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Abstract 

Nanostructured coatings with variable contents of tungsten carbide (WC) and 

amorphous carbon (a-C) are prepared by controlling the sputtering power ratio using 

WC and graphite targets. XRD and TEM/ED analysis shows that increasing the C 

incorporation, the WC nanocrystalline phases evolve from γ-W2C to β-WC1-x. Further C 

enrichment leads to a nanocomposite structure of small WC1-x crystals dispersed in a-C 

matrix. The a-C at.% is estimated by XPS analysis and correlated with the observed 

tribo-mechanical properties. The hardness and friction properties vary from hard/high 

friction (36-40 GPa; µ=0.6-0.8) to moderate-hard/low friction (16-20 GPa; µ∼ 0.2) 

coatings depending on the film composition. The transition point is found for a-C 

content of 10 at.%. This correlates with a change from nanocrystalline WC to 

nanocomposite WC1-x/a-C coatings. The overall study will help to understand the 

previous literature data and will serve as guide for a tailored synthesis of these WC/a-C 

nanocomposites.  
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1. Introduction 

 

Tungsten–carbon hard coatings are widely used as protective coatings due to its 

high melting temperature, high hardness, relatively low conductivity and excellent 

chemical stability [1-6]. To improve their practical performance and durability in load 

bearing, rolling sliding contact applications other properties as high toughness or 

reduced friction are of interest as well [7,8]. The combination of a hard tungsten carbide 

phase with ductile phases such as carbon has been assessed in the form of multilayer or 

nanocomposite coatings as a good approach to achieve this advanced functionality 

mixing the best properties from both materials [4,9-13]. Moreover, the possibilities that 

the nanostructuration offers for obtaining materials with improved properties by 

appropriate control of the chemical composition and microstructure at the nanoscale, 

boost the development of new multiphase coatings with designed architecture [14,15]. 

The nature of the components, crystal size and the amount of each phase determines the 

final properties of the material [16-18]. 

By way of example, the WC/C multilayered coating used in commercial gear 

applications that increases the load carrying capacity, reduces friction and fuel 

consumption by controlling the periodicity of the multilayer structure [19-21]. Another 

way to improve the WC coatings performance is the formation of the so-called 

nanocomposite structure, consisting of a high density of nanometer sized crystals 

embedded in an amorphous carbon or DLC matrix [8-12,22,23]. Comparing the 

tribological properties of WC/C in multilayered and nanocomposite forms, the more 

homogeneous dispersion of WC nanocrystallites throughout the W-C:H layer provides 

better abrasive wear resistance, while the multilayered form performs better in the 

impact fatigue tests [20]. Another well-known example corresponds to the 
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WC/DLC/WS2 nanocomposite system, which is formed by nanometric grains of WC 

and WS2 grains embedded in an amorphous DLC matrix. This system operates as a 

lubricant in aerospace applications involving environmental changes from ambient air to 

vacuum [24,25]. 

The deposition of tungsten carbide films has been done by many chemical 

vapour deposition (CVD) [26-29] and physical vapour deposition (PVD) methods 

[3,4,7-12,30-37]. Focusing in PVD technique, different options have been tried namely: 

non reactive magnetron sputtering of WC target [30,31]; reactive magnetron sputtering 

of W or WC with CH4 [3,22,32], C2H2 [7,11,12,33,34], C2H4 [35], benzene [23] or 

fullerene [36]; the simultaneous sputtering of tungsten and carbon targets [37] or by 

laser ablation of graphite alternatively [8-10]. One of the main peculiarities of the WC 

material is the high number of compositional and structural forms that can exist 

according to the W-C phase diagram [38-40]. The determination of the crystalline 

phases, grain size, and concentration with respect to the amorphous carbon are crucial to 

make a tailored synthesis and to establish a correlation with the final properties 

(mechanical, tribological and/or thermal stability). Despite many authors have studied 

this system, just a few publications have tried to quantify the relative amount of 

amorphous carbon. This lack of results may be due to the wide range of non-

stoichometric W-C phases and the absence of long-range crystal order. 

In this work, we detail a novel approach for depositing WC/a-C nanocomposite 

coatings by direct non-reactive sputtering of WC and C targets with argon. By changing 

the sputtering power applied to each target, a series of coating is prepared where the 

proportion between nanocrystalline tungsten carbide and amorphous carbon are tailored. 

The characterization is carried out by different spectroscopic and microscopic 

techniques with the aim of determining the characteristic features and distribution of 
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both phases inside the nanocomposite. XRD, TEM, HR-TEM and ED techniques are 

used for investigating the crystalline phases while XPS and Raman spectroscopy for 

characterising the carbon phase as a function of the film deposition parameters. With the 

obtained information it is possible to correlate synthesis parameters, film structure, and 

phase composition (WC/a-C) with the physical properties such as tribological, 

mechanical and thermal stability. This complete study will help to understand the 

previous literature reported on this system and will serve as guide for a tailored 

synthesis of these materials with the desired properties depending on the foreseen 

application. 

 
 

2. Experimental details 

 

WC/a-C coatings were prepared by Ar sputtering of WC (Kurt J. Lesker, 99.5% 

purity) and graphite (Goodfellow, 99.5% purity) targets connected to radio frequency 

(r.f.) and direct current (d.c.) power sources respectively. A series of samples has been 

prepared by changing the sputtering power ratio, defined as R=PC/PWC, from 0 to 3. The 

typical power values (PWC) applied to the WC target were 150 and 250 W while those 

applied to the graphite target (PC) were varied from 0 to 450 W. The obtained films are 

labelled as R0, R0.1, R0.3, R0.5, R1, R2 and R3. In all cases, an underlayer was 

previously deposited by sputtering exclusively the WC target at 250 W whilst the 

substrates were negatively biased with a d.c. source at 100V (conditions corresponding 

to R0 film). The pressure of the reaction chamber was about 3×10− 4 Pa before 

deposition and 0.60 Pa while growing. The substrate materials were Si (100), NaCl and 

M2 steel depending on the characterization technique. They were mounted on a rotary 

sample-holder (10 rpm) situated at 10 cm from the targets. No external heating was 
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applied to the substrates although the temperature was found to vary in the range of 

150–200 °C due to the heating effect of the plasma. Typical film growth times were 

about 4 hours and film thicknesses range from 0.75 to 2.5 µm as measured by means of 

a stylus profilometer. 

The X-ray photoelectron spectroscopy (XPS) data were recorded in a VG-

Escalab 210 spectrometer working in constant analyzer energy mode at a pass energy of 

50 eV and non-monochromatic Mg Kα (hυ=1253.6 eV) radiation as excitation source. 

Samples were previously cleaned using Ar+ ion bombardment with an energy of 2.5 

keV, the sputtering was kept for 300 s with a nominal drain current of 1.7 µA/cm2 and 

an Ar partial pressure of 2.5×10-3 Pa. These conditions were found to be the most 

appropriate to remove preferentially the largest possible amount of hydrocarbon surface 

contamination layer without affecting the film elemental composition as checked in 

consecutive survey scans. Quantification was accomplished by determining the 

elemental peak areas, following a Shirley background subtraction and Voigt functions 

corrected by the relative sensitivities of the elements using Scofield cross-sections. 

Fitting procedure was then carried by a least squares routine using XPS Peak Fitting 

Programme 4.1 [41] on the W 4f, C 1s and O 1s photoelectron peaks.  

Raman spectra measurements (200-2000 cm-1) were carried out in a LabRAM 

Horiba Jobin Yvon spectrometer equipped with a CCD detector and a He-Ne laser (532 

nm) at 5 mW. All the samples were analyzed during 150 s of exposure time and an 

aperture hole of 100 �m. Continuous recording of the spectra allows the detection of 

any eventual laser-induced transformation. The spectra displayed in the figures were 

subjected to neither normalisation nor background subtraction.  

The crystal structure of the films was examined by grazing angle X-ray 

diffraction analysis (GIXRD) using Cu Kα radiation (1.54 Å) in a Siemens D5000 
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diffractometer at an incidence angle of 1° in order to increase the signal from the 

coating compared with the substrate. 

Transmission electron microscopy (TEM), high resolution transmission electron 

microscopy (HRTEM) and electron diffraction (ED) analyses were carried out in a 

Philips CM200 microscope operating at 200 kV. Energy-filtering transmission electron 

microscopy (EFTEM) was performed in a Tecnai F20 at 200kV field emission gun 

(FEG). For their observation, the films were grown on NaCl substrates and then floated 

off in water and supported on a carbon coated copper grid. Scanning electron 

microscopy (SEM) data were recorded in a FEG Hitachi S4800 microscope operating at 

5 kV. 

The thermal stability of samples was studied by using a high temperature 

chamber attached to an X-ray diffraction apparatus. The specimen is placed lying on a 

ceramic holder made of alumina. The measurements were performed by using a Philips 

PW 3040/60 vertical goniometer with monochromatic Cu Kα (0.154 nm) radiation in 

θ/2θ mode. All samples were heat treated under vacuum from room temperature up to 

1100 ºC at a temperature rate of 5 ºC/min with a base pressure of 0.1 Pa.  

Nanoindentation experiments were performed with a Nanoindenter II (Nano 

Instruments, Inc., Knoxville, TN) microprobe. All tests were carried out at room 

temperature with a diamond Berkovich (three-sided pyramid) indenter tip. The load–

displacement data obtained were analysed using the method of Oliver and Pharr [42] to 

determine the hardness and the elastic modulus as a function of the displacement of the 

indenter. The maximum load was selected in such a way that the maximum indentation 

depth did not exceed 10–15% of the coating thickness in order to avoid the influence of 

the substrate. 
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Tribological tests were carried out using AISI52100 6 mm-diameter steel balls in 

a pin-on-disk CSM tribometer with a sliding speed of 10 cm/s and 5 N of applied load 

(maximum initial Herztian contact pressure of 1.12 GPa) in ambient air (30–60% of 

relative humidity). The sliding distance was 1000 m with typical track radius between 6 

and 10 mm. Normalized wear rates (mm3/Nm) were evaluated from cross-sectional 

profiles taken across the disk-wear track after testing by means of stylus profilometry.  

 

3. Results and discussion 

 

3.1. Chemical composition 

 

The synthesis conditions such as the power applied to each magnetron and the 

power ratio are summarized in Table 1 along with the chemical composition for the 

studied coatings. It is worth mentioning that WC sputtering power was set at 250 W 

from R0 to R1 and later reduced at 150 W for R2 and R3 in order to fulfil the power 

ratio with respect to the graphite within the limit specifications of the magnetron heads. 

The corresponding carbon power was varied between 0 and 450 W to maintain the 

power ratio from 0 to 3. Fig. 1a shows the deposition rate of the coatings as a function 

of the power ratio. It can be noticed how the deposition rate increases almost linearly 

from R0 to R1 if the power applied to the WC target is kept constant. However, the 

diminution of PWC to 150 W yielded a drastic reduction of the deposition rate although it 

tends always to increase at higher power ratio.  

Elemental chemical compositions of the coatings as determined by XPS are 

shown in Table 1. The present data correspond to the surface state after cleaning with an 

Ar+ ion bombardment. Fig. 1b shows the variation of the W, C and O atomic 

percentages versus power ratio. The average oxygen contamination remains low, 
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typically in the range of 2 to 5 at.% and its presence can be due to molecular oxygen 

desorbed from the chamber walls or contained as an impurity in the target and/or in the 

sputtering gas. The total carbon content in the films progressively increases from 33 to 

71 at.% as the power ratio is changed from 0 to 3. 

 

3.2. Chemical bonding 

 

C 1s and W 4f XPS spectra for the series of the coatings are shown in Fig. 2a and 

b respectively. The C 1s peak presents two main components at 283.5 and 285 eV that 

can be ascribed to C-W and C-C bonds respectively. The relative contribution of the C-

C peak increases at higher R values corresponding to the formation of an amorphous C-

bonded (a-C) matrix. Regarding the W 4f photoelectron spectra, the main component W 

4f7/2 is placed at around 31.5 eV which indicates the existence of W-C bonds. This 

binding energy tends to shift towards 32 eV and the doublet peak to get broader as a 

consequence of the carbon enrichment [8]. Similar binding energies were found in other 

works [8,11]. In order to obtain a more quantitative insight of the compositional 

changes a fitting analysis was carried out in both peaks.  

Fig. 3 displays all the different components considered in the fitting analysis of C 

1s (a) and W 4f (b) XPS peaks before and after Ar+ bombardment using the sample R1 

(63 at.% of C) as representative example. The C 1s peak was fitted assuming main 

contributions from W-C (283.5 eV), a-C (285 eV), and C-O from surface contamination 

(286.7 eV and 288.6 eV). For the W 4f peak, besides the main component 

corresponding to W-C bonds at 31.5 eV, a doublet W 4f for the WO3 at 35.7 eV and the 

contributions from the W 5p peaks for each chemical species are considered. The fitting 

analysis enables to estimate the proportion of carbide/a-C inside the coatings and the 
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WCx stoichiometry. The obtained values following a similar procedure are summarized 

in Table 1.  

Fig. 4 illustrates the fraction of C bonded to W (CC-W/WW-C) (stoichiometry of 

WCx phases) and the fraction of total C with respect to the tungsten carbide phases 

(Ctotal/WW-C) (stoichiometry of WC/a-C nanocomposite). It can be noticed that from the 

R0.3 film, the content of free carbon increases above the carbide component. The 

variation of the C/W ratio in this component from 0.4 to 1.3 indicates the formation of 

non-stoichiometric WCx phases. These results are not surprising since transition metal 

nitrides [43,44] and carbides [45,46] are rather non-stoichiometric materials and tend to 

easily incorporate significant vacancy concentrations on both the metal and non-metal 

sublattices. In substoichiometric carbides the most significant defect is the C vacancy 

while in C-rich compounds, although the presence of W vacancies cannot be ruled out 

completely, the excess C can form a metastable solid solution [23,36]. Other authors 

[3,36] have observed as well high solubility of C (approx. 5-25 at.%) by XPS in 

reactively sputtered W films; despite the solubility of carbon in α-W is negligible at 

room temperature under equilibrium conditions (only ≈0.7 at.% at 2715 ºC). This fact 

can explain the high concentration of C-W bonds in the carbon-rich region by forming a 

metastable interstitial solid solution. The binding energy of this component would be 

similar to that of C in WC compounds and, therefore, undistinguishable contributing to 

the increment of the C/W ratio [47]. 

The formation of an amorphous carbon bonded-matrix is confirmed by Raman 

spectroscopy (Fig. 5a). Only for samples with carbon content higher than 50 at.%, the 

two peaks characteristic of the sp2 sites of all disordered carbons at 1350 (D-peak) and 

ordered graphite at 1585 cm-1 (G-peak) are clearly observed [48]. Identical results were 

found when the total carbon content exceeded the 48.8 at.% by Czyzniewski [11] or 65 
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at.%  by Voevodin et al. [8]. The main changes are noticed for power ratios R2 and R3. 

Fig. 5b shows the variation of the G peak and the relative intensity of D and G peaks for 

the samples containing a-C contents higher than 10 at.%, when the peaks are 

discernible. The G position shifts downwards from 1572 cm-1 to 1550 cm-1 indicating an 

increased disorder of the sp2-bonded carbon structure. However, less sensitivity to 

changes is noticed from the ID/IG ratio with the increment of the power ratio. 

 

3.3. Crystalline phase composition 

 

Tungsten carbide has a high number of compositional and structural forms. 

According to the W-C phase diagram [38], three different carbides are formed: the 

hexagonal stoichiometric monocarbide WC that melts incongruently; a face centered 

cubic (fcc) carbide β-WC1-x phase (where 0.34≤x≤0.43) with a NaCl structure; and a 

second hexagonal carbide W2C which presents four possible polymorphic modifications 

namely, low (α), intermediate (β and ε) and high-temperature (γ). These four 

polymorphs differ in the ordering of the C atoms in the interstitial positions as 

demonstrated by a recent paper of Suetin et al. [39]. Both phases, β-WC1-x and W2C are 

stable from 1250 to 2500 ºC respectively although hexagonal WC is the only 

thermodynamically stable phase at room temperature, metastability in the system has 

been reported in both concentration-driven and temperature-driven non-equilibrium 

transitions [49]. For instance, the metastable WC1-x and W2C are found to be formed as 

kinetic products from rapid cooling of WC. These two phases WC1-x and W2C are also 

those often observed by sputtering, as previously shown [8,23,30]. 

The X-ray diffraction patterns of the as-prepared WC/a-C films are shown in 

Fig. 6a in the region 20-80 (2θ º). Asymmetric and broad peaks are observed, indicating 
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nanocrystallinity and lattice defects. Indeed, the main identified phases correspond to 

hexagonal W2C and cubic β-WC1-x. No peaks from the hexagonal α-WC are observed 

despite of using a pure WC target and being the only thermodynamically stable carbide 

phase in the W-C system at room temperature. The crystalline character of the coatings 

decreases as the R parameter increases, becoming X-ray amorphous at the highest ratio. 

The increment of the power applied to the graphite target induces a reduction of the 

diffraction domain sizes, probably because carbon in excess makes the grain growth 

difficult [15]. 

In Fig. 6b, the diffractograms recorded in the region 30-50 (2θ º) of coatings R0, 

R0.1 and R0.3 are shown in detail. Initially, by single sputtering of the WC target (R0), 

the XRD shows a diffraction pattern that can be assigned to hexagonal W2C phase. In 

the four W2C polymorphs (α, β, ε and γ), the W atoms form an hexagonal close packed 

(hcp) sublattice in which half of the octahedral interstices are occupied by carbon atoms. 

Depending on the arrangement of carbon atoms, W2C may be disordered (at high 

temperatures) or ordered (at low temperatures). The low-temperature phase α-W2C has 

a hexagonal structure with carbon ordering and the high-temperature phase γ-W2C a 

hexagonal structure with a disordered arrangement of carbon atoms and vacancies. The 

XRD patterns of the these four polymorphs differ very little because these phases have 

the same hexagonal tungsten sublattice, whereas the atomic scattering factor of carbon 

is many times lower than that of tungsten. For this reason, changes in the arrangement 

of carbon atoms in W2C are only detectable at low diffraction angles (2θº<30). The 

polymorphs α-W2C, β-W2C and ε-W2C present some peaks at these low angles whilst 

none can be found for the γ-W2C [39]. A closer view of the GIXRD diagram at these 

low angles is shown for R0 sample in the inset of Fig. 6b. The total absence of peaks in 

this region is thus indicative of the γ-W2C phase. Palmquist et al. also concluded the 
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formation of this same phase using C60 as carbon precursor [36]. This high temperature 

structure with a disordered arrangement of carbon atoms and vacancies is probably 

reached because of the non-equilibrium conditions of the plasma sputtering processes.  

In the GIXRD diffractogram of the R0 sample, the (100) diffraction peak at 

34.5º and an intense peak at around 39º originated by the overlapping of the (002) and 

(101) planes are identified. Ignoring any possible strain broadening contribution, 

estimations of the grain size was done by means of the Scherrer’s formula.  From the 

broadening of these peaks an average crystallite size of 9 nm was estimated. The next 

sample R0.1 exhibits an additional peak located at about 42° attributed to the (200) 

reflection peak of the cubic β-WC1-x phase, while the overlapped intensity of the 

(002/101) planes of the γ-W2C phase is reduced. These results suggest that the R0.1 

film is a double phase film containing hexagonal γ-W2C and β-WC1-x phases. The 

crystallite size in γ-W2C was reduced to about 7 nm while the β-WC1-x crystallite size is 

estimated to be about 5 nm. In contrast, for higher R values, the diffraction patterns of 

the associated films exhibit mainly a broad peak located at about 37.5° which can be 

associated to the (111) reflection peak of the fcc β-WC1-x phase. A rough estimation of 

the crystalline grain size gives a value of 2-3 nm. These results, taking into account the 

range of carbon contents cited in Table 1, are in good agreement with previous works 

[37,49] where a transition from γ-W2C to β-WC1-x is observed at a carbon content of 35-

40 at.%. Further increment, above 45 at.%, results in XRD amorphous films with a 

weak and broad peak at 37.5º assigned to WC1-x (111) planes. Hereafter, we will use the 

general form W2C and also WC1-x without specifying the crystallographic structure here 

determined. 

 

3.4. Microstructure 
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The results of the X-ray diffraction experiments are further confirmed by TEM. 

Fig. 7 shows four representative planar-view TEM micrographs of coatings prepared at 

growing ratios (R0, R0.1, R0.5 and R3) together with their associated electron 

diffraction patterns. The microstructure is formed by small grains of 5-10 nm in the 

samples R0 and R0.1, however, these features vanish at R≥0.5. The presence of well-

defined electron diffraction rings is noticed for the lowest power ratios while they 

become more diffuse when the power ratio increases. These results are in agreement 

with a more disordered WC1-x phase and a progressive enrichment in amorphous carbon 

matrix. 

 Fig. 8 shows two pictures at higher magnifications of the coatings R0.1 and R1 

together with their associated ED patterns confirming the nanocrystalline character 

although with different microstructure. Thus, R0.1 can be defined as a polycrystalline 

sample formed by small crystalline domains whilst R1 is a nanocomposite of small 

crystals embedded in an amorphous matrix. Focusing on the sample R0.1, the 

interplanar distances of 2.1, 2.2 and 2.4 Å can be measured corresponding to (200) 

WC1-x, (101) W2C and (111) WC1-x, crystal planes respectively, corroborating the 

mixture of phases. Moreover, the indexation of the ED rings is in agreement with a 

mixture of W2C and WC1-x phases. In the R1 sample, it is distinguished a small crystal 

about 3-4 nm in diameter with a interplanar distance of 2.4 Å characteristic of the WC1-x 

(111) family of planes. The analysis of the diffraction rings for this sample leads to 

interplanar distances of 2.4, 1.5 and 1.3 Å. These values can be correlated with the 

family of planes (111), (220) and (311) of WC1-x crystalline phase. 

Fig. 9 contains four fracture cross-sections of the coatings R0, R0.1, R1 and R2 

examined by SEM as representative pictures of the different film morphologies. The 

underlayer of about 0.35 µm is only visible for the highest power ratios where the 
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differences in chemical and structure are more evident. Fig. 9a corresponds to the R0 

sample and is characterized by a dense structure. This sample was grown with a 

negative polarisation of the substrate (100 V d.c.) that induces ion bombardment during 

the growth process. This ion bombardment controls the microstructure directly by re-

sputtering and increases diffusivity of the adatoms as a consequence of both the 

increment in the substrate temperature and direct momentum transfer [30]. It is known 

that through these mechanisms ion bombardment inhibits columnar growth and 

preferential nucleation respectively [50,51]. In the next case (Fig. 9b), with a slight 

variation in the power ratio (R0.1) and the absence of bias, the development of a fine 

columnar structure is observed. By further increase of the carbon content, in the R1 

sample, this microstructure becomes glassy-like or fine-grained and can be correlated to 

small nanocrystals of WC1-x in a matrix of a-C [11,34]. A similar transition from 

columnar to glassy microstructure increasing the carbon content is also observed for 

others MeC/a-C nanocomposites [52]. In the last micrograph (Fig. 9d), the typical 

features for power ratios above 2 are displayed. In this case, a broad columnar 

microstructure is observed oppositely to what is seen in coating R0.1. Such typical 

microstructure is most likely due to the lowering in amount and energy of the impinging 

species affecting the film growth [53]. This fact correlates with the dumping of the 

power applied to the WC target down to 150 W for R2 and R3 and, the subsequent 

decrease of the deposition rate displayed in Fig.1a. 

In summary, after studying the chemical and phase composition by XPS, XRD, 

TEM/ED and Raman it can be concluded the following sequence. Initially, 

nanocrystalline hexagonal W2C (γ-disordered type) phase is mainly formed by single 

sputtering of WC target. The incorporation of carbon leads to a progressive reduction of 

the crystalline domain size and the nucleation of the cubic β-WC1-x phase. From a total 
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C content of 55 at.% (R0.5) the formation of composite films containing 

nanocrystallites of cubic β-WC1-x phase dispersed in an amorphous carbon matrix is 

clearly manifested. Further increase of the R parameter leads to a progressive increment 

of the free amorphous carbon content becoming comparable to the crystalline fraction 

from R2.  

 

3.5. Thermal stability 

 

 The thermal stability of the WC/a-C nanocomposite coatings was studied by 

annealing in vacuum (10-1 mbar) and the structural phase transformations were followed 

by in situ-XRD analysis. A detailed interpretation of the XRD and Raman analysis after 

annealing has been given previously [54]. Here, in Fig. 10a we display a sequence of 

the high-temperature XRD experiments for R1 sample to highlight the main 

conclusions. It can be seen that the sample does not change up to a temperature of 700 

ºC [55]. At this moment, the WC1-x phase transforms into W2C and WC phases that 

remain stable up to 900-1000 ºC [56]. Afterwards, they begin to decompose originating 

metallic W. Fig. 10b shows the relative intensity of the different phases as a function of 

the temperature. The intensity of each peak is normalized by dividing its maximum 

intensity along the annealing to follow easily the critical temperatures for each 

transition. The critical temperature for the first transformation is observed to change 

from 400 to 800 ºC when the carbon content increases from 33 at.% (R0) to 64 at.% 

(R1) [54]. The influence of the carbon content, controlled by the power ratios, is thus 

manifested in the thermal stability of the formed phases. The presence of an amorphous 

carbon matrix helps the stabilisation of the tungsten carbide phases and increases the 

oxidation resistance. This was further confirmed by thermal annealing up to 1100 ºC, 
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when a higher concentration of carbide phases (W2C and WC) by decomposition of 

WC1-x is observed in the presence of free carbon. Besides, this carbon in excess can 

prevent the oxidation at high temperature of tungsten phases by partial removal forming 

CO species.  

 

3.6. Mechanical properties 

 

Table 2 provides the mechanical and tribological properties as a function of the 

total and amorphous free carbon contents. The maximum hardness is obtained for the 

R0 and R0.1 samples (36 and 40 GPa respectively) whilst the remaining samples exhibit 

average values between 16 to 25 GPa. Comparing with the literature, the values for the 

hardest samples are among the highest reported for W-C sputtered films. Investigations 

carried out by Quesnel et al. [4] found a maximum microhardness (Hv=26 GPa) at a 

carbon total concentration of about 40 at.%. Likewise, Voevodin et al. [8] obtained a 

maximum hardness of 33 GPa in WC/DLC nanocomposite coatings for 40 at.% C and 

Palmquist et al. [36] 25 GPa with 35 at.% C. These carbon contents are similar to those 

measured for R0 and R0.1 samples in the range 33-37 at.%. 

According to the values of hardness (H) and reduced Young modulus (E*) as a 

function of a-C content (Fig. 11a), the samples can be classified into two groups: on one 

side, R0 and R0.1 (with high values of H and E* and a-C contents below 10 at.%) and 

on the other side, the remaining ones, whose mechanical properties are lower and 

decrease slightly with the increment of the a-C concentration from 10 to 31 at.%. 

Attending to the chemical and microstructural characterization carried out in these 

samples, it seems that the enhancement of the hardness can be attributed to a highly 

dense microstructure formed by nanocrystals (below 10 nm) of W2C (R0) and mixture 

of W2C and WC1-x (R0.1). This would be in agreement with the conclusion raised by 
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Palmquist et al. who associated the maximum value of hardness at around 35 at.% C for 

a mixture of W2C and WC1-x phases [36]. The second group, with 10-31 at.% of a-C, 

can be defined as nanocomposite coatings comprising nanocrystalline WC1-x grains 

dispersed in an amorphous a-C matrix. The observed decrease in hardness results from 

the amorphisation of the WC phase (grain size below 3 nm) and the increment of the 

soft a-C content. In particular, the enrichment in the latter limits the possibility of the 

nanocomposite strengthening effect to occur [17]. 

Elastic strain to failure (H/E*) and resistance to plastic deformation (H3/E*2) 

(resilience) have been commonly used to correlate them with the film toughness and 

wear behavior [16,57]. The experimental determination of toughness remains a 

challenging task in thin films due to their limited thickness and the influence of the 

substrate [58,59]. By considering the equation of the “critical strain energy release for 

fast fracture” (Gc = πaσc/E) [59], with a as the length of a pre-existing crack, it is 

concluded that fracture toughness would be improved by both a low Young’s modulus 

and a high critical stress for fracture (σc), which implies the need for a high hardness. 

Similarly, using the equation for fracture toughness (KIC) measured by the crack length 

induced by indentation, the equation contains the ratio E/H under the applied 

indentation load [59]. Therefore, in an attempt to correlate H/E* and H3/E*2 with 

toughness and wear behavior, we have calculated them from the measured values of H 

and E* for the coatings deposited under different conditions. In general, a low E* 

becomes desirable, as it allows the given load to be distributed over a wider area. 

However, this argument (although valid) contradicts the conventional fracture 

mechanics theory, which predicts a high modulus to prevent crack growth [60]. The 

calculated H/E* and H3/E*2 values are displayed in Table 2 and their dependence with 

the a-C contents are represented in Fig. 11b. Analogously to hardness, two groups are 
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found: R0 and R0.1 (the nanocrystalline coatings) and the rest of them (the 

nanacomposites coatings). This is mainly consequence of the strong interplay between 

H and E*. Within the first group, it is observed that the R0 sample exhibits the maxima 

in the H/E* and H3/E*2 parameters despite the hardest sample corresponds to R0.1. 

Galvan et al. [16] suggested that the total lack of columnar boundaries, as R0 does (cf. 

Fig. 9a), leads to further toughness enhancement and an improved resistance to plastic 

deformation. The samples from the second group show very similar values indicating a 

comparable behavior in terms of toughness and resilience. However, this conclusion can 

not be extended for the tribological properties as it will be discussed next. 

 

3.7. Tribological properties 

 

Friction coefficient (µ) and film wear rates (k) are shown in Table 2 and their 

dependence with the a-C content is displayed in Fig. 12a and 12b, respectively. It 

should be mentioned that the k values for samples R0 and R0.1 are not provided, since 

the transfer of mating material (steel) to the surface makes impossible the estimation of 

the wear track. Friction coefficient exhibits a decrease from 0.8 to 0.2 by increasing the 

a-C content with a sudden change around 7 at.%. The variation of the wear rate of the 

films along the series appears to correlate with the average friction coefficient. Similar 

behavior has been highlighted in other self-lubricant hard nanocomposites where the 

wear rate is not inversely proportional to the film hardness, as predicted by the 

Archard´s law [61], but rather controlled by the properties of the lubricant phase 

[11,62,63]. The formation of a third body layer in the contact preserves the counterfaces 

from degradation and promotes an easy shear of the sliding surfaces as it has been 

demonstrated earlier in many DLC, MoS2 and carbon-based solid lubricants [64-68]. 
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According to the film microstructure, crystalline and chemical composition presented in 

this work we can try to explain the observed tribological performance using the two 

categories described previously:  

Group I (R0 and R0.1): The main characteristic of these coatings is the major 

presence of crystalline W2C and WC1-x phases with grain sizes ranging 5 to 10 nm with 

scarce a-C contents (≤7 at.%). They posses high hardness (36-40 GPa), maximum 

toughness and resilience but poor lubricant properties. They interact severely with the 

steel counterface producing wearing of the ball and iron transfer to the wear track. 

Group II (R0.3 to R3): This class can be defined as nanocomposite coatings 

composed of a poor crystallized WC1-x phase surrounded by an amorphous carbon 

matrix. For the lowest a-C contents, where accordingly there is a higher concentration 

of the hard WC1-x phase, the production of abrasive debris particles contributes to 

accelerate the coating degradation achieving high frictions and high wear rates. When 

the a-C concentration is about 30 at.% of the total carbon (R2 and R3), it can be seen 

how there is a drastic diminution of friction together with the wear rate. This fact can be 

explained by a change in the wear mechanism from mixed abrasive/lubricant to pure 

sliding controlled by the a-C phase generated in the contact. This was confirmed in our 

previous work by Raman analysis of the ball counterfaces after friction tests [63]. Under 

these conditions, the specific wear rates reach k values in the range of 10-8 mm3/Nm, 

which are below typical wear rates of hard metal carbides and nitrides and comparable 

to that of metal doped or pure DLC coatings. Concerning friction, values as low as 0.2 

for coatings with ≈30 at.% of a-C are appropriated for operating in dry lubrication 

conditions similarly to many DLC and carbon-based compounds used in tribological 

applications [69]. 
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If we compare now the values obtained for the ratios H/E* and H3/E*2 with the 

wear rates, it is clear that the best results are not obtained from the hardest samples (i.e. 

the most resistant to plastic deformation). In fact, as previously highlighted, a 

significant improvement is obtained for the samples that contain sufficient lubricant 

phase to tune the wear mechanism from abrasive to lubricant. The samples prepared at 

lower ratios, R0 and R0.1, exhibit limited amount of a-C and their tribological 

performance is worse despite their enhanced hardness properties. These results differ 

from some previous publications, where the correlation between wear resistance and 

H/E ratios was emphasized [57,70]. The tribological behavior is indeed controlled by 

the friction-induced phenomena at the contact and the prediction of the wear rate 

performance by estimation of the H3/E*2 ratios appears to be inappropriate [62,63]. 

 

4. Conclusions 

 

Nanostructured WC/a-C coatings with variable contents of WC and amorphous 

carbon were prepared by controlling the sputtering power ratio applied to WC and 

graphite targets. The microstructural characterization by XRD and TEM/ED showed 

that increasing the C incorporation, the WC nanocrystalline phases evolve from γ-W2C 

to β-WC1-x. Further C enrichment leads to the increment of the amorphous C content 

forming a nanocomposite structure of small WC1-x crystals dispersed in a-C matrix. The 

determination of the fraction of carbon atoms bonded to tungsten (WCx phases) or 

bonded to carbon (as a-C matrix phase) by XPS resulted crucial for understanding the 

mechanical and tribological behavior of the coatings. Thus, the transition point is found 

when the a-C content is situated around 10 at.% (expressed in terms of total carbon 

content ≈50 at.%). This is also correlated with a microstructural transition point from 

nanocrystalline sub-stoichiometric WC compounds to nanocomposite WC1-x/a-C 
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coatings. The nanocrystalline coatings are characterized by their high hardness (36-40 

GPa) and high friction (0.8). When the a-C becomes the dominant phase the friction can 

be reduced down to ~0.2 with excellent wear rate in the range of 10-8 mm3/Nm and 

moderate hardness (16-20 GPa). The friction mechanism appears thus controlled by the 

supply of disordered sp2-bonded carbon to the contact. When it is insufficient, the hard 

tungsten carbide debris particles are responsible of abrasive wear of the counterface and 

high friction conditions. Besides, the addition of the carbon phase provides higher 

thermal stability to the coatings preventing the degradation of the tungsten carbide 

phases by thermal decomposition and oxidation. In conclusion, it is demonstrated the 

advantageous of this simple sputtering route with separate targets for the hard and the 

soft lubricant phase to control the microstructure, chemical composition and therefore 

the tribo-mechanical properties for selected applications. 
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Figure captions 

 

Fig. 1. (a) Deposition rate of coatings and (b) atomic percentages of W, C and O 

estimated by XPS as a function of power ratio. 

 

Fig. 2. (a) XPS spectra of the C 1s and (b) W 4f photoelectron peaks for the studied 

coatings. 

 

Fig. 3. (a) A representative example of the XPS fitting of the C 1s and (b) W 4f spectra 

for the coating R1 before and after Ar+ bombardment. 

 

Fig. 4. Fraction of C bonded to W (CC-W/WW-C) (stoichiometry of WCx phases) and 

fraction of total C total with respect to W in the tungsten carbide (Ctotal/WW-C) 

(stoichiometry of WC/C nanocomposite). 

 

Fig. 5. (a) Raman spectra of the WC/a-C nanocomposite films as-deposited. (b) G-

Position and ID/IG parameter versus power ratio 

 

Fig. 6. (a) Diffractograms for the WC/a-C films as a function of R. (b) Detail in the 

region 30-50º. The inset shows the absence of diffraction peaks in the low angle region 

for R0 film. The lines and symbols indicate the positions of the diffraction peaks for 

WC1-x and W2C patterns (JCPDS cards numbers: 20-1316 and 35-0776, respectively)  

 

Fig. 7. TEM planar view of samples (a) R0, (b) R0.1, (c) R0.5 and (d) R3 and their 

corresponding electron diffraction patterns. 

 

Fig. 8. (a) HRTEM micrographs of R0.1 with ED diagram associated indexed with the 

different orientations and possible phases. Interplanar spacings shown for different 

nanocrystals. (b) “Zero-Loss” HR TEM for R1 and ED diagram associated. Crystal is 

remarked on the micrograph. 

 

Fig. 9. Cross-section SEM micrograph of WC/a-C nanocomposites as representatives 

(a) R0, (b) R0.1, (c) R1 and (d) R2 coatings. 
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Fig. 10. (a) High-temperature XRD and (b) relative intensity of the different crystalline 

phases as a function of the temperature for the coating R1. The WC1-x,W2C, WC and W 

patterns correspond to the JCPDS cards numbers: 20-1316, 35-0776, 72-0097 and 01-

1203 respectively) 

 

Fig. 11. (a) Correlation between different mechanical properties: hardness (H) and 

reduced Young’s modulus (E*); (b) Elastic strain to failure (H/E*) and resistance to 

plastic deformation (H3/E*2), as a function of a-C content. 

 

Fig. 12. (a) Tribological properties: friction coefficient and (b) wear rate as a function of 

the a-C content. 
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Table 1. Film sputtering conditions, elemental composition by XPS with sputtering and 
chemical bonding for the WC/a-C samples.  
 

a) R is defined as PC/PWC ratio 
b) 100 V Bias applied 

 
 

Film Power applied 
(W) 

Ra) Thickness 
(µm) 

Elemental composition 
(at. %) 

Chemical bonding 
(at. %) 

PC PWC W C O W W-C C C-W C a-C 

R0 -- 250 0b) 0.8 63 33 4 66 27 7 
R0.1 20 250 0.1 1.3 58 37 5 62 35 3 
R0.3 70 250 0.3 1.5 47 50 3 50 40 10 
R0.5 125 250 0.5 1.6 40 55 5 44 40 16 
R1 250 250 1 2.5 32 64 4 35 39 26 
R2 300 150 2 1.4 28 69 3 31 39 30 
R3 450 150 3 1.8 27 71 2 30 39 31 
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Table 2. Mechanical and tribological properties for the WC/a-C samples.  
 

Film Ctotal 
(at.%) 

a-C 
(at.%) 

Mechanical properties Tribological properties 
H (GPa) E* (GPa) H/E* H3/E*2 µ k (mm3/Nm) 

R0 33 7 36 ± 4 413 ± 40 0.086 0.265 0.84 ± 0.01 - 
R0.1 37 3 40 ±10 522 ± 149 0.076 0.228 0.81 ± 0.01 - 
R0.3 50 10 23 ± 2 334 ± 55 0.069 0.111 0.59 ± 0.13 9.9×10-6 ± 3.3×10-6 
R0.5 55 16 22 ± 4 338 ± 50 0.066 0.099 0.49 ± 0.03 4.4×10-6 ± 2.1×10-6 
R1 64 26 21 ± 1 319 ± 23 0.065 0.088 0.35 ± 0.01 2.0×10-6 ± 1.7×10-6 
R2 69 30 20 ± 2 268 ± 30 0.073 0.103 0.20 ± 0.01 7.2×10-8 ± 8.6×10-9 
R3 71 31 16 ± 3 267 ± 48 0.059 0.055 0.19 ± 0.04 4.4×10-8 ± 1.0×10-8 

 
 
 


