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The existence of retarded correlations over arbitrarily large time spans in the dynamics of a

gravitating system, namely, the influence of the past evolution of a material system on its present

gravitational internal dynamics, is investigated. This "hereditary" influence can be thought of as

transported by the gravitational waves emitted by the system in the past and subsequently scat-

tered off the curvature of spacetime back onto the system ("backscattered waves" or "tails" ). The
method used here applies to weakly self-gravitating slowly varying sources. It is a combination of
a multipolar post-Minkowskian expansion for the metric in the weak-field region outside the sys-

tem, and of a post-Newtonian-type expansion for the metric in the near zone. The two expansions

are then "matched" in the weak-field-near-zone overlap region. The lowest-order nonlinear piece
in the near-zone metric which depends on the full past history of the source ("hereditary" term) is

determined. This term arises at the fourth post-Newtonian (PN) level. The arising of this "heredi-
tary" term signifies the breakdown of one of the fundamental tenets of the post-Newtonian ap-

proximation schemes. Indeed, at the 4PN level it becomes impossible to express the near-zone

metric as a functional of the instantaneous state of the material source. This means also that there

is a fundamental breakdown of the concept of near zone versus the concept of wave zone. The
direct dynamical influence of the above-determined hereditary, or tail, term on the evolution of the

material system is then studied. This term is found to modify the Burke-Thorne gravitational ra-

diation quadrupole damping force. This modification, although quite small in absolute magnitude,

is rather large relative to the usual damping force, being -(U/c)' smaller (1—'PN relative level). It
could be important in the dynamics of inspiralling binaries. Finally, it is shown that the heredi-

tary term is predominantly sensitive to the recent past evolution of the system and only negligibly

dependent on its very remote past history.

I. INTRODUCTION

The assumption of localizability, in space and time, of
physical systems is one of the most successful (and fun-
damental) assumptions of physics. This assumption
means that one can make accurate predictions on the
evolution of a physical system as if the system were iso-
lated from other systems located far away in space, and
as if its present state were uncorrelated with its states at
epochs remote in time. Progress has been often slow
and scarce in the fields where this assumption cannot be
made (for instance, in some branches of cosmology).
General relativity entails an essential spacetime nonlo-
cality of the gravitational interaction. At the origin of
this nonlocality is the combination of two remarkable
features of Einstein's equations: their "hyperbolicity"
(i.e., physically, the presence of propagation effects at a
finite velocity) and their (infinite) nonlinearity (i.e., physi-
cally, the fact that gravity generates gravity, and
influences its propagation). In this work we shall inves-
tigate a consequence of this general-relativistic spacetime
nonlocality: the influence of the remote-past behavior of
an (isolated) gravitationally interacting system on its
present local-in-space gravitational fie1d, and thereby on
its present dynamical evolution.

The existence of such gravitationally induced dynami-

cal correlations over very long time spans has been
known, in principle, since the work of Choquet-Bruhat.
She investigated the existence and propagation of the
solutions of Einstein's field equations as determined by
an initial-value problem (Cauchy problem). She proved
that, given some initial data on a spacelike hypersurface
S (that we shall think of as lying in the remote past), the
gravitational field at some event P in spacetime depends
on the values of the data on and within the intersection
of S with the past (curved) light cone having its vertex at
P. This result can be interpreted by saying that the
gravitational field propagates with all velocities smaller
than or equal to the local "velocity of light" (by which
we mean the maximum velocity of propagation of in-
teractions). A second way of picturing this phenotnenon
is to say that the gravitational waves propagate with the
local "velocity of light" but that they undergo a continu-
ous backscattering off the curvature of spacetime, there-

by developing the so-called wave tails. Thus, on the
whole, they seem to propagate with all velocities smaller
than or equal to the "velocity of light. " Note that this
phenomenon arises already for linear propagation equa-
tions, e.g., Maxwell's equations for the propagation of
electromagnetic waves, in a curved background. Howev-
er, we are here interested in the gravitational case, which
is essentially a nonlinear phenomenon. Indeed, the grav-
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itational field backscatters off' the curvature of spacetime
which is nothing more, in Einstein s theory, than the
gravitational field itself. Thus one has a third way of
viewing the propagation of the gravitational field within
the light cone: the nonlinear beating of two linearized
gravitational fields emitted by a material source acts as
an effective nonlocal stress-energy distribution which, in
turn, generates a third contribution to the field (this is
the classical equivalent of a Feynman graph for a three-
graviton vertex). In this picture, the nonlocality of the
effective stress-energy distribution, together with the
finite velocity of the linearized waves, imply that some
pieces of the gravitational field, here and now, have been
generated by the material source at arbitrarily remote
epochs in the past. In other words, some pieces of the
field irreducibly depend on the whole past history of the
source. In the following, we shall qualify these pieces as
"hereditary. "

The phenomenon of propagation within (instead of on)
the light cone has many aspects and has been studied by
many authors. For instance we can quote some
mathematical investigations' of the existence and con-
struction of solutions, ' general physical investigations

of the nonlinear structure of the relativistic gravitational
field, ' the inhuence of backscattering on outgoing

(electromagnetic or gravitational) waves and the forma-
tion of "wave tails" in simple curved spacetimes, '

and the effect of backscattering on the phenomenon of
electromagnetic radiation damping. The present in-
vestigation will use, from the mathematical point of
view, some techniques and approximation methods
which, up to now, have been mainly used to study the
structure of the outgoing gravitational radiation. "
However, from the physical point of view, our aim is
closer to the one of the works studying the
rnodification of the electromagnetic radiation damping
due to the propagation of the electromagnetic field
within the light cone.

Another aspect of the present investigation is its bear-
ing on the problem of determining the range of validity
of the post™Newtonian approximation methods. These
methods have been developed by many authors (notably
Einstein, Fock, and Chandrasekhar) and they have
reached a high degree of formal sophistication.
However they have also run into a number of diSculties
which cast serious doubts on their validity. These
difBculties are of two sorts.

First, there are fundamental problems in the sense
that the mathematical meaning of these methods is un-

clear. Indeed, their basic assumption is that a solution
of Einstein's theory can be approximated by, essentially,
a power series in the inverse velocity of light, c ', whose
first significant terms give back Newton's theory. How-
ever the precise definition and the mathematical status
of this series have only been investigated quite recent-
ly ' and no firm result has yet been obtained.

The second difhculty encountered by the post-
Newtonian methods is that, at some level of approxirna-
tion, they lead to divergent integrals or ambigui-
ties. ' ' ' Several authors have discussed some of the
causes of these divergences and possible cures for

them, ' but the situation is still confused: for ex-

ample, Kerlick and Futamase find logarithmically
divergent integrals at the "third post-Newtonian" (3PN)
order, i.e., at order 1/c in goo, while Anderson et al.
point out a breakdown of the post-Newtonian expansion
at fourth post-Newtonian (4PN) order (1/c' in goo).
Concerning the cause of these divergences, the most re-
cent discussions ' ' ' place the blame on the tradi-
tional assumption that the post-Newtonian expansion
proceeds along simple powers of 1/c, and point out that
it is necessary to introduce, at some level of approxima-
tion, logarithms of the expansion parameter. It has been
recently shown' that all higher post-Newtonian orders
of approximation can be expanded along the asymptotic
sequence (inc)i'/c", with p, n CN (and 2p & n —2).

In this paper we present what we think is a deeper un-

derstanding of the cause of the breakdown of any post-
Newtonian approximation method. Indeed, the basic te-
net of the whole post-Newtonian approach is to model
somehow Einstein's theory onto Newton's theory. In
particular, the instantaneous character of the Newtonian
gravitational interaction is taken over into the post-
Newtonian approach. The fact that the Einsteinian
gravitational interaction is not instantaneous poses no
insurmountable problems at the level of the lowest post-
Newtonian approximations for the following reason.
The retardation due to a direct propagation between the
source point x' and the field point x is essentially of or-
der

~
x—x

~

/c which is small if the field point is well
within the near zone of the source (see Sec. II). There-
fore, it seems possible, by using suitable retardation ex-
pansions, to express the Einsteinian gravitational field,
when considered in the near zone of the source, in terms
of the instantaneous state of the material source. This is

precisely what all the post-Newtonian approximation
schemes do. (These approximation schemes are thus val-

id only in the near zone of the source. ) However the
preceding argument neglects the important fact that, as
we recalled above, the propagation of the full Einsteinian
gravitational field proceeds not only along the (curved)
light cone ("direct propagation with the local velocity of
light" ), but also inside the light cone ("scattered propa-
gation" or "tail"). This means that even for a field point
x well within the near zone, the retardation (or time de-

lay) t —t', due to the propagation between x and some
source point x', can be much larger than

~

x —x'~ /c,
and, in fact, arbitrarily large. %e consider that the oc-
currence of such correlations over arbitrarily large time
spans signals the fundamental breakdown of the concept
of near zone. This conclusion difFers from the one of
Anderson et al. Indeed, the latter authors have found
a inc at the 4PN order, and concluded from the link of
the inc with divergent integrals arising in the usual
post-Newtonian schemes that "the PN divergences signi-

fy the breakdown of the PN power-series assumptions,
rather than a breakdown of the near and wave zones"
(see also the discussion of Futamase ). Our work shows
that it is not suScient to enlarge the set of gauge func-
tions to the set c ~(inc)~ but that one must also allow
for a noninstantaneous character of the expansion
coefBcients. On the other hand, coming back to a more
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technical level, our work confirms the main result of An-
derson et al. Indeed we recover (at the end of Sec. VI)
the inc term found by the latter authors from our result
(1.1). (See also the Appendix for the discussion of other
inc terms, also pointed out by Anderson et al. ) Note
that if all post-Newtonian schemes must break down at
the 4PN level, they may, evidently, break down before
that level if the algorithm used generates a divergent in-
tegral of lower order. This is the case, for instance, in
the Ehlers algorithm, where, as shown in Ref. 34,
divergent integrals arise at the 3PN level.

We shall determine below that the level of approxima-
tion at which the near-zone field can no longer be ex-
pressed in terms of the instantaneous state of the source
is the fourth post-Newtonian (4PN) level, which corre-
sponds to 1/c' in g00. We shall compute the lowest-
order "hereditary" contribution to the near-zone field.
It is given by

5g (t, x)
~

"'" '"'"=— x'x I(t)8

gc 10

d'I, (t')"
X dt'7

where I(t) and I,, (t) are, respectively, the Newtonian
mass and quadrupole moment of the source at time t,
and where P is a characteristic time scale of the source,
The contribution (1.1) gives rise to a modification of the
usual ' gravitational radiation damping force (see the
discussion in Sec. VII). This can be thought of as the ra-
diation damping associated with the gravitational wave
tail generated by the backscattering of the linearized
quadrupole wave o6' the monopole curvature created by
the total mass of the system. We shall also investigate
the link of the breakdown of the post-Newtonian ap-
proach (at 4PN) caused by the near-zone term (1.1) with
the weaker breakdown due to the appearance of loga-
rithms of the expansion parameter. As far as we know
these results are new and no attempt has been made be-
fore to derive them within the full framework of general
relativity. However, special mention should be made of
the work of Rudolph (who first pointed out the link be-
tween the breakdown of the near-zone expansions and
the propagation within the light cone), of Dixon49 (who
got explicit past-dependent contributions in the near-
zone approximation of a simple scalar-field model} and
of Anderson and co-workers (who by their studies
of scalar-field models, and of the matching between the
wave-zone and near-zone fields, have greatly clarified the
occurrence of the post-Newtonian breakdown).

The presentation of the plan of the paper is relegated
to the end of the next section, in which we present our
method.

II. METHOD

In this paper we shall restrict our attention to material
systems which are both weakly self gravitating and slow

ly moving. We thus have at our disposal two small di-
mensionless parameters. First, we have a field-weakness
parameter

Gmy=
c rp

(2.1)

where m is a characteristic mass and r0 a characteristic
size of our system (we shall assume that ra is strictly
greater than the radius of a sphere in which the system
can be completely enclosed). Second, we have a slow-
ness parameter

ro
P=

cP
(2.2)

g ~=f ~+Gh, ~(x, t, c ')+G hz~(x, t, c ')

. + G "h„~(x,r, c ' }+ (2.3)

where f ~ is the Minkowskian flat metric
f ~=diag( —1, 1, 1, 1). Second, it is assumed that each

where P denotes a characteristic time scale for the evolu-
tion of the system [for instance, (2n ) times the princi-
pal period if the motion of the system is quasiperiodic].
The slowness parameter is often introduced as P=U/c,
where v =ra/P is a characteristic bulk velocity of the
system. However, it will be more useful to think of P as
the ratio ra/A, , where A, =cP is a characteristic (reduced)
wavelength of the gravitational radiation field emitted by
the system, so that P &&1 means that the system is well
within its near zone.

A priori the two small parameters y and P are in-

dependent. Indeed, we can conceive of weakly self-
gravitating fast-moving sources, or slow-moving strongly
self-gravitating ones. Often one assumes from the start
the relation (linked with the virial theorem) y -P,
which is appropriate to the description of gravitationally
bound systems. However, here we shall often use in-
dependently the two assumptions (2.1) and (2.2).

First we shall consider the limiting process y~0, or
equivalently 6~0 with c fixed, and only afterwards
shall we consider the second limit 0 P~O (c '~0}.
The first limit G~O is physically a weak-field limit and
corresponds to the so-called post-Minkomskian approxi-
mation methods. ' ' Since we assumed that the field
was weak in the source, we expect that these methods
will yield good approximations to the true gravitational
field all over space and time. Here we shall find it con-
venient to use a particular type of post-Minkowskian
method, which is valid only outside the source: the
multipolar post Mink-owsk-ian (MPM) method. This
method was pioneered by Bonnor and co-workers"
and Thorne, ' and was further developed in a previous
paper, ' hereafter referred to as paper I (see also Ref.
51).

Let D, = ( (x, t)
~
r & r0 J be an "exterior" or "outer"

domain around the source. The MPM method assumes
first that, in D„ the "gothic" metric g~= &g g ~ (see
Ref. 46 for our notation and conventions) can be ex-
panded in an asymptotic expansion in powers of y (or
equivalently in powers of G}:
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term of the series, h„~(x, t, c '), admits, in D„a mul-

tipolar expansion associated with the O(3) group of rota-
tions of the spatial coordinates (which leaves invariant
r =

I
x

I
=[(» ')'+(x'}'+(x')']'"), i.e.,

G fixed) of the form

g p=f p+ gfi„(c ')„g p(x, t, G), (2.5)

h„~(x, t, c ') = g &t (8,$)h gr, t, c i),
1&0

(2.4}
where the 5„'s, for n &1%, constitute an ordered set of
gauge functions (see, e.g., Ref. 52) such that

where L =—i, i2 .
i~ denotes a multispatial index of or-

der I, and ttL denotes the symmetric-trace-free (STF)
part of nt =n; n, n, , with n;=n'=x'/r being the

1 2

unit coordinate direction vector from the origin (located
in the source) towards the exterior field point x. The ex-
pansion (2.4) is equivalent to the usual expansion in (sca-
lar) spherical harmonics Fi (8,$) (see, e.g., Appendix A
of paper I). In paper I we assumed, in order to avoid
possible convergence problems, that the multipole ex-
pansion (2.4) contained only a finite number of terms.
However, physical intuition and past experience in many
fields of mathematical physics lead us to expect that the
requirement of convergence of such multipole expan-
sions, considered outside the source (r & ro with ro
sufficiently greater than the source radius), should cause
only very weak restrictions on the spatial and temporal
structure of the source. In this paper we shall take for-
mally the limit of the results of paper I for an infinite
number of "rnultipoles. " Finally we require, as in paper
I, that the multipolar-post-Minkowskian (MPM) metrics
[Eq. (2.3) with (2.4)] were, in the remote past, at once
stationary and spatially asymptotically Minkowskian, in
the sense that before some fixed instant —T, i.e., when
t & —T, one had

(8/Bt)g ~(x, t)=0 and lim g ~(x, t)=f ~ .

We view the latter assumptions as a way to express the
physical fact that we are considering an isolated system
which is the sole generator of the gravitational field ("no
external fields" and "no incoming radiation"). The pa-
rameter T plays only the formal role of a "cutofF" pa-
rameter. We expect (and shall check to some extent)
that it is possible to take the limit —T~ —00 under
only weak conditions on the behavior of the source in

the remote past.
Inserting the nonlinearity expansion (2.3) into the vac-

uum Einstein equations (appropriate to the exterior
domain D, ), we get a hierarchy of inhomogeneous flat-

space wave equations for the h„'s. Then the use of the
multipole expansion (2.4) enables us to solve the latter
equations quite explicitly, so that the MPM method just
sketched allows us to have a detailed control of the
structure of the external gravitational field everywhere
outside the source. However, this knowledge is only
structural, and disconnected from the actual source.
We, therefore, need to complete the MPM method with
a different, source-rooted, method.

We shall employ for this purpose a method of the
post Neurtonian type -Let D; = [(x,t.)

~

r &Kro(, where K

is some constant & 1, be an "inner domain" which con-
tains the source. We assume for the metric in the
domain D, an asymptotic expansion when c '~0 (with

lim [5„+&(e)/$„(e)]=0.
@~0

It turns out (see paper I) that one must use the set of
gauge functions ei'(lne ) t with p, q EX such that

p &2(q+I).
Inserting the expansion (2.5) into the Einstein equa-

tions with matter, and taking into account all explicit
powers of c ' (especially in 8/8» =c '8/Bt) gives a
hierarchy of Poisson equations for the „g's.

Now the point is to notice that the post-Minkowskian
external metric (2.3) should, when submitted to a further
near-zone expansion, coincide in the overlap region

D; AD, (ro &r &Kro) with the post-Newtonian inner

metric (2.5). (Actually things are more complicated than
that because the coordinate system used in D, may differ

from the one used in D„see Sec. VI.) This requirement
is a variant of the method of "matched asymptotic ex-
pansions. " (However, it should be said that this type
of method has not yet been fully clarified, neither from
the point of view of its mathernatica1 justification, nor
even from the point of view of its formal structure. ) The
matching of the two metrics gives us a knowledge of the
gravitational field everywhere (both outside and inside
the system) and thereby a complete solution, in princi-
ple, of our problem.

The organization of this paper is as follows. In Sec.
III we summarize from paper I the construction of the
general MPM external metric satisfying, in D„Eqs. (2.3)
and (2.4), the vacuum Einstein equations and the bound-
ary conditions in the past. This external metric depends
functionally on an infinite set of parametrizing functions,
which we shall call the "algorithmic rnultipole mo-
ments. " In Sec. IV we investigate the structure of the
latter external metric and especially its functional depen-
dence on the algorithmic moments. In Sec. V we re-
expand the external metric in the near zone (in fact in

D; AD, ) or, in other words, we take the post-Newtonian

expansion of the (post-Minkowskian) external metric. In
Sec. VI we match the near-zone-expanded external
metric to an inner metric and compute the lowest-order
hereditary piece in the inner field. Finally, in Sec. VII
we discuss the effect of this hereditary piece on the dy-
namics of the source and study its sensitivity" on the
remote past history of the system. We discuss the ap-
pearance of some logarithms of c in the Appendix.

III. THE EXTERNAL METRIC

As announced in the previous section, the first step of
the method consists of constructing the *'external

metric, " i.e., the gravitational field in the weak-fie d

domain outside the source D, = j(x, t)
~

r &roj. This

task has been achieved in paper I (Ref. 16},building on

foundations laid by Bonnor and co-workers, " ' and
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Thorne, ' i.e., within what we call the multipolar-post-
Minkowskian (MPM) framework. Let us summarize
(and adapt to our problem) the construction of the gen-
eral metric satisfying the assumptions stated in Sec. II.

It has been proven in paper I (Theorem 4.5) that the

I

most general MPM external metric can be (functionally)
parametrized by a "skeleton" of "algorithmic multipole
moments, " namely, by a set of time-dependent sym-
metric trace-free (STF}Cartesian tensors:

AI =
I M, M, , S, ,M, , (t),S, , (t), . . . , ML(t), S& (t), . . . I, (3.1)

where 1. denotes the spatial multi-index i, i2 . ii. The only constraints implied by the field equations that the ML s
and SL's must satisfy are that M, '"M;=dM, /dt, and S; be time independent. However, we make the further as-
sumption (hopefully to be relaxed in future work) that the metric is stationary in the past (t & —T). This implies that
all the ML's and SL's are constant when t & —T and that M, S;, and also M; are always constant (Vt). We should
make it clear that the "algorithmic moments" have no direct physical meaning, and need not have one [apart from M,
which is the Arnowitt-Deser-Misner (ADM) (rest) mass of the system]. They play the role of arbitrary functional pa-
rameters in the construction of the external metric. They will however acquire later an indirect physical meaning
when we relate them to observable quantities at infinity, or to the matter distribution (in anticipation of this we
choose, with Thorne, ' to give them the physical dimensions appropriate for "multipole moments").

Given the functional skeleton A, = [ML (t),SL (t) }), the (gothic) external metric reads

g,'g [AI ]=f'1'+Gh, ~[AI]+G2h 2t'[A(, ]+ . +6"h„t'[AI ]+ .

where the linearized external metric hi is given explicitly as [see Eqs. (2.32) of paper I]

(3.2)

h, [At]= — g, at [r Mt (t r/c))—,
oo 4

C21&0 li

oi 4 I I

h (' [At]= g, at 1[ Mt 1(t —/c)]+ g, e;,i,a,t 1[ Sbr 1(t /c)],—
C 1&1 C l&1 +

h'('[JK]= — y, at 2[r M; L 2(t r/c)] — y—
, a,L 2[r e,t, (; SJ)bL 2(t r/c)]—,

4 ( ) —1(2)

C I&2 C l&2

where the superior prefix (n) denotes the nth derivative, and where T(; )
—= —,(T; + T;). The explicit powers of c in

Eqs. (3.3) come from our choice of physical dimensions for

[ML ]= [mass][length]'

(3.3a)

(3.3b)

(3.3c)

("mass" or "electric-type" moments) and

[SL ]= [mass][velocity][length]'

("current" or "magnetic-type" moments). Then the nonlinear pieces h2, h3, . . . are recursively constructed, starting
from h, , as follows.

First, if one replaces the formal post-Minkowskian expansion (3.2) into the Einstein tensor density 2gE ~

=2g (R ~—
—,'Rg ~), one obtains a formal expansion of the type

2gE ~= g G "[a„~"~ (h„)—N„~(h;m &n)],
n=1

where

H "~ =f" h ~+f ~h" f h~" f~"h- —
n n n n

(3.4a)

(3.4b)

The N„'s (nonzero only if n )2) are some nonlinear polynomials of the "previous" h 's (m & n) and their first and
second partial derivatives. For instance, we have

N ~(h}=—a (h ~h""}+h" a h~"+h "~a h "+a h ~ajl""2 Pv PV PV P

——'8 h "B~h"+—'8 h B~h""—8 h 8"h~ —B~h 8"h
4 }Lt, V 2 PV hatt, V }MV

+a+ "a'h~+ap "a„h~"+f ~( —,'a„h„"a)'h)' ——,'a„h„al'h" + —,'a„h, a'h "(') .

Now, the definition of the recursive nonlinear h„(n )2) is

h„t'[AI ]=p„.t'+q„t', —

where

(3.&)

(3.6a)
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p„:—finite parts OOs [(rlr i ) N ],
qP—= cr—" "A(u) —cB,[r " "A, (u))+c B,[r " 'C, (u)],
q„'=— cr—" "C;(u) —ce;,i, B,[r " "Di,(u)] —g Bt,[r 'A;L, (u)],

l&2

q„'~= —5 j [r '8(u)+B, [r '8, (u)) I

1 (i)a r ' —'"A; (u)+ ' '8; (u) —C; (u)
1&2 C c

(3.6b)

(3.6c)

(3.6d)

+2fi,,a, [r-'8, (u)]—6a, „,[r -'8,„,(u)] —2a.. .[~.„,'-'D, „, ,(u)] (3.6e)

The symbols appearing in the definitions (3.6) have the
following meaning. Oz

' denotes the usual retarded in-

tegral operator

X
(Gti 'f)(x', t')= — f,

Xf x, t' —ix' —xi
c

(3.7)

The letter B denotes a complex number and r, is some

arbitrary (but fixed} length scale, to be chosen later.
Then the right-hand side of Eq. (3.6b) is defined by ana-

lytic continuation in B in the following sense. First,
choosing the real part of B small enough, one defines the
function of 8 (considered at a fixed "field point" x', t'),

F„'(8)=0„'[(rlr, )
—N„(x, t) Y(

~

x
~

—A)], (3.8a)

F(8)=CIA '[(r lr, ) N„]

appearing in Eq. (3.6b) is defined as

F(8)=F„'(8)+F„"(8)—. (3.8c)

It is defined all over C and is independent of A. Near
8=0, F(B) admits a Laurent expansion
F(B)=g+k CkB". Then the "finite part (FP) at 8 =0"

0

of F(8), which appears in the definition (3.6b) of
p„~(x', t'}, is defined to be the coefficient CO=Co(x', t'}
of 8 in the Laurent expansion of F(B) The fact that.
these constructions are mathematically well defined is
nontrivial, and has been proven by induction in paper I.
Actually, in paper I it was found convenient to use a
somewhat different presentation of the algorithm based
on decomposing X„ in a "stationary" and a "dynamic'*

part. But, using the results proven there, it is easy to
show that the presentation given here is strictly

where A is some fixed radius and where Y denotes the
Heaviside step function. Second, choosing now the real
part of B large enough, one defines the function

F„"(8):Gtt '[(rlri—) N„(x, t)Y(A —
~

x
~
)] . (3.8b)

Then, one extends the definition of both F„'(8) and
F„"(8)all over O'=C —Z by analytic continuation in B.
Then the function

+e;,i, B,L i[r 'Dit i(u)]I . (3.9b)

The following notation has been used:

"A (u)= f dx A(x),
(3.10)

'A(u)= f dx' "A(x),

and, for n &0, '"'A (u)=d"A (u)ldu" [from the results
of Appendix C of paper I, the functions

AL (u), . . . , Dt (u) are all zero when u & —T).
It has been shown in paper I that h„defined by Eqs.

(3.3) and (3.6) is a solution of the nth-order post-
Minkowskian expanded [see Eq. (3.4)] vacuum Einstein
equations in harmonic coordinates. In other words, it
satisfies (in the external domain r & ro &0)

Oh„&=X„~,

ash„t'=O .

(3.11)

(3.12)

Therefore, the definitions (3.2), (3.3), and (3.6) constitute
an algorithm (called "canonical" in paper I) which gen-
erates a formal MPM vacuum metric starting from an
arbitrary set of "algorithmic multipole moments" A, .
Note that there is nothing unique about this algorithm,
one can devise many other algorithms constructing vacu-
um metrics in harmonic coordinates, or in other coordi-
nate systems. For example, one can define ' a related
algorithm which generates a vacuum metric expressed in
"radiative coordinates" which are well suited to analyz-
ing the asymptotic behavior of the radiative gravitation-
al field. On the other hand, what is important for our
purpose is that all these algorithms are (geometrically

equivalent. Finally the functions AL (u), Bt (u), Ct (u),
and Dt (u) appearing in Eqs. (3.6c), (3.6d), and (3.6e) are
functions of the retarded time u =t rl—c, which are
symmetric trace-free (STF) tensor functions. They are
uniquely defined as the "multipole moments" of the fol-
lowing decomposition of Btip„~:

a@at'= y a, [r-'A, (u)], (3.9a)
l&0

a&„'t'= pa; [r '8 (u)]
1&0

+ g [Bt.—i[r 'CL, —i(u)]
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and physically) equivalent, and construct the most gen
eral metric outside a past-stationary isolated matter dis-
tribution. This has been proven, within the MPM
framework, under weak technical assumptions, in paper
I (Theorem 4.5) (see also Sec. IV of Ref. 53).

IV. FUNCTIONAL DEPENDENCE
OF THE EXTERNAL METRIC

In the previous section we recalled (and adapted) the

algorithmic construction of paper I of the external
metric in terms of the set of algorithmic multipole mo-
ments A, =[ML(t),St(t)]. The first step of this con-
struction is the "linearized" external metric h, given by
Eqs. (3.3).

Let us start our discussion by considering h
&

~ The
spatial derivatives BL in Eqs. (3.3) ((}L——8; 8; (},

with 8; =8/(}x ') act on quantities such as r 'ML ( t
r lc) and —thus act both on the prefactor r ' and also

on the retardation rlc. If we expand these derivatives
[using Eq. (A35a) of paper I], we find that h, can be
written as a sum of terms of the form

h, ~(x, t)= g c Mt r 'Ft~(t rlc) .— (4.1)

Here Ft~(u) denotes a function of u which is a contrac-
tion between some constant Cartesian tensor Kzz~ (made

of Kronecker or Levi-Civita symbols) and some time
derivative of one algorithmic multipole moment taken at
the same instant u:

FL (u)=Kt'. t.
'

Mt. (u) or KLt.
'

SL (u) . (4.2)

The structure of Eqs. (4.1) and (4.2) makes manifest that
h, (x, t ), considered as a functional of the algorithmic
multipole moments, depends only on the values of the
moments and of their time derivatives taken at one in-
stant: the "retarded time" u =t —r jc. Our purpose in
this section is to make the distinction between this type
of structure and the more complicated one (which will
arise at nonlinear stages) involving a dependence on the
values of the algorithmic moments on the time interval

]—ao, t r lc] (a—ctually [—T, t rlc]). In order to cl—ar-
ify this distinction we introduce some special notation
and terminology.

We shall henceforth restrict the use of the three letters
F, G, and H to denoting functions of one variable, such
that F(u) [and 6 (u), H(u)] is algebraically constructed
from the values of a finite number of algorithmic mo-
ments and their derivatives taken at the same "instant"
u. For instance this is the case of FL~(u) given by Eq.
(4.2) or, more generally, of

p p (a
1

j (a„)
FL (u)= QKLL . . . t ML (u) . "

SL (u), (4.3)

where as above KLL . . . L is a constant Cartesian tensor
l n

made of 5's and e's. We shall say that such F's, G's, and
H's are "instantaneous functionals" of the algorithmic
moments. And we shall extend this denomination to
fields in spacetime, say p(x, t), whose value at the field
point (x, t) depends only on the value of such F's taken
at one instant u (x, t) (e.g. , u =t or u =t r lc). For ex—-

ample, g given by Eq. (5.11) below is an instantaneous
functional of the algorithmic multipole moments (taken
at u =t). And, as Eq. (4.1) shows, h, ~(x, t) also is an in-

stantaneous functional of the moments (taken at
u=t —rlc) .Note that the fact that the common "in-
stant" u which rules the instantaneous dependence is
u =t or u =t —r/c does not matter. Our terminology is
only aimed at distinguishing the "snap-shot" functional
dependences (whether simultaneous or simply retarded)
from the dependences on the full past history of the al-
gorithmic moments. We shall qualify the latter depen-
dences as "hereditary functionals" of the algorithmic
moments. For example, we shall say that

Xt~(u}= f du ln(u u)K—gz~
' Mt (u) (4.4)

as well as a field k ~(x, t) with structure, say,

k ~(x, t)= g & r 'Xt~(t rlc)— (4.5)

are both hereditary functionals of the algorithmic mul-

tipole moments. Finally, we shall also introduce a spe-
cial terminology for a particularly simple type of heredi-
tary functional: if some derivative of an hereditary func-
tional T(u) is actually an instantaneous functional, for
instance,

T(u)=' "F(u)= f du F(v), (4.6a)

or

T(Q)=( 'F(M)= f dv( "F(v), (4.6b)

g ap ap+ ap (4.7)

Let us first consider p2 (we shall deal with q2 after-
wards). According to Eq. (3.6b), p2 is the finite part of
the retarded integral of the source N2, i.e.,

p2 =Fpa=oOi (r N2 ) . (4.&)

(We choose r( ——1 in all this section for siinplicity s
sake. ) The source Ni is the quadratic nonlinear piece

we shall say that T(u) is a "semihereditary functional"
of JR.

Note that we introduced the preceding terminology to
characterize some properties of a functional of the algo-
rithmic moments. However, the terminology can be ap-
plied to any functional of any independent functions (of
one variable}. For instance, in Sec. VI below, we shall

apply the terminology to characterize functionals of the
source variables, instead of the algorithmic moments.
One should carefully specify what are the independent
functions because the property of "instantaneity" is
clearly not invariant under a general functional change
of independent functions. Only when the context is
unambiguous shall we simply use the adjectives "instan-
taneous" or "hereditary" without further qualification.

Armed with this convenient terminology, we now
study the main aspects of the functional structure of the
external metric and start with the quadratic external
metric, hz. As we recalled in Sec. III, h2 is a sum of
two contributions:
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N2(h, ) of Einstein's equations, Eq. (3.5), computed with

h„Eqs. (3.3). The general structure of Nz(h, ) reads
symbolically as

N, (h, )-h, a'h, +ah, ah, . (4.9)

We insert into Ni the explicit form (3.3) of the multipole
expansion of h, , rearrange the terms (using the rules of
manipulation of formal series), and obtain the multipole
expansion of N2. Since the multipole expansion of h, is
an expansion in "outward spherical waves" of the type
dp[r F(t —r)] for some multi-index P and some "in-
stantaneous" function F(u) [skipping all indices on F(u)
and using c= 1], the expansion of N2 will be made of
quadratic products of such spherical waves. We write
this expansion as (with c =1)

The second term on the RHS of (4.14), which has k =3,
will satisfy the constraint k (1+2 if and only if its
"multipolarity, "

1, is & 1, or equivalently if its monopo-
lar part (i.e., its angular average) is zero. That this is so
follows from the fact that 8;(RLr ) has, when l)2,
multipolarity 1 —1 and 1+1,while in the dangerous case
1=1 (RL n——), d. ;(n r )= —3R; r3"has multipolarity 2
and not zero [I.n the case 1=0, d;(RLr ) has multipo-
larity 1.] Hence our statement is true for m =1. For
higher values of m we proceed by induction on m, notic-
ing that at each step the only "dangerous" terms that
arise, i.e., the terms which are not manifestly of the type
of the RHS of (4.13},are in fact of the above discussed
type 8;(&t.r )H2(t r) —Fin. ally, we can write N2 as

Nz ——r Q2(t —r, n)

N2 ——g Bp[r 'F(t —r)]Bg[r 'G(t —r)], (4.10) B~[Rt r "H/, (t —r)], (4.15a)

for some multi-indices P and Q and some instantaneous
functions F and G.

Let us now perform a series of "operations by parts"
on each of the terms of (4.10). We mean by this a series
of operations of the type

8;ABJB =B;(ABJB)—AB; 8, (4.11)

by which the derivatives on the left can be shifted in
front and to the right (say). This leads to the structure

N = Q B~ I r 'F(t —r)B [r 'G(t —r)]I, (4.12)

for some multi-indices M =i, i2 i and
X =i&i2 i„. We can now use the formulas in Appen-
dix A of paper I, first to replace the derivative operator
BN, which appears within the square brackets of (4.12),
by its expression in terms of trace-free operators St
(with 1&n), and then to expand the latter fz's onto
trace-free unit vectors R'L . The resulting structure is

N2 ——

2&k &I+2
r)~[Rtr "Hi, (t —r)'], (4.13)

for some instantaneous functions Hk which are products
of F with time derivatives of G.

The powers k of r ' in the square brackets of (4.13)
range from 2 to I +2, where I is the "multipolarity" of
the angular dependence of the square brackets [see Eq.
(A35a) of paper I]. I.et us first consider the terms with
k =2, for instance the term d~[ht r ~H2(t —r)]. By ex-
panding the derivative BM in the latter term, we get a
term proportional to r, namely,

( —) n~R't r ' 'H2(t r), —

plus other terms proportional to r with k &3. Let us
show that these other terms (with k )3) can always be
recombined to form new terms of the type of the right-
hand side (RHS) of (4.13), with now k =3, but still
k &1 +2. Indeed, in the simplest case m =1 (only one
space derivative 8~ =8;) we get

B,. [R'L r Hz(t —r)]= n; RL r ' "H2(t —r)—

Q2(t —r, n)= y( —) n~RL,
' 'H2(t —r) (4.15b)

As we shall see below, the expression (4.15a) is ex-
tremely convenient for handling the retarded integration
of N2 and for separating the hereditary components in
the retarded integral. However, before taking the re-
tarded integral of both sides of (4.15a) we must, follow-
ing the definition (3.6b), multiply both sides by the
analytic-continuation factor r . Then, as it will be con-
venient to commute the retarded integral with the
derivative operator BM, we need to introduce r inside
the square brackets in (4.15a). This produces many ex-
tra terms coming from the derivation of r, but the
point is that these extra terms will all have at least a
power of 8 as a factor (coming from d;r =Br 'n;)
This leads to

r~Nz rQz(t —r, n)——

dM[&t r "HJ, (t —r)]
3&k &I+2

BPRt r "H/,
' (t r), —

k&3;p &1
(4.16)

with some other instantaneous functions Hk'. Note that
in the last term the powers of r ' are not a priori
bounded by 1+2. Next we apply the operator Hz' to
both sides of (4.16), and we commute it with B~ (this is
allowed because of our analytic continuation procedure).
This yields

Oz'(r N2)=O&'[r Q2(t —r, n})

BM tOn '[RL r "Hi', (t —r)]J
3&k &I+2

+ g Oti '[BpRLr "Ht',p(t —r')] .
k &3;p&1

3&k &I+2

with some instantaneous functions K/ (distinct from

Hi, ), and where Q2(t —r, n) is the r part of N2, i.e.,
with the notation of Eq. (4.13),

+H2(t r)d, (RL r ) . (4.14—). (4.17)
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From Eq. (4.17) we see that the problem of computing

p2, namely, the finite part of CIB '(r Nz), is reduced to
the problem of computing (1) the finite part at 8 =0 of
the retarded integral Htt '[&Lr H(t —r)], i.e., when

k =2, (2) the finite part at 8 =0 of the retarded integrals
Uz'[&Lr "H(t —r)] in the case 3&k &1+2, and (3)
the pole part at 8 =0 (because of the factor B~ with

I

p & 1 } of the same retarded integrals in the case k ) 3
(without any I-dependent upper bound for k).

We shall deal with these retarded integrals by using an
explicit expression, valid for all k and I, which has been
derived in paper I [Eq. (6.9a)]. This explicit expression
1S

( r)B —k+I+2 (z+r)B —k+t+&
CIB '[&t r "H(t —r)]= J dz H(t —z)5L

r r
(4.18a)

where K (8) is given by

K(8)=2 "+ (8 —k+2)(B —k+1) (8 —k —1+2) . (4.18b)

Actually, Eq. (4.18a) has been proven in paper I for a past-zero H(u), but it is easily checked to hold also for a past-
stationary H(u), which is the case of interest here. We consider separately the three cases of interest to us [items (1),
(2), and (3) above].

When k =2 the latter expression becomes

Ott '[fi r H(t —r)]= dz H(t —z}f
2 +'B(B—1) (8 —1)

(4.19)

(4.20a)

We know, from considering the retarded integral in its usual triple-integral form, that Ott '[ftL r H(t —r)] is con-
vergent when 8 =0. We then would like to simply set 8 =0 on the RHS of (4.19). However, this cannot be done
directly because there is an apparent pole at 8 =0 coming from the factor in front of the integral. That this pole is
only apparent, in accordance with the fact that the retarded integral is convergent at 8 =0, follows from the identity

(z r)' (z —+r)'—
OL =0,

r

which is a consequence of the identity

dLr J=O if j=0, 1, . . . , 1 —1 . (4.20b)

[See Eqs. (A33) and (A36) of paper I.] The identity (4.20a) shows that the integrand on the RHS of (4.19) vanishes
when 8 =0, thereby killing the pole in the coefficient. Expanding near 8 =0 the RHS of (4.19) (using
x =1+8 lnx+ ) we then get

( —) ~
d H ~ (z —r)'ln(z r) (z +r)'ln—(z +—r)

2(l!) r r
(4.21)

Note, remembering the instantaneous character of H, the obvious hereditary character of this expression. [Note also
that, thanks to the identity (4.20), the RHS of (4.21) is independent of any scale, such as r„ that we could introduce in
the logarithms. ]

Let us now consider the case 3 & k &1+2 [item (2) above]. In this case it is convenient to integrate by parts the in-

tegral on the RHS of Eq. (4.18a). Using the properties of the analytic continuation we find that the upper limit z = oo

gives no contribution, while the lower limit z =r gives rise to some integrated terms which can be computed by means
of the formula

T

(z+r)"
L

z=r
=2" (A —1 —1)(A —1 —2) . . (A 21)h'Lr"— (4.22)

(where we set z =r in the LHS after application of the operator $L). After k —2 integrations by parts, we get

k —3—1[it rB —kH(t r)] y tt (8)g' rB —k+i+2(i)H(t r)
i=0

8+I B+1
+A(8) J dz'" 'H(t —)8

r r
(4.23a)

where the coefficients are given by
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a;(8)= 2'(8 —k+2+i) (8 —k+3)
(8 —k +2—I +i) (8 —k +2—l)(8 —k +3+I +i) . (8 —k +3+I)

A, (8)= 1

2B "+ (8 —k+2) (8 —k —I+2)(8+I) . (8 —k+I+3)

(4.23b)

(4.23c)

(The dots indicate a product of factors decreasing by steps of one unit from left to right. ) Now, when 3 &k &I +2,
one sees that none of the coefficients has a pole at 8 =0. Therefore, we find that in this case the retarded integral is
analytic (no pole) at 8 =0. Furthermore, using the identity (4.20a), we find that the last term in (4.23a), which in-
cludes all hereditary contributions to the retarded integral, in fact vanishes at 8 =0. So we arrive, rather remarkably,
at the following "instantaneous" expression (for 3 & k & I +2):

'(k —3}!(1+2—k)! "+' (I +j)! '" ' "H(t —)

(I+a —2)i L . 0 2'!(I j)!»1+i (4.24)

Finally we treat the last case [item (3}above] as follows. We need only to consider k & I +3, since we have just seen
that the retarded integrals are analytic when 2&k &I+2. Now one checks that the possible poles on the RHS of
(4.18a) will come only from the lower integration limit z =«and from the first part of the integral, corresponding to
(z —») "+'+ . We then take the derivative operator SL outside this first part of the integral [we know from paper I,
Eq. (6.8), that this is permissible] and operate by parts k —I —2 times similarly to Eqs. (4.23). By analytic continua-
tion all integrated terms vanish at z =r and we get

( )B —k+I +2

I dzH(t —z)SL
T

=terms analytic at 8 =0+ 5L —I dz'" ' 2'H(t —z)(z —«)B, (4.25)

from which we deduce, taking into account the coefficient 1/E (8), the pole part at 8 =0 of the retarded integral (for
k &1+3):

B k 1 ( —) 2 (k —3)!
po le p«t

I B=OoR [fi'L«H(t «}]
(k —I —3)H(t «)

(4.26)

+ g RL» JFL(t «), -— (4.27)

where the functions FL(u) are instantaneous functionals
of the algorithmic multipole moments [of the type (4.3)].
Thereby we have completely delimited the hereditary
components of p2. they come from the retarded integra-
tion of «Q2. We recall that «Q2 is the» piece
(dominant at infinity} of the "effective source" N2 evalu-

(As we already knew from paper I, only simple poles
arise. ) The expression (4.26) is again an "instantaneous"
expression.

With this knowledge of the retarded integrals, we can
now come back to our problem of determining the struc-
ture of p2, namely, the finite part at 8 =0 of QR '(«N2)
which has been put under the form (4.17). We now un-
derstand why it is so advantageous to use the form
(4.17). Indeed, by Eqs. (4.24) and (4.26), we see that
both the second and the third terms on the RHS of
(4.17) are finite at 8 =0 and, most importantly, are (at
8 =0) instantaneous functionals of At On the cont. rary,
the first term OR'(«Q2} is still finite but yields at
8 =0 a sum of integrals such as the RHS of (4.21),
which are of the hereditary type. We can thus write for
p2 an expression of the type

I 2 +R [» Q2(t —»»)]

1=0,1

+ QBL[« 'FL(t —«)], (4.28)

for some semihereditary functionals TL(u) [of the type
(4.6)] and some instantaneous functionals FL ( u ).

ated in harmonic coordinates and at the second post-
Minkowskian approximation. We shall explicitly corn-
pute Q2 in Sec. V, but now we must turn to the second

(and last) contribution to the quadratic external metric,

q2 [see Eq. (4.7)].
This q2 is given by Eqs. (3.6c)-(3.6e) where the STF

tensors AL, BL, CL, and DL are uniquely defined by the
multipole expansion of the divergence BtipzB of pzB [Eqs.
(3.9)]. Since we have seen that the pole part of the re-
tarded integrals is instantaneous [Eq. (4.26)] and since
BtipzB is precisely a sum of such pole parts [see Eq. (4.10)
of paper I] we deduce that the tensors AL, BL, . . . are in
fact instantaneous functionals of At ( A L FL, ——
BL FL', . . . ). Thu—s—all terms in q2 which involve
derivatives of these tensors are instantaneous, while the
ones which involve antiderivatives [e.g., the term

c« " "A—( )uin qz ] are what we have called
semihe«editary (The latter t.erms have "multipolarity"
I =0 or I =1.) Hence we can write

q2= g &L[ 'TL(t —))
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(4.29)

I

From Eqs. (4.27} and (4.28) we finally get the structure
of h2.

hz ——g ttt r JFL(t —r)+ g at [r 'TL(t —r)]
j&1 1=0, 1

+OR '[r Q2(t —r, n}],

where the first term is instantaneous, the second term is
sernihereditary, and the third term, which is the retarded
integral of the r piece in the source N2, is of the
hereditary type

R '[r Q2(t —r, n)]= g f +
dz HL (t —z)$L

I'

(z —r) ln(z r)—(z—+r) ln(z +r) (4.30)

hz= g 8tr 'Ft'(t r)+tz- ,
j&1

where

aL [r 'TL(t —r}]

(4.31a)

Let us now give some insight on the higher nonlinear
(h3, h4, . . . ) contributions to the external metric. First,
let us call the noninstantaneous component of hz, name-

ly, the sum of the last two terms in (4.29), the tail t2 of
hz, so that

I

second, noninstantaneous, term in (4.32) generates
hereditary terms whose structure is more complex. We
shall not try here to fully explicate this structure, al-
though we could do it, in principle, using the explicit ex-
pression (6.4) of paper I of the retarded integral of an ex-
tended multipolar source. Finally, we must include the
contribution of q3 which gives, besides some instantane-
ous terms, some hereditary or semihereditary terms of
the type aL [r 'Xt (t —r)] that we also do not attempt to
control explicitly. Therefore, the structure of h3 is

1=0,1

+OR [r Q2(t —r, n)] . (4.3 lb)

h3 —— g Rtr (1n'r}RFL (t r)+t3—
j&1

p =0, 1

(4.33)

Following the external algorithm, we consider the cubic
source N3 computed with h, and h2. Using the struc-
tures (4.1) and (4.31) of h

~
and h2, and the general struc-

ture of N3 [see Eq. (4.4) of paper I], we find that N3 has
the form

where the cubic "tail" t3 has now the structure

t3 ~R [r Q3(t

+ g FPI:IR '[aa[(S't r 'Ft )tz]j

+ Q at [r 'XL(t —r)] . (4.34)

N3 —g hLr "Ht (t r)—
k&2

+ g aa[[&Lr 'Ft (t —r)]t2I, (4.32)

where the HL 's are instantaneous and where the second
term denotes a sum of products of some 8'L r FL with
tz, with two partial derivatives, aa, being distributed
among SL r FL and t2. We must take the finite part of
the retarded integral FPQ„' of (4.32). The retarded in-
tegration of the first, instantaneous, terms in (4.32} is
treated using the formula (4.23) above. Note, however,
that since k) 2 is not a priori bounded by I+2, the
coefficients a;(B) and A, (8) in this formula can now have
simple poles at 8 =0. The poles in the a,. 's will generate
logarithms in the finite part (indeed r /8 = I /8
+lnr + ) and the poles in the A. 's will generate some
hereditary integrals of the type

[e,r "" "H(t —r-)] . -

Next, the application of the operator FPO&' to the

(Beware that here Q3 is not the r piece in the instan-
taneous part of the source N3. )

The same reasoning applies as well to arbitrarily high
approximations [except that in order to handle the loga-
rithms we must use not only Eq. (4.23) but the formulas
obtained by repeatedly differentiating (4.23) with respect
to 8]. We then get for h„an expression of the type

h„= g 8tr J(lnr)RFL ('t r)+ t„,—
j&1

p(pl —2

(4.35)

where the nth order post-Minkowskian tail t„ is given by
an hereditary expression similar to (4.34) but more com-
plex: the first term becomes a sum of terms of the type
ClR '[r (1nr}RQ„], while the second term now involves
contributions coming from the "interaction" of p (with

p ) 1) tails tk, tk, . . . , tk (with k, +k2+ . +kR
I3

& n —1 } between themselves, and with instantaneous
terms of the type &L r J(lnrYFt Note that, maki.ng use
of Eq. (6.4) of paper I, we could, in principle, reduce t„
to a sum of integrals of the type

t —1' t —p (a ) (a„)t„=g &L du, du„ALL . . . L (t, r, u». . . , u„) ML (ui) . "SL (u„), (4.36)

where ALt . . . L (t, r, u, , . . . , u„) is a quite intricate kernel.
1 n

This completes our discussion of the functional dependence of the external metric.
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V. FUNCTIONAL DEPENDENCE AS SEEN IN THE NEAR ZONE

We follow the next step of our method (see Sec. II) and reexpand the external metric in the exterior near zone, i.e.,
in the overlap region D; AD, (ro & r & pro) .This means that we consider the post-Newtonian expansion, or c ex-

pansion, of the (post-Minkowskian) external metric. This step will allow us to perform the matching to the source
(Sec. VI).

Let us restore in the external metric all explicit powers of c . At this point, it is convenient to choose the normal-
izing constant r, in (3.6b) to be r i cP—,—where P is some characteristic time scale of the internal motion of the source.
Then, following paper I [see also Eq. (4.36)], we notice that h„can be decomposed in a sum of independent pieces
each of which is built from an element, say, E„,of the nth tensorial power of the set Ai of algorithmic multipole mo-

ments [Eq. (3.1)], namely, a tensorial product of n algorithmic multipole moments chosen among the M~'s and S~'s:

E~=MI. ML ' ' 'S
1 n

(5.1)

For each moment ML or SL we define I to be the number of indices on ML or s,~„S„L,(endowing each SL with its
natural e), i.e., I =I for "mass moments" ML and I =I +1 for "current moments" SL. Then for each E„,g,",I, is the
total number of indices on the ML's and SL's composing E„, and g," il is g," il,. plus the number of cur'rent mo-

ments SL in E„. [In the notation of paper I, Eq. (5.2b}, we have g; il =b(E„).] With this notation we can rewrite

Eq. (4.35) (which gave h„as a function of space and time) in a form which makes explicit the dependence of h„on c:

h„(x, t, c)= g „g ft't
1 7'

E 3n+,". ~l ")1 c
n c p45 —2

[ln(r/cP)]~F&(t r/c)+—t„(x,t, c) . (5.2)

Our task is now to control the dependence of the tail
term t„ in Eq. (5.2) on c, when c~ ao. We have seen in

Sec. IV that t„becomes very intricate when n gets large.
Fortunately, the following theorem shows that t„quickly
becomes negligible (in the near zone) when n increases.

Theorem: When c~ oo, the tail t„(c) (n &2) is of or-
der"

t„(c)=0 (inc)"
C2~ +4 (5.3)

The proof of this theorem is done by induction on n.
Let us first consider the case n =2. In this case we have
seen [Eq. (4.31b)] that t2 is made of two contributions:

t2 ——S2+u2 .

The first one is semihereditary,

(5.4)

si= g 6, , g c'+'dt [r 'Tt(t r/c)], —(5.5)

while the other one is hereditary,

u2=ott '[r Q2(t r/c, n, c)], — (5.6a)

Q, (u, n, c)= g . . . g 8'LH~(u) .1
(5.6b)

We deal first with the semihereditary contribution s2.
From Eq. (5.5}, taking into account the fact that I =0 or
I =1, we find that s2 is gz 0(1/c ' '). Now, T2

2

must, by definition, consist of (first- or second-order) an-
tiderivatives of products of derivatives of two multipole

(i2
l

) (a2)
moments (e.g., '

ML
' Mt ). Dimensional analysis

2

where Q2(u, n, c), the r piece in the source N2, has the
structure

then shows that this is possible only if both derivative
orders a& and a2 are strictly positive. Therefore, both
moments must be nonstationary: hence 1& )2 and l2 & 2.
Thus s2 is (in the near zone) of order

s2=0(1/c ) . (5.7)

Let us now consider the hereditary contribution u 2.
6+ l ) +12

From Eq. (5.6b) we find that Q2 is gz 0(l/c ' ').
Now dimensional analysis shows that at least one of the
two derivative orders must be strictly positive; therefore,
at least one of the two interacting moments must be non-
stationary: hence I, &2 or l2&2. Thus Q2 is of order
0(1/cs). In other words, this means that u2 has the
structure

H( t r/c)—
7, 2

inc
u2 ——0

c 8
(5.9)

Equations (5.7) and (5.9) imply that the theorem is true
for n =2. Let us now show on the next iteration step,
n =3, how the induction proceeds. From Eq. (4.34) we

"2= X (-3i (5.8)
p)8 C

The explicit integration formula (5.18) below [evaluated
at B =0, and with H(u) zero in the past] enables us to
compute in a straightforward way the post-Newtonian
expansion of each element of the RHS of Eq. (5.8).
Now, when c '~0 the Grst term on the RHS of Eq.
(5.18), which seems to be 0(c+"+"), is however only of
order 0(c ) because of the identity (4.20b) [see Eq.
(5.22)]. As for the second term on the RHS of (5.18)
[which seems to be 0(c }]it is easily found to be 0 (inc)
[because of the pole coming from E (B)].

Introducing this information into Eq. (5.8), we get
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see that the cubically nonlinear tail t3 is now made of
three contributions: a hereditary contribution of the
same type as uz, say uz [first term on the RHS of (4.34)],
some hereditary or sernihereditary terms of the type
dt fr 'X(t r—/c)], say sz [last term of (4.34)], and a
more intricate tail-generated hereditary piece, say ~3

[second term on the RHS of (4.34}]. The contribution
El 3 can be handled by the same method as used for u 2 ~

This leads to uz ——0(inc/c"). The contribution sz is

made of two kinds of terms. Some are semihereditary
and are treated by the same method as used for s2. they
are 0(c "). The other ones are purely hereditary and
come from hereditary terms in the effective source N3.
these are found to be 0(c '

) using the defining formu-
las (3.6c)—(3.6e) for q ~, and the fact that, for a term of
"multipolarity" l, composed with multipoles l, and with

S free spatial indices (S being the number of spatial in-

dices among a and P) we always have 5'1. —l +S =2k,
where k CN. Hence we find sz ——0(c ' ). The more
complex tail-generated tail ~3 requires some tools which
have been developed in paper I. Indeed, we have proven
there (in Secs. V, IV, and III, respectively) the three fol-

lowing results.
(i) The nth-order post-Minkowskian metric h„can be

written as a sum of contributions having the form
c "fk(p, t, n}, where k =3n + Yl and p denotes the di-

mensionless ratio r /cP.
(ii) The functions f„(p) belong to a special class of

functions (called the L" ' class in paper I) which admit,
when p~O, an asymptotic expansion along the scale
functions p'(lnp)r, where a is a (relative) integer and p a
positive integer bounded upwards by n —1.

(iii) One can deduce the asymptotic expansion of f„(p)
from the corresponding one of its "source" in N„by
means of Eqs. (3.23) and (3.5) of paper I.

Combining these three results with the fact that

FPI:jest '[(cP) nk(p, t, n)]=f„(p,t, n),

we find that if a "source" contribution, c "
nk(p) (be-

longing to the class L" } is 0((inc)" /c') when
choo (and p~0), then its corresponding "solution, "
c "fk(p), is

0((inc)" '/c')+0(1/c")

(where the first term comes from the 6 ' terms in Eq.
(3.23) of paper I, while the second one comes from the
CI„'[0 (r }] one). For instance, from Eqs. (5.7}—(5.9}
one finds that the "source" of rz is 0(inc/c' ) (and be-

longs to L '); therefore, ~z itself is 0((inc) /c '
)

9+ I.+0(1/c ), which is in fact 0((lnc) /c' ) as Pl; &2
in a tail term. This proves our theorem for n =3. Now,
noticing that each new nonlinear order brings in a new
factor G/c, and increases the maximal power of the
logarithms of p, it is easy to see, reasoning by induction
on n, and using the just proven general result on the
propagation of post-Newtonian order from "source to
field, " that the theorem (5.3) holds true for any n.

This theorem will be essential for knowing how many
nonlinear iterations must be considered to get the dorn-

9gm' 2r —'m (t)—2(B; r ')m, (t)+9lpoQ,

sg o~i 2eiob ( B~ r )sb ( t ) + sq ol

ext

(5.10a)

(5.10b}

(5.10c)

where the functions m(t), m;(t), and s;(t) are some
semihereditary functions [of the type (4.6a) or (4.6b)] and

the g's have the following "instantaneous" structure:

FL, (t)qz= g &tr" ln
cP

(5.11)

where we recall that FL(t) denotes an instantaneous
functional of the algorithmic multipole moments [cf. Eq.
(4.3)]. The coefficients in (5.10) have been chosen so that
the functions m (t), m, (t), and s, (t) appear as quadratic
"corrections" to the algorithmic moments M, M, , and

S;. For instance a straightforward application of the al-

gorithm (3.6)—(3.9) shows that the function m (t) is given

by

m(t)= —
—,
' f du' 'M,"(U)' 'M,"(U), (5.12)

a result first obtained by Bonnor. " Note that on the
LHS of Eqs. (5.10) appears the 3—,'PN term of the full
external metric because, as the theorem above shows
[Eq. (5.3)], the cubic and higher nonlinear tails t„(n & 3)
do not contribute to the 3—,'PN approximation (they are

at least c " =c '
}, while the hereditary tail uz

turns out to contribute at the 4PN level only, as we now
show.

To compute uz we first need to get Qz, the r part in

the second-order post-Minkowskian source Nz. This Qz
can be computed straightforwardly by inserting the r
part of our linearized metric h, [Eqs. (3.3)] into the ex-
pression of Nz [given by Eq. (3.5)]. The result is

k k~g~ (tti—r/c n) = ( 1(1)zP+1 Z —1 1 ZP 1 Z~)2 7 2 2 P,V 4 P Vc

+ Z
4M (2) ~P

c
(5.13)

inant (i.e., lowest order in 1/c) hereditary piece in the
near-zone expanded external metric. Let us first consid-
er in detail the hereditary structure of the second itera-
tion, tz ——s z +u z, as seen in the (exterior) near zone.
First, it is easy to show that, although sz~ [Eq. (5.5}] is

on the whole 0 (c ) according to Eq. (5.7), in fact sz is

0(c ), sz' is 0(c ) and s/=0 [as follows from Eq.
(3.6e)]. Therefore, we see that szp contributes to the
external metric g tt (coming back to the usual covariant

metric} semihereditary terms which are c in goo, c
in go;, and c in g; . This means that sernihereditary

terms in the external metric arise (dominantly) at the 3—,
'

post-Newtonian level. Let us denote by 9goo, 8go;, and

7g;. the 3—,'PN approximation, namely, the coeScients ofc,c, and c in goo, go;, and g; . (For simplicity's
sake, we are keeping the powers of inc in each g', see
Ref. 56 and Sec. VI below. } Then we find (adding a su-

perscript "ext*' to remember that we are considering the
external metric)
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(See also Ref. 43.) In Eq. (5.13) we have denoted by
k =f ~k& =(—+ l, n'} the radially outgoing Minkowskian
null direction, while z ~(t r I—c,n) is given explicitly by

~L-2
z'(u, n) = —4 g, '"M; I 2(u)

I &2 !C

4y
2

1!c'+

z '(u, n)= —4 g, , '"ML, (u)
1!c +

(S.14a) 1+8/ /+3 aL —2sab(i j)bi—2.(u }
i) 2 (I + 1)!c +

(5.14c)

+4 g eiab~oL —i ~bL —l(u} &

i)2 (1+1)!c'+
(5.14b}

Let us now evaluate the retarded integral of r 2Q2 by
using the formula (4.19), namely (with r, =cP),

o-'
R

'B
r H(t r lc)—

CI' r2

+- ~ z —r B+'—z+r B+'

K(B} r r
(S.ISa)

where

K(8)=2(2cP) B(8—1) (8 —/) . (5.15b)

The formula (5.15a) is not very convenient to get the asymptotic expansion of u2 when c~ oo, so let us first transform
the RHS of (5.15a). We can first split the RHS of (5.15a) into two integrals from r to + oo corresponding to the two
terms (zkr) +'. [This is possible because in the case considered here H(u) vanishes for u & —T.] We then take the
derivative operator ft outside the first integral [corresponding to (z —r) +'] [this is allowed, as proven in paper I, Eq.
(6.8)]. Then we rewrite the second integral [corresponding to (z+r) +'] as the sum of an integral from r to rplus-
an integral from r to—+ ao. We again take the derivative St outside the latter integral. (This is allowed for the
same reasons as before. ) As a result we have

g —1

R

B
r ~L 1 r

2
H(t rlc) =— f dz H(t —zlc)SL

(z+r) +'
cP r2 K(B) —r r

5~ —f dz H (t —z lc)(z r)—
r

——f dzH(t —zlc)(z+r) +'
r —r

(5.16)

Next we introduce the function

C
B

Xs(u)= f dvv +'H(u —v) .
K(8)

(5.17)

Our final result is then

r
cI'

'B&I, , Xtt(t r lc) Xs(t +r/—c)—
H(t rlc) =c'—+'lLL r

T

f dz H(t —zlc)SL (5.18)

This form is very convenient for our purpose because, when performing the near-zone expansion, among the two terms
on the RHS of (5.18), only the first one yields a hereditary functional of the algorithmic multipole moments. Indeed, by
expanding in the second term, H(t —zlc) in powers of zlc we easily find that this second term adinits, when c~ oo, an
instantaneous expansion of the type
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rII+k(i)H(t)/ II+I

(see Ref. 57). Note that, because of the pole at 8 =0 brought about by 1/Ir: (8), the finite part of the second term ad-
mits a post-Newtonian expansion along the (inc)'/c"'s. Taking the finite part at 8 =0 of XII(u} [the pole parts of the
first and second terms on the RHS of (5.18}cancel each other], we get

X{u)= f du u ln + g —. H(u —u)
( —}' "

I v 1

2(1!) 2P,.
) i

or, after 1 integrations by parts,

(5.19)

I 1

X(u)= f dv ln +2 g —. ' "H(u —u}, (5.20)
2 0 ' 2P ~

&
i

[where ' "H(u —v} is the 1th antiderivative of H which is zero when u (—T]. Hence we conclude that the part of
the retarded integral of 8Lr 'H(t —rlc), which, when viewed in the near zone, explicitly depends on all the past his-

tory of H(u), is

H(t r/c)— ( —)' '+'
v ~ ' "H(t —u rlc) —'"H—(t —v +rlc)

dv ln
hereditary 0 2P T

{5.21)

(which is a solution of the homogeneous wave equation). Expanding the RHS of (5.21) in powers of r/c [and using
Eq. (A33} of paper I], we obtain the following near-zone dominant hereditary contribution:

QII H( t r lc)—81
2

I +1 XL f dv ln "+"H(t —u)+O(1/c'+ )
hereditary 2 + 1

(5.22)

[with xL 8tr' an——d '(21 +1)!!=(21 +1}(21—1) 1].
Note that this dominant hereditary contribution is, in

order of magnitude, smaller by a factor c ' than the
"source" &t r zH(t —r/c).

We can now find the lowest-order terms in the near-
zone external metric, which are hereditary functionals of
the algorithmic multipole moments. We have already
determined, Eq. (5.10), the lowest-order semihereditary
terms. However, we shall see below (Sec. VI) that, after
having expressed the algorithmic multipole moments as
functionals of some (instantaneous) source moments, the
latter semihereditary terms will combine with other
terms to form instantaneous functionals of the source.
We now look for the lowest-order fully hereditary terms
(they will turn out to outweigh the next-order
semihereditary terms). Using Eqs. (5.3), (5.6a), (5.13),
(5.14), and (5.22) we find that fully hereditary terms first
arise at order c ' in goo, c in go;, and c in g;J or,
using the post-Newtonian language, that they arise at
the 4PN approximation level. Furthermore, &1800"

"""
comes both from the second and third iterations (n =2
and 3), while 9g0,

'." '"'" and sg,
"'" '"'" come only from

the second iteration:

x,b dv ln M,b(t —u)erat 8M (7)

5
'

0 2P

+~2r9(10) +1 %02uu ~ (5.24a)

9g Q t} ( 8y) ' ) + t}' ( 9y)0 ) +9g 20'

&,"„' =a,{,~, }+a,(,~, }+,~,„,
(5.24b)

(5.24c)

where x,b
——x' =x,xb and where we have set

2M (6) t —v9y)0 x,b
——du ln

2&
M,b(t —u)

0

+—' du ln M,b(t u) M,b(t ——u),
5 2P

(5.24d)

t

Now, using Eqs. (5.13), (5.14), and (5.22), we can com-
pute the 4PN-hereditary terms in the quadratic external
metric g'"'p. We can express the result as

ext i fully hereditary —10& hereditary, hereditary }goO I

sy), = —4Mx, f du ln
" ' 'M„.(t —u), (5.24e)

T

inc+~
c

(5.23a)

ext
~

fully hereditary —9 hereditary inc
goi 9g 201 10c

, (5.23b)

ext
~

fully hereditary
C

—S hereditary Oo '"'
. (5.23c}IJ 2IJ 9c

and where the qv's are some instantaneous expressions of
the type of Eq. (5.11}. It remains to include the heredi-

tary contribution to the 4PN level coming from the cu-
bic external metric, i.e,0g"uu' '"'" in Eq. (5.23a). It is

easily checked that this contribution can only come from
the coupling between the hereditary c term in g2J'

[Eq. (5.23c)] and the (instantaneous) c term in g', uu,

namely, 2g', 00
——2goo', which is given by
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i

sgoo' ——2 g (BLr ')ML (t) .
j&0 l

(5.25)
Let us further assume, for the sake of definiteness,

that the system is made of some isentropic perfect fluid
described by the stress-energy tensor

Using Eq. (5.24c) and the expression (3.5) of the source

N2, we find that the equation satisfied by, ~'00 can be

written as

~(ie',~)=~(sn;~;(eÃ })+iok,~ (5.26)

where &0/800 is of the instantaneous type (5.11). From

Eq. (5.26) we deduce that, pg'00 will be the sum of

srj, B,2goo', plus some instantaneous terms, plus some
hereditary solution of the homogeneous Laplace equa-
tion. Using dimensional analysis, we find that this latter
solution of the Laplace equation must be of the type
Bt r ' (and not of the type xL ) with l & 1. Hence we can
write

T" =[pc +pII(p)+p(p)]u "u "+p(p)g"" . (6.1)

We use the following notation. u" denotes the four-
velocity of the fluid (g„„u"u"=—1), while p, II, and p
denote, respectively, the proper rest-mass density, proper
specific internal energy density and proper pressure
[e=pc (1+II/c ) would then be the proper energy den-

sity]. The previous variables, u "(x'),p(x'), . . . , are all
expressed in some "inner" coordinate system x'" which
is a priori different from the exterior coordinate system
x". These variables are linked by the thermodynamic
relation p =p dll/dp and they must satisfy both the lo-
cal energy-momentum conservation law

(6.2)

iog;~ =s'il ~ (2goo')

( —)'
+2 g, (BLr )Yt (t)+,0 p iO,p

I &1

(5.27)

and the continuity equation

(pu").„=0 . (6.3)

ipgpp = — x,b dv» M,b(t —v)erat ~M

0

+ g it
(Bt r )Yt. (t)+28, (9rjp)

2( —)'

I &1

+sn;~ (2gÃ)+ ioq'a) (5.28a)

for some hereditary tensorial functions Y~(t) and some
instantaneous, oy 00 of the type of Eq (5..11). As ex-

pressed by Eqs. (5.23) we must add up Eqs. (5.24) and
(5.27) to get the complete 4PN hereditary component in

the near-zone-expanded external metric. In other words,
using the notation (5.11) we can write

We shall use as minimal set of physical variables describ-

ing our system ("source variables" ) the proper rest-mass

density p, and the coordinate three-velocity

u' dx"
U =C u' (6.4)

associated with the coordinate time t'=x' /c. In the
following we shall indifferently write the "Cartesian"
three-index of v' up or down. The "inner" metric gen-
erated by the system in D; is a functional of the source
variables p and U;. It is also a function of the inner
coordinates x'" and a function of c (and G). We assume
(see Sec. II) that, by means of some post-Newtonian
iteration scheme to be discussed later, the inner metric
can be written as the formal expansion

9goi ~t(8 li }+~i(990}+9qoi

sgij ~i(8 lj }+~j(8}'}+89'j

(5.28b)

(5.28c)

g„'"„(x',c)=f„„+g g„'",(x')(inc)»

p, q C
(6.5)

Let us recall that up to now the concepts of "simultane-
ous" versus "hereditary" were characterizing a function-
al dependence on the algorithmic multipole moments A, ,
Eq. (3.1). We need now to find the functional relation-
ship between AL and the structure and evolution of the
source. This will allow us to extract some physical
significance which is, for the moment, only implicitly
contained in the main results of this section Eqs. (5.10)
and (5.28). We turn to this task in the next section.

VI. MATCHING TO THE SOURCE

Let us consider a material system located within the
region r &r0. Following Sec. II, we assume that this
system is weakly self gravitating and slowly moving
Thus there exists an overlap region between the "exteri-
or" domain D, =

I (x, t)
~
r & rp] around the system, and

an "inner" domain D;=I(x, t)
~
r &itroI with a&1. The

overlap region D,. AD, will be sometimes referred to as
the matching region.

(for p, qGN with p &2), where each g„'",(x') is a func-
tional of the source variables p, U;, and where, in turn, p
and U; satisfy some corresponding post-Newtonian equa-
tions of evolution obtained by inserting (6.5) into (6.2}
and (6.3). We know already, from paper I, that the
external metric also admits an expansion of the type (6.5)
[see, e.g., Eq. (5.2) above and the proof of Eq. (5.3)].
However, the coefficients of the latter expansion are not
given as functionals of p and v; but as functionals of the
algorithmic multipole moments. It is then natural to as-
sume that the algorithmic moments admit expansions of
the type

Mt (t)= g IL(t),(inc)»

p, q
C

SL(t}=g JL(t),(inc)»

(6.6a)

(6.6b)

for p, qHW, where the coefficients pqII and ~qJL are
functionals of p and v', the functions y~p( y), v'( y}
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being the ones corresponding to the inner coordinate
system x'". Inserting the expansions (6.6) into the ex-
pansion (5.2) of the external metric [with the previously
investigated tails, see the proof of Eq. (5.3)], and per-
forming the near-zone reexpansion, we get, in D, AD„
an expansion of the type

(inc)~x' (x,c)=x +g, x' (x),
pq

where each ~~x' (x) is a functional of p and U'. From
Eq. (6.8) we get for the external metric (6.7) in the new
coordinates (6.8) again an expression of the type

(6.8)

inc 7

pq c
(6.9)

where each g „"„"'(x')is a functional of the source vari-
ables. Now the "matching" between the "outer" and
"inner" metrics (6.9) and (6.5) gives us an infinite set of
equations:

V(p, q): g „"„"'(x')= g„'" (x') . (6.10)

As we shall see in the following, the matching condi-
tions" (6.10) are doubly useful. On the one hand, they
will allow us to define and implement an "inner" post-
Newtonian scheme yielding an expansion of the form
(6.5) where all the coefficients are functionals of the
source variables. On the other hand, they will also
determine the explicit functional relationship between
the algorithmic moments and the source variables. Tak-

I

g „'",'(x, c)=f„,+ g p qg „'",'(x),(inc)~
(6.7)

pq c

where now each g „'"„'(x) is some functional of p and U;

(to remind us of this new functional dependence we have

added a caret on g'"'). By our assumption, both the
inner metric and the external metric are valid in the
overlap region D; AD„' therefore, these metrics must be

isometric in this region. Hence there must exist a coor-
dinate transformation, going from the external harmonic
coordinates x which have been used so far (in Secs.
III—V) to the inner coordinates (x' ), such that the coor-
dinate transform of the asymptotic reexpansion (6.7) of
the external metric coincides with the asymptotic expan-
sion (6.5) of the inner metric. (Note that the coordinatesx" need not be well behaved outside D;.) This require-
ment is our variant of the "matching" of the initial

asymptotic expansions (2.3) and (2.5). We assume for
consistency that the coordinates x' are related (in

D; AD, ) to the coordinates x by some expansions along

the same (inc)~/c~, namely,

+, sq +, (9n+9q )+o 1 o o

c C1; 1; 1; 1+ 22% + 44f + 55% + 66f
C C c c

(6.11a)

+,7q'+, (sn'+sq')+ (6.11b)
c c

where, following the notation of Sec. V [Eq. (5.11)], the
y's denote instantaneous functionals of the algorithmic
moments, and where 9g and Sg' are given by the explicit
hereditary expressions (5.24d) and (5.24e). Our assump-
tion (6.11) will be (partially) justified later when we show
that it leads to a consistent matching. Furthermore, let
us choose, in Eqs. (6.11),

6g) = —,x,b M,—b(t),0 1 (4) (6.12a)

lp'= x, ' 'M„(t) .— (6.12b)

The latter choice is made here for convenience to trans-
form the external (harmonic) coordinates into Burke-
type inner coordinates [see, e.g., Eqs. (9) of Ref. 58].
The coordinate transformation (6.11) has the effect of
canceling all terms involving the g's in the 4PN-
hereditary components of the external metric [Eqs.
(5.28)]. Then all 4PN-hereditary terms in the
transformed external metric g„"„"' are now contained in
the 00 component of the metric goo"'. Bringing together
Eqs. (5.10}, (5.25}, and (5.28) we find the following ex-
pression for gQQ"' (which is not yet g QQ"' because it is still

expressed in terms of the algorithmic moments):

en together, these two results mean that we have a com-
plete solution of our problem: we end up knowing the
metric everywhere, inside and outside the source, as a
functional of the source variables. However, a word of
caution is necessary. We shall not prove here the con-
sistency of our approach to all orders in c ~(inc), but
rather assume it. Indeed, we shall use only the minimal
number of "matching conditions, " allowing us to answer
the question addressed in this paper. We leave to future
work a more complete study of the consistency of the
form of matching used here.

Let us now investigate what is the lowest-order piece
in the "inner" metric, which is a hereditary functional of
the source variables. We need first to transform the
external metric (as determined in Sec. V) into coordi-
nates x' which permit a direct matching with an
"inner"' metric. Let us assume beforehand that this
coordinate transformation [given in general form by
(6.8)] is of the following type:

.o o 1 o 1 o 1 o 1 o=+ + 33''+ sH'+ 66%'+
c c C C

1 2( —)' 1 1 1g""' = —1+ g &,
(l}L,r ')ML(t) + gQQ+ &qlQQ+ 7lpQQ

C 1&0 c c C

1 1+ sy~+ [2r 'rn (t) —2(B;r ')m, (t)+9lpQQ]
c C

1+ 10

SM ~ U
I

x,b I dv ln M,b(t —U)+ g, (dL r ) YL (t)+,QlpQQ

2( —)
(6.13)
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(Bt r )Ht (t),2( —)'

l&1
(6.14)

where the functions HL (t) are quadratically nonlinear in-

stantaneous functionals of the algorithmic moments.
We now consider the inner metric g„'"„, which must

satisfy the inhomogeneous Einstein equations with T„,
Eq. (6.1), as source. Let us first see in detail how the use
of the matching equations (6.10) works at the lowest
post-Newtonian order (i.e., p =2 and q =0; of course the
inc's will turn out to be absent at the c level). The
coefficient of (inc) c in gL namely, i ogL satisfies, in

D;, the Poisson equation

where the qr's have the instantaneous structure (5.11).
Note that for simplicity's sake, we henceforth suppress
all "primes" on the new coordinate system x', thinking
of x', t as dummy variables. With our choice (6.12), 797QQ,

namely, the first "odd" term in the external metric, has
(as shown in Ref. 58) the expression

7lpoo x b M b (t}(5)

It (t) = f d'yyL p(y, t),

JL, (t}=f d'y e.b&; ~t, —i}y.vbp(y, t}

(6.19a)

(6.19b)

2, ogoo = g i
(BLr )QQIL(t) .2( )I

(6.20)

Then the matching equation

2, {[g00 2,(g 00 (6.21)

gives us two pieces of information. First, that each func-
tion 2QAL(t} must be zero, so that we now know that,
all over D;,

[where we recall that the function (y, t) +p—(y, t)
one corresponding to the inner coordinate system x'"].
Now the coefficient of (inc) c in the near-zone-
expanded external metric (6.13), after replacement of the
algorithmic moments by their source expansions (6.6),
reads

b(2ogoo)= —87rP . (6.15) , ogoo(x, t)=2U(x, t), (6.22a)

(Henceforth we shall often use units such that G =1.)
The most general solution of Eq (6.15. ) in D, is equal to
the Poisson integral of the "source" —8' plus some
regular solution of the Laplace equation. This means
that there exists a set of STF tensors z QAt (t) such that,
in D,-,

(6.17)

2pgoo(x, t)=2 ' + g xL [2QAt (t)] . (6.16)
d yp(y t}

In particular, the latter expression is valid in the match-

ing region D;AD, outside the source where we can use

the expansion (I x
I

& I y I
)

( —)'
(BLr )

where

U[p](x, t)= f lx —yl
(6.22b)

denotes the Newtonian potential of p. Second, that the
lowest-order expansion coefficient of Mt in Eq. (6.6a)
must be equal to the corresponding usual Newtonian
mass multipole moment of p, (6.19a), namely,

QQIL(t)=It (t) . (6.23a)

Similarly the matching of 30g0; shows that the leading
term in the expansion of the current algorithmic mo-
ment SL [Eq. (6.6b)) is the usual current multipole mo-
ment of the density p, namely,

Hence we get, in D; AD„ p QJt (t)=JL(t) . (6.23b)

(Qt r )IL (t)+Xt [2 QAL, (t)]2( —) 1

I&o

(6.18)

where we denote by It (t) the usual "mass" multipole
moment of the distribution of the density p. The "mass"
and "current" multipole moments of p are, respectively,
given by

The matching also shows that the logarithms are absent
at the c level so that 2 goo=0 and o It (t)
=o Jt (t) =0 when q & 1. In the same way, in the case

p =3 and q arbitrary, we get also 3 q g 00 0 and

, qIL(t)=i qJL(t)=0.
Let us now consider the coefficient of (inc) c in the

inner metric g00, namely, 40g00. This 40g00 must satisfy
in D, (using harmonic . inner coordinates) the Poisson
equation

b, ( og'" +2U ) =28, U[p] —16 + U[p]+ ' + (6.24)
L

(v denoting 5; v;v. ). The general solution of this equation in D; is given by a particular one plus a general regu1ar
harmonic function. Hence

in 2 2 dy 2 n 3P
3

4ogoo ——B,X—2U +4 p v +-U+ —+
Ix yl 2 2p

(y t)+ g xL4 QAt (t)
1&0

(6.25)
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where we have set

X(x,t)= J d y p(y, t}
l
x —y l

Outside the source (in the matching region D, AD, ), 4 ogoo can be expanded as

(6.26)

4,og@= g g 4r "4,oPt. (t)+xL 4,oAt. (t» (6.27)

1&0 Ic

where the functions 4 oFL(t) are some instantaneous functionals of p and U; [hence the caret to distinguish from Eq.
(5.11) where the instantaneous functional dependence referred to the algorithmic moments]. On the other hand, the

coefficient of (inc) c in the external metric, namely, ~ogoo"' (expanded in the same region D; AD, ) can be found by

inserting into (6.13) the expansions (6.6) of the Mt 's and St 's (with the now known values of o «IL, o «JL, and, «IL,

, «Jt ). The result is 4 oooo [by which we mean the 4 oooo of Eq. (6.13) evaluated with IL, Jt instead of ML, St, so that

4ogoo is instantaneous with respect to the source variables] plus a contribution coming from the (inc) c correction

2 oIL in the algorithmic moment Mt .

(6.28}

We must then equate [by the matching conditions (6.10)] the RHS of (6.28) with the RHS of (6.27). Note that the
only terins in (6.27) and (6.28) which may have, a priori, a hereditary character are the two homogeneous Laplace
solutions (of the type xt in the inner metric and dt r in the external metric) involving the unknown quantities

4 oAL (t) and z oIL(t). However, the following happens: these two types of Laplace solution do not "match" together.

Therefore, each of them must necessarily match some other terms, namely xt 4oAt(t) must match some term in

4 oooo, while (t}t r ')z oIL (t) must rnatch some Rtr ' ''4 oPt (t). This proves, therefore, that the unknown quantities

4oAt (t) and 2 oIt (t) are in fact instantaneous functionals of p and u;, and thus that the internal metric coefficient

4 0g 0'0 is itself an instantaneous functional of p and U;. A closer study shows that each 4 pAL is zero; hence we recov-

er, in D;, the known result

~'" =t),X—2U +4 J "
p v +U+ —+d II 3

yl 2 2p
(y, t) (6.29}

7 ogoo(x, t) = —2x,b~ 'I,b(t)— (6.30)

(and 7 «gt7o ——0 if q ) 1), while the quantity Ht appearing
in Eq. (6.14) yields ~ oIL (t)= QL (t), where the —caret
over HL means that we have replaced in the expression
of HL the algorithmic moments ML, SL by the Newtoni-

(and 4«goo
——0 for q) 1). Similarly one finds that the

other 1PN metric coefficients (i.e., 3 «go"; and 2 «g;J") are
instantaneous.

Now the OPN and 1PN instantaneous inner metric
coefficients generate some instantaneous source for the
next 2PN approximation (6goo, 5go";, «g,'J") and since the
external metric (6.13) is, at the 2PN level, an instantane-
ous functional of the ML 's and SL 's, we 6nd, repeating
exactly the same reasoning, that the 2PN approximation
is still an instantaneous functional of p and v;. [Note
that the reasoning assumes that one can construct some
particular instantaneous solution, similar to (6.29), of the
Poisson equation with an instantaneous source, see Refs.
29—38, and that we can expand this solution outside the
source and consistently match it to g ""'.] Similarly, by
the same reasoning, one Ands that the 2—,'PN, 3PN, and

3—,'PN approximations (see below for the latter approxi-
mation) are again given by some instantaneous function-
als of the source variables. For instance, at the 2—,'PN
approximation, with the help of Eq. (6.14) we find that

7 ~00 is given by the usual Burke-Thorne expression

, p(t) = m(t)+, P(t—), (6.31a)

(6.3 lb), oI, (t)= m, (t)+,P, .(t), —

where 7P(t) and 7F, (t) are some so. urce-instantaneous
functionals and the caret over m and m; means that they
Must be computed in terms of IL, JL, instead of ML, SL .
The same happens for the hereditary functions I'L (t) ap-

pearing in the c ' coe5cient of the external metric
[4PN level, see Eq. (6.13}]: these functions must be

counterbalanced by c contributions in the functional
relationships Mt ——Mt [source], Eq. (6.6a), namely,

g (inc}«s «IL (t}=—ft (t)+sPL (t, inc),
e

(6.32)

an source moments IL, JL. In fact, in the case of the
3—,PN approximation, the previous reasoning is slightly

more complicated due to the presence in the external
metric of the semihereditary terms involving the func-
tions m (t) and m,.(t) [see Eq. (6.13)]. Indeed, we must

notice that, since these terms have a form dLr ' which

cannot match terms of the type xL in the inner metric

(which are the only terms that could be semihereditary

with respect to the source variables), they must be

counterbalanced by contributions at the level c in the

expansions (6.6a} of the algorithmic mass M and mass

dipole M; as functionals of the source variables. Name-

ly, we must have
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for some source-instantaneous functional sFL (t, inc).
(This quantity could depend on inc, see below and the
Appendix. )

However the situation changes at the 4PN level be-
cause of the algorithmic-hereditary term of the type x,b

in the c ' coefficient of the external metric [see Eq.
(6.13)]. Indeed this term cannot be absorbed in a c
correction in ML [source], but must match some

I

x,b ip 0A,b(t) in the inner metric. Therefore, we see that,
at the 4PN approximation level, the inner metric gets a
source-hereditary contribution. Gathering all the infor-
mation gained, we end up with the central result of this
paper, namely, the following metric (valid all over D, ),
with the dominant source-hereditary contribution
("tail" ) explicitly appearing in the coefficient of c

g'"(x, t)= —1+ 2 f "p"' +, a2X —2U'+4 f "
p v'+U+ —+

lx yl c' ' lx yl 2 2p

+ b 6@00+ 7 [—5xnb Ieb(t)]+ 8 8400+ 9 9400
C C C C

I

+, ', x,bI(t—) f— du ln ' 'I,b(t u)+—tpCtpp +
C 0

(6.33)

In Eq. (6.33) the „400's denote some instantaneous functionals of p and u; similar to, albeit more complex than, the
coefficients ofc,c, or c

Besides the inner metric (6.33), we also obtain the following relations between the mass algorithmic moments and
the source variables. For l =0 and l = 1 we have [see Eqs. (6.31)]

M =I(t)+ 2F(t)+ 4F(t)+ bF(t, inc)+ [—m (t)+7F(t)]+
C C C C

(6.34a)

M~ I; (t}+ ——2P; (t}+ 4F; (t)+ 5P; (t)+ b bF;(t, inc)+ [ m; (t)+—7F; (t)]+
C

and, for l )2 [see Eq. (6.32)],

1 1 1
Mt It (t)+

2
——2Ft (t)+ 44FL(t)+ ~ 5FL(t)+ b bPL (t, inc)+

7 yFt (t)+
&

[ —$'L (t)+sFt (t, inc)]+
C C C C C C

(6.34b)

(6.35}

Q(t) =I(t)+,P(t)+,F(t)
C C

+ b bF(t, inc)+ 7F(t)
C C

(6.36)

(which is linked to the instantaneous state of the system)
plus a (positive) "radiation mass" which has been "car-
ried off" by the gravitational radiation field at all past
epochs. Using Eq. (5.12} we find that the rate of de-
crease of Q(t) is given by

7' 'I,b(t)' 'I,b(t)+O(c ) .
dt 5C7

(6.37)

where all P's are source instantaneous (as well as, of
course, It). (There are similar relations for SL whose
lowest-order term is Jt.) From these equations we see
that the dominant noninstantaneous contribution to the
algorithmic moments (when expressed in terms of the
source variables) arises at the level c in M and M, and
at the level c in Mz (l )2). Notice that we may inter-
pret Eq. (6.34a) as the decomposition of the (constant by
definition) initial mass (which is also the total mass seen
at spatial infinity or ADM mass) into the sum of a time-
dependent "source mass"

Equation (6.37) constitutes a well-defined "quadrupole
equation of the second kind" in the terminology of Ref.
17.

The appearance in the inner metric, Eq. (6.33}, of the

hereditary (or "tail") term

in )hereditary XnX by(t)g00

r

u ln
' "'r.

b t —u
0 2I'

(6.38)

signals a breakdown of the post-Newtonian tenets at the
4PN level. This can also be viewed as a breakdown of
the concept of near zone (see the discussion in Sec. I).

Associated with the hereditary term (6.38), there must
exist an instantaneous term in tp+00 involving the loga-
rithm of cP (this is found necessary when considering
that an instantaneous term must be constructed as some
spatial integral, and requiring that the sum
$g""' '"'&++ does not depend on the arbitrary time
scale P}. Hence we find that the lowest-order term, in
the inner metric, violating the standard post-Newtonian
power-series assumption is
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(5gin)inc a bI(t)(6}I (t)8 inc
00 5 )0

C
ab (6.39)

VII. INFLUENCE OF THE HEREDITARY TERM
ON THE INTERNAL DYNAMICS

Let us recall that, in a suitable coordinate system
[such as the one of Eq. (6.33)] the lowest-order term in
the inner metric which violates time-reversal invariance
1s

This result confirms the corresponding result of Ander-
son et al. [their Eq. (5.16)]. These authors also found
some inc, at the 3PN level, but in the external metric.
We recover this result in the Appendix and show that
these logarithms appear [at order (inc)c ] in the rela-
tionships (6.34)—(6.35) between the algorithmic moments
and the source variables [as already indicated in Eqs.
(6.34)-(6.35)1.

We discuss in the next section the physical conse-
quences of the appearance of the hereditary, or tail, term
(6.38) in the inner metric.

Note that we have obtained (7.7) by integrating five

times the last factor on the RHS of Eq. (6.38). Actually
the quantity that directly appears in the RHS of Eq.
(7.6) is

d'
, 5I,b(t)= 3I f dvln ' 'I,„(t—v). (7.8)

—p+(Pu'}; =0, (7.9)

Let us remark that while the term (7.1), involving the
fifth time derivative of I,b(t), was "time-odd" (i.e., it
changed sign under time reversal), the hereditary ("tail" )

term (7.6) cannot be considered as having a well-defined

parity under time reversal (because the range of integra-
tion in Eq. (7.8) changes during the latter operation).
However, the latter term is certainly not time even, i.e.,
it is "time asymmetric. "

The equations ruling the local evolution of our isen-

tropic perfect-fluid source, as obtained from Eqs. (6.2),
(6.3), and (6.33), can be written as

c 7g00= — VR[I blc2
(7.1)

l

P +univ'i = —p, +pU, +P;"'"+%;, (7.10)

where V„[Q,b] denotes the usual Burke-Thorne"7'4s "ra-
diation reaction potential, " where we have distinguished a time-even (or time-

symmetric) "force density, "

I Vx[Q,b]](x,t)= 5X'x Q,b(t),
1 . bd'

5c' dt'
(7.2)

1 — 1 — 1 — 1
V,'"'"= i2V;+ 9;+ bbP;+

c c c C
(7.11)

considered as a functional of some "quadrupole mo-
ment" Q,b(t) to be inserted in (7.2). The quadrupole
moment, I,b, appearing in (7.1} is the "usual" Newtoni-

an quadrupole moment of the "coordinate-rest-mass den-

sity, "p:

and a non-time-even (or time-asymmetric) one,

R;=A;+R;

5pxj q(I,)+5I;J),2 J. d'
5c' dt'

(7.12a)

(7.12b}

P=—p&gu', (7.3)

which is defined so as to have a constant zeroth-order
moment,

7P;+O(1/c ) .
C

(7.12c)

I= f d x p=total rest mass=const.

Explicitly, the quadrupole moment of p reads

I,b(t)= f d xp(x, t)(x'x"—
—,'x 5').

(7.4)

(7.5)

Note that, up to now, we have used as source multipole
moments the moments of the proper rest-mass density p,
see Eqs. (6.19). However, for the following discussion it
will be more convenient to take as "source variables" p
and v' instead of p and v'. This modifies, for instance,
the explicit expression of the c term in Eq. (6.33), but
leaves invariant the functional structure of Eq. (6.33).

With this new notation the lowest-order hereditary, or
tail, term in the inner metric [see Eq. (6.38)] reads

I b(r) =I b(t)+5I b(r), (7.13)

where 5I,b(t) is the hereditary term (7.7). Let us now

examine the effects that the hereditary-modified "force"
(7.12b) is likely to cause in the actual evolution of the
source.

First of all, we shall admit that the truncated equa-
tions of motion

Eqs. (7.11) and (7.12) the quantities „9;denote some

instantaneous functionals of our new source variables, p
and u'. In the terminology of Ref. 17 (Secs. 4.2 and

4.15) Eq. (7.12b) constitutes a well-defined "quadrupole
equation of the third kind, " or "radiation reaction quad-
rupole equation" in which the "radiation reaction"
quadrupole moment is given by

in ~hereditary V [5I ]
2

c
(7.6) —p+(Pu'); =0,a- (7.14a)

where

(7.7)5I,b(t)= I f+™duln ' 'I,b(t u). —
3 0 2P

Bv;
p +ujv, j = —p, +pU;+7;."'", (7.14b)

which are, at once, source instantaneous and time sym-
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E[p(t), , (r)]= f d' p
—'+II ——
2 2

1 — 1 — 1 — 1+ 22E+ 44E+ 66E+ 88E
C C C C

(7.15)

Now, in considering R; as a "perturbation" superim-

posed on the conservative system (7.14), we can neglect
its square, which is O(c '

), while A; is defined only up
to O(c ). Therefore, we can add up linearly the effects
caused by the various terms making up R;. We leave a
study of the effects associated with %,", Eq. (7.12c), to
future work. Hence we shall consider only the heredity-
modified "quadrupole radiation reaction force" A,', Eq.
(7.12b).

The method of variation of constants shows that the
effect of adding up A,' to the time-symmetric evolution

(7.14) is to cause a slow change of E(t) given, to first or-
der in A,', by

(7.16)

Hence

d'
f d x pu'x J (I,J. +5I;J )

dt 5c5 dt5

d — d'—
(I,,),(I,,—+5I,, ) .

5c' « " dt'
(7.17)

Operating twice by parts on the time derivatives we can
rewrite (7.17) as

dE
dt

—I I — I I

1 d d I d'5I d d
Sc dt dt dt

'
dt

'
dt

1 (I b+ ~5I b)5c' dt'
(7.18)

Let us now set

metric, form a fully conservative system of equations of
motion (we are here following the discussion of "radia-

tion damping" of Refs. 17 and 38). This assumption im-

plies, in particular, that there exists a source-
instantaneous first integral of (7.14) of the type

1 d — d — d — dE =E+ )
—I,I, 4I,q

— 2I,~ 3 I,I,
5c dt dt dt dt

I,—b 5I,b
— I,b 5I,b . (7.19)

5c' «dr' d&' d&'

Note that E is not an instantaneous functional of the

source variables because the last set of parentheses in

(7.19} depends, via 5I, on all the past evolution of the

source. However, we shall see below that, with an accu-

racy much better than the formal c order of magni-

tude of this term, it depends only on the recent past evo-

lution of the source. Furthermore, we can insert in this

last term, with the required accuracy, the recent-past

evolution of the time-symmetric system (7.14). We shall

further admit that we can reexpress, with the required

accuracy, the quantity E as a time-symmetric functional,
E'"'", of the recent evolution of the source, i.e., as a

functional both of the recent-past evolution and recent-

future evolution of the source [the time symmetry of the

evolution of the system (7.14) makes this probable;

without, however, proving it as time-symmetric equa-

tions can admit time-asymmetric solutions, see also the

discussion in Sec. 4.15 of Ref. 17]. From (7.18), we see

that E '"'" slowly but monotonically decreases at the rate

2

dg @Yell
1 d 3

(I,b + ,'5I,b )—, (7.20)
Sc5 dt

thereby clearly displaying the irreversible nature of the
effects caused by %,'. In the terminology of Ref. 17, Eq.
(7.20) constitutes a well-defined "quadrupole equation of
the second kind" or "energy-loss quadrupole equation. "
We can therefore interpret R,' [Eq. (7.12b}] as a tail-
modified quadrupole damping force. Finally, note that
the "effective" quadrupole moment appearing in (7.20) is

I,"b(t)=I,b(t)+ ,'5I,b(t), — (7.21)

which differs through the factor —,
' in its second term

from the quadrupole moment (7.13} appearing in the
damping force (7.12b).

Intuitively we may regard the past-dependent (tail)
contribution to the radiation damping force as follows.
The outgoing waves emitted by the system at all times in

the past scatter off the curvature of spacetime generated
by the system itself. This produces incoming secondary
waves which converge back on the system, and which
act on its present dynamics.

Let us now estimate, in a quantitative way, how sensi-
tive is the hereditary term (7.6) to the remote past behav-
ior of the system. To do this, let us first split the in-

tegral (7.8) into an integral between 0 and P plus an in-

tegral between P and + oo, and let us integrate the latter
integral five times by parts. The result is

d'
dt c

5I „(r) ln2 I b(r P}+ ''I b(r P) '—'I,b(r P)+ —
3

' 'I,b(t P—} 4' 'I,b(~ P—)— —

dv ln ' 'I,~ t —v +24
0 2P P

' 'I,b(t —u)
U

(7.22a)
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d'
oI,b(t) = 24FPs 0 f dv

dt c (2P)
'"I,(t —v) ——'„""I„(t)

Note that a simpler, though less explicit, form of Eq. (7.22a) is
B —5

(7.22b)

Vv)0, i' 'I,b(t —v)
i
(k i' 'I,b(t)

i
(7.24)

Note that we impose no condition of boundedness (in the
mathematical sense) for '"I,

b or I,b. For instance, our
system could be gravitationally bound now, and still
have been formed by the capture of free incoming ob-
jects Then .in the very remote past I,b(t) would blow up
like t, while ' 'I,b(t) will still satisfy (7.24) (if the incom-
ing velocities in the past were not much larger than the
present orbital ones).

From Eq. (7.22a) and our assumption (7.24) we find
that the quantitative influence on ' '(»,b) of the history
of the system before some time t' & t ("remote past") is
smaller, in absolute magnitude, than

(t —t')' c'

(7.25a}

The fact that the very early times enter the formulas
(7.22) only through the integral

' 'I,b(r}f (7.23)
(t —r)

indicates that (d/dt) 5I,b is probably only weakly sensi-
tive to the remote-past history of the system [a fact
which was not apparent in Eq. (7.8} where one had a log-
arithmically increasing kernel ln(t —r)]. To be more
precise we must now make some assumption about the
behavior of the syste~ in the past. Up to now we as-
sumed that the system had been stationary when t & —T.
This is not a very realistic assumption, so let us first ad-
mit that our results still hold in the limit —T~ —00,
i.e., for a system that has always been nonstationary.
We shall now impose some conditions of "moderation"
of the gravitational wave emission during the entire past.
This is in order to preclude, for instance, the emission of
an extremely strong burst of gravitational radiation
around some very remote epoch which could make an
appreciable contribution to the integral (7.23). As it is
the second time derivative of I,b that gives the order of
magnitude of the transverse-traceless metric form of the
gravitational wave emission, we shall assume that there
exists a numerical constant, k, of order unity, such that

the fact that, if the system has never been much more
"active" than now, the remote past contributes only very
little to the present damping. For instance, let us con-
sider the binary pulsar system PSR 1913+ 16 (assuming
that our results are applicable to this system, although it
contains regions with strong gravitational fields). Then
the characteristic time scale P is (orbital period)/2vr =74
minutes, while we can take as remote past the span of
time extending before the discovery of the binary pul-
sar, say, before September 1974, i.e.,
(t t')/P—=9.2&(10 . We then find (using m =2.8 solar
masses) that the RHS of (7.25b) is 3.7k10, so that we
do not expect the remote past to affect the present secu-
lar acceleration of the mean orbital motion of the binary
pulsar before the 27th digit.

Therefore, the main hereditary influence will come
from the "recent past" contribution, 0&v &t —t', or
0&v &NP, where N is such that we can confidently
neglect N (Gm /c P). Further assuming that the sys-
tern has been, during the recent past, more or less in the
same dynamic state as now, we can make a crude quanti-
tative estimate of this recent-past contribution. Using
Eq. (7.22a) we find

~

[(5)gI (t)]recent past
~

I (t)
~

c'P (7.26)

where P and y are defined in Sec. II. [The RHS of Eq.
(7.26) is =3 X 10 in the binary pulsar case.]

In conclusion, the effect of heredity, although very
small in absolute magnitude [O(c ) in the equations of
motion, i.e., 4PN level], is a rather large relative
modification of the quadrupole radiation damping
[O(c ), i.e., 1 —,'PN relative level]. As damping forces
can often be accurately measured through their secular
effects even when their absolute magnitude is very small,
the effect of heredity might be important for some gravi-
tationally interacting systems. This might be the case
during the late stage of inspiralling neutron star binaries.
However, the treatment of such cases will necessitate a
generalization of our method to systems containing some
strong field regions. We however expect that our final
result will remain unchanged (via some "effacement" of
the strong field effects).

Relatively to the lowest-order damping, the remote past
history brings a modification

P Gm

c P
(7.25b)

where we used m =I (characteristic mass),
~

d "I/
dt"

~

—
~

I
~

/P" (P referring to the characteristic time
scale or principal period divided by 2n.) and where we
have put back G. The RHS of Eq. (7.25b) clearly shows
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APPENDIX: LOGARITHMS OF c AT 3PN
IN THE EXTERNAL METRIC

Anderson et al. have pointed out the appearance of
a logarithm of c at the 3PN approximation in the exter-
nal metric. %e wish here to confirm and generalize
their result. After matching, these logarithms enter the
relations (6.34) and (6.35) between the algorithmic mo-
ments and the source variables.

%e can easily see these logarithms by inspecting Eq.
(5.2). Indeed from this equation we see that at the cubic
iteration (n =3) logarithms can appear in the (post-
Minkowskian) "instantaneous" terms of h&~. Let us

denote by A ~ the coefficient of ln(r/cP) in these
(algorithmic-)instantaneous terms. Then we easily find

that A ~ [if larger than the tail -O(inc/c' )] must be a
homogeneous solution of the d'Alembert equation. Then
we can always write

Then if we perform on the external metric the coordi-
nate transformation

x =x — o In(r/cP),rp 0 1 p

C
(A3a)

x"=x'— o'ln(r/cP)c' (A3b)

)& [ln(r/cP)BL (t)+(Inc)6, IL (t))+ sp oo

[see Eqs. (6.11)] the only remaining logarithms will ap-
pear in the 00 component of the transformed c
external metric, which will be given [after having insert-
ed the source expansions (6.6) of the algorithmic mo-
ments] by

g c'+'dL [r 'GL'~(t r /c)], —1

C
~ 2 3 I&p

(Al)

from which we deduce (using 1, +12+13—1 & —S, where

S is the number of spatial indices among aP) that
A'~=O(1/c ) and thus that logarithms can indeed
arise at the 3PN approximation in the near-zone re-

expanded external metric. A closer study of A ~ (using

the "logarithm-free" stationary metric of the Appendix
C of paper I) shows that, in fact, A is of the order
O(c ), A ' is O(c ), and A' is O(c ). Let us

denote by 8A, 7A ', and SA' the coefficients of cc, and c in the A ~'s. These coefficients are some
harmonic functions of the type BL r '. lt is now

straightforward to show that there must exist a vector
cr (itself a harmonic function) and some (algorithmic-
instantaneous) tensors HI (t) such that

,A ~= —a, o'+B,o'

6 iIL(t) =PL (t) . (A5)

Therefore, we find that these logarithms of c, which were
originally present in the c coefficient of the PN-re-
expanded MPM external metric, do not explicitly appear
in the inner metric, but arise, at the c level, in Eqs.
(6.34)-(6.35) relating the algorithmic moments to the
source variables.

The functions Hi (t) are some complicated sums of cu-
bic products of the derivatives of the ML 's and SL 's. In
the case of the interaction (mass monopole M))&(mass
monopole M) X [mass multipole Mz (t)] we have found
that HL (t) is given by

151 +301 +281 +131+24
1(1+1)(21+3)(21 + 1)(21—1)

(A4)

where Sp pp is some "logarithm-free" source-
instantaneous quantity. Now, through matching, we
shall have

(A2a) XM'"'M~(r) . (A6)

(A2b)

(A2c)

We then recover, in the quadrupole case (1=2), the
value H; = —',~4M ' 'M, (t) obtained by Anderson

et al. [see their Eq. (Al 1)].

Y. Foures-Bruhat, Acta Math. 88, 141 (1952); Y. Bruhat, in

Gravitation: An Introduction to Current Research, edited by

L. Witten (Wiley, New York, 1962), p. 130—168.
~Y. Bruhat, Ann. Mat. Pura Appl. 64, 191 (1964).
See F. G. Friedlander, The Wave Equation on a Curved

Space-time (Cambridge University Press, Cambridge, Eng-

land, 1975), and references therein.
4P. C. Waylen, Proc. R. Soc. London A362, 233 (1978), and

references therein.
5Y. Choquet-Bruhat, D. Christodoulou, and M. Francaviglia,

Ann. Inst. Henri Poincare A 31, 399 (1979).
See J. Carminati and R. G. McLenaghan, Ann. Inst. Henri

Poincare (Physique Theorique) A 44, 115 (1986), and refer-

ences therein on the "Huygens principle. "

7B. Bertotti and J. Plebanski, Ann. Phys. (N.Y.) 11, 169 (1960).

K. S. Thorne and S. J. Kovacs, Astrophys. J. 200, 245 (1975).

L. Bel, T. Damour, N. Deruelle, J. Iba5ez, and J. Martin,

Gen. Relativ. Gravit. 13, 963 (1981).
See K. Westpfahl, Fortschr. Phys. 33, 417 (1985).

' W. B. Bonnor, Philos. Trans. R. Soc. London A251, 233
(1959); W. B. Bonnor and M. A. Rotenberg, Proc. R. Soc.
London A289, 247 (1966).
A. J. Hunter and M. A. Rotenberg, J. Phys. A 2, 34 (1969).

~ W. B. Bonnor, in Ondes et radiations gravitationnelles

(CNRS, Paris, 1974), p. 73.
' W. E. Couch, R. J. Torrence, A. I. Janis, and E. T. Newman,

J. Math. Phys. 9, 484 (1968).
K. S. Thorne, Rev. Mod. Phys. 52, 299 (1980).



1434 LUC BLANCHET AND THIBAULT DAMOUR 37

' L. Blanchet and T. Damour, Philos. Trans. R. Soc. London

A320, 379 (1986) (referred to in the text as paper I).
T. Damour, in Gravitation in Astrophysics, {Cargese, 1986),

edited by B. Carter and J. Hartle (Plenum, New York, 1987),

pp. 3—62.
W. Kundt and E. T. Newman, J. Math. Phys. 12, 2193
(1968).
P. C. Peters, Phys. Rev. 146, 938 (1966); Phys. Rev. D 1,
1559 (1970).

R. H. Price, Phys. Rev. D 10, 2419 (1972); 10, 2439 (1972).
J. M. Bardeen and W. H. Press, J. Math. Phys. 14, 7 (1973)~

B. G. Schmidt and J. M. Stewart, Proc. R. Soc. London
A367, 503 (1979).
J. Porrill and J. M. Stewart, Proc. R. Soc. London A376, 451
(1981).

24B. Linet, Ann. Inst. Henri Poincare A 25, 79 (1976).
2sT. Damour, in Proceedings of the Fourth Marcel Grossmann

Meeting on General Relativity, edited by R. Ruffini (North-

Holland, Amsterdam, 1986), pp. 365-392.
B. S. DeWitt and R. W. Brehme, Ann. Phys. 9, 220 (1960).
C. Morette-DeWitt and B. S. DeWitt, Physics (N.Y.) 1, 3
(1964).
E. Rudolph, Ann. Inst. Henri Poincare A23, 113 (1975).
S. Chandrasekhar, Astrophys. J. 142, 1488 (1965).
S. Chandrasekhar and Y. Nutku, Astrophys. J. 158, 55

(1969).
'S. Chandrasekhar and P. Esposito, Astrophys. J. 160, 153

(1970).
J. L. Anderson and T. C. Decanio, Gen. Relativ. Gravit. 6,
197 (1975).

33J. Ehlers, in Proceedings of the International School of Gen

eral Relativistic sects in Physics and Astrophysics: Experi
ments and Theory, edited by J. Ehlers {Max Planck Institute,
Munich, 1977), p. 45; Ann. N.Y. Acad. Sci. 336, 279 (1980).
G. D. Kerlick, Gen. Relativ. Gravit. 12, 467 (1980); 12, 521

(1980).
A. Caporali, Nuovo Cimento 61B, 181 (1981); 61B, 205
(1981).
T. Futamase and B. F. Schutz, Phys. Rev. D 28, 2363 (1983).
T. Futamase, Phys. Rev. D 28, 2373 (1983).

3sSee T. Damour, in 300 Years of Gravitation, edited by S. W.
Hawking and W. Israel (Cambridge University Press, Cam-

bridge, England, 1987) for a review of the post-Newtonian
methods (Sec. 6.10), the post-Minskowskian methods (Sec.
6.11), and the matching of asymptotic expansions (Sec. 6.12).
J. Ehlers, in Grundlage-Prob1eme der Modernen Physik, edit-

ed by J. Nitsch et al. (Bibliographical Institute of
Mannheim, 1981), pp. 65-84; in Proceedings of the 7th Inter
national Congress of Logic, Methodology and Philosophy of
Science (North-Holland, Amsterdam, 1984); in Proceedings

of the 11th International Conference on General Relativity
and Gravi tation, Stockholm, 1986, edited by M. A. H.
McCallum (Cambridge University Press, Cambridge, Eng-
land, 1987); J. Ehlers and M. Lottermoser, Max Planck re-

port, 1987 (unpublished).
~In particular, despite the claim made in Ref. 36, the asymp-

totic nature of the post-Newtonian expansion has not yet

been established, see, e.g., the remarks of J. Ehlers and M.
Walker, in Genera1 Relativity, edited by B. Bertotti et al.
(Reidel, Dordrecht, 1984), pp. 125—137.
J. Ehlers, A. Rosenblum, J. N. Goldberg, and P. Havas, As-

trophys. J. 208, L77 (1976).
42J. L. Anderson, R. E. Kates, L. S. Kegeles, and R. G. Ma-

donna, Phys. Rev. D 25, 2038 (1982).

J. L. Anderson, in Isolated Gravitating Systems in General

Relativity, edited by J. Ehlers (North-Holland, Amsterdam,

1979), pp. 289-306.
44J. L. Anderson and L. S. Kegeles, Gen. Relativ. Gravit. 12,

633 (1980).
4~R. A. Breuer and E. Rudolph, Gen. Relativ. Gravit. 14, 181

(1982)~

Our conventions and notation are the following: signature
—+ + +; greek indices=0, 1,2, 3; latin indices= 1,2, 3;
g = d—et(g„„); f tt f e=——flat metric= diag( —1, +1,+1,
+1); %, Z, I, C, are the usual sets of non-negative integers,

integers, real numbers, and complex numbers;
r =(x, +x +x3)'; n'=n; =x;/r; a, =a/ax', n =nL
=n n; n; and BL, ——8 8; 8;, where L, =i&i2 iI

1 2 I 1 2 I

is a multi-index with 1 indices (L —1 denoting i&i2 iI

etc); ttt. and SL are the (symmetric) trace-free parts of nt
and 8L (we freely raise or lower spatial indices by means of
f"=fJ =fil)

47W. L. Burke, J. Math. Phys. 12, 401 (1971).
K. S. Thorne, Astrophys. J. 158, 997 (1969).

49W. G. Dixon, in Proceedings of the Third Gregynog Relativity

Workshop, edited by M. Walker (Max Planck Institute, Mun-

ich, 1979), p. 7.
50We think of these limiting processes in the following manner.

We assume that we are dealing with a family of solutions of
the Einstein equations g(P, y) (where 0&P&Pp, 0&y &yp)
corresponding to a two-parameter family of systems, with,

say, different space, mass, and velocity scales and different

(possibly nongravitational) binding forces, but with the same

overall shape. If we then use some system-adapted units,
such that rp=m =P= 1, we shall have P=c ' and

y =G/c . Therefore, the "formal post-Minkowskian limit"
G~O with c ' fixed, is equivalent to the weak-field limit

y~0 with P fixed; while the "formal post-Newtonian limit"

c '~0 with G fixed, is equivalent to the weak-field-slow-

motion limit (tl, y)~(0, 0) with y —P~.

W. M. Suen, Phys. Rev. D 34, 3617 (1986); X. H. Zhang,
ibid. 34, 991 (1986).
P. A. Lagerstrom, L. N. Howard, and C. S. Liu, Fluid
Mechanics and Singular Perturbations; a Collection of Papers

by Saul Kaplun (Academic, New York, 1967); M. Van Dyke,
Perturbation Methods in Fluid Mechanics (The Parabolic
Press, Stanford, California, 1975) (annotated edition).
L. Blanchet, Proc. R. Soc. London A409, 383 (1987).

s4L. Blanchet, in Proceedings of the Fourth Marcel Grossmann

Meeting on General Relativity, (Ref. 25), pp. 895—903.
By f(e)=O(g(e)) we mean that when e~O there exists a
constant A such that

~ f (e)
~

& A
~
g(e)

~

.
Let us recall that the "n post-Newtonian level" traditionally
refers to the terms in the metric which contribute 1/c "

corrections to the Newtonian equations of motion; this
means the orders 1/c "+ in g, 1/c "+' in go;, and 1/c "

in g;, . We shall here extend this terminology in the presence
of powers of inc by still factorizing the powers of 1/c while

keeping the powers of inc in the coefficients: ~g„„
=g (inc)~r g„„using the notation of Sec. VI.

One can show that the post-Newtonian expansion of this
second term is equal to the formal "time-symmetric" solu-

tion of the wave equation with source

(r/cP) 8'Lr H(t) ——"'H(t)+ ' 'H(t)+(2)

c 2c



37 TAIL-TRANSPORTED TEMPORAL CORRELATIONS IN THE. . . 1435

obtained by means of the Green's function

—c g 'g ) '=g '+c 'g 'g'+

' being defined by Eq. (3.9) of paper I.

L. Blanchet and T. Damour, Phys. Lett. 104A, 82 {1984).
R. A. Hulse and J. H. Taylor, Astrophys. J. Lett. 195, L51
{1975).


