the function T (s, u) is given by one of the
functions (2.13)–(2.15), it is enough to prove the theorem under the assumptions
(4.1), (4.3) and (4.4).

5.1. The basic decomposition. For fixed 0 < τ < 1 and some δ0 > 0 we
introduce the set

Bτ = {x1[s,∞) :φ(|x|1[s,∞)− τµ) > δ0, s ≥ 0, x ∈R
}⊂R

[0,∞).(5.1)

LEMMA 5.1. If δ0 > max(u1,1) (see Lemma 4.1) then the set Bτ has finite
Lévy measure: ν(Bτ ) <∞.

PROOF. By definition of the Lévy measure ν [see (2.3)] and since (2.6), (4.6)
and (2.11) hold, we have

ν(Bτ )=
∫ ∞

0

∫ ∞
−∞

1
(
x1[s,∞) ∈ Bτ

)
ρ(dx) ds

≤ C

∫ ∞
0

∫ ∞
0

1
(
x1[s,∞) ∈Bτ

)
ρ(dx) ds

≤ C

∫ ∞
0

H

(
τ

2
T (s, δ0)

)
ds.

The right-hand expression is finite by the choice of δ0. �

From now on δ0 is chosen to satisfy the assumptions of Lemma 5.1 and, hence,
ν(Bτ ) <∞. Since Bτ and Bc

τ are disjoint we can decompose X into a sum

X d=X1 +X2(5.2)
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of two independent infinitely divisible processes X1 and X2 with Lévy measures
ν1 and ν2, respectively, given by

ν1(A)= ν(A ∩Bτ ) and ν2(A)= ν(A ∩Bc
τ )

for any measurable A⊂R
[0,∞), and where the process X1 has a representation as

compound Poisson sum

X1
d=

N∑
j=1

Yj ,(5.3)

where Y1,Y2, . . . are iid stochastic processes on [0,∞) with common law
ν1/ν(Bτ ), independent of a Poisson random variable N with mean ν(Bτ ).

The following fact will be useful in what follows.

LEMMA 5.2. For every γ > 0, with probability 1,

φ(|Xi | − γµ) <∞, i = 1,2.

PROOF. Since P (X1 = 0) > 0 and X1, X2 are independent, it follows from
Lemma 4.1(i) that φ(|X2| − γµ) <∞ a.s. for every γ > 0. In turn, exploiting the
monotonicity and subadditivity of φ, we conclude that φ(|X1| − γµ) <∞ a.s. for
every γ > 0. �

5.2. The upper bound. By (5.2) and subadditivity of φ, for every ε ∈ (0,1),

P
(
φ(X−µ) > u

)
= P

(
φ(X1+X2 −µ) > u

)
(5.4)

≤ P
(
φ
(
X1− (1− ε)µ

)
> (1− ε)u

)+ P
(
φ(X2− εµ) > εu

)
=: I1(u)+ I2(u).

LEMMA 5.3. Under the assumptions of the theorem for every τ small enough,

lim
ε→0

lim sup
u→∞

I1(u)/ψ(u)≤ 1,(5.5)

lim
ε→0

lim sup
u→∞

I2(u)/ψ(u)= 0.(5.6)

From Lemma 5.3 and (5.4) we conclude that

lim sup
u→∞

P (φ(X−µ) > u)

ψ(u)
≤ 1.

This concludes the proof of the upper bound in (3.1).
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We proceed with the proof of Lemma 5.3.

PROOF OF (5.5). The compound Poisson representation (5.3), subadditivity
of φ and the same argument as in Lemma 2.7 in Mikosch and Samorodnitsky
(2000) yield that

I1(u) ≤ EN P
(
φ
(
Y1− (1− ε)2µ

)
> (1− ε)2u

)
+
∞∑
k=2

k2P (N = k)

[
P

(
φ

(
Y1− ε(1− ε)

k
µ

)
>

ε(1− ε)

k
u

)]2

=: I11(u)+ I12(u).

Recalling that EN = ν(Bτ ) and using the monotonicity properties (2.10) and
(2.11) of φ, we see that

I11(u)=
∫ ∞

0

∫ ∞
0

1
(
φ
(
x1[s,∞) − (1− ε)2µ

)
> (1− ε)2u

)
ρ(dx) ds

≤
∫ ∞

0

∫ ∞
0

1
(
φ
(
(1− ε)−2x1[s,∞)−µ

)
> (1− ε)2u

)
ρ(dx) ds.

Write, for ε ∈ (0,1),

h̃(ε)= h
(
(1− ε)2/(1+ ε)

)
.

The function H is decreasing, while T (s, u) is increasing in both arguments.
Therefore and in view of (4.4) we can further bound I11(u) as follows for
sufficiently large u:

I11(u)≤
∫ ∞

0
H
(
(1− ε)2T

(
s, (1− ε)2u

))
ds

≤ h̃(ε)

∫ ∞
0

H
(
(1+ ε)T

(
s, (1+ ε)u

))
ds

≤ h̃(ε)

∫ ∞
0

H
(
(1+ ε)T (s, u)

)
ds ≤ g̃(ε)ψ(u).

In the last step we used (4.5). Similar arguments and the assumptions on the
function g in (4.2) yield for sufficiently large u and sufficiently small ε that

I12(u)≤ [EN ]−2
∞∑
k=2

k2P (N = k)

[
g

(
ε(1− ε)

(1+ ε)k

)]2

[ψ(u)]2 ≤C[ψ(u)]2.

Since, by (4.2), h̃(ε)→ 1 as ε→ 0, we finally conclude that

lim
ε→0

lim sup
u→∞

I1(u)/ψ(u)≤ lim
ε→0

h̃(ε)= 1. �
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PROOF OF (5.6). Let X̃2 be an independent copy of X2. Consider the
symmetrization of X2, given by

Z=X2− X̃2.(5.7)

By independence of X2 and X̃2 and subadditivity of φ, we have

P
(
φ(Z− εµ/2) > εu/2

)≥ P
(
φ(X2− εµ) > εu

)
P
(
φ(X̃2 − εµ/2)≤ εu/2

)
.

By Lemma 5.2, the second factor on the right-hand side goes to 1 as u→∞.
Hence (5.6) follows once we have proved that for every ε > 0 and τ small enough

lim
u→∞

P (φ(Z− εµ) > εu)

ψ(u)
= 0.(5.8)

Observe that Z is a symmetric infinitely divisible process whose Lévy measure
νZ is given by

νZ(A)=
∫ ∞

0

∫ ∞
−∞

[
1(x1[s,∞) ∈A ∩Bτ)+ 1

(
x1[s,∞) ∈ (−A)∩Bτ

)]
ρ(dx) ds

(5.9)

=
∫ ∞

0

∫ ∞
−∞

1(x1[s,∞) ∈A∩Bτ )ρ
∗(dx) ds

for any measurable A⊂R
[0,∞). Here

ρ∗
(
(t,∞)

)= ρ
(
(t,∞)

)+ ρ
(
(−∞,−t)), t > 0,

is the symmetrized one-dimensional Lévy measure of X. Define two symmetric
one-dimensional Lévy measures ρ1 and ρ2 by

ρ1(·)= ρ∗
(· ∩ {x : |x| ≥ 1}) and ρ2(·)= ρ∗

(· ∩ {x : |x|< 1}).(5.10)

Let Z1, Z2 be independent infinitely divisible processes with Lévy measures that
are obtained by replacing ρ in (5.9) by ρ1, ρ2, respectively. Then

Z d= Z1 +Z2(5.11)

and therefore subadditivity of φ implies

P
(
φ(Z− εµ) > εu

) ≤ P
(
φ(Z1− εµ/2) > εu/2

)+ P
(
φ(Z2− ε/2µ) > εu/2

)
=: I3(u)+ I4(u).

It follows from Lemmas 6.1 and 6.2 below that, for any ε > 0 and τ > 0,

lim
u→∞ I4(u)/ψ(u)= 0,(5.12)

and so we proceed to estimate I3(u).
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Let (5j ) be the points of a time homogeneous Poisson process on [0,∞) with
rate λ = ρ1(R), and let (Vj ) be iid symmetric random variables with common
distribution ρ1/ρ1(R) and independent of the Poisson process. Define, for j ≥ 1,

Yj = Vj1
(
φ(|Vj |1[5j ,∞) − τµ)≤ δ0

)
.(5.13)

Observe that we can represent the process Z1 in the form

Z1(t)=
∞∑
j=1

Yj1[5j ,∞)(t), t ≥ 0.

(Simply compute the mean measures of the Poisson random measures on both
sides of the equation above.) Notice that

(51,±Y1,52,±Y2, . . .)
d= (51, Y1,52, Y2, . . .)(5.14)

for any choice of signs above.
For u > 0 and T (u)= T (0, u) let

m=m(u)= inf
{
j = 0,1,2, . . . :µ(2j)≥ T (u)

}
(5.15)

and

Z1,(m) =
m∑
j=1

Yj1[5j ,∞) and Z(m)
1 =

∞∑
j=m+1

Yj1[5j ,∞).(5.16)

Then, again by subadditivity,

I3(u)≤ P
(
φ(Z1,(m)− εµ/4) > εu/4

)+ P
(
φ(Z(m)

1 − εµ/4) > εu/4
)
.(5.17)

However, the right-hand expressions are of the order o(ψ(u)) as u→∞ for every
ε > 0 and τ > 0 small enough (relative to ε), as follows from Lemmas 6.4 and 6.6.
This and (5.12) imply (5.8) and complete the proof of (5.6). �

5.3. The lower bound. We again start with the identity

P
(
φ(X−µ) > u

)= P
(
φ(X1+X2 −µ) > u

)
.

Recalling that X1 and X2 are independent and φ is subadditive, for every K > 0,

P
(
φ(X−µ) > u

)
≥ P

(
φ(X1− (1+ ε)µ) > u+K

)
P
(
φ(−X2 − εµ)≤K

)
(5.18)

= I5(u,K)I6(K).

LEMMA 5.4. Under the assumptions of the theorem,

lim
K→∞ lim inf

u→∞ I5(u,K)/ψ(u)≥ 1.(5.19)
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It is immediate from Lemma 5.2 that limK→∞ I6(K)= 1. Therefore, from this
lemma and (5.18) we conclude that

lim inf
u→∞

P (φ(X−µ) > u)

ψ(u)
≥ 1.

This completes the proof of the lower bound in (3.1).

PROOF OF LEMMA 5.4. First recall the compound Poisson structure of X1
from (5.3). For k = 1,2, . . . and j ≤ k, consider the disjoint events

Bkj =
{
N = k, φ

(
Yj − (1+ ε)2µ

)
> u+ 2K,

φ
(
Yi − (1+ ε)2µ

)≤ u+ 2K, i = 1, . . . , k, i �= j,

φ

(
− ∑

1≤i �=j≤k
Yi − ε(1+ ε)µ

)
≤K

}
.

Subadditivity of φ implies

I5(u,K)≥
∞∑
k=1

k∑
j=1

P (Bkj )

≥ P
(
φ
(
Y1− (1+ ε)2µ

)
> u+ 2K

)
p1(K)− p2(u),

where

p1(K) :=
∞∑
k=1

k∑
j=1

P

(
N = k, φ

(
− ∑

1≤i �=j≤k
Yi − ε(1+ ε)µ

)
≤K

)
,

p2(u) :=
∞∑
k=2

P
(
N = k, φ

(
Yj − (1+ ε)2µ

)
> u+ 2K

for at least 2 different j ∈ {1, . . . , k}).
Using the independence of Yj and

∑
1≤i �=j≤k Yi and again the subadditivity of φ,

we have

p1(K)≥EN P
(
φ
(
Y1− ε(1+ ε)µ/2

)≤K/2
)
P
(
φ
(−X1− ε(1+ ε)µ/2

)≤K/2
)
.

By Lemma 5.2, φ(|X1| − γµ) <∞ a.s. for every γ > 0. Using this fact, (2.10)
and (4.7) [recall that the law of Y1 is ν1/ν(Bτ ), see (5.3)] we see that

lim inf
K→∞ p1(K)/EN ≥ 1.

The argument leading to (5.5) also shows that, for every K > 0,

lim inf
u→∞

EN P(φ(Y1− (1+ ε)2µ) > u+ 2K)

ψ(u)
≥ 1

h((1+ ε)−3)
,
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implying that

lim
ε→0

lim
K→∞ lim inf

u→∞
p1(K)P (φ(Y1− (1+ ε)2µ) > u+ 2K)

ψ(u)

≥ lim
ε→0

1

h((1+ ε)−3)
= 1.

Since, as u→∞,

p2(u)≤E(N2)
[
P
(
φ
(
Y1− (1+ ε)2µ

)
> u+ 2K

)]2
,

(5.19) follows. �

6. Auxiliary facts and lemmas. In this section we provide some auxiliary
results for the proof of Theorem 3.1. In what follows, we always assume that the
assumptions of this theorem are satisfied.

We start with a simple lemma connecting the rates of decay of the function ψ(u)
in (2.4) and of 1/T (u) in (2.12).

LEMMA 6.1. There are constants q > 0 and C > 0 such that, for all u≥ 1,

ψ(u)≥ C[T (u)]−q .(6.1)

PROOF. Recalling the definition of ψ(u) from (2.4), observing that H is
decreasing and using (4.1), we obtain

ψ(u)≥
∫ ∞

0
H
(
2T (s, u)

)
ds ≥

∫ ∞
0

H
(
2A1 [µ(s)+ T (u)])ds.

Now use that both µ(s) and H(u) can be bounded by power laws [see (4.8)], and
change the variable of integration to get the desired result. �

Next we discuss certain properties of the processes occurring in (5.2) and
subsequent decompositions. The processes Xi have independent (though not
necessarily stationary) increments. This property is inherited by the symmetric
processes Z in (5.7) and, subsequently, Zi in (5.11).

Let Wi be Lévy processes on [0,∞) with one-dimensional Lévy measure ρi ,
i = 1,2, as defined in (5.10). Then the following identities in law hold:

Wi
d= Zi +Vi , i = 1,2,(6.2)

where, for fixed i, Zi and Vi are independent symmetric infinitely divisible
processes with independent increments.

Our next lemma shows that the functional φ applied to the process Z2,
representing the “small jumps” of the process Z, has a “light” tailed distribution.



FUNCTIONALS OF LÉVY PROCESSES 93

LEMMA 6.2. For every γ > 0 and r > 0, we have

J (u) := P
(
φ(Z2 − γµ) > u

)= o([T (u/2)]−r ) as u→∞.(6.3)

PROOF. Without loss of generality we may assume that r ≥ 2 and γ ≤ 1. By
subadditivity of φ,

J (u) ≤ P
(
φ(Z21[0,T (u/2))− γµ/2) > u/2

)
+ P

(
φ(Z21[T (u/2),∞)− γµ/2) > u/2

)
=: J1(u)+ J2(u).

The monotonicity properties (2.10), (2.11) of φ yield

J1(u)≤ P
(
φ
(

sup
0≤t≤T (u/2)

Z2(t)1[0,T (u/2)) − γµ/2
)
> u/2

)
≤ P

(
sup

0≤t≤T (u/2)
Z2(t)≥ γ T (u/2)/2

)
≤ 2P

(
Z2
(
T (u/2)

)≥ γ T (u/2)/2
)
.

In the last step we used Lévy’s maximal inequality. Another appeal to this
inequality and to the definition of W2 in (6.2) gives

J1(u)≤ 4P
(
W2

(
T (u/2)

)≥ γ T (u/2)/2
)
.

However, the Lévy process W2 has a symmetric Lévy measure supported by a
compact set. Therefore, it has finite exponential moments. By the Burkholder–
Gundy inequality, for every p ≥ 2 there is a positive constant C such that
E|W2(t)| ≤ Ctp/2 for all t > 0. Applying Markov’s inequality, we finally obtain
the following bound:

J1(u)= o
([T (u/2)]−r), u→∞.(6.4)

Now we turn to the estimation of J2(u). We proceed in a similar fashion. First,
monotonicity of φ together with (2.8) gives

J2(u)≤ P
(
φ
(
(Z2 − γµ/2)1[T (u/2),∞)

)
> u/2

)
≤ P

(
Z2(t) > γµ(t)/2 for some t ≥ T (u/2)

)
≤
∞∑
j=1

P
(
Z2(t) > γµ(t)/2

for some T (u/2)+ (j − 1)≤ t < T (u/2)+ j
)=: ∞∑

j=1

bj .
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Now use again Lévy’s maximal inequality and the fact that µ is quasimonotone
and converges to infinity to obtain the following chain of inequalities:

bj ≤ 2P
(
Z2
(
T (u/2)+ j

)
>Cγµ

(
T (u/2)+ (j − 1)

)
/2
)

≤ 4P
(
W2

(
T (u/2)+ j

)
>Cγµ

(
T (u/2)+ (j − 1)

)
/2
)
.

By virtue of the regular variation condition on µ, there are C > 0 and β > β2 >

max(α−1,0.5) such that

µ(t)≥ C tβ2 , t > 0.(6.5)

Finally, applying the Burkholder–Gundy and Markov inequalities and choosing
p > 2(β2+ r)/β2, we obtain, for any r ≥ 2,

J2(u)≤ C

∞∑
j=1

[T (u/2)+ j ]p/2

[µ(T (u/2)+ (j − 1))]p = o
([T (u/2)]−r ).

The latter estimate together with (6.4) for J1(u) establishes the desired bound (6.3)
for J (u). �

Now we turn to the processes Z1,(m) and Z(m)
1 defined in (5.16). In this context,

recall that (Yj ) is a sequence of independent symmetric random variables given
the points (5k) of a homogeneous Poisson process with rate λ= ρ1(R). Write

Am = {|Yj | ≤ θT (5j ,u), j = 1, . . . ,m
}
, m≥ 1,

Sk = Y1+ · · · + Yk, k ≥ 1.

LEMMA 6.3. Let m=m(u) be defined by (5.15). For every γ > 0 and r > 0,
there are positive constants θ and C such that, for all u > 0,

G(u) := P
(
φ(Z1,(m)− γµ) > u,Am

)≤ Cm−r .

PROOF. Without loss of generality assume that γ ≤ 1. By monotonicity of φ,

φ

(
m∑
j=1

Yj1[5j ,∞) − γµ

)
≤ φ

(
max

1≤k≤mSk1[51,∞) − γµ
)

≤ φ
(
γ−1 max

1≤k≤mSk1[51,∞) −µ
)
.

Therefore we have

G(u) ≤ P
(

max
1≤k≤mSk ≥ γ T (51, u),Am

)
≤ P

(
max

1≤k≤mSk ≥ γ T (51, u),Am,5m ≤ 2λm
)
+ P (5m > 2λm)

=: p(1)m + p(2)m .
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Obviously, p(2)m decays to zero at an exponential rate. As to p
(1)
m , observe that

{Am,5m ≤ 2λm} ⊂
{

max
j=1,...,m

|Yj | ≤ θT (2λm,u)
}
=: Ãm.

Therefore and by virtue of Lévy’s maximal inequality, applied conditonally upon
(5k) and (|Yk|),
p(1)m ≤ P

(
max

1≤k≤mSk ≥ γ T (u), Ãm

)
≤ 2P

(
Sm ≥ γ T (u), Ãm

)≤ 4P
(
S̃m ≥ γ T (u)

)
.

In the last step we applied the contraction principle for sums of independent
symmetric random variables. Here

S̃m =
m∑
j=1

Ỹj , Ỹj = Ỹ
(m)
j = Yj1|Yj |≤θT (2λm,u), j = 1, . . . ,m.

Notice that, conditionally upon (5k), S̃m is a sum of independent symmetric
random variables which are uniformly bounded by T (2λm,u). An application of
Prokhorov’s exponential inequality [see Prokhorov (1959); cf. Petrov (1995), 2.6.1
on page 77], conditionally on (5k), yields

p(1)m ≤ 4E exp
{
− γ T (u)

2θT (2λm,u)
arcsinh

[
θT (2λm,u)γ T (u)

2 var(S̃m | (5k))
]}
.

Let us consider the case α < 2 in (2.5); the case α ≥ 2 is analogous. With β2 as in
(6.5) define β3 = 2β2/(1+ αβ2); note that β2 > β−1

3 and

H(u)= o(u−β3), u→∞.

It follows from the representation (5.13) of the random variables Yj that there is a
constant C such that, for any realization (5i),

var
(
S̃m | (5k))≤ Cm[T (2λm,u)]2−β3 .

Then use property (4.1) of T (2λm,u) and the definition (5.15) of m = m(u) to
obtain

T (2λm,u)≤A1[µ(2λm)+ T (u)] ≤ C[µ(2λm)+µ(2m)] ≤ Cµ(m).

Similarly,

T (2λm,u)T (u)≥ [T (u)]2 ≥ [µ(2(m− 1)
)]2 ≥C[µ(m)]2.

Combining the latter estimates and using the regular variation (2.7) on µ with its
implication (6.5), we arrive at the bound

θT (2λm,u)γ T (u)

2 var(S̃m | (5k)) ≥C
[µ(m)]β3

m
≥ Cmβ3β2−1.
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Since β2 > β−1
3 , the power of m is positive. Similarly,

T (u)

T (2λm,u)
≥ C

T (u)

µ(2λm)+ T (u)
,

which is bounded away from 0 by (5.15). Using the fact that arcsinh(t) ≥
log(1+ t), t > 0, we conclude that

p(1)m ≤ C exp
{
− logm

Cθ

}
.

Collecting all bounds above for G(u), p(1)m and p
(2)
m , we obtain our claim by

choosing θ small enough. �

Our next lemma shows that the first probability on the right-hand side of (5.17)
is much smaller than ψ(u).

LEMMA 6.4. Let m=m(u) be defined by (5.15). For every ε > 0 and τ > 0
small enough (relative to ε),

lim
u→∞

P (φ(Z1,(m)− εµ) > εu)

ψ(u)
= 0.(6.6)

PROOF. Since µ(t) does not grow faster than a power function, it follows
from the definition of m=m(u) that there exist positive constants C, q such that
m ≥ C[T (u)]q for large u. By virtue of Lemma 6.3, for every r > 0 and ε > 0
there are positive θ and C such that

P
(
φ(Z1,(m) − εµ) > εu,Am

)≤Cm−r ≤ C[T (u)]−rq.
Since r > 0 can be chosen arbitrarily large, the latter fact in combination with
Lemma 6.1 implies that

P
(
φ(Z1,(m)− εµ) > εu,Am

)= o(ψ(u)).

On the other hand, we have

P (Ac
m)≤

m∑
j=1

P
(|Yj |> θT (5j ,u)

)= 2
m∑
j=1

P
(
Yj > θT (5j ,u)

)
.(6.7)

By representation (5.13) for the Yj ’s,

Yj ≤ τT (5j , δ0)≤ τT (5j ,u)(6.8)

for u large enough. Thus, for τ small enough, the right-hand expression in (6.7)
vanishes. This concludes the proof. �

The next lemmas are related to the behavior of the second term on the right-hand
side of (5.17). Write

Amn = {|Yj | ≤ θT
(
5j,u

)
, m < j < n+ 1

}
, n=m,m+ 1, . . . ,∞.
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LEMMA 6.5. For any γ > 0 and r > 0, there are positive constants θ and C

such that, for all u > 0 and n >m=m(u),

Hn := P
(
Sn − Sm > γµ(5n),Amn

)≤Cn−r .(6.9)

PROOF. For all j and u > 0, we have T (5j ,u) ≤ A1[µ(5j) + T (u)] ≤
C[µ(5n) + T (u)]. Now, the definition of m = m(u) and regular variation give,
for n >m, T (u)≤ µ(2m)≤ Cµ(2n)≤ Cµ(n). Therefore

T (5j ,u)≤ C[µ(5n)+µ(n)], j ≤ n.

Then, for m< n,

Hn ≤ P
(
Sn − Sm > γµ(5n), max

j=m+1,...,n
|Yj | ≤ θC[µ(5n)+µ(n)]

)
.

Recalling that the Poisson process (5j ) has rate λ, write

Dn = {|5n− λn| ≤ 0.5λn}
and notice that P (Dc

n) decays to zero at an exponential rate. Therefore, for any
r > 0,

Hn ≤ P
(
Sn − Sm > µ(5n), max

l=m+1,...,n
|Yj | ≤ θC[µ(5n)+µ(n)],Dn

)
+ P (Dc

n)

≤ P
(
Sn − Sm > C−1µ(n), max

j=m+1,...,n
|Yj | ≤ θCµ(n)

)
+Cn−r(6.10)

≤ 2P
(
Ŝn − Ŝm ≥ C−1µ(n)

)+Cn−r

≤ 4P
(
Ŝn ≥ C−1µ(n)

)+Cn−r .
In the last step we used the contraction principle and Lévy’s maximal inequality for
the sum of conditionally independent and symmetric random variables Yj . Here

Ŝn =
n∑

j=1

Ŷj , Ŷj = Yj1|Yj |≤θCµ(n), j = 1, . . . , n.

Again using Prokhorov’s inequality, conditionally on (5k) we can bound the tail
probability in (6.10) by

E exp
{
−C
−1µ(n)

2θCµ(n)
arcsinh

[
θ[µ(n)]2

2 var(Ŝn | (5k))
]}
.

Proceeding as in the proof of Lemma 6.3 and choosing θ small enough, the last
expression can be bounded by Cn−r for any r > 0. This concludes the proof. �

The following statement is now a straightforward conclusion from the previous
lemma.
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LEMMA 6.6. For every γ > 0 and r > 0, there are positive constants θ and C
such that, for all u > 0 and m=m(u),

Rm = P
(
φ(Z(m)

1 − γµ) > 0,Am∞
)≤ Cm−r .(6.11)

Moreover,

lim
u→∞

P (φ(Z(m)
1 − εµ) > εu)

ψ(u)
= 0.(6.12)

PROOF. Using properties (2.8) and (4.10) of φ, we obtain the bounds

Rm ≤ P

( ∞⋃
n=m+1

{Sn− Sm > Cγµ(5n)} ∩Amn

)

≤
∞∑

n=m+1

P
(
Sn− Sm > Cγµ(5n),Amn

)
.

Now apply Lemma 6.5 to get (6.11). For u large enough, (6.8) holds for
all j . Choosing θ small enough (relative to ε), (6.12) follows from (6.11) and
Lemma 6.1. �

7. More general conditions. In an extended version of this paper we proved
Theorem 3.1 under more general conditions on ρ and µ, and the same assumptions
on the subadditive functional φ and the function T (s, u). We cite these conditions
here for the sake of completeness and to give an impression how far one can
deviate from the regular variation conditions on H and µ. Proofs are given in
Braverman, Mikosch and Samorodnitsky (2000). Although it seems possible to
extend our results to the more general class of Lévy processes with subexponential
tails H (this is known for particular choices of the subadditive functional φ;
see Remark 3.4), our methods of proof do not easily extend to the class of
subexponential distribution s with semiexponential tails and for the large class of
subadditive functionals studied in Theorem 3.1.

7.1. Assumptions on the Lévy measure ρ. We make the following assump-
tions:

1. Dominance of the right tail of the Lévy measure—We assume that the right tail
of the one-dimensional Lévy measure ρ dominates its left tail in the sense that
there is a constant A1 > 0 such that

ρ
(
(−∞,−t]) ≤A1ρ

([t,∞)
)

for all t ≥ 1.

2. F2 condition—There is an a1 > 0 such that

H(2u)≥ a1H(u) for all u≥ 1.

Notice that the F2 condition on H yields a bound from below; it excludes
exponential decay of H(u).
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3. Bound from above—There is a β1 > 0 such that

H(u)= o(u−β1), u→∞.

7.2. Assumptions on the drift µ. Let µ = {µ(t), t ≥ 0} be a nonnegative
function satisfying the following assumptions:

1. Power law bound from below—There are a2 > 0 and β2 > max(β−1
1 ,0.5) such

that

µ(t)≥ a2t
β2 , t > 0.

2. F2 condition—There are an A2 > 0 and a t0 ≥ 0 such that

µ(2t)≤A2µ(t) for all t ≥ t0.

The F2 condition on µ excludes a too rapid (in particular exponential) growth
of µ.

3. Quasimonotonicity of µ—There are an a3 ∈ (0,1] and a t0 ≥ 0 such that

inf
s≥t µ(s)≥ a3µ(t) for all t ≥ t0.
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