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Let X1,X2,... be a sequence of independent random variables such that, for each
oo N

n > 1, EXn = 0 and EX\ = a\ < oo, and assume that 2 cr| < oo: then 2-^n con-
TO=1 7 1 = 100 00

verges almost surely as N -*• oo. Let $TC = 2 -̂ y. «» = Var $n = 2 °"f» a nd let î (a;)

denote the distribution function of Xn. Loynes(2) observed that the sequence {Sn} is
a reversed martingale, and applied his central limit theorem to it: however, stronger
results are obtainable, in precise duality with the classical theory of partial sums of
independent random variables. These results describe the fluctuations of the sequence

{Sn}, and hence the way in which 2 Xn converges to its limit.
n=l

For example, as in the Lindeberg-Feller theorem,

SJsn^-N(O,l) and aJsn->0 as n-^-co (1)

if and only if, for each e > 0,

Sn2 £ f x2dFk{z)-+0 as n^oo: (2)
k-nj \x\> eSjl

similarly, as in Kolmogorov's law, setting $n = [2 log log s"1]*,

\Xn\ = °(snl0n) a-s- a s n ^ °° (3)
implies that

limswp SJsn<f>n= 1 a.s. (4)
n—*<a

Counterparts of the Berry-Esseen theorems, and of the functional weak and strong
laws, can also easily be derived.

All these theorems can be proved by suitably adapting the classical proofs. Alter-
natively, the weak laws can be deduced from the classical theorems for triangular
arrays, by looking at the array with nth. row Xn,Xn+1, ...,X^n), where, because

00

2 c? < oo, the index k(n) can be chosen so that s^nJs% is small enough to make
}=i

S/dnH-i negligible. When {Xn} is a martingale difference sequence, this method is also
applicable.

Neither of the above two means of proof really explains why there should exist
a duality between the fluctuations of classical partial sums and the fluctuations of
tails of convergent sums. Yet the fact that each classical theorem has its ' tail' counter-
part strongly suggests that there is a reason for the duality, and, if so, a general method
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might be found for deducing 'tail ' theorems directly from their classical analogues.
The rest of this paper is concerned with providing such a method.

The basic idea is to obtain functional weak and strong laws for {Xn} from the classical
theorems, by finding suitable continuous mappings which transform random functions
associated with classical partial sum processes into random functions associated with
the tails of convergent series, and vice versa. The continuous mapping theorem can
then be used to establish the desired duality. The method is analogous to a device used
by Whitt(5) in another context, and so most details are omitted here. The approach
uses stronger mathematical techniques than are needed to prove the results mentioned
in (l)-(4), but the general method which emerges is rather powerful.

Let D[0, oo) be the space of all right continuous functions with left limits on [0, oo),
and let T3 be the subspace consisting of those functions x which satisfy

(A) limsupi"1!^)! = 0,

(B) | Xu~2\x(u)\ du < oo,

r1

(C) I u~x\x(u)\du < oo.
Jo

Let m3 be the metric on T3 such that m3(x, y) is the infimum of those e > 0 for which
there exists some continuous strictly increasing function A: [0,oo) -*• [0,oo), with
A(0) = 0, such that

(A1) sup|a:(O-y(A(O)|/(*V 1) < e,

(B
1
) j\-2\x(u)-y(X{u))\du < e,

ri

(C) •M~1|X(W) — 2/(A(w))| du < e,
Jo

(Z>) sup
t+s

log
t-s

< e.

Let JP2(^I)
 a n d w*2(TOi) De defined similarly, but omitting restrictions C, C'{C, C", B, B').

Let T*, i = 1,2, 3, denote the corresponding subspaces of D*[0, oo), the space of all
left continuous functions with right limits on [0, oo).

Consider the mappings g: T3 -> T* and: T* ->• 2\ defined by

fro
g(x) (0) = 0: g(x) (s) = sx^-1) - u~2x(u)du, 0

Js- '
< s < oo.

A straightforward calculation shows that both mappings are continuous, and that for
xeT3 with x(0) = 0, g(g{x)) = x. Thus, if a sequence of random functions {Zn} con-
verges weakly in (T3,m3) [(Tf ,m2)] to a random function Z, the sequence of random
functions {g(Zn)} converges weakly in (T*,m2) [{T1,ml)] to g(Z): similarly, if{Zn} has
compact closure almost surely in (T3, m3) [(T*, m2)] with set of limit points the compact
set K, then {g{Zn)} has compact closure almost surely in (T*,m2) [{T^nij}] with set of
limit points g(K).
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The relevance of this result in the present problem is that, for Z a random function
in T* (T3), g(Z) (s) is the stochastic integral

Us

defined by its integration by parts formula. Suppose that {Xn} is defined as in the
initial paragraph, and that crjsn -» 0 as n -> oo: put Zn(t) = s"^ f(n) S^n, «> t ̂  0,

where f(n) is a normalization function, and where

k(n, t) = max [r: r integral, sp ̂  ten+il-

( , )

Then g(Zn) (a) = sn+1f(n) 2
3 = 1

and 2 Var (Xj/s?) = 2 °f/s* ~ s/s«+i a s s

J = l 3 = 1

Hence g(Zn) is a random function derived from the partial sums of the sequence of

independent random variables Yj = -X /̂sf, and 2 Varl^- = oo, so that the classical

theorems may be applied to it.
For instance, taking f(n) = 1, g(Zn) => W, the standard Wiener process, in (T3,m3),

if and only if the random variables Yj satisfy Lindeberg's condition: the extra conditions
required for convergence in T3rather than in D[0,1] are readily verified using arguments
similar to those in Muller(3), p. 177. This can be used to deduce corresponding results
for Zn = g(g(Zn)), and it can be shown, by choosing a specially simple set of Yj, that
g[W) is also a standard Wiener process.

The Lindeberg condition for {Yn} does not at first sight appear to be the same as
condition (2) for {Xn}, yet they are in fact equivalent. The two conditions can be
expressed as

(L): g*(e) = s%+12 f sj*z* dF,(z) ̂  0 as n -> oo,
j = lj \z\> esj/Sn+i

for each fixed e > 0, and
oo /•

(T): gn(e) = s~\x 2 I z2dFJz)->0 as n -> oo,): gn(e) = s~l1 | f
i = «+l J \z\> egft+1

for each fixed e > 0. Define, for s > t > 0,

k(n,t) r

g*(e,s,t) = 4 + 1 S J ̂ ^^ sj*

kin,t) r

^n(e>«»0 = ««+i S :
i=fe(7i,s)+lJk|3=e«B+1

then, since k(n, s) +1 < ji < k(n, t) implies t < SySn+i < s>

tfn\ 3 3 ) ^ ij7t\ I 3 3 I ^ tftl\ I i *

so that ( i ' ) : g*(e,s,t) -> 0 as n->co
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for each fixed e > 0 and s > t > 0 is equivalent to

{T'): gn(e,s,t)^O as n -> oo

for each fixed e > 0 and's > t > 0. But

gn(6, S, t) = S^+lOfcte, s)+l9ldn, s)(esn+llsldn, s)+l) ~ sVn, t)+l9k(n, desn+llsldn, t)+l)]>

and, for any u > 0, &(?&, «) ->• oo and «|(n>u)+i/s^+i -+ua,sn->ao: hence (T) implies (T').

On the other hand, if (T1) holds, fix e > 0 and s = 1, so that k{n, s) = n+ 1: then
grTC(e, 1, t) -> 0 as n ->• oo for all 0 < < < 1, so that, by Chung(l), § 7-2, Lemma 1, there
exists a sequence #n) -»- 0 such that grn(e, 1, <<K>) -^ 0 as n ->• oo. Hence

9-n(e) < 9n(e> h tM) + *n) ~> 0 as n -> oo,

and so (T') implies (T). Thus (T') is equivalent to (T). A similar argument shows that
(L') is equivalent to (L), and so the equivalence of (L) and (T) is proved.

If, now, f(n) is taken to be [2 log log s"1]"*, invariance principles for the law of the
iterated logarithm can be deduced for {Xn} from those for {Yn}. In this case, it is easy
to prove directly that, if K is the set of all absolutely continuous real functions x on

[0, oo) for which f°°[i(0]2* < 1, cf. Strassen(4), then g(K) = K.
Jo

Because the basic mapping theorem makes little restriction on {Zn} and Z, it
can be used in much more general contexts than that chosen here.

REFERENCES

(1) CHUNG, K. L. A Course in probability theory (Harcourt, Brace and World; New York, 1968).
(2) LOYNES, R. M. An invariance principle for reversed martingales. Proc. Atner. Math. Soc. 25

(1970), 56-64.
(3) MULLEB, D. W. Verteilungs-Invarianzprinzipien fur das starke Gesetz der groCen Zahl.

Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 10 (1968), 173-192.
(4) STBASSEN, V. An invariance principle for the law of the iterated logarithm. Z. Wahrschein-

lichkeitstheorie und Verw. Gebiete 3 (1964), 211-226.
(5) WHITT, W. Stochastic Abelian and Tauberian theorems. Z. Wahrscheinlichkeitstheorie und

Verw. Gebiete 22 (1972), 251-267.




