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SUMMARY

We present numerical experiments for geophysics electromagnetic (EM) mod-
eling based upon high-order edge elements and supervised h + p refinement
approaches on massively parallel computers. Our high-order h + p refinement
strategy is based on and extends the PETGEM code. We focus on the perfor-
mance study in terms of accuracy, convergence rate, and computational effort
to solve real-life 3D setups based on synthetic and experimental data for en-
ergy reservoir characterization. These test cases show variable resolution dis-
cretization needs and realistic physical parameters. In general, our numerical
results are consistent theoretically. The use of h−adapted meshes was efficient
to achieve a certain accuracy level in the synthetic EM responses. Regarding
global p−refinement, p = 2 exhibits the best accuracy/performance trade-off.
Selective p-refinement might offer a better compromise between accuracy and
computational cost. However, for p−refinement at different entities, the best
refinement scheme consists of using p = 3 at the volume level with p = 1
at faces and edges. Thus, p−refinement can be competitive if applied hierar-
chically. Nevertheless, we acknowledge that the performance of our supervised
h + p refinement strategy depends on the input model (e.g., conductivity, fre-
quency, domain decomposition strategy, among others). Whatever the chosen
configuration, our numerical results provide an in-depth understanding of EM
modeling’s pros and cons when supervised h+p refinement schemes are applied.

Key words: 3D geophysical electromagnetics, numerical modeling, high-order
edge elements, tailored mesh refinement.

1 INTRODUCTION

Electromagnetic (EM) modeling routines play a key role in studying and interpreting subsurface electric conductivity
distribution. They are widely used in academia and industry because of their capacity to reduce ambiguities in
interpreting geophysical datasets through mapping conductivity variations in the subsurface. As a result, there
are abundant schemes to implement 3D EM forward modeling algorithms (see Avdeev (2005); Börner (2010) for
a detailed review). For inversion of EM datasets, a large number of forward modeling computations are needed.
Therefore, 3D EM modeling (and inversion) algorithms should be particularly sought for:

(i) Providing accurate solutions in a feasible run-time, although the uncertainties associated with the domain
discretization, numerical operator, among others.
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(ii) Tackling problems efficiently using cutting-edge computing architectures, including high-performance com-
puting (HPC), thus ability to deal with real-life models.

(iii) Modularity and flexibility to cope with a variety of real-life model workflows with the possibility to easily
add or remove components without having to rewrite large parts of the code.

For 3D EM modeling, multiple references use Nédélec FE of low-order polynomial functions (e.g., first-order) (Börner
2010; Farquharson & Miensopust 2011; Mukherjee & Everett 2011; Ren et al. 2013; Um et al. 2013; Cai et al. 2014;
Chung et al. 2014; Grayver & Bürg 2014; Kordy et al. 2015; Castillo-Reyes 2017; Castillo-Reyes et al. 2018), and
high-order polynomial functions (Schwarzbach et al. 2011; Grayver & Kolev 2015; Castillo-Reyes et al. 2019; Rochlitz et al.
2019). Nédélec FE offer a proper mechanism to discretize the space, H(curl), of the electric vector field. Also, it is
possible to apply adaptive mesh refinement to improve the solution accuracy with decreased computational effort
compared to uniform refinement. The mesh refinement is an elaborated method in FE modeling aiming at designing
locally refined meshes to accurately model the fields in specific regions of interest while using as few mesh elements
as possible. Two common refinement methods of achieving more accurate FE solutions are to increase the number
of elements (h−refinement) and to employ higher-degree interpolation functions (p−refinement). Furthermore, so-
phisticated methods for a posteriori error estimation combined with both refinement strategies also referred to as
hp−refinement, might offer exponential convergence rates (Grayver & Kolev 2015). These mesh refinement strategies
can be automatic or non-automatic.

Adaptive mesh h−refinement has already been investigated in geophysical electromagnetics (Plessix et al. 2007;
Schwarzbach et al. 2011; Castillo-Reyes et al. 2018). However, there is a lack of studies about high-order Nédélec
finite elements (HEFEM) and their impact on 3D EM modeling in the realm of 3D geo-electromagnetic mod-
eling (models that include experimental data and not only synthetic). The exceptions are the works performed
by Schwarzbach et al. (2011) and Grayver & Kolev (2015), which demonstrate the advantages of high-order basis
functions regarding the needs of degrees of freedom (dof) to satisfy the prior chosen quality criteria in the EM
responses. HEFEM have also been shown to be beneficial in other areas of EM wave modeling, such as cavity analy-
sis (Jian-Ming Jin et al. 2003; Gomez-Revuelto et al. 2012), brain microwave studies (Bonazzoli et al. 2018), among
others with smooth solutions (Bergot & Duruflé 2013; Olm et al. 2019; Eisenträger et al. 2020).

Our contribution is twofold. First, we introduce a robust numerical scheme that can be applied to simulate
different and relevant scenarios in the field of the 3D Controlled-source Electromagnetic Method (CSEM). Second,
we provide a firm basis to justify the development of more robust techniques such as a fully automatic goal-oriented
approach (Key & Ovall 2011; Pardo et al. 2011; Schwarzbach et al. 2011; Grayver & Kolev 2015). Hence, the overall
research hopes to contribute by providing a comprehensive and quantitative study about the use of HEFEM in
conjunction with unstructured and h + p adapted meshes for real-scale geo-electromagnetic modeling. We acknowl-
edge that high-order polynomial interpolation functions for EM modeling in geophysics are previously reported
by (Schwarzbach et al. 2011; Grayver & Kolev 2015; Castillo-Reyes et al. 2019; Rochlitz et al. 2019). The authors
of these studies investigate convergence and numerical accuracy for polynomial interpolation functions of order
p = 1, 2, 3. However, our research provides relevant information for an in-depth understanding of the pros and cons
when still higher polynomial schemes (p = 1, 2, 3, 4, 5, 6) and supervised h + p adapted meshing are employed. We
state that our experiments and conclusions can be considered a preliminary stage that favors simplicity and prac-
ticality, which can be helpful not only for experts but also for the general community interested in EM modeling.
In this way, we set a bound to apply automatic refinements that will be explored in future works. Finally, to verify
the robustness of our numerical strategies, we simulate 3D CSEM setups with relevance for both academia and
industry. Each 3D CSEM setup under consideration presents a particular numerical modeling challenge, being a
suitable approach to studying the proposed numerical schemes. Furthermore, we stress that we not only analyze
models with synthetic data but also models with experimental data, a clear contribution with respect to the rest of
the state-of-the-art works.

On top of that, the core motivations for this study are to evaluate the benefits and limitations of HEFEM and
supervised h + p tailored meshing for real-life 3D CSEM surveys. We focus on investigating its performance in terms
of convergence rate, CPU time, and memory requirements. We use a supervised approach, which consists of:

(i) Determining prior rules to build h−adapted meshes for a set of basis orders p = 1, 2, 3, 4, 5, 6.
(ii) Applying a high-order basis discretization on regions (known a priori) where the solution is not smooth (e.g.,

transmitter vicinity). To increase the p order on specific regions without sacrificing computational performance, we
consider a constant number of dof per element.

To compute synthetic EM responses, we have used the PETGEM code (Castillo-Reyes et al. 2018), which has been
shown as an efficient modeling routine on massively parallel computers. We point out that our numerical scheme and
its results are independent of the electric field formulation (e.g. total or secondary field formulation), transmitter
type (e.g. electric or magnetic dipole), transmitter signal (e.g. time-harmonic, direct current or transient), and
conductivity material properties (e.g. isotropic or anisotropic). Still, to preserve brevity, we particularized our study
to 3D CSEM modeling for marine and land applications in the context of energy reservoirs characterization (oil &
gas, and geothermal) based on synthetic and experimental data.

The rest of the paper is organized as follows. Section 2 introduces the governing equations for the EM modeling
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under consideration and its discretization using the HEFEM. Also, we provide details about our supervised h + p
refinement scheme. In Section 3, we perform numerical simulations to investigate the numerical scheme’s robust-
ness for different high-order FE basis. Also, we extensively discuss essential points that control the computational
performance and suitability of our supervised adaptive mesh refinement technique in geophysical electromagnetics.
Finally, Section 4 provides summary remarks and conclusions.

2 THEORY

2.1 Governing equations

The EM phenomena under consideration is described mathematically by the frequency-domain Maxwell’s equations
in a diffusive form. Based on this approach, displacement currents are neglected. By assuming a time-harmonic
dependence expressed by e−iωt, these equations can be written as

∇ × E = iωµ0H, (1)

∇ × H = Js + σE, (2)

where E is the electric field, H is the magnetic field, i is the imaginary unit, ω is the angular frequency, µ0 is the
free-space magnetic permeability, Js is the distribution of source current, σE is the induced current in the conductive
Earth, and σ is the electric conductivity tensor.

It is frequently convenient to have a formulation in terms of the total field. After substituting eq. (1) into eq. (2),
we obtain

∇ × ∇ × E − iωµ0σE = iωµ0Js, (3)

which is also known as the curl-curl formulation of the problem in terms of the total field. This approach can avoid
numerical errors that arise when the source is located within the region of anomalous properties (e.g. models with
high conductivity contrasts or with bathymetry/topography variations). The disadvantage is that a slightly larger
computational domain is required in order to discretize the source properly and avoid artifacts arising from the
reflections on the artificial boundary conditions of the domain.

2.2 HEFEM Solution

For the numerical solution of eq. (3), we consider a 3D computational domain discretized in a set of tetrahe-
dral finite elements. For a comprehensive introduction to the FE method, we refer to Salazar-Palma et al. (1998);
Jian-Ming Jin et al. (2003); Monk (2003), and Thompson (2005). This section only provides a brief outline for
understanding the HEFEM implemented within the PETGEM code.

The space that we have chosen for the electric field E in the domain Ω is the curl-conforming space

H(curl, Ω) := {w ∈ [L2(Ω)]3 | ∇ × w ∈ [L2(Ω)]3} (4)

with L2(Ω) as the space of square integrable functions in Ω. Specifically, we use

H0(curl, Ω) := {w ∈ H(curl, Ω) | n × w = 0 on ∂ΩD}, (5)

within the domain Ω subject to a homogeneous Dirichlet boundary condition n × E = 0 on the domain boundary
∂Ω.

To discretize the eq. (3), we use the hierarchical basis functions by Fuentes et al. (2015), that belong to the mixed-
order family proposed by Nédélec (1980) and span a curl-conforming space Wk. To allow non-uniform p−refinement,
we use the hierarchical property of the basis functions (e.g., we use incremental spaces of basis functions W̃k), so
the space Wk is

Wk = W̃1 ⊕ W̃2 ⊕ · · · ⊕ W̃k. (6)

The application of the Galerkin procedure to eq. (3) leads to the variational formulation E ∈ H0(curl, Ω) such that
∫∫∫

Ω

(∇ × W) · (∇ × E)dΩ − iωµ0

∫∫∫

Ω

W · σEdΩ = iωµ0

∫∫∫

Ω

W · JsdΩ ∀ W ∈ H0(curl, Ω). (7)

The discretization of this variational problem provides a system of equations Ax = b, where the vector of unknowns
x allows us to approximate the electric field in any point of the computational domain by using

Ẽ =

Ne
∑

i=1

xiwi, (8)

where Ẽ is the approximation of the electric field, Ne the size of the matrix to be solved, xi are the weights of the
basis functions obtained from Ax = b, and wi the basis functions used to solve the FE problem.
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Table 1. Number of dof per tetrahedral element.

Tetrahedron 1
2

p(p + 2)(p + 3)

Edge p

Face p(p − 1)

Volume 1
2

p(p − 1)(p − 2)

2.3 Supervised h+p adaptive meshing

In our previous study Castillo-Reyes et al. (2019) we have introduced a methodology to design h−adapted tetrahedral
meshes for the CSEM problem. We used the skin-depth (δ) principle as the main quality criteria to determine
characteristic mesh sizes for piecewise orders p = 1, 2, 3. In this paper, we focus on extending this strategy to higher-
order variants (p = 4, 5, 6) on computational domains with general anisotropy. Thus, we provide a comprehensive
description for the piecewise family implemented within our modeling routine. The procedure, which is also guided
by both the physical parameters and piecewise order, is composed of two steps:

(i) Computation of the characteristic spacing dδ, which can be expressed as

dδ(f, p) =
δmin(f)

λδ(p)
, (9)

where f is the modeling frequency, p is the piecewise order, δmin is the minimum skin depth in the input conductiv-
ity/resistiviy model, and λδ is the number of points per skin depth.

(ii) Computation of local refinement ds that is applied close to regions of interest such as source and receiver
locations. The formal expression of ds can be written as

ds = min

(

Ls

rs(p)
, dδ(f, p)

)

, (10)

where Ls is the source dipole length and rs is a resolution number that also depends on the piecewise order p.

Based on this strategy, all cell sizes in the computational domain are constrained by rules that satisfy the prior chosen
quality criteria in the EM responses. In Section 3.2 of this paper, we follow a rigorous methodology to determine λδ

and rs.
The implemented hierarchical basis functions are based on orthogonal polynomials (Jacobi for face and interior

functions, Legendre for edge) which allow that each entity (edge, face or interior functions) have a different approx-
imation order within the same element. For convenience, Table 1 shows the number of dof per tetrahedral element
within the computational mesh.

2.4 Parallel implementation

The supervised adaptive mesh refinement scheme described in the previous section has been implemented in a fully
distributed fashion (MPI standard) using Python language and mpi4py (Dalcín et al. 2008). Our implementation is
based on and extends the PETGEM code. The algorithm supports general anisotropic cases and takes advantage of the
inherent features within PETGEM for parallel computations. This section only provides a brief outline for understanding
the HPC implementation. For a comprehensive introduction to the PETGEM code and its computational performance,
we refer to (Castillo-Reyes et al. 2018, 2019; Castillo-Reyes et al. 2021; Castillo-Reyes et al. 2022).

The PETGEM workflow is composed of four main phases: pre-processing, assembly, solver, and post-processing.
The first one is responsible for providing functions to change input data related to mesh (h−refinement) into a more
suitable representation for PETGEM. These are, in particular, the nodal spatial coordinates, the mesh connectivity,
and boundary conditions. Further, additional information needed for handling matrix storage allocation is retrieved
here. The assembly phase encapsulates information and functions coming from the HEFEM and p−refinement.
This phase particularly comprises the computation of the curl-conforming basis functions and the computation of
the elemental FE matrices. Further, in the solver phase, the system of linear equations is solved directly using
MUMPS (Amestoy et al. 2006) or iteratively via the petsc4py package (Dalcín et al. 2011). These libraries offer a
large selection of parallel iterative Krylov solvers and multifrontal direct methods. Finally, in the post-processing

stage, the EM responses are computed.
The stages mentioned above are used to fuels a PETGEM kernel responsible for solving the input 3D CSEM

model. The corresponding work-flow is depicted in Figure 1.

3 NUMERICAL VALIDATION

This section describes a set of numerical experiments with HEFEM and supervised h+p refinement to solve realistic
and challenging 3D CSEM setups. The numerical results presented in this section are divided into two sections. First,
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Figure 1. Outline of the overall PETGEM work-flow. The pre-processing phase is sequential while the remaining stages are parallel.
Notice that the solver phase has support for both MPI and MPI-GPUs platforms. Such an HPC implementation can be useful and
transparent in the absence of GPUs devices.

we perform a series of tests to verify the implementation of HEFEM. This set of tests corresponds to the so-called
Method of Manufactured Solutions (MMS) (Marchand & Davidson 2014; Garcia-Donoro et al. 2016). Second, we
perform 3D CSEM simulations on different setups to find out which basis order offers the best compromise between
accuracy and computational effort.

The process of verification and analysis of our meshing strategy consists of three steps:

(i) Robustness study of uniform p−refinement (experiment 3.1)
(ii) Determine the optimal element size (uniform h−refinement) for each basis order (experiment 3.2)
(iii) Determine the appropriate combination of basis order at different element levels (experiment 3.3)
(iv) Particularize the best configuration obtained from the previous points to regions where high numerical accu-

racy is required (experiment 3.4)

We point out that although our modeling tool supports 3D anisotropy resistivity, we only consider models with
Vertical Transverse Isotropy (VTI). Furthermore, we state that our meshing rules do not consider anisotropy (an
in-depth analysis of this effect is beyond the scope of this paper). However, this does not have a negative impact on
our numerical experiments for two reasons. First, because of the diffusive nature of the problem (the EM field decays
exponentially). Second, the modeling configurations require that the EM field be measured at sites distant from
the source location (several skin-depths away). To compute the L2-norm errors and their corresponding convergence
orders OL2 of our numerical solutions, we use the expressions suggested by Castillo-Reyes et al. (2019). To perform
the unstructured tetrahedral mesh generation, we employ the Gmsh tool (Geuzaine & Remacle 2008). All simulations
have been carried out on Marenostrum supercomputer.

3.1 MMS

We verify the p−refinement scheme on an MMS test as the first example. From eq.(3), we need to include non-
homogeneous Dirichlet boundary conditions on the boundary of the problem. We manufacture an analytical solution
to the differential equation (by solving the problem backward), and then we measure the error between the approx-
imated electric field and the manufactured solution (Marchand & Davidson 2014; Garcia-Donoro et al. 2016).

The boundary value problem under consideration is expressed as

∇ × (µ−1
r ∇ × E) − iωµ0σE = F in Ω, (11a)

n × (E × n) = ΨD on ΓD, (11b)

with a source excitation defined as

F = ∇ × (∇ × EMMS) − iωµ0σEMMS, (12a)

ΨD = n × (EMMS × n). (12b)

To assign non-homogeneous Dirichlet boundary conditions to a hierarchical set of basis functions, we need to project
the solution on the boundary faces (Demkowicz 2006). This field projection is performed in two steps. First, for each
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Table 2. Mesh hierarchies for a MMS test using uniform and non-uniform refinement in p. Hierarchical mesh level, number of tetrahedral
elements and number of dof are provided.

Mesh level Elements
uniform refinement non-uniform refinement

p = 1 p = 2 p = 3 p ∈ [1, 2] p ∈ [2, 3] p ∈ [1, 3]

1 727 1 163 5 636 15 600 1 163 5 636 1 163
2 4 716 6 624 33 590 95 046 16 245 53 418 36 073
3 16 028 21 093 109 562 313 491 78 198 232 091 200 727
4 36 395 46 546 244 340 702 567 215 458 621 983 593 101
5 71 551 89 716 474 488 1 368 969 474 488 1 368 969 1 368 969

edge e we solve
∫

e

(We · τ̂ )(E · τ̂ )de =

∫

e

(We · τ̂ )(EMMS · τ̂ )de, (13)

where τ̂ is the edge unit vector. In eq. (13) we belonging to the restriction of H(curl, Ω) to the edge. Second, for
each face f we solve

∫

f

(n̂ × (Wf × n̂)) · (n̂ × (E × n̂))df =

∫

f

(n̂ × (Wf × n̂)) · df df, (14)

where we belonging to the restriction of H(curl, Ω) to the face. In eq. (14) the excitation df is obtained through

df = n̂ × (EMMS × n̂ −
∑

e∈f

de), (15)

and the contribution for each edge de is

de =

ne
∑

i=1

xi(n̂ × (We × n̂)), (16)

being ne the number of dof for each edge, and xi the i-th component of the solution obtained from eq. (13).
The analytical solution is set to a plane wave as example of a smooth function, which is expressed as

EMMS = Epole
−jk0(kp·r), (17)

where Epol = x̂ + ŷ, and kp = ẑ, with x̂, ŷ, and ẑ as the unit vectors in the X, Y, and Z axes. This function is not
a solution for eq. (7), but it may serve for verification purposes. Our computational domain is a [0, 1]3 m cube in
vacuum space.

3.1.1 Uniform refinement

First, numerical approximations have been computed on a set of globally p−refined meshes up to the piecewise p = 3.
The mesh hierarchies are given in Table 2. The convergence behavior regarding characteristic mesh size and number
of dof is show in Fig. 2a and Fig. 2b, respectively. For piecewise p = 1, 2, 3, excellent average slopes of 0.94, 1.94,
and 2.95 are observed. These results are consistent with the theoretical slopes O(hp) (Salazar-Palma et al. 1998).

3.1.2 Non-uniform refinement

Next, we changed the polynomial order of a given percentage mesh elements to assess that the obtained error lies
within the mesh’s minimum and maximum polynomial orders. Thus, we start in the same first mesh level and, for
each finer mesh, we increase the piecewise order (two cases: p + 1 and p + 2) in 25% of the mesh elements in a
cumulative way. The resulting mesh statistics of this approach are given in Table 2.

From this experiment, we obtained three new convergence curves labeled as p = 1-2, 2-3, 1-3 and also depicted
in Fig. 2a and Fig. 2b. For all three cases, the start- and end-points of convergence curves are the same as that
attained on the previous homogeneous p−refinement test. The obtained error is between the curves associated with
the minimum and maximum polynomial order in the mesh, which can be considered a validation of our non-uniform
p−refinement scheme. Besides, the difference of accuracy between the fourth level (75% refined elements) against
the fifth level (100% refined elements) is considerable. This error difference is due to the nature of the plane wave
used as the excitation source. More concretely, in the fourth mesh level, we obtain 25% of the elements with an
energy error associated with order p−1, or order p−2. The error of these elements is much higher than the elements
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(a) (b)

Figure 2. Convergence behavior of the plane wave with MMS in terms of (a) characteristic mesh spacing dδ and (b) number of dof.
Convergence results for uniform and non-uniform in p are given.

with an energy error related to p order approximation, making the error of these p − 1 or p − 2 elements dominant
compared to the rest of the elements.

Given the results of these experiments, we conclude that the non-uniform p refinement implementation is correct.
Then, in the following experiments, we focus on completing the analysis of our implementation to solve more
challenging problems.

3.2 h−adapted meshes for a synthetic marine layered model

As a second example, we investigate the performance of the h−adapted meshes. More concretely, we perform a
convergence test to determine the number of points per skin depth λδ and the resolution number rs which are
required to design h−adapted meshes that satisfy a given error threshold. For this experiment, we consider an VTI
synthetic layered model that consists of 3.5 km of air layer (ρair = 108 Ω· m), 1 km of seawater (ρsea = 0.3 Ω·m),
followed by 2 km of sediments with VTI (ρh = 4 Ω·m and ρv = 6 Ω·m), and finally 1 km of isotropic basement
(ρbasement = 1000 Ω·m). We execute our simulations in parallel with 480 processors. The system of equations is
solved using the PETSc implementation of the GMRES solver. The reference solution for a 3 Hz x-directed dipole
transmitter is computed semi-analytically using the empymod code (Werthmüller 2017).

We design a set of meshes with global hierarchical h−refinement, whose resulting statistics are given in Table 3.
Then, on these meshes, we compute the 3D CSEM solutions for each polynomial basis degree (e.g., p = 1, 2, 3, 4, 5, 6).
The obtained L2 errors, convergence rates, run-time, and memory consumption are summarized in Table 4. For all
nested refined meshes, the basis order p = 6 produces the most accurate solution, the approximations p = 5, 4, 3, 2
follows, and the piecewise p = 1 is the least accurate solution, as expected. Regarding mesh convergence, Fig. 3a
shows the rates depicted in Table 4, where it can be seen that convergence slopes are consistent with each polynomial
basis order. Also, Fig. 3b depicts the trade-off between numerical error and dof. Despite number of dof grows faster
for high-order polynomial basis, this increment is compensated by the decrease in the number of tetrahedral elements
required to reach a given numerical error level (e.g., for p = 2 the error obtained with the second mesh level is almost
similar than p = 3 with same mesh level, and much better than p = 1 with third mesh). However, a better pattern is
observed for low-order transitions (from p = 1 to p = 2, 3) than for high-order transitions (from p = 3 to p = 4, 5, 6).
Still, in function of the desirable accuracy, the basis orders p = 3, 4 can be competitive (e.g., for p = 3 the obtained
error with the fourth mesh level is similar than those achieved with p = 4 and the third mesh level). Furthermore,
a close inspection of Fig. 3c shows that high-order piecewise demands more run-time to reach the final solution for
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Table 3. Mesh statistics for a convergence test on a marine CSEM model with VTI. Hierarchical mesh level, number of elements,
characteristic mesh spacing dδ (expressed in meters), and number of dof for each HEFEM polynomial degree p = 1, 2, 3, 4, 5, 6.

Mesh level Elements dδ
dof

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

1 373 705.578 643 3 038 8 304 17 560 31 925 52 518
2 2 984 352.789 4 287 21 550 60 741 130 812 240 715 399 402
3 23 872 176.394 31 022 161 692 463 626 1 008 440 1 867 750 3 113 172
4 190 976 88.197 235 388 1 251 320 3 620 724 7 916 528 14 711 660 24 579 048

the same mesh level. Finally, Fig. 3d shows the memory consumption for each polynomial approximation, where it
can be seen that high-order basis demands more memory to solve the problem under consideration.

Given each approximation scheme’s reasonable performance ranges (e.g., Table 4), we conclude that, when not
using non-uniform p refinement, the p = 2 piecewise provides the best general trade-off between mesh size, accuracy,
and computational effort. However, the optimum choice of the polynomial scheme depends on the input model. This
conclusion is consistent with those reported in previous studies (Grayver & Kolev 2015; Schwarzbach et al. 2011;
Castillo-Reyes et al. 2019).

Based on our convergence results, we obtain the number of points per skin depth λδ and resolution number
rs required to design h−adapted meshes that satisfy 5, 3, and 1 percent error thresholds. These mesh resolution
parameters are depicted in Table 5. Using these meshing rules, the resulting global characteristic mesh size and
local h−refinement ensure the proper resolution of the EM wave in the computational domain. Last but not least,
we acknowledge that although λδ and rs values are suitable for designing unstructured adapted meshes of sufficient
discretization quality, the best performance compromise depends on the input model (similar conclusion to that
presented by Plessix et al. (2007)).

Table 4. Convergence results for each polynomial degree p = 1, 2, 3, 4, 5, 6 over each mesh level depicted in Table 3. Numerical solution
error in L2-norm, convergence orders OL2 , run-time (minutes), and memory consumption (Gb) are included.

L2 OL2 Run-time Memory

p = 1
4.252 × 10−2 − 2.369 1.510
2.201 × 10−2 0.949 3.548 2.478
1.161 × 10−2 0.918 5.615 3.835
6.301 × 10−3 0.897 8.841 8.115

p = 2
2.210 × 10−2 − 3.374 7.832
6.010 × 10−3 1.882 4.944 16.216
1.601 × 10−3 1.859 9.247 35.147
4.630 × 10−4 1.833 16.841 91.310

p = 3
1.495 × 10−2 − 5.698 16.487
2.231 × 10−3 2.756 14.364 38.478
3.359 × 10−4 2.718 30.781 79.364
5.216 × 10−5 2.687 62.247 135.369

p = 4
1.161 × 10−2 − 9.354 22.364
8.470 × 10−4 3.772 23.365 61.391
7.622 × 10−5 3.473 50.784 125.369
6.501 × 10−6 3.551 86.147 274.144

p = 5
7.201 × 10−3 − 14.784 45.321
3.582 × 10−4 4.312 42.369 96.259
1.474 × 10−5 4.603 98.178 156.367
6.125 × 10−7 4.588 202.378 433.412

p = 6
4.312 × 10−3 − 28.368 117.140
1.073 × 10−4 5.320 59.327 255.690
2.956 × 10−6 5.182 129.382 489.412
8.396 × 10−8 5.137 268.328 789.291



Tailored meshing for parallel 3D CSEM using HEFEM 9

10 -3 10 -2 10 -1
10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

(a)

10 2 10 4 10 6 10 8
10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

(b)

10 0 10 1 10 2 10 3
10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

(c)

10 0 10 1 10 2 10 3
10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

(d)

Figure 3. Convergence behavior in terms of (a) characteristic mesh spacing dδ , (b) number of dof, (c) run-time, and (d) memory
consumption.

Table 5. Number of points per skin depth λδ and resolution number rs required to design h−adapted meshes that satisfy 5, 3, and 1
percent error thresholds. These parameters are given for each polynomial order p.

p
5% 3% 1%

λδ rs λδ rs λδ rs

1 9.22 14 13.93 13 16.81 15
2 7.12 10 9.39 11 10.55 12
3 6.33 9 8.14 10 9.35 11
4 5.02 8 5.95 9 8.12 10

5 4.98 7 5.82 8 6.95 9
6 3.86 6 4.69 7 5.78 8
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Figure 4. Marine MR3D resistivity model proposed and released under the open creative common license (CC by 4.0)
by Correa & Menezes (2019).

3.3 p−refinement experiment for the marine MR3D model

The third example focuses on studying the impact of uniform p−refinement on a realistic 3D resistivity model with
VTI. The model under consideration was proposed and released under the open creative common license (CC by
4.0) by Correa & Menezes (2019). The available model data, also referred to as Marlim R3D (MR3D), consists of
EM responses for six frequencies from 0.125 Hz to 1.25 Hz. The up-scaled model compromises 515 × 563 × 310 cells
where each cell has dimensions of 100 × 100 × 20 m, resulting in almost 90 million cells. The data-acquisition area
is a regular grid composed of 500 stations placed 1 km above the irregular seafloor. Although the original published
data includes EM responses for 45 transmitter-towlines, we only compute the electric field for the in-line transmitter
04Tx013a and the cross-line transmitter 04Tx014a on the receivers profile 04Rx251a. For both transmitters, the
frequency of the excitation current is 1.25 Hz. Fig. 4 shows a 3D view of the conductivity model under consideration.
We used the FE EM responses provided by Werthmüller et al. (2021) as reference solution. For more details about
the oil field MR3D model, we refer to Correa & Menezes (2019).

For this marine 3D CSEM modeling, we investigate the impact of global and uniform p−refinement on EM
responses. The experiments are performed in two phases. First, we design h−adapted meshes for p = 1, 2, 3, 4, 5, 6.
Second, for each polynomial scheme, we compute EM responses applying global and uniform p−refinement at different
mesh entity levels:

(i) Edge level: only on edges.
(ii) Face level: only on faces.
(iii) Interior, or volume level: inside each element.
(iv) Element level: in all mesh element entities (e.g., edges, faces, and volume per element).

The resulting mesh statistics for each piecewise and each refinement entity are given in Table 6. Each numerical
approximation has been computed in parallel with 480 cores and using the direct MUMPS solver.

As aforementioned, we computed synthetic EM fields for each piecewise. Still, to preserve brevity, Fig. 5a only
shows p = 6 EM responses for the in-line transmitter 04Tx013a and using uniform refinement at element level (e.g.,
dof in edges, faces, and volume of each tetrahedral element). Here, the EM amplitudes are almost identical with
respect to the reference. Similar results have been obtained for p = 1, 2, 3, 4, 5 at element level refinement. Fig. 5b
depicts the maximum misfits percentile for each polynomial order and each uniform p−refinement entity, which
are close to the error threshold used to design each mesh (3% percent error). Regardless of the refined entity, the
basis order p = 6 produces the most accurate EM responses, followed by the p = 5, 4, 3, 2, 1 approximations. More
concretely, if uniform refinement is only applied on edges, the maximum error is reduced from 3.811% for p = 1 to
3.192% for p = 6. Similar behaviour is observed for uniform refinement on faces where the error is decreased from
3.412% for p = 2 to 3.151% for p = 6. For uniform refinement on volume (e.g., interior dof), the error is reduced
3.148% for p = 3 to 3.044% for p = 6. However, a close inspection of misfits depicted in Fig. 5b shows that uniform
refinement on volume produces more accurate solutions than on edges or faces. Furthermore, the obtained misfits
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Table 6. h−adapted mesh statistics for MR3D model. Piecewise p, number of elements, and number of dof for p−refinement at different
mesh entity level (edge, face, volume, and element). Run-time (minutes) and memory consumption (Gb) are also given.

p Elements
Edge Face Volume Element

dof Run-time/Memory dof Run-time/Memory dof Run-time/Memory dof Run-time/Memory

1 14 430 811 15 241 416 525.44/572.45 − − − − 15 241 416 572.5/525.1

2 916 992 2 199 118 75.81/82.59 4 815 901 180.88/166.02 − − 5 915 460 222.2/203.9

3 666 726 2 408 487 83.03/90.46 8 922 323 335.11/307.59 2 803 007 105.27/96.63 12 528 159 407.5/431.9

4 464 483 2 246 756 77.45/84.38 11 893 097 446.69/410.01 6 135 485 230.44/211.52 19 151 960 719.3/660.3

5 311 030 1 893 170 65.26/71.10 13 057 734 490.43/450.16 9 709 534 364.68/334.73 23 903 170 897.8/824.1

6 248 243 1 818 486 62.69/68.30 15 501 231 582.21/534.40 15 197 661 570.81/523.93 31 911 216 1 198.6/1 100.1

for uniform p−refinement on volume is close to those obtained at for uniform p−refinement at element level (e.g.,
for p = 3, the obtained misfit at volume level is close to that obtained at element level (3.148% ≈ 2.992%)). Last
but not least, we acknowledge that uniform p−refinement at element level offers the best misfit ratios.

Fig. 6a shows the EM responses for the cross-line transmitter 04Tx014a computed with p = 6. Fig. 6b depicts
the maximum misfit percentile for each piecewise and each uniform p−refinement entity. The conclusions for this
cross-line profile are similar to those obtained for previous in-line profile analysis.

Given our numerical results, we conclude that dof on volume level has the most significant impact on reducing
the error. The dof on volume are followed by dof on faces, and finally by dof on edges. Furthermore, although a
slight improvement in the error is observed during the transition from p = 2 to p = 3, this represents a considerable
increment in computational cost to obtain the solution (e.g., the number of dof increases from 5 915 460 to 12 528 159,
but the error is practically the same 2.995 ≈ 2.992). This pattern is also preserved for higher polynomial basis. Then,
this analysis confirms that second-order uniform p−refinement in conjunction with h−adapted meshes offer the
best compromise between accuracy and run-time. We point out that there might be other p−refinement strategies
combination (e.g., based on guided error estimators) that can solve the 3D CSEM modeling more efficiently. However,
these schemes are beyond our paper’s scope as we focus on analyzing whether the use of HEFEM with h−adapted
meshes and supervised p−refinement strategies is justified.
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Figure 5. Comparison of x−component amplitude between PETGEM and reference data. (a) EM responses for in-line transmitter 04Tx013a

and basis order p = 6 (similar results have been obtained for p = 1, 2, 3, 4, 5). (b) Maximum misfits percentile for each polynomial order
and each uniform p−refinement entity (edge, face, volume, element). The patch is organized piecewise in x-axis and refinement level in
y-axis. Black colors indicated non applicable (N/A) refinement in that entity.
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Figure 6. Comparison of x−component amplitude between PETGEM and reference data. (a) EM responses for in-line transmitter 04Tx014a

and basis order p = 6 (similar results have been obtained for p = 1, 2, 3, 4, 5). (b) Maximum misfits percentile for each polynomial order
and each uniform p−refinement entity (edge, face, volume, element). The patch is organized piecewise in x-axis and refinement level in
y-axis. Black colors indicated non applicable (N/A) refinement in that entity.

3.4 p−refinement experiment for the land Vallés model

Finally, the fourth test focuses on studying the impact of non-uniform p−refinement on the EM responses. To
perform these experiments we use a 3D land CSEM model in the geothermal exploration context. The model under
consideration, referred to as Vallés model and introduced by Castillo-Reyes et al. (2021), is composed by 4 km thick
air layer (ρair = 108 Ω· m), resistive basement (ρbasement = 1000 Ω· m) including topography, and the conductive
sediments (ρsediments = 20 Ω· m). To simulate the metallic old boreholes present in the area, the model includes a
vertical cylinder (ρcasing = 10−4 Ω· m) embedded in the sediments. The cylinder length is 200 m, and it is centered
at x = 1.719 km, y = 2 km, and z = −100 m. The Vallés model is depicted in Fig. 7. We use an x-directed
transmitter with a moment of 1 Am and frequency of 2 Hz. This source is located at x = 1.209 km, y = 2 km, and
z = 0 km. The data-acquisition consists of eighty-one stations placed in-line to the transmitter position and along
its orientation. The computed responses for a metallic casing distant to the x−directed transmitter are shown in
the original publication and compared against experimental data in-situ. We reproduce the EM responses for this
set-up in our experiments. The resulting systems of equations are solved in parallel with 480 cores and using the
MUMPS solver. For this model, we simulate different non-uniform p−refinement configurations that allow us a detailed
analysis of the most relevant cases. Table 7 shows the experiment details. Fig. 8 compare the electric field amplitude
of the x−component for each p−refinement scheme. A close inspection of these EM field responses confirms the
effect of the metallic casing presence, which is most noticeable close to the borehole vicinity (from x = 1 700 m to
x = 1 740 m). This behavior is observed regardless of the p−refining method used. Fig. 8 also depicted the obtained
misfits for each test. Here, the cases D and E produce the most accurate solutions (1.6% of average misfit). However,
the solution E is not competitive if its number of dof is compared to the strategy D (≈ 7 millions of dofs for case
E against ≈ 3 millions of dofs for case D). The solution B is the third most accurate. The least accurate solutions
are the C and A options. Given these results, we conclude that when it is desired to use non-uniform p−refinement,
the dof associated with the element volume have a greater impact on controlling the solution’s error (e.g., case D
implemented p = 1 in edges and faces, and p = 3 in volume). However, for uniform p−refinement, the p = 2 offers the
best compromise between accuracy and computational effort. This conclusion is consistent with previously published
results (Schwarzbach et al. 2011; Grayver & Kolev 2015). Furthermore, our numerical results suggest that a good
compromise between h−adapted meshes and p−refinement is needed to provide accurate solutions in a feasible
run-time.
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Figure 7. 3D CSEM Vallés model with its resulting h−adapted unstructured tetrahedral mesh. The 2D view corresponds to y = 2km
with zoom-in closer to metallic casing vicinity.

4 CONCLUSIONS

The development of geo-electromagnetic modeling routines has increased in the last years, and today there are
several options to obtain reasonable-looking results. However, with the sole exception of the algorithms developed
by Plessix et al. (2007); Schwarzbach et al. (2011); Grayver & Kolev (2015); Castillo-Reyes et al. (2019); Rochlitz et al.
(2019) and regardless of the type of meshes used, most of these 3D modeling routines do not employ tailored meshes
and do not support high-order discretizations. These are the core motivations for this study: to evaluate the benefits
and limitations of HEFEM and supervised h + p tailored meshing to solve challenging 3D CSEM setups.

We perform numerical experiments as a proof-of-principle for the computation of EM responses based upon
HEFEM, supervised h + p refinement strategies, and HPC. These experiments provide relevant information about
the performance of high-order polynomials (p = 1, 2, 3, 4, 5, 6) in conjunction with unstructured and tailored meshes.
As far as the authors know, only p = 1, 2, 3 performance metrics are reported in previous publications. Furthermore,
we consider 3D CSEM models with synthetic and experimental data, making them valid for academic and industrial
applications. The points mentioned above are clear contributions with respect to the rest of the state-of-the-art
works.

To demonstrate the robustness of our numerical schemes, we compute the solutions for marine and land test
cases with real-life applications (e.g., mineral mining, oil & gas, and geothermal reservoir characterization and in-
terpretation). We focus on studying its compromise in terms of convergence rate, run-time, and memory needs. In
our numerical experiments, the accuracy obtained with each polynomial function is consistent with the theoretical
definition. Also, the high-order polynomial degrees require a fewer number of dof to attain a given error level in com-
parison with the low-order case. However, this accuracy improvement has a cost. The computational implementation
of HEFEM and its parallelization is technically complex. Also, the use of high-order elements decreases the sparsity

Table 7. Summary of scenarios studied for Vallés model. The dash means that there are no dof associated with that entity (equivalent
to p = 1). Run-time (minutes) and memory consumption (Gb) are also given.

Case label
p−refinement

dof Run-time/Memory
Edge Face Volume

A p = 1 − − 939 258 32.27/32.38
B p = 2 p = 2 − 5 094 536 191.34/175.63
C p = 1 p = 2 − 4 155 278 156.06/143.25
D p = 1 p = 1 p = 3 3 341 784 125.51/115.20
E p = 2 p = 2 p = 3 7 497 062 281.58/258.46
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Figure 8. EM responses for the land Vallés model using non-homogeneous p−refinement. The misfits for each refinement scheme are
also included.

pattern of the resulting linear system due to the number of dof per element is larger Schwarzbach et al. (2011);
Grayver & Kolev (2015). Then, high-order schemes demand more memory. Furthermore, the computation of the
element integrals is more expensive for high-order piecewise (e.g., the quadrature order for numerical integration in-
creases in a proportional ratio to the polynomial basis order). Consequently, the run-time for linear system assembly
is also increased. However, the linear solver is still the most demanding phase in run-time and memory consumption.
Therefore, it is necessary to have efficient assembly routines and robust and scalable linear equation solvers to face
these challenges. We mitigated the challenges mentioned above by using an HPC code with general-purpose solvers.

Regarding h−refinement, we have implemented a supervised strategy to design h−adapted meshes for each basis
degree. These meshing rules control the global characteristic mesh size and local h−refinement to ensure a proper
discretization of the EM problem under consideration. Accurate synthetic EM responses were obtained by using
this meshing strategy in conjunction with high-order basis. Regarding p−refinement, our HEFEM modeling routine
supports arbitrary polynomial degrees at each element (e.g., edge, face, volume). From an academic and theoretical
perspective, these high-order schemes are usually favorable. However, they are more expensive to deal with from
a practical perspective. Based on the results presented here, uniform refinement for high-order polynomial degrees
(p > 3) are more resource-demanding (e.g., run-time and memory), making them less attractive or limiting for mod-
est computational architectures. A p = 2 uniform refinement exhibits the best accuracy/performance trade-off for
the modeling test cases studied here. This conclusion is consistent with those reported by Farquharson & Miensopust
(2011) and Grayver & Kolev (2015). However, its performance compromise depends on the input model (e.g., fre-
quency, conductivity/resistivity contrasts, solver type, mesh quality, domain decomposition strategy, among others).
For non-uniform refinement, the dof associated to the element volume has the most significant impact on controlling
the misfits on EM responses. The dof associated to element faces and element edges follows, respectively. In our
numerical results, the refinement scheme with p = 3 on volume and p = 1 on faces and edges has exhibited the best
compromise between accuracy and computing effort. However, its misfits are comparable to those obtained with
a uniform refinement using a second-order approximation (e.g., see Fig. 7). Then, we conclude that a non-uniform
p−refinement scheme can be competitive if applied hierarchically. First, increase the p order in volume, then in faces,
and finally in edges. Then, we can select preferable modelling options with our analyses:

(i) p = 1 elements (uniform)
(ii) Combination of p = 1 on faces and edges with p = 3 on volume (mixed).
(iii) p = 2 elements (uniform).

We want to address that despite the de-facto agreement established in the community that p = 2 offers the best
compromise (mainly on synthetic models), other non-uniform schemes at different entity levels might be more ad-
vantageous for both synthetic and experimental models. Nevertheless, we note that each refinement combination
performance depends on mesh quality (adapted h−refinement) and the input model. However, our numerical ex-
periments provide key information to guide the end-user in analyzing the advantages and disadvantages of using a
particular refinement scheme.

Finally, we believe that our open-source 3D EM modeler and numerical experiments regarding supervised h + p
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refinement using HEFEM will prove useful for the EM community. Hopefully, this analysis will provide an in-depth
analysis of EM modeling’s pros and cons when HEFEM and h + p refinement are employed.

Our future research aims to implement the numerical schemes presented here in a fully automatic fashion
(e.g., based on artificial intelligence, or introducing classical strategies of solve+estimate+refine). Also, we intend to
perform simulations for unconstrained 3D anisotropic CSEM setups.

CODE AVAILABILITY

The PETGEM code is freely available at the home page (petgem.bsc.es), at the PyPI repository (pypi.org/project/petgem),
at the GitHub site (github.com/ocastilloreyes/petgem), or by requesting the author (octavio.castillo@bsc.es, ocastilloreyes@gmail.com).
In all cases, the code is supplied to ease the immediate execution on Linux platforms. User’s manual and technical
documentation (developer’s guide) are provided in the PETGEM archive.
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