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Tail-scope: Using friends to 

estimate heavy tails of degree 

distributions in large-scale 

complex networks
Young-Ho Eom1, 2 & Hang-Hyun Jo3, 4

Many complex networks in natural and social phenomena have often been characterized by heavy-

tailed degree distributions. However, due to rapidly growing size of network data and concerns on 

privacy issues about using these data, it becomes more difficult to analyze complete data sets. Thus, 
it is crucial to devise effective and efficient estimation methods for heavy tails of degree distributions 
in large-scale networks only using local information of a small fraction of sampled nodes. Here we 

propose a tail-scope method based on local observational bias of the friendship paradox. We show 

that the tail-scope method outperforms the uniform node sampling for estimating heavy tails of 

degree distributions, while the opposite tendency is observed in the range of small degrees. In 

order to take advantages of both sampling methods, we devise the hybrid method that successfully 

recovers the whole range of degree distributions. Our tail-scope method shows how structural 

heterogeneities of large-scale complex networks can be used to effectively reveal the network 
structure only with limited local information.

Complex networks have served as a powerful mathematical framework to describe complex systems of 
nature, society, and technology1–5. Most complex networks obtained from complex systems are known to 
be heterogeneous in various aspects6–9. One of distinctive heterogeneous features in complex networks 
is the heavy-tailed degree distribution: A small number of highly connected nodes coexist with the large 
number of lowly connected nodes. Highly connected nodes or hubs found in heavy tails have signi�cant 
roles on the evolution of complex networks and dynamics on such networks. For examples, the exist-
ence of hubs leads networks to endemic states in epidemic spreading10,11, makes networks vulnerable to 
intended attacks12, and contributes to the key functions of biological systems13–15. �erefore, identifying 
the degree distribution and particularly hubs in the heavy tail of degree distribution is the essential step 
for the network analysis16.

Owing to the rapid development of digital technologies, a huge amount of network data is being 
generated and recorded. In particular, the network data from social media like Twitter and Wikipedia 
contain tens of millions to billion nodes (users or articles). �e role of social media on social dynamics 
such as public opinion formation, information di�usion, and popularity17–19 is getting more crucial, 
requiring us to timely monitor the large-scale dynamics and to identify the network structure underlying 
these dynamics4,20. However, since the social media are constantly growing and changing, the acquisition 
and analysis of complete network data is an extremely tricky task. Further, increasing public concerns on 
privacy issues about using these data can inhibit us from analyzing the complete network data21.
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Because of the above di�culties, degree distributions of complex networks need to be estimated 
based on partial information or by sampling nodes from networks. �e simplest method could be to 
sample nodes randomly, which is called uniform node sampling (UNS). Since the number of nodes cor-
responding to the tail part of distribution is typically very small, those nodes are rarely sampled, limiting 
the sampling resolution. Accordingly, much larger statistical �uctuations are expected for the tail part of 
degree distribution estimated by UNS, when compared to its body part.

�e friendship paradox (FP)22–24 can shed light on how to e�ectively estimate the heavy tails of degree 
distributions. �e FP states that the degree of an individual is on average smaller than the average degree 
of its friends or neighbors. �e underlying mechanism behind the FP is the observational bias such that 
highly connected nodes are more likely to be observed by their neighbors. One can take advantage of 
this observational bias for the e�ective sampling of highly connected nodes. Indeed, the group made of 
friends of randomly chosen nodes turns out to contain highly connected nodes more than the group 
made of uniformly sampled nodes24,25. Further, the FP has also been used for early detection of conta-
gious outbreaks21,26 and natural disaster27, and for designing e�cient immunization strategy28. �ese are 
mainly based on the observation of activities of highly connected nodes via the FP rather than uniformly 
sampled nodes.

In this paper, we devise a novel sampling method, called tail-scope, to e�ectively estimate the heavy 
tails of degree distributions in large-scale complex networks. We exploit the observational bias of FP as 
a magnifying glass to observe heavy tails with better resolution and to overcome the resolution limit in 
the UNS. It is shown that the tail-scope method estimates heavy tails of empirical degree distributions 
in large-scale networks more accurately than the UNS. Finally, we suggest a hybrid sampling method 
taking advantages of both UNS and tail-scope methods to recover the whole range of degree distribution.

Results
Tail-scope: Estimating the tail of degree distribution using the friendship paradox. We con-
sider a directed network G =  G(N,L) with N nodes and L directed links. In case of undirected networks, 
each undirected link is considered as two directed links in both directions. For a node i, the in-degree 
ki represents the number of incoming links to i from i's in-neighbors, and the in-degree distribution is 
denoted by P(k). Similarly, one can de�ne the out-degree as the number of out-neighbors.

Our goal is to e�ectively estimate the heavy tail of in-degree distribution, i.e., the region of k  1, by 
using partial information such as by sampling n nodes with n  N. �e observational bias of friendship 
paradox (FP) indicates that observation via friends can lead to the larger number of high degree nodes 
than that by the uniform node sampling (UNS), because the chance of a node being observed by its 
neighbors is proportional to the degree of the node. For this, we randomly choose n directed links and 
construct a set of nodes reached by following those links. �e probability of �nding a node of in-degree 

k in the set is proportional to ( )kP k  not to ( )P k , which we denote by ( )
∼
Q k :

( ) ∝ ( ). ( )
∼
Q k kP k 1

�en we obtain the estimated in-degree distribution as

( ) ∝
( )
. ( )

∼
P k

Q k

k 2

�anks to the observational bias of FP, the estimated ( )P k  has the larger number of highly connected 
nodes and hence less statistical �uctuation for the tail part than when the UNS is used. Our method can 
be called tail-scope. Precisely, the sampling resolution characterized by the cuto� ( )k nc  of the distribution 
is higher for the tail-scope method than for the UNS.

In order to demonstrate the e�ectiveness of tail-scope method for estimating the heavy tail of the 
distribution, we consider a network showing the power-law in-degree distribution with power-law expo-
nent α>2 and minimum in-degree kmin:

α( ) = ( − ) , ( )α α− −P k k k1 3min
1

where we have assumed for convenience that the in-degree k is a continuous variable. At �rst, by ran-
domly choosing n nodes (i.e., by UNS) we obtain the estimated in-degree distribution ( )P kNU  that is 
expected to be ∝ α−k . Due to the �niteness of n, we �nd the natural cuto� to the power-law tail as

( ) ∝ , ( )α− − /P k k e 4N
k k

U
c

where kc can be characterized by the condition

∫= ( ) ,
( )

∞

n
P k dk

1

5kc

leading to
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= . ( )α/( − )k k n 6c min
1 1

Next, for the tail-scope method, we expect from ( ) ∝ ( )
∼
Q k kP k  that

( ) ∝ , ( )
∼ α−( − ) − / ′Q k k e 7k k1 c

′ = . ( )α/( − )k k n 8c min
1 2

�en one gets the estimated in-degree distribution in Eq. (2):

( ) ∝ . ( )α− − / ′P k k e 9k k c

It is evident that the sampling resolution ′k c for the tail-scope case is higher than kc for the UNS, pre-
cisely,

′
= > .

( )
α α/ ( − )( − )k

k
n 1

10

c

c

1 [ 2 1 ]

�erefore, our tail-scope method indeed outperforms the UNS for estimating the tail of the distribution. 
Since the tail-scope method is based on the uniform link sampling, it can also be called link tail-scope, 
mainly in order to distinguish from node tail-scope to be discussed in the next Subsection.

We numerically test our calculations by constructing the Barabási-Albert (BA) scale-free network6 

with =N 106, =k 2min , and α = 3, and then by sampling n =  500 nodes. From the calculations, we 
expect that ≈k 45c  and ′ ≈k 1000c , which are numerically con�rmed as shown in Fig 1(A). In the �g-
ures, we have used the complementary cumulative distribution function (CCDF), de�ned as 

( ) = ∑ ( ′)′=
∞F k P kk k , for clearer visualization.

Node-based tail-scope method. Our tail-scope method is based on the uniform link sampling. 
However, in many realistic situations, we can use only the node-based sampling not the link-based sam-
pling. For instance, most application programming interfaces (APIs) of social media like Twitter allow us 
to retrieve only the user-speci�c information rather than the relationship-based ones. �us it is necessary 
to develop a sampling method using node-based data but aimed to simulate the link tail-scope method.

As social media APIs allow to get only user-speci�c local information in most cases, we assume that 
whenever a node is sampled or retrieved, we get the set of in- and out-neighbors for the sampled node. 
�ese constraints inevitably introduce correlations between sampled links, implying that any node-based 
tail-scope methods cannot be exactly mapped to the link tail-scope method. In addition, we assume 
that the number of retrievals, i.e., sampling size, is strictly limited to n for the fair comparison to other 
sampling methods, e.g., the UNS. We propose the node tail-scope method as follows.

Node tail-scope method:. 

•	 Step 1. Randomly choose n/2 nodes (called primary nodes) from the network and retrieve their 
out-neighbors to construct a set A of those out-neighbors.

a b

Figure 1. Comparison of in-degree distributions estimated by uniform node sampling, link tail-scope, node 

tail-scope, and hybrid methods to the original distribution for the Barabási-Albert scale-free network with 
=N 106 and minimum in-degree =k 2min . �e sample size is n =  500. In all cases, complementary cumulative 

distribution functions (CCDFs) are presented.
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•	 Step 2. Randomly choose n/2 nodes from the set A and retrieve their in-degrees to construct the 
distribution ( )Q kNT .

•	 Step 3. Obtain the estimated in-degree distribution ( )P kNT  from ( )/Q k kNT .

Here the subscript NT of distributions is the abbreviation of node tail-scope. Note that as the total 
number of retrievals is limited to n, we use n/2 retrievals for getting out-neighbors, and the rest n/2 
retrievals for getting in-degrees. However, there are more high degree nodes sampled than when the UNS 
is used, leading to the higher resolution for the tail-scope method. For a node sampled several times in 
Step 2, we consider each sampling as a di�erent case.

By using the same BA network in the previous Subsection, we compare the performance of node 
tail-scope, shown in Fig. 1(B) to that of link tail-scope in Fig. 1(A). It is observed that there is no signif-
icant di�erence between two results.

Performance of the node tail-scope method. In order to empirically compare the performance of 
node tail-scope method to the UNS, we consider several large-scale complex networks: four undirected 
networks and four directed networks. For details of these networks, see the Method Section and Table 1. 
From now on, we use the sample size n =  1000 in all cases. As mentioned, such small number of n is 
due to the practical constraint on the number of retrievals. When the constraint is relaxed, other sam-
pling methods using graph traversal techniques (e.g., breadth �rst search) can be used, inducing more 
complicated observational biases29.

Figure  2 shows estimated in-degree distributions ( )P kNT  (node tail-scope) and ( )P kUN  (UNS), in 
comparison to the original in-degree distribution ( )P k  obtained from the complete set of nodes in the 
network. �e agreements between original distributions and the distributions by node tail-scope method 
in the tail parts are remarkable, while some �uctuations are observed in the body parts. On the other 
hand, the distributions by the UNS show good agreements with the original distributions in the body 
parts, not in the tail parts. Note that the sample size n =  1000 is much smaller than the network size N 
ranging from hundreds of thousands to tens of millions nodes (see Table  1). We �nd that the results 
using n =  2000 and n =  4000 are qualitatively the same as the case of n =  1000.

For the quantitative comparison of performance by di�erent sampling methods, we use 
Kolmogorov-Smirnov (KS) static D, de�ned as the maximum di�erence between two CCDFs. �e KS 
D-static is mainly used as a part of KS test to reject null hypothesis. For example, it has been used to 
test if a given distribution has a power-law tail16. In this paper, we simply use D-static to measure the 
agreement between the original in-degree distribution and the estimated in-degree distribution by each 
sampling method. �e D-static for the node tail-scope method is obtained as

= ( ) − ( ) , ( )D max F k F k
11k

NT NT

where ( )F k  denotes the CCDF of the original in-degree distribution, and ( )F kNT  denotes the CCDF of 

( )P kNT . Similarly, DUN is de�ned for the UNS. �e smaller D-static implies the better agreement to the 
original distribution.

�en, we de�ne a p-value to compare the two considered sampling methods. �e p-value represents 
the probability that the distribution by node tail-scope method has the smaller D-static with the original 
distribution than the distribution by the UNS, i.e.,

= ( < ). ( )p D DPr 12NT UN

To focus on the tail part of the distribution, we compare the CCDFs only for the region of ≥k k0, or 
equivalently for the fraction γ of high degree nodes, where γ = ( )F k0 . �e case of γ=1 corresponds to 
the comparison for the entire range of in-degree. Figure 3 shows the values of γ( )p  for di�erent ranges 
of in-degree and for each considered network. It is found for all networks that the node tail-scope 
method clearly outperforms the UNS for the tail parts. �e opposite tendency is observed when the 
entire range of the distribution is compared, because the UNS outperforms the node tail-scope for esti-
mating the body part of the distribution. Since the sample size n is limited, the larger number of high 

Undirected network N 〈k〉 Directed network N 〈k〉

AS 1696415 13.1 Citation 463349 12.2

Coauthorship 242592 59.6 Web graph 685230 12.3

Gowalla 196562 9.7 Wikipedia 4212493 26.4

LiveJournal 3997962 17.3 Twitter 41652230 36.6

Table 1. Basic statistics of empirical undirected and directed networks. N denotes the total number of 

nodes and 〈k〉 denotes the average in-degree. �e isolated nodes have been excluded for the analysis.
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degree nodes for the node tail-scope method results in the smaller number of low degree nodes and 
hence the larger �uctuations than the case of UNS.

As mentioned, since the node tail-scope method inevitably introduces correlations between sampled 
links, we now consider possible e�ects of degree correlations on the performance of node tail-scope 

a

c d

b

e

g

f

h

Figure 2. Comparison of in-degree distributions estimated by uniform node sampling and node tail-scope 

methods to the original distributions for several empirical directed and undirected networks. �e sample 

size is n =  1000. In all cases, complementary cumulative distribution functions (CCDFs) are presented. For 

the details of the networks, see the Method Section and Table 1.

Figure 3. Performance of the node tail-scope method compared to the uniform node sampling for all the 

considered networks. γ( )p  is calculated by Eq. (12) but with Kolmogorov-Smirnov D-statics de�ned only for 

the range of ≥k k0, where γ = ( )F k0 . �e smaller γ corresponds to the larger k0. �e larger γ( )p -values 

imply the better performance of the node tail-scope method than the uniform node sampling. To get p-

values, we used 1000 realizations of sampling, for each of which the sample size is n =  1000.
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method. As shown in Fig. 1, in the case of BA scale-free network with negligible degree correlation, the 
performance di�erence between the link tail-scope and the node tail-scope methods is not signi�cant. 
We draw the same conclusion for considered empirical networks showing degree correlations, in terms 
of non-zero assortativity coe�cients8. For example, the assortativity coe�cients are ≈ − .r 0 08 (AS), 
− 0.029 (Gowalla), 0.467 (Coauthorship), and 0.045 (LiveJournal). �ese observations support the valid-
ity of our methods.

For making sure the validity of our methods for networks with non-zero degree correlation, we 
numerically consider correlated scale-free networks with tunable degree correlation used in30. By using 
several scale-free networks with N =  5000, degree exponent 2.7 for = − . , − . , , . , .r 0 1 0 05 0 0 05 0 1, we 
obtain the p-values for each case. As expected, the link tail-scope method is barely in�uenced by the 
correlation (Fig. 4(A)). �e node tail-scope method shows some e�ects of correlation but still gives us 
better sampling results than when UNS is used (Fig. 4 (B)). Overall, the sampling results can be a�ected 
if the degree correlation is quite strong. However, our method still performs better for sampling the tail 
parts than the UNS.

Hybrid method for recovering the whole distribution. It is evident that the UNS and the node 
tail-scope method are good at sampling low and high degree nodes, respectively. In order to take advan-
tages of both methods, we suggest the hybrid method for recovering the whole range of the distribution. 
It is notable that at Step 1 in our node tail-scope method, n/2 primary nodes are randomly chosen and 
hence their in-degrees can be utilized for the low degree region. From the primary nodes, we get the 
in-degree distribution ( )P kNT0 . �en the hybrid distribution is obtained by

( ) = ( ) + ( − ) ( ). ( )P k aP k a P k1 13H NT0 NT

�e weight parameter ∈ ,a [0 1] can be chosen according to which part of the distribution is focused. 
Here we set as = .a 0 5.

�e hybrid method performs well for the BA network in Fig. 1(B) as well as for empirical networks, 
two of which are shown in Fig. 5. As expected, the distributions estimated by the hybrid method �t the 
original distributions better than the UNS for the tail parts, and better than the node tail-scope method 
for the body parts (see insets in Fig. 5). �ese �ndings are also consistent with the values of γ( )p  shown 
in Fig. 6: �e larger values of γ( )p  for small values of γ in Fig. 6(A) imply the better performance of the 
hybrid method than the UNS for the tail parts. �e larger values of γ( )p  for large values of γ in Fig. 6(B) 
imply the better performance of the hybrid method than the node tail-scope for the body parts. �erefore, 
we conclude that the hybrid method successfully recovers the whole range of in-degree distributions, by 
taking advantages of both the UNS and the node tail-scope methods. Other values of a =  0.25 and 
a =  0.75 have been also tested and all results are as expected.

Discussion
Modern societies have been shaped by large-scale networked systems like World Wide Web, social 
media, and transportation systems. Monitoring global activities and identifying the network structure 
of these systems are of utmost importance in better understanding collective social dynamics. However, 
increasing size of data from these systems and growing concerns on privacy issues about using these 

a b

Figure 4. Performance of (A) link tail-scope method and of (B) node tail-scope method compared to the 

uniform node sampling for correlated scale-free networks with N =  50000 and degree exponent α = .2 7 for 

= − . , − . , , . , .r 0 1 0 05 0 0 05 0 1, where r denotes the assortativity coe�cient8. γ( )p  is calculated by Eq. (12) 

but with Kolmogorov-Smirnov D-statics de�ned only for the range of ≥k k0, where γ = ( )F k0 . �e smaller 

γ corresponds to the larger k0. �e larger γ( )p -values imply the better performance of the link (node) tail-

scope method than the uniform node sampling. To get p-values, we used 1000 realizations of sampling, for 

each of which the sample size is n =  500.
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data make the exhausted analysis of complete data sets infeasible. �us, e�ective and e�cient estimation 
of large-scale networks based on the small sample size or partial information is necessary. One of the 
simplest method could be uniform node sampling (UNS). �e UNS has drawbacks in particular for 
estimating the heavy tails of degree distributions, due to the limited sampling resolution and large statis-
tical �uctuations. Since high degree nodes found in the heavy tails are in many cases very important to 
characterize the structure and dynamics of complex networks, we propose the tail-scope method, which 
is the e�ective and e�cient sampling method for estimation of heavy tails of degree distributions.

Provided that the sample size is limited, it is inevitable that the larger number of high degree nodes by 
the tail-scope method leads to the smaller number of low degree nodes than when the UNS is used. In 
order to take advantages of both the tail-scope and the UNS, we propose the hybrid method to recover 
the whole range of degree distributions. In this paper, we have considered a very simple form of hybrid 
method by superposing the estimated degree distributions of the UNS and the tail-scope. It turns out that 
the hybrid method performs better than the UNS for the tail parts, and better than the tail-scope for the 
body parts. Devising more general and better hybrid methods will be interesting as a future work, e.g., 
one can use the degree-dependent weight parameter a in Eq. (13).

Our tail-scope method can be also used for estimating high attribute nodes found in the heavy tail of 
attribute distribution. �e attribute of a node can be its activity, income, happiness, and so on. Recently, 
the generalized friendship paradox (GFP) has been observed and analyzed in complex networks24,30. 
�e GFP states that the attribute of a node is on average lower than the average attribute of its neigh-
bors. In the network showing the positive correlation between degrees and attributes, high degree nodes 
tend to have higher attributes. It implies that the high attribute nodes are more likely to be observed 
by their neighbors. Such generalized observational bias can be exploited to e�ectively estimate high 
attribute nodes who play important roles, e.g., in early detection of new trends or in designing e�cient 

a b

Figure 5. Comparison of in-degree distributions estimated by uniform node sampling, node tail-scope, and 

hybrid methods to the original distributions for networks of LiveJournal (A) and Twitter (B). �e insets 

show results for the range of ≤k 20. �e sample size is n =  1000. In all cases, complementary cumulative 

distribution functions (CCDFs) are presented.

a b

Figure 6. Performance of the hybrid method compared to the uniform node sampling (A) and to the node 

tail-scope method (B) for all the considered networks. γ( )p  is calculated by Eq. (12) but with Kolmogorov-

Smirnov D-statics de�ned only for the range of ≥k k0, where γ = ( )F k0 . �e smaller γ corresponds to the 

larger k0. �e larger γ( )p -values imply the better performance of the hybrid method than the uniform node 

sampling (A) or the node tail-scope method (B). To get p-values, we used 1000 realizations of sampling, for 

each of which the sample size is n =  1000.
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immunization strategies. �us, it would be very interesting to generalize our tail-scope method to other 
attributes of nodes, especially for the large-scale complex networks.

Our tail-scope method shows how structural heterogeneities can help us reveal the network structure 
only with limited information. By exploiting such heterogeneities of complex networks we can properly 
evaluate priority and importance of each node in the networks. It is getting more important to better 
understand the heterogeneities since they are key features characterizing the complexity of large-scale 
networks.

Methods
Data description. In this paper, we consider eight empirical networks: four of them are undirected 
and the others are directed. �e summary of the networks is presented in Table 1. �e detailed feature 
of each network is as following.
AS. We used an Autonomous Systems (ASs) data set on Internet topology graph constructed in [31]. �e 
nodes are autonomous systems and the links are formed where two ASs exchange tra�c �ows. �e size 
of network is N =  1696415.

Coauthorship. We used a coauthorship network constructed in [24]. �e nodes are scientists and the 
links are formed whenever two scientists coauthored the paper. �e network size is N =  242592.

Gowalla. We used a Gowalla friendship network constructed in [32]. Gowalla is a location-based social 
networking service. Each user de�nes a node. �e network size is N =  196562.

LiveJournal. We used a LiveJournal friendship network constructed in [33]. Livejournal.com is a social 
networking service for blog, journal, and diary. �e nodes are users of LiveJournal and the users can 
declare friendship to another user, de�ning a link. �e network size is N =  3997962.

Citation. We used a citation network constructed in [34]. �e network is based on the bibliographic 
database from 1893 to 2009 provided by American Physical Society (APS). �e nodes are articles pub-
lished in APS journal such as Physical Review Letters or Physical Review E and the directed links rep-
resent the citation relation between articles. �e network size is N =  463349.

Web graph. We used a web graph constructed in [35]. �e nodes represent webpages in the domains 
of berkely.edu and stanford.edu domains, and the links are hyperlink between webpages. �e network 
size is N =  685230.

Wikipedia. We used an English Wikipedia network constructed in [36]. �e Wikipedia data set was col-
lected in February 2013. �e nodes are English Wikipedia articles and the links are hyperlinks between 
those articles. �e network size is N =  4212493.

Twitter. We used a Twitter users network constructed in [37]. �e nodes are Twitter users and the links 
between users represent the following relations in Twitter. �e network size is N =  41652230.
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