
Clemson University

TigerPrints

All Theses Theses

5-2016

TailoredRE: A Personalized Cloud-based Traffic
Redundancy Elimination for Smartphones
Vivekgautham Soundararaj
Clemson University, vsounda@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized

administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Soundararaj, Vivekgautham, "TailoredRE: A Personalized Cloud-based Traffic Redundancy Elimination for Smartphones" (2016). All

Theses. 2387.
https://tigerprints.clemson.edu/all_theses/2387

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2387&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2387&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2387&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2387&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2387?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2387&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

TailoredRE: A Personalized Cloud-based Traffic

Redundancy Elimination for Smartphones

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Engineering

by

Vivekgautham Soundararaj

May 2016

Accepted by:

Dr. Haiying Shen, Committee Chair

Dr. Rong Ge

Dr. Walter Ligon

Abstract

The exceptional rise in usages of mobile devices such as smartphones and tablets has

contributed to a massive increase in wireless network traffic both Cellular (3G/4G/LTE)

and WiFi. The unprecedented growth in wireless network traffic not only strain the battery

of the mobile devices but also bogs down the last-hop wireless access links. Interestingly,

a significant part of this data traffic exhibits high level of redundancy in them due to re-

peated access of popular contents in the web. Hence, a good amount of research both in

academia and in industries has studied, analyzed and designed diverse systems that attempt

to eliminate redundancy in the network traffic. Several of the existing Traffic Redundancy

Elimination (TRE) solutions either does not improve last-hop wireless access links or in-

volves inefficient use of compute resources from resource-constrained mobile devices. In this

research, we propose TailoredRE, a personalized cloud-based traffic redundancy elimination

system. The main objective of TailoredRE is to tailor TRE mechanism such that TRE is

performed against selected applications rather than application agnostically, thus improv-

ing efficiency by avoiding caching of unnecessary data chunks. In our system, we leverage

the rich resources of the cloud to conduct TRE by offloading most of the operational cost

from the smartphones or mobile devices to its clones (proxies) available in the cloud. We

cluster the multiple individual user clones in the cloud based on the factors of connectedness

among users such as usage of similar applications, common interests in specific web contents

etc., to improve the efficiency of caching in the cloud. This thesis encompasses motivation,

system design along with detailed analysis of the results obtained through simulation and

real implementation of TailoredRE system.

ii

Dedication

I would like to dedicate this thesis to my parents, who are an example that with

hard work and dedication anything is achievable and without whom coming to the US and

doing my Masters at Clemson University would still be a dream; my uncle, who always

encouraged and motivated me; and all my wonderful friends who believed in me more than

I did in myself, which inspired me to do more than I thought I could. Finally, I would like

to dedicate this thesis to Dr. Haiying Shen, who helped me all throughout my Masters

and gave me the opportunity for research. I am very thankful for her advising, time and

support.

iii

Acknowledgments

While writing this thesis I had the support and encouragement of all my professors,

colleagues, friends and family. I would like to extend sincere thanks to all of them.

I would like to thank my advisor and committee chair Dr. Haiying Shen for her

support and insights all throughout my Masters work. I would like to thank my committee

members Dr. Walter Ligon and Dr. Rong Ge for their valuable advice and time for helping

me significantly improve my thesis.

I am thankful to Dr. Lei Yu for his guidance, motivation and directions for this

research. I would like to thank Shenghua He, who worked with me closely throughout this

project. In addition, I would like to thank all my colleagues in my research group for their

encouragement and advice.

iv

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . vii

List of Figures . viii

1 Introduction . 1

2 Related Works . 8
2.1 Redundancy Elimination: Inception and Evolution 8
2.2 In-Network RE Solutions . 10
2.3 Receiver Based RE Solutions . 13
2.4 Sender Based RE Solutions . 17
2.5 Summary . 18

3 System Design . 20
3.1 Overview of Generic RE . 20
3.2 System Overview of TailoredRE . 23
3.3 Cloud-Clone based TRE . 25
3.4 Application-adaptive RE . 32
3.5 MAXP-chunk partitioning algorithm . 34
3.6 Cache sharing among the clones . 37
3.7 Summary . 42

4 Experiments . 43
4.1 Simulation and Metrics . 43
4.2 Trace Analysis . 44
4.3 Analysis of TailoredRE efficiency . 46
4.4 Implementation of TailoredRE prototype . 54
4.5 Performance Evaluation of TailoredRE prototype 57
4.6 Summary . 78

v

5 Conclusion . 79

Appendices . 82
A Preferred Applications Survey . 83

References . 90

vi

List of Tables

4.1 Traces in the simulation experiment . 46
4.2 Traces Pool . 52

vii

List of Figures

2.1 Shared Cache Architecture . 11

3.1 Processing blocks in a TRE system . 21
3.2 TailoredRE System . 23
3.3 Architecture of TailoredRE. 25
3.4 Redundancy Detection and Encoding Process 27
3.5 Table Structure Utilized for RE at Client and Clone. 30
3.6 MAXP chunk partitioning. 37
3.7 Operation of Clustered Clones . 40

4.1 Trace Analysis . 45
4.2 Redundancy Hit ratio over time . 48
4.3 Bandwidth saving ratio over time . 48
4.4 Normalized throughput over time . 48
4.5 Redundancy Hit ratio over Cache Size . 49
4.6 Bandwidth saving ratio over Cache Size . 50
4.7 Normalized throughput over Cache Size . 50
4.8 Cache saving over time . 53
4.9 Cache consumption over Number of users 53
4.10 Performance Metrics for User 1 . 62
4.11 Performance Metrics for User 2 . 63
4.12 Performance Metrics for User 3 . 64
4.13 Performance Metrics for User 4 . 65
4.14 Performance Metrics for User 5 . 66
4.15 Performance Metrics for User 6 . 67
4.16 Performance Metrics for User 7 . 68
4.17 Performance Metrics for User 8 . 69
4.18 Performance Metrics for User 9 . 70
4.19 Performance Metrics for User 10 . 71
4.20 Performance Metrics for User 11 . 72
4.21 Performance Metrics for User 12 . 73
4.22 Bandwidth Savings among Users . 75
4.23 Power Consumption among Users . 75
4.24 Potential Energy Savings . 77

viii

Chapter 1

Introduction

In this chapter, we motivate and introduce the research. We present the back-

ground for Traffic Redundancy Elimination, the motivation for developing a new Traffic

Redundancy Elimination system, and the objectives and contributions of our research.

Mobile devices such as smartphones, tablets etc., are becoming increasingly popular

in the recent days. The proliferation of the mobile devices has led application developers

to deploy a large number of mobile applications especially Internet-based multimedia ap-

plications and news application such as YouTube, Quora, Spotify, BBC, CNN etc. As user

bases of these applications continue to grow day by day, web data traffic generated by these

applications also experience an unprecedented growth. These devices primarily use Wi-Fi

or Cellular Data Networks (3G/4G/LTE), commonly known as last hop wireless access

links, to access the Web. Although the technology associated with such links are evolving

periodically [33], they are not up to par to counter heavy mobile data traffic growth [12],

bogging down the last hop wireless links drastically reducing their performance. Interest-

ingly, several research works have analyzed the data traffic and shown that a significant

amount of redundancy exists in the Web traffic [20] [21] [5] [35] [42] [24]. The redundancy

stems primarily from common end-user activities such as repeatedly accessing, retrieving

or distributing the same or similar contents over the Internet. For instance, when a mobile

user during the time of the day loads multiple times the links belonging to a particular

1

website, several data objects such as HTML banners, multimedia like pictures, graphics,

audio, video and Ad banners are fetched multiple times. These data objects usually exhibit

self-similarity as they belong to a particular web domain. The repeated transfers of such

redundant data objects represent a waste of network resources. In more practical terms,

redundant traffic can be a serious problem for limited-bandwidth last-hop access links (e.g.,

wireless or cellular access networks), or even for high-bandwidth links operating at or near

their capacity.

Redundant traffic can also be an issue economically if users are charged based on the

traffic volumes of data sent and received. Besides cost, this redundant data communication

over last-hop wireless links is actually a more significant source of power consumption on

the mobile devices. To alleviate this problem traffic redundancy elimination research has

attracted much attention in recent years from both academia and industries. There has been

a consensus among the researchers that redundancy elimination offers significant benefits

in practice. The overall benefit of data redundancy elimination is better network delivery

performance in terms of higher network throughput and higher bandwidth savings leading

to lower response time and higher network utilization. Traditional redundancy suppression

techniques such as data compression [3] (e.g., GZip) can remove the redundant content

within one object efficiently. Other techniques such as object caching include web proxy

caches [46] [45] and peer-to-peer media caches [32], have also been deployed to serve the

frequent and repeated requests from the cache instead of the original source. However,

compression of data objects and application layer object-level caching cannot eliminate all

the redundant contents alone [42]. This is because neither object compression nor object-

level caching work well for contents that have been changed in only minor ways.

In order to perform effective redundancy elimination within as well as across data

objects, such as same or similar documents, multimedia files, or web pages, protocol-

independent redundancy elimination techniques operating on individual packets [42] [2] have

been explored and investigated recently. These techniques use fingerprinting chunks, com-

putation of hash values of the chunks and caching of redundant chunks of the data streams

2

and can be categorized into different types. In-network solutions, such as Cisco’s [13] Wide

Area Application Services (WAAS) and RiverBed’s SteelHead [37] involve placing middle-

boxes in network links. They cache all the data chunks from the flows that traverse the

link and encodes whenever the chunks are already in the cache entries. Middle-boxes near

to the source node will cache the payloads from the flows and encode the data chunks with

tokens if it detects these chunks in future. The middle-box near to the destination nodes

will reconstruct original data using its own cache and tokens. Other In-network TRE solu-

tions [41, 4, 7] are proposed to reduce the traffic redundancy by creating packet caches at

every router in a network and employing optimized redundancy aware routing algorithms to

efficiently forward the data within the network. However, these solutions can not improve

performance over last-hop links in mobile devices, since they do not conduct TRE at the

last hop.

TRE techniques categorized into receiver-based TRE solutions, such as Cellera-

tion [51], AC [38], PACK [50], Refactor [39], need the end-clients to send feedback of their

cache predictions or contents of cache itself to the sender so that the sender can conduct

the TRE based on these feedbacks. These methods can be deployed in the mobile devices

to reduce the redundancy and improve the throughput over the last hop. However, since

most of the TRE operations (hash computing and feedback sending) are conducted at the

receiver side, it will incur a large amount of computational overhead on the mobile devices.

In addition, the sender conducts the TRE based on the prediction messages, which con-

tains only parts of the chunk information in receiver’s cache reducing the effectiveness of

traffic redundancy elimination conducted. Hence, these methods impose a large amount of

computation and up-link transmission overheads on mobile clients as they are constantly

required to conduct hash computing and make predictions to notify the senders. As most of

the mobile devices have limited compute and up-link bandwidth resources, these methods

can provide limited benefits to the mobile users. In addition, as they do not employ a fully

synchronized cache between the sender and the receiver, the sender can not be fully aware

of the contents in receiver’s cache, which reduce the redundancy hit ratio and the effective

3

bandwidth savings attainable by TRE. EndRE [2], a sender-based TRE approach, offloads

the TRE computing operations from the clients to the application servers, which saves the

limited computation and energy resources of the mobile devices. Additionally, by trans-

mitting the hash information along with the chunks during the transmission, it can keep

sender’s cache between receiver’s cache synchronized, so that the sender can be aware of all

the chunks cached at the receiver, which will improve the redundancy hit probability, thus

the bandwidth savings. Nevertheless, EndRE is agnostic to the applications and conducts

TRE against the traffic from any application. Since memory resource in the mobile device

is limited, the chunks from mobile applications with lower redundancy ratio will occupy the

cache space, which will reduce redundancy hit ratio and the bandwidth savings caused by

TRE.

All of the existing TRE design or solutions are not well apt for mobile computing

environment for either or both of two important reasons.

• Application agnostic TRE solutions will result in reduce chunk hit ratio and eventu-

ally reduced bandwidth savings since “will be unused” chunks from less redundant

application resides in limited memory resource for prolonged period of time.

• Compute, uplink transmission and energy cost imposed by the existing TRE solution

thwarts the cost saved from benefits of performing TRE. Limited computation capac-

ity, uplink bandwidth and battery of the mobile devices requires TRE to operation

efficient.

In order to make the best of the limited cache resource at the mobile devices to

improve the operational efficiency of TRE, we propose a novel TRE system named Tai-

loredRE consisting of a pair of TailoredRE clone (in the cloud) and client (in the smart-

phone). With the advent of cloud computing, the cloud has been leveraged to extend the

capacity of mobile devices and improve the energy efficiency. Considerable research works

[11] [40] [16] [15] have been proposed to offload the application execution from mobile de-

vices to the cloud. Their solutions improve the execution time and save the battery on

4

the mobile devices by running computation intensive tasks on the cloud servers via com-

putation offloading. Following a similar stance, in TailoredRE, the clone acting as a proxy

for the smartphone operates in the cloud and performs compute intensive TRE operations

including chunk partitioning, hash computing, chunk caching and redundancy elimination.

To address the inefficiencies in other TRE methods, the TailoredRE clone provides per-

sonalized TRE service to the smartphones based on the user’s application usage behaviors.

Firstly, TailoredRE clone keeps track of the application usage activities of the smartphone

along with redundancy level associated with each individual application by analyzing data

requests and responses pertaining to the applications. Based on the metadata collected,

the clone calculates a TRE value for each individual application and makes a decision on

which mobile application TRE will be conducted against, based on the highest TRE value.

By conducting TRE against the application with the highest TRE value, TailoredRE can

always avoid the cache pollution from the application with lower redundancy ratios, which

will improve the cache hit ratio greatly, which in turn enables our system to provide higher

efficiency than other methods.

In addition to the tailored RE design, our proposed TailoredRE system also consid-

ers sharing the cache resources between different individuals in order to utilize efficiently the

cache resource in the cloud. TailoredRE system also considers to share the caches between

users in order to conserve much more cache resources in the cloud. But there are two chal-

lenges to implement the cache sharing between clones in the cloud. The first challenge is to

decide which clones can share the cache since if clone’s localities are far, the communication

cost between the clone and cache will be high. The second challenge is to maintain the

synchronization between the clone’s cache in the cloud and that in the individual mobile

device.

To solve the first challenge, we proposed a two-step grouping algorithm to group

the clones, firstly geographically and then based on user’s interest similarity, into clusters.

The clones within the same cluster will share the cache while the clones that belong to

different clusters will not. To solve the second challenge, we designed a two-layer caching

5

mechanism, in which there are two kinds of caches, the logical cache in the upper layer and

the physical cache in the lower layer. The chunk information, which occupies tiny cache

resource, will be cached in the logical cache and used to keep synchronization between the

clone and client while the raw data chunks will be cached in the physical cache, which can

be shared by all the clones in the same cluster.

In summary, the contributions of our work are listed as follows:

• Redundancy analysis and profiling. Analyze redundancy ratios of real traffic data

traces generated by mobile applications during daily use of smartphone and identify

that there is indeed significant redundancy in the traffic and verify whether different

applications have different redundancy ratios.

• Personalized TRE. Use the redundancy profile to tailor the RE mechanisms in

our method and perform TRE against certain applications rather than agnostically

against all data so that we avoid cache pollution and obtain higher cache hit ratio

resulting in higher bandwidth savings.

• Computing offload. Leverage the rich computation resources of the cloud to offload

the operational cost of performing the TRE from the mobile devices to their clones in

the cloud. Clones in the cloud are fully aware of the cache contents of their respective

smartphones.

• Cache sharing. We also group the multiple individual clones into clusters based on

the similarities of their user’s interests to avoid duplicate inter-user redundant chunks

among clones in the same cluster, which improves the efficiency of cache management

and conserve largely the cache consumption in the cloud.

• Real trace experiments. Developed our TailoredRE simulator and use the real

traces from mobile applications to simulate the TRE redundancy hit ratio, bandwidth

savings and throughput in our proposed TailoredRE system. Moreover, we developed

a prototype of TailoredRE to show the benefits of our system in real time traffic.

6

In this chapter, we have presented need and motivation behind the redundancy

elimination. In addition, we reviewed various existing TRE systems and their drawbacks.

We briefly described our proposed system and highlighted the contributions our work. The

rest of this thesis is organized as follows. Chapter 2 discusses related works. Chapter 3

describes in detail our system design, architecture and mechanisms involved in our system.

Chapter 4 presents the analysis of experiments and results obtained through simulation and

real implementation of TailoredRE system. In Chapter 5, we summarize and conclude the

research.

7

Chapter 2

Related Works

The intent of this chapter is to acquaint the readers with recent developments con-

ducted in the area of traffic redundancy elimination. We first introduce the studies that

have been conducted in the recent past to survey and explore various aspects involved in

redundancy elimination. Then, we introduce different categories of TRE solutions that have

been proposed in the recent times. Then, we present a review of previous studies that have

designed systems under each category of TRE solutions.

2.1 Redundancy Elimination: Inception and Evolution

Since the inception of World Wide Web, a sector of research areas in academia and

Information technology industries has been devoted to focused on the problem of improving

Web performance by reducing download times and bandwidth requirements. In 2000, Spring

et al. [42] introduced the concept of Redundancy Elimination (RE) based on the insight

is that dynamic and personalized web contents which comprise of most of the Web is not

caught by traditional Web caching platforms such as Squid [43] but likely to derive from

similar information [45] [36]. Instead, they suggested a protocol-independent technique for

identifying redundant information that does not suffer from the disadvantages posed by web

caching platform. The protocol-independent technique is an adaptation of algorithm first

8

proposed by Manber in [28] to find similarity between files in a large scale file system to

reduce storage overhead. The algorithm also termed as Rabin Fingerprinting is subsequently

applied by Broder [10] to detect similar Web documents. They utilized the redundancy

suppression technique to analyze network traffic and found that there is a high level of

redundancy in the traces collected. Their main focus was to show the potential for byte

savings by exploiting this redundancy. However, they have also proposed an architectural

description of a shared cache architecture which formed the basis of In-Network RE solutions

(also known as “Middleboxes” or WAN Optimizers). We review In-Network RE solutions

in detail in the next section.

With the growing popularity of Protocol-Independent Redundancy Elimination tech-

niques and wide scale deployment of redundancy elimination middleboxes to improve the

effective bandwidth of network access links of enterprises and data centers, link loads in

small ISP networks [14] [19], a few years later, Anand et al. in [5] have conducted a large

scale trace-driven study using several terabytes of packet payloads to investigate on the effec-

tiveness and efficiency of packet-level protocol-independent. While middleboxes have been

predominantly used in data center and ISP links to improve, their study found that 75% to

90% of bandwidth savings achieved by middlebox’s bandwidth savings is due to redundant

byte-strings from within a particular end-user traffic implying that pushing redundancy

elimination capability to the end hosts, i.e. an end-to-end redundancy elimination solution,

could obtain most of the middleboxs bandwidth savings. This finding eventually motivated

a number of researchers to pursue the design of End-to-End Traffic Redundancy elimination

system. They also explored a wide array of redundancy detection algorithms and compared

them in terms of their effectiveness and efficiency. Another key findings included in this

study claims that relatively new redundancy elimination algorithms such as MODP, MAXP

and Winnowing outperform the widely used Rabin fingerprint-based algorithm by 5%-10%

on most traces and by as much as 35% in some traces. From their trace analysis, they also

observe that redundant chunk matches in traces follow a Zipf-like distribution implying that

increasing the chunk cache size would offer only diminishing returns. They also claim from

9

their spatial and temporal analysis that most matches (70%) are small in size (less than

150 bytes) while only about 10% of matches are full packet matches and most matches are

from recent packets in the cache respectively.

Halepovic et al. in [24] studied many predominant factors that influence the practical

effectiveness of protocol-independent redundancy elimination (i.e., the byte savings achieved

on a network link). Based on their study, they claim that factors such as data chunk size, the

chunk selection algorithm, the sampling period, and the cache replacement policy. Based on

a careful investigation of the impacts of chunk size, sampling period, and cache management

on the TRE benefits, they proposed an array of new techniques such as include a size-based

bypass, chunk overlap, savings-based cache management, and content-aware chunk selection,

intended to enhance the current protocol-independent TRE techniques. We evaluate these

techniques on full-payload packet traces from university and enterprise environments and

demonstrate their effectiveness.

Recently, Zhang et al. [48] have conducted a detailed survey on different possible

techniques involved in major processing mechanisms of Traffic Redundancy Elimination

which includes fingerprinting, cache management and chunk matching mechanisms. They

have also elaborated on currently deployed redundancy elimination systems and different

ways to improve their performances. So far, we have seen works that have conducted a sur-

vey on different aspects of redundancy elimination systems. We review different approaches

employed to perform redundancy elimination in upcoming sections.

2.2 In-Network RE Solutions

In this section, we review in detail about some of the widely deployed commercial

WAN Optimizers and their drawbacks. We also present a few Network-wide Redundancy

aware routing solution proposed as an extension to overcome the drawbacks caused by

traditional WAN Optimizers. Finally, we also look at their shortcomings.

Several commercial In-Network TRE solutions [13] [37] involve placing a “WAN

10

Figure 2.1: Shared Cache Architecture

Optimization” middle-boxes across bandwidth-constrained links. As we have mentioned in

the last section, the technique of WAN optimization was first pioneered by Spring et al. in

[42]. They envisioned that protocol-independent redundancy suppression technique can be

used to improve the throughput of the back-haul WAN links with the architecture shown in

Figure 2.1. In this architecture, caches enabled with redundancy suppression algorithm are

placed at both ends of a bandwidth-constrained link. Each cache converts repeated strings

into tokens and passes these encoded, smaller packets to the other end of the channel,

where the original packet is reconstructed. Tokens are passed in place of replicated bytes

between the two cache locations on opposite sides of a bandwidth-constrained link. User

machines continue to communicate using un-encoded packets. The motivation behind this

architecture is trading memory and computation for bandwidth savings.

Redundancy Elimination Middleboxes also referred to as WAN Optimizers typically

works similar to the above mentioned architecture by caching all data payload or chunks

from the flows that traverse the link. By maintaining synchronized cache across links, it

removes redundancy by encoding the flow whenever duplicate chunks entries are detected

in the cache. WAN Optimizers could take the form of either hardware appliance or vir-

tualized software. Cisco’s [13] Wide Area Application Services (WAAS) which implements

a combination of data redundancy elimination, data deduplication and protocol accelera-

tion to achieve bandwidth gains. RiverBed’s SteelHead [37] is a WAN Optimizer which

employs data reduction and TCP acceleration techniques to optimize WAN links. These

WAN optimizers or Middle-boxes can be cost-effectively deployed only in in-network WAN

links and not feasible for performance improvement of the last-hop wireless links. Middle-

11

box, implemented in commercial WAN accelerators can eliminate redundancy over a single

in-network link and only remove intra source-destination pair redundant traffic and cannot

remove inter source-destination pairs redundancy.

To overcome this problem Anand et al. proposed Network-wide RE solutions [4] [7].

The contribution of their solution include a routing algorithm to eliminate both Intra and

inter source-destination redundancies by routing potentially duplicate packets onto common

links. The proposed redundancy aware routing algorithm in [4] essentially solves a linear

optimization problem to compute a route with minimum cost for a given physical network

topology and traffic redundancy profiles. The linear problem is subjected to link capacity

and flow conservation constraints. Following this Song et al. proposed a greedy heuristic

algorithm for redundancy aware routing with limited resources in [41]. The proposed al-

gorithm iteratively reroutes the traffic for each source-destination pair in order to minimize

the network resource cost until the number of overlay nodes reaches its maximum limit,

or the traffic for all the source-destination pairs has already been rerouted, or the network

cost cannot be reduced further. SmartRE [7], proposed by Anand et al. as a sequel to [4]

aims at coordinating the network-wide redundancy elimination split caching responsibili-

ties across multiple routers in accordance to the available resources to improve the effective

resource utilization of the routers. Network-wide RE solutions aim to improve the overall

bandwidth utilization within a network at the cost of memory and computational require-

ments at each router in the network. ICN-RE [34], proposed by Perino et al. aims to bridge

Information-Centric Networking (ICN) and Redundancy Elimination (RE). ICN, a novel

form of networking centered around information or content, where the network elements,

such as routers, are aware of the data they transfer requiring complex routing algorithm

and ubiquitous caching. A Web document or file in ICN-RE consists of a set of chunks, and

each chunk associated a fingerprint derived by hashing. Each router caches the chunk along

the path and caches placed at routers in the network are indexed using the fingerprints and

lookups are performed via exact match. Finally, a server informs clients, upon requesting a

document, about the fingerprints in the requested file using a manifest file that contains the

12

fingerprints of the two chunks composing the requested content. If ICN router happens to

previously cached chunks of the requested file, it serves the clients rather than forwarding

the client to the original content server. It should be noted that ICN-RE is designed for a

content-centric network, not yet available today.

The major drawback of the In-Network solutions as a whole is that although they

significantly improve the bandwidth utilization of backhaul networks, due to non end-to-end

nature of TRE performed, it fails to improve last-hop access networks.

2.3 Receiver Based RE Solutions

In order to provide significant performance improvement on last-hop access net-

works, it is necessary for RE technique to exhibit end-to-end nature resulting RE to be

pushed into network stacks of sender and receiver. Depending on where most of the func-

tionalities in RE lies, we can classify such end-to-end techniques into either sender based

and receiver based. In this section we present existing received based RE solutions (also

known as a prediction-based RE solutions) along with significant challenges posed by these

techniques to the current mobile computing environment.

To overcome the shortcomings of In-Network TRE solutions, several receiver based

(prediction based) TRE solutions such as [50] [38] [51] [39] have been proposed. They

primarily involve receiver to cache. Most of the receiver based solutions that have been

proposed primarily aim at improving the performance of the last-hop wireless links. In this

section, we examine the techniques associated with these solutions.

Zohar et. al proposed Celleration [51], a TRE system designed for the new gen-

eration of data-intensive cellular networks. Celleration activates three mechanisms at the

gateway, namely, flow coding, ad-hoc learning of mobile devices, and flow reduction. A

Celleration-enabled gateway, located at the cellular network Internet entry point, extracts

similarities in repetitive chunk flows across mobile devices with the flow coding mechanism,

predicts individual mobile users future data with ad-hoc learning mechanism, and enables

13

bandwidth savings for mobile end users with the flow reduction mechanism. In the flow cod-

ing mechanism, the gateway enabled with the flow coding mechanism continuously parses

the crossing flow to a sequence of variable sized, content-based chunks, which will be signed

by using SHA-1. The chunks signature sequences will be stored in the gateways local cross-

user signature store. It recognizes a crossing flow by its chunks signatures, which will also be

used to look up the potential future data in the cross-user signature store. Once a crossing

flow has been recognized, the ad hoc learning between the gateway and the mobile device.

In this phase, the mobile end device will respond with a list of time-limited approvals by

checking whether the corresponding data of the predicted chunks signatures are in its local

cache or not. If the ad-hoc learning indicates that some predicted data chunks already exist

in the cache of the mobile device, the flow reduction mechanism of Celleration, will be acti-

vated by refraining the gateway from forwarding the approved chunks to the mobile device

as they arrive at the gateway. The shortcoming of Celleration lies in ad-hoc learning phase

where the computation and up-link transmission overhead incurred when the mobile device

computes and sends a list of time limited approvals. In addition to the inefficiency, the

prediction failures that could occur in the gateway might result in retransmission overhead.

Zohar et. al also proposed Prediction-Based Cloud Bandwidth and Cost Reduction

System (PACK) [50] which aims at eliminating the traffic redundancy for cloud computing

customers. PACK offloads the computation cost of TRE from the cloud servers to the

end-clients. The receiver in PACK upon receiving the data stream parses it into chunks,

computes the signature and caches them along with their associated meta-data in the chunk-

chain store if no matches in the signature are found. If a matching signature is found in

the cache, the receiver retrieves the corresponding chunk chain and sends PRED message

containing the range of the predicted data, the hint (e.g., the last byte in the predicted

data) and the signature of the chunk. Upon receiving, the sender verifies the hint and

signature of the PRED message and if matched the corresponding range of the data is

replace with PRED-ACK removing the redundancy. As PACK offloads the expensive TRE

operation end-clients, it results in starvation of resources in already resource-constrained

14

mobile devices. Moreover, as the sender if not fully synchronized with receiver, failure

in predictions can cause additional overhead due to transfers of PRED and PRED-ACK

messages resulting in reduced bandwidth savings. It is also to be noted that PACK performs

redundancy elimination is limited to TCP traffic only.

Sanadhya et. al proposed Asymmetric Caching (AC) [38] where they consider some

baseline assumptions that sender is never completely aware of the contents in the receiver’s

cache. Their design imposes the receiver to send the contents of the cache to the sender

according to reactive strategy. In reactive strategy, feedback is sent upstream only when

data traffic is flowing to the destination. In this process, the receiver tries to match arriving

flow (byte stream) with past data in the cache and feedback that is likely to be most useful

with respect to the arriving flow is selected. The receiver performs the feedback selection

by partitioning the arriving flows into flowlets. Flowlet, a contiguous subset of a byte

stream, is computed using technique described in [8] which involves segmenting a piecewise

stationary time series into a separate time series which are individually stationary . If any

of the currently arriving flowlet is matched with one of the past flowlets in cache. Along

with regular cache, the sender maintains the feedback cache to maintain the feedbacks from

the receiver. Upon receiving the data, the sender computes hashes and looks them up in

its regular cache. If there is no hit, the hash is added to the regular cache, but the same

hash is then looked up in the feedback cache. If either of the cache lookups results in a hit,

the hash is sent to the receiver. Otherwise, the original data segment is sent as-is. It is

worthwhile to note that Asymmetric Caching (AC) consumes resources of already resource

constrained mobile devices in order to perform compute expensive flowlet extraction and

bandwidth expensive upstream transmission of the feedbacks.

A special array of receiver based solution such as Ditto [17], RTS-id [1], REfac-

tor [39] involves leveraging wireless overhearing to perform redundancy elimination. These

techniques operate on the fact that wireless radios can opportunistically overhear packet

transmissions on the network. Therefore they are also termed as Opportunistic caching.

In RTS-id [1], the receivers in a wireless network cache the overheard packets, and

15

the sender adds a special ID to the 802.11 RTS packet so that the receiver can check if the

data packet to be transmitted is in its cache. RTS-id operates by augmenting the standard

802.11 RTS/CTS process with a packet ID check, so that if the receiver of an RTS message

has already received the packet in question, it can inform the sender and bypass the data

transmission entirely. RTS-id relies on overhearing packets (both headers and payloads)

in full. Since the probability of overhearing a complete packet by the receiver is minimal

the performance improvement achieved using this approach would be very minimal. Many

content-centric approaches such as Ditto [17] and REfactor [39] have been proposed as an

alternative.

Ditto [17] proposed by Dogar et. al, is the first content overhearing system. Ditto

involves content-based naming and caching of overheard data to eliminate redundant trans-

missions. In Ditto, content overhearing is implemented at the granularity of 8-32KB chunks

and employs an unconventional pull-based transport protocol called DOT to implement

content-based naming. This prevents Ditto from being applicable to short flows and flows

with dynamic content, which makes up a significant fraction of Web traffic flows [5] and are

typical of request-response applications. Additionally, Ditto caches content only at mesh

nodes, not wireless clients, providing no benefits over the last hop wireless links.

REfactor [39] proposed by Shen et. al addresses the drawbacks in Ditto [17] and

RTS-id [1]. REfactor considers an Access Point (AP) operating in infrastructure mode

with some number of associated clients where they overhear and cache packets. AP before

forwarding to the incoming packets to the client it looks up for duplicate strings of bytes

that appeared in earlier packets in its cache. Based on the reception probability vector

associated with each client, AP then calculates the expected benefit for the receiving client

from performing RE on the packet. If the likely benefit is high, the AP eliminates the

duplicate bytes from the packet and inserts a shim instead. The shim contains a pointer

to a memory location in the client so that it can decode the packet. The problem with

REfactor arises if the content is not cached in the client, the client needs to request the

missing content, incurring additional transmissions. This penalty is imposed when the APs

16

estimate of whether the client has the content is incorrect.

One of the crucial problems associated with the receiver based (prediction based)

TRE is that they demand computational or up-link bandwidth resources from the receiver

to perform TRE. In addition to that, in the receiver based methods, the sender and receiver

caches are not fully synchronized and the sender has to rely on the receiver’s predictions,

thus affecting the maximum bandwidth savings obtainable.

2.4 Sender Based RE Solutions

In this section, we present a detailed review on sender-based RE solutions along

with its shortcomings.

A special class of sender-based RE solution called preliminary negotiation approach

is suggested in the early LBFS work [30] as well as in Wanax [25]. The LBFS protocol

is built on top of NFS version 3 and uses four special Remote Procedure Calls(RPCs)

such as GETFP, MKTMPFILE, CONDWRITE, and COMMITTMP. While reading client

requests description of chunks in file ¡hash, size¿ pairs and missing chunks (chunks not in its

cache) are read using normal NFS READ RPC. Write is buffered locally until close of file

and are performed using atomic updates where data to new temporary file and commited

contents of temporary file to file being written. WANAX is a TRE system tailored for

the developing world where WAN bandwidth is scarce. In WANAX, three mechanisms

are activated, namely, multi-resolution chunking (MRC), intelligent load shedding (ILS)

and a mesh peering protocol. Multi-resolution chunking (MRC) is enable to achieve high

compression rate and high storage performance with small memory pressure. Intelligent load

shedding (ILS) is activated to maximize effective bandwidth by adjusting storage and WAN

bandwidth usage. Mesh peering protocol is enabled to reduce latency by fetching content

from relatively higher-speed local peers instead of over slow WAN links when the content

is available from other local peers, respectively. WANAX incurs a three-way handshake

latency for non-cached data. The major drawback of these solutions is the need of extra

17

memory buffers and the added transmission delay.

EndRE [2], a sender-based TRE solution proposed by Aggarwal et al., offloads the

TRE computation overhead from the clients to the application servers, which saves the

limited computation and energy resources of the mobile devices. Additionally, by transmit-

ting the hash information along with the chunks during the transmission, it can keep the

cache between the sender and receiver synchronized. The synchronization makes the sender

be aware of all the chunks cached at the receiver and improve the redundancy hit prob-

ability, which improves the TRE efficiency and thus resulting in much higher bandwidth

savings. Nevertheless, EndRE is agnostic to the applications, which means that it conducts

TRE against the traffic from any application. Since memory resource in the smartphone is

limited, the chunks from applications with lower redundancy ratio will occupy the memory

space, which reserves less space to the applications with high redundancy ratios. As a result,

the redundancy hit ratio during TRE will degrade and so will the bandwidth savings.

2.5 Summary

In this chapter, we have discussed the development and evolution of various types

of Redundancy Elimination systems and have reviewed many studies conducted for the

improvement of the TRE systems. There has been an unique contribution by every TRE

system that has been proposed in solving a particular aspect of Redundancy Elimination

problem. But all of the existing methods have not adapted to the wireless or mobile com-

puting environment in addition to not taking into account the user preferences towards

the web contents. TailoredRE, unlike other existing methods, leverages rich computation

resources of the cloud to design efficient TRE for smartphones by offloading computation

from smartphones to its clones in the cloud. It also takes into consideration user’s predilec-

tion towards certain applications and tailors the TRE mechanism to perform TRE against

those applications rather than agnostically efficiently utilizing the limited cache resource

to achieve higher bandwidth savings. By employing clustered clones, we avoid caching of

18

duplicate inter-user redundant chunks by the clones, thus minimizing storage overhead in

the cloud.

19

Chapter 3

System Design

The intent of this chapter is to explicate the system design of TailoredRE. First,

in order to help readers get a clear perspective of various aspects of any TRE system, we

look at the functional overview of a generic TRE system. Then we briefly introduce the

components of TailoredRE and describe high-level functionality present in each of these

components. We then proceed to the architectural details of TailoredRE is introduced to

explain the methods employed by TailoredRE. Finally, each component in TailoredRE and

their interactions are described in detail.

3.1 Overview of Generic RE

The main idea of protocol-independent redundancy elimination is to encode the

outgoing packets by replacing identified redundant data chunks with fixed-size meta-data.

As all the protocol-independent RE techniques operate at the packet level or on the packet

payloads, we can also refer these techniques as packet level RE techniques. At the receiver

or end-hosts, the packets are reconstructed by replacing the encoded content from the chunk

cache by using the index information carried in the encoded packets. The packet-level RE

techniques rely on deploying a fingerprint table and a cache at each node in a network path

or in the case of end-to-end techniques at end hosts.

20

Figure 3.1: Processing blocks in a TRE system

A typical protocol-independent packet-level TRE implementation is shown in Figure

3.1. For every incoming packet in a particular direction, the TRE algorithm first computes

a set of fingerprints by applying a hash function to each chunk of the packet, which is a

sub-string of the packets payload. Limited by the size of the fingerprint or hash table, only

a subset of these fingerprints or hash values is selected as its representative fingerprints

in some way. The various algorithms employed in the process of selection of representa-

tive fingerprints along with their trade-offs are discussed in forthcoming sections. Both

the representative fingerprints and pointers pointing to the locations of the chunks in the

packet cache used to calculate its corresponding fingerprints are stored in the fingerprint

table. Each representative fingerprint is then checked against the fingerprint table to find

a matched data chunk in the packet cache. If such a matched chunk in the packet cache is

found, the original data chunk in the packet is encoded with a metadata, which consists of

sufficient information to reconstruct the encoded data chunk at the receiver side, such as a

fingerprint. In practice, the size of such meta-data is much smaller than that of the original

data chunk. In this example, two chunks are identified as redundant data chunks and the

packet is encoded by replacing the original redundant data chunks with the corresponding

meta-data. When the end-host receives the encoded packet, it will reconstruct the original

packet following the information carried in the metadata by using the fingerprint table and

packet cache at the receiver side.

21

The major processing stages involved in redundancy elimination include fingerprint-

ing, indexing and lookup, storing data, and data encoding and decoding as shown in 3.1.

Fingerprinting, also called chunk selection, facilitates the identification of redundant chunks

within and across the packets. For every incoming packet in a particular direction, it cal-

culates a set of fingerprints for each packet by applying a hash function to each chunk of

the packet and selects a subset of these fingerprints as the representative fingerprints. Each

representative fingerprint is then checked against the fingerprint table in the processing

stage of indexing and lookup. If one fingerprint already exists in the fingerprint table, a

redundant chunk is then identified and its corresponding position of the matched region in

the packet cache is also located by using its location information stored in the fingerprint

table. Hence, the lookup procedure in this stage involves two parts: fingerprint lookup in

the fingerprint table and redundant chunk lookup in the packet store.

If one or multiple redundant chunks have been identified in an arriving packet, the

packet will go through an encoding procedure by replacing every identified redundant chunk

by its corresponding fingerprint description, which consists of the fingerprint as well as the

byte range for the matched region in the packet cache. Finally, the new packet is inserted

into the packet store and its representative fingerprints are also indexed and stored in the

fingerprint table together with the location information of the chunks used to calculate

these representative fingerprints in the packet cache. Data decoding performs the reverse

operations of data encoding and tries to reconstruct the original packet from the compressed

packet by retrieving the chunks from the packet cache by using the information carried in

meta-data. The TRE decoder uses the fingerprint value stored in the meta-data to check

against the fingerprint table. If such a fingerprint value is found in the fingerprint table, the

data chunk will be fetched from the packet cache by using the pointer information stored

in the fingerprint table and the count of the redundant bytes before and after the chunk

used to calculate the fingerprint. Then, the original packet is reconstructed by replacing

the meta-data with these fetched data chunks from the packet cache.

As described above, several mechanisms are activated in the implementation of

22

Mobile Device

(Data Recovery

From Cache)

Data Request

Redundancy

Eliminated

Data

App

Server 1

App

Server 2

App

Server n

Last Mile Air

Interface

(3G/4G/Wi-Fi)

Data Request

Data Response

TailoredRE

Clone of the

Mobile Device
Data Response

Data Request

Cloud

Figure 3.2: TailoredRE System

protocol-independent RE. In TailoredRE system, the core mechanisms involved resembles

that of the above. We look at TailoredRE system in detail in forthcoming sections.

3.2 System Overview of TailoredRE

The objective of this research is to design an efficient TRE system to achieve higher

network throughput and eventually higher bandwidth savings that could be achieved by

using existing TRE solutions. Thus, we developed a system, TailoredRE, a personalized

cloud-based redundancy elimination system, that takes into account critical aspects of Traf-

fic Redundancy elimination in smartphones. The overall view of the TailoredRE system is

depicted in Figure 3.2. Here we see that TailoredRE system executing in the cloud parses,

identifies and eliminates redundant data traffic flowing from the application servers to the

mobile device, meanwhile acting as a proxy agent for the mobile device forwarding data

requests and responses pertaining to the mobile device. A brief description of the core

TailoredRE’s functional advancements which make it headway against existing solutions is

provided in this section.

Our proposed TailoredRE system consists of following four critical functional com-

ponents: Cloud clone based TRE, Application-adaptive RE, MAXP-chunk partitioning al-

gorithm and Cache sharing among clones.

Cloud clone based TRE:As we have seen in Chapter 2, a plethora of existing TRE

23

solutions foist resources of already resource-constrained mobile devices. TailoredRE system,

on the other hand, leverages the rich computation resources available the cloud to offload

the operational cost of performing the TRE from the mobile devices to their clones in the

cloud. In the cloud, the TailoredRE clone, acting as a proxy for a mobile device, performs

major TRE operations such as redundancy detection in data streams, hash computation,

caching and encoding of data streams. Clones and mobile devices maintain a synchronized

caches between them.

Application-adaptive RE: Different from other TRE systems, TailoredRE clone

provides personalized TRE to its mobile device users based on the profile information ob-

tained through Redundancy Profiling. Redundancy profiling involves analysis of redundancy

metrics such as the ratio of redundant bytes to total bytes in byte streams of traffic be-

longing to a wide array of applications a mobile user uses on his mobile phones. Through

this analysis, we select an application against which redundancy is conducted, rather than

performing redundancy application agnostically. The detailed review of analysis and se-

lection process will be described in forthcoming section. The application adaptiveness of

Redundancy Elimination constitutes the personalization feature of our system.

MAXP Chunk Partitioning algorithm: There exists a plenty of chunking or

fingerprinting algorithms to compute a set of representative fingerprints in a data stream.

These algorithms pose a significant trade-offs between each other. TailoredRE system

adopts MAXP algorithm to find the boundaries by looking for the local MAX ima in a

sampling period of P, such that the traffic data are divided into chunks by these bound-

aries. The basis behind the algorithm selection is detailed in forthcoming section.

Cache sharing among clones: Mobile traffic data naturally exhibit Inter-User

Redundancy since multiple users access same popular contents in the web during a given

period of time [48] [26]. In order take advantage of this phenomenon and utilize the cache

resource efficiently in the cloud, we design a cache sharing mechanism in which clones are

clustered based on the profile information of the mobile users. Then, the clones in the

same cluster will share their caches. The detailed review of the sharing mechanism will be

24

Figure 3.3: Architecture of TailoredRE.

described in forthcoming section.

3.3 Cloud-Clone based TRE

In this section, we list the functional components of Cloud-Clone and explicate all

the functionalities that reside in these components. We also discuss in detail how these

functional components interact with each other and with the clone to perform redundancy

elimination. Figure 3.3 shows the functional architecture of TailoredRE system.

As shown in Figure 3.3, the architecture of TailoredRE system includes the following

components: Data Forwarding (DF), Redundancy Detection (RD), User Behavior Profiling

(UBP), Redundancy Elimination (RE), Chunks Caching (CC) and Data Recovery (DR).

The cloud-based Clone in TailoredRE system includes Data Forwarding (DF), Redundancy

Detection (RD), User Behavior Profiling (UBP), Redundancy Elimination (RE) and Chunks

Caching (CC), while TailoredRE client includes Data Forwarding (DF), Chunks Caching

(CC) and Data Recovery (DR).

Clone in the TailoredRE, acting as a proxy for the mobile device, is the gateway

25

for all mobile device’s data access to the Internet. The clone conducts TRE in the data

response supposedly forwarded to the mobile device. Upon receiving the data response

packets from the remote server, the clone strips the packet and segregates the application

raw data, then deliver it to Redundancy Detection (RD) component as an input. The RD

component will partition the data into chunks according to MAXP algorithm which we will

explicate later in this chapter, compute their hashes and check whether the chunks exist

in the cache. If a chunk exists in the cache, the Redundancy Elimination (RE) component

encodes the data stream with its hash value, otherwise, the data stream is encoded with

newly found hash value along with the chunk. The Chunks Caching (CC) component is

responsible for caching the chunks with the Least Recently Used (LRU) strategy.

At the client side, the Data Recovery (DR) component decodes the incoming data

stream sent by the clone. If a hash value decoded in the data stream is found in its cache,

it retrieves and recovers the corresponding chunk. For other parts of the data stream which

has been found along with their chunk values, the client’s Chunks Caching (CC) component

adds them to its cache. The recovered data will be delivered to the higher modules in the

application process for further processing.

3.3.1 Data Forwarding (DF)

Data Forwarding (DF) component is responsible for performing basic forwarding

function in both the TailoredRE clone and client. The clone performs Data Forwarding

(DF) like a proxy for its mobile device, and it forwards all the requests from the mobile

applications to the application or web servers in the cloud and the response data from the

servers back to the smartphones. Upon receiving the data response from the application

server, it will perform TRE operations and send out the encoded (compressed) data to the

mobile device. At the client side, its Data Forwarding (DF) component will forward the

recovered data to the corresponding higher modules in the application process.

In TailoredRE system, Data Forwarding (DF) component is responsible for the

simple data transmission work, and let other components handle much more complicated

26

 Original Byte Stream

110101001010010

101010010101001

0101001001001

MAXP

Partitioning

Hash -

Chunk

Store

Shared

Cache

Memory

IF LOOKUP is True:

Encode the chunk with

(hash, shim)

Encoding

LOOKUP
SHA1

Computation

11010<hash,shim>

101010010101001

0101001001001

Figure 3.4: Redundancy Detection and Encoding Process

data processing task.

3.3.2 Redundancy Detection (RD)

Redundancy detection component in the clone of TailoredRE performs most vital

function of detecting redundancy in the data streams. Redundancy detection involves par-

titioning the traffic data into chunks, computation of hashes for the chunks, and encoding

the data stream containing redundant chunks with their hashes. An overview of redundancy

detection is provided in Figure 3.4 and can be described in detail as follows.

3.3.2.1 Chunk partitioning

As we have seen in Data Forwarding section, the clone receives the data response

packets from the application server pertaining to the mobile device’s ongoing data request.

After receiving these packets the clone strips off the packets’ header information and par-

titions them into chunks with variable size by using MAXP algorithm, which is used to

find the boundaries of the chunks. We will describe the details of MAXP algorithm in later

section.

27

3.3.2.2 Hash computing

After the data is partitioned into chunks, hash computing module of the Redun-

dancy Detection (RD) component will compute the hash value of a chunk with SHA-1 hash

function [18]. SHA-1 is a cryptographic hash algorithm where SHA stands for Secure Hash

Algorithm. In our design, we use SHA1 algorithm as the hash function whose result is

expressed as a 160 bit hex number. After the data stream has been parsed by this module,

the output produced will contain a list of chunks with their corresponding hash values.

3.3.2.3 Chunk Lookup

After the Hash computation, the data chunks After we check the hash rather than

the chunk data directly since the chunk size is much larger and needs much more time to

compare. But sometimes, hash collision, that is the two different chunks have the same hash,

may happen, which will result in the error data recovery at the client in the mobile device.

In order to avoid this kind of collision and guarantee the reliability of TailoredRE system,

we compare the chunk after the hash matches. If both the hashes and chunks match, we can

make sure that this chunk is redundant and give the checking results to the Redundancy

Elimination (RE) component. Since the cache cloud is fully synchronized with that in the

mobile device, this chunk definitely will be found in the cache in the mobile device, thus we

can replace it with hash during data transmission. Since chunk size is comparatively larger

than the hash size, the bandwidth will be saved when we transmit the hash rather than the

chunk itself.

3.3.3 User Behavior Profiling (UBP)

User Behavior Profiling (UBP) is a component of clone in TailoredRE that collects

and keeps track of the statistics of meta-data pertaining to the data responses that is

being received and forwarded to the mobile devices. The duty of UBP component is to

capture the application identity the data response has been forwarded to and data request

is sent from, the size of forwarded data and the cumulative sum of the size of the chunks

28

that hit the cache periodically. The primary purpose of this collection is to analyze and

profile the usage of applications by every individual user. The analysis results of the UBP

component include the redundancy ratio and activity of each application, the TRE factor

value, which indicates the expected benefits obtained by performing redundancy elimination

against the data responses of a particular application is found. In overall, the primer of

this component is to deduce the application usage behavior of the users of the mobile

device, we have termed this component as User Behavior Profiling component. Based on

the results from the User Behavior Profiling component, TailoredRE system can adapt

its Redundancy Detection and Redundancy Elimination functions to be conducted against

the data responses of the particular application which maximize the expected bandwidth

savings attainable thus making it application-adaptive RE. Later on, in this chapter, we

will also see that this module also provides significant information regarding clustering of

clones. Both of them will be described later in our paper.

3.3.4 Redundancy Elimination (RE)

While the data response traffic of an application traverse through the clone in Tai-

loredRE, the clone initially partitions them into chunks, and then computes the hashes of

these chunks as the fingerprints. Subsequently, it will check whether the chunks exist in

the cache. If a chunk exists, it will replace the chunk with its hash in the outgoing data

stream, shown in 3.4, and update the chunk’s offset in the clone’s cache at the same time,

otherwise, it will maintain the chunk in the data stream, and store the chunk and its hash

into the clone’s cache. Since in our system, the compute expensive TRE operations notably

hash computation operation is offloaded to the clone in the cloud to conserve the comput-

ing resource in the mobile device, the clone will send the hash along with its chunk. Upon

receiving the receiving the packets from the clone, the client retrieves the chunks and their

corresponding hashes directly. We can also observe in redundancy elimination process that

the hashes should be sent no matter whether the chunk exists in the cache or not in order

to successfully recover the data in the receiver or the client, while the chunks need not be

29

Figure 3.5: Table Structure Utilized for RE at Client and Clone.

sent if it exists in the cache. The one of the trade-offs in the redundancy elimination system

primarily exists between the bandwidth overhead due to hash transmission and bandwidth

savings obtainable by the redundant chunk elimination, also termed as chunk deduplication.

In the next segment, we look at how we eliminate this unnecessary transmission overhead

of hash values.

In order to reduce the overheads of hash transmission and improve the bandwidth

savings during TailoredRE operation, we adopt a light-weight hash transmission mechanism.

The data structures in both the clone’s cache and client’s cache are maintained in the form

of tuple table. In the clone’s table, the tuple includes the chunk’s offset, chunk’s hash and

the chunk itself, while in the client’s table, the tuple includes just the chunk’s offset and

the chunk, as shown in Figure 3.5. Instead of transmitting hash values, TailoredRE chooses

to transmit the offset of the hash-chunk pair in the tuple table. When the clone sends the

offset to the client during the transmission, the client will find the chunk based on the offset

and operate the chunk insertion, movement and remove as what the clone has done, so that

the clone’s cache and the client’s cache can be kept synchronized. 4-byte offset can indicate

232 chunks, which is large enough to indicate all the chunks in the cache in our system.

But the hash of the chunk, computed with the SHA1 algorithm, is 20 bytes. Thus, we can

see that, by transmitting the chunk’s offset instead of the chunk’s hash, the transmission

30

overhead is reduced by about 4 times.

3.3.4.1 Chunks Caching (CC)

Both the clone and client have the CC components, which are responsible for the

cache management for the clone and client. The clone’s cache and client’s cache should be

fully synchronized so that if the clone find a redundant chunk in its cache, it can be certain

that the chunk definitely in the client’s cache.

In order to maintain the full synchronization between the clone’s cache and the

client’s, the CC component in the clone and the CC component in the client have to behave

synchronously. The cache is maintained as a queue data structure. In our TailoredRE

system, both the CC component of the clone and that of the client use Least Recently Used

(LRU) [24] caching policy to manage the chunk caching. That is, when a new chunk needs

to be cached, if the chunk exists in the cache, CC component will move the chunk from

its previous position to the front of the queue. If the chunk does not exist in the cache

and the cache is fully occupied, then CC component will remove the chunk at back of the

queue, and insert the chunk into the front of the queue at the same time. By operating like

this, the chunk in the cache that has not been used for relatively long time will be removed

when a new chunk needs the cache space to insert, but the chunk that is frequently used

will always stay the relative front position in the cache, which will make the cache resource

utilized efficiently and benefit for the redundancy hit during the TRE operation.

3.3.4.2 Data Reconstruction (DR)

DR component, in the TailoredRE client, is responsible for recovering the com-

pressed data into the raw data.

The client keeps receiving the data packets sent by the clone and deliver the packets

to the DR component upon receiving the packet. DR component will strip the header of

the packet and obtain the application data in the packet. Subsequently, it split the data

by the shim between each chunk. If the chunk unit just contains the chunk information

31

(offset), DR will find the chunk in the cache based on its offset in the cache and replace it

with the chunk, and the CC component will update this chunk to a new offset since this

chunk is used. If the chunk unit contains both the chunk and its offset, which means the

chunk is a new chunk, CC component will cache it conforming LRU.

After the data is reconstructed, it will be forwarded by DF component in the client

to the destination application process according to the port number in the packet header.

3.4 Application-adaptive RE

Application-adaptive RE is one of the most important features of TailoredRE sys-

tem. Different from other TRE methods, TailoredRE clone provides personalized TRE,

done by RE component, for its smartphone user adaptive to the profiling of user’s appli-

cations, done by UBP component. That is, before conducting TRE, the clone will firstly

analyze the redundancy ratios of the traffic from the user’s preferred mobile applications

and the activities the user shows towards to them. Subsequently, the clone will make a

decision on which mobile application the clone conducts TRE against based on the profiling

of user behavior. The selection method will be described in detail in architecture section.

UBP component is crucial to TailoredRE clone, it is also one of the distinguishing factors

in our TailoredRE system.

3.4.1 Profiling of user’s applications

There are two important metrics based on which UBP component will analyze and

profile for the user of a mobile device. The first metric is the redundancy ratio distribution

over different mobile applications, and the second one is the data response size (i.e., cumu-

lative sizes of data response payloads over a period of time) distribution over the various

applications.

UBP records applications the user k frequently uses, and maintain an application

set Uk = {A1, A2, ..., An}, where Ai is a two-dimension metric (ri, di) to record redundancy

32

ratio, ri, and data transmission volume, di for mobile application i. UBP simply adopts

the accumulatively history record when that application has been chosen as the target

application (i.e., the application against which the TRE would be conducted against),

in order to avoid extra computing and memory resource. For example, if the last time,

TailoredRE clone conducts TRE against application m, and its cumulative redundancy

ratio rm can be easily collected by calculating the ratio of the total hit cache and the total

transmission data during a certain time. Next time, when the UBP find that application m

is not being used by the user, TailoredRE switches to the new target application, but the

rm will continue recording its redundancy ratio for profiling.

When application i has been chosen as the target by TailoredRE clone to conduct

TRE against, UBP will simply update its redundancy ratio metric, ri, by computing Vhit

Vtotal
,

where Vtotal is the total data transmission volume and Vhit is the total bytes of the chunks

that hit its cache during a certain time window T . For the application that is not chosen as

the target, its ri will not be updated until it is chosen as the target again. For the system

setup period, the target is selected randomly, since there is no history profiling for all the

applications.

The data transmission volume for each application can also be easily collected by

the clone. Since the data volume during a certain time can reflect the activity of the user,

we can use the relative data volume as the activity factor, denoted as ai, where ai =
di∑
di
,

to represent the degree of activity of mobile application i the user shows towards to. For

example, if facebook, youtube and Quora data transmission volumes are respectively 1GB,

2GB and 3GB during a certain time, the activity factors of them are respectively 0.17, 0.33

and 0.5.

With these two metrics, for application i, UBP can calculate a TRE value factor,

denoted as vi, computed by vi = ri · ai. The value factor reflects the benefits when Tai-

loredRE conducts TRE against the application i. It is reasonable that the application with

higher redundancy ratio and higher activity will have higher value factor, which should be

chosen as the target application with higher probability.

33

3.4.2 Adaptiveness in TailoredRE

Other modules in the module through which the data responses traverse, such as

Redundancy Elimination, Redundancy Detection component takes inputs from the user

behavior profiling (UBP) component, and chooses the application with the highest TRE

value factor as the target application to conduct TRE against. Consequently, the cache can

only be reserved for the target application i.e., the chunks from the target application will

only be cached in the cache and rest of the applications data responses will be forwarded

directly the mobile device. If the any other application’s value factor increases , TailoredRE

switches to perform TRE against this application and flushes the previous cache.

Since the redundancy ratio of the traffic generated by the same application some-

times fluctuates over the time, as shown in Figure 4.2, frequent decision changes will cause

the frequent cache flush, which will degrade the TailoredRE system’s redundancy hit ratio.

To avoid this scenario, TailoredRE system will set the decision update period for a larger-

scale duration, for example, one hour. Additionally, if UBP component finds that a target

application has not sent data for a long time, it will activate the RE component to update

the decision.

With the application-adaptive RE design, RE component in our TailoredRE system,

can always conduct TRE against the application with highest TRE value factor maximizing

the redundancy hit ratio and total attainable bandwidth savings.

3.5 MAXP-chunk partitioning algorithm

This section elaborates on the core algorithm module in the TailoredRE system -

the MAXP chunk Partitioning algorithm. There are numerous content dependent chunking

algorithms that have been studied and implemented in the field of redundancy suppression

and elimination. They not only pertain to network traffic redundancy elimination system

but also can be applied to large file and storage systems. This algorithm determines the

chunk boundaries using content instead of offset, so localized changes in the data stream

34

only affect chunks that are near the changes, which enables efficient and robust duplicate

content identification across different data objects. A number of content-based chunking

algorithms have been proposed, including Rabin fingerprinting used in [42, 17], MAXP [6],

SAMPLEBYTE [2], DYNABYTE [23] and XOR-based rolling hash [50]. TailoredRE uses

MAXP [6] to define chunk boundaries because MAXP provides uniformly distributed chunk

boundaries across the payload and imposes a lower bound on chunk length and low com-

putational overhead.

MAXP, a content dependent chunking algorithms, has been described elaborately

by Bjørner et al. in [9]. It is also used by Manber in [28] to find similar files in large file

system. MAXP is intended to improve computation efficiency of MODP and WINN. Anand

et al. in [5] have done a trace-driven performance study of MAXP and MODP algorithms.

In this study, they measure the bandwidth savings obtained by both the algorithm across

different sampling periods for a given window size of 32 bytes. They have shown that due

to the uniform selection of fingerprints in MAXP and clustered selection of fingerprints in

MODP, MAXP outperforms MODP by 35%.

The algorithm of MAXP is depicted in Algorithm 1. To ensure that markers/fingerprints

are selected uniformly in each block, in MAXP, the local-maxima is computed over the data

bytes in the byte stream directly as digits to select the markers. Once the marker bytes

are chosen, we compute fingerprints corresponding to that chunk. This results in reduced

computational cost rather than computing a series of fingerprints before finding maxima

in winnowing. This significantly lowers the computational overhead making it efficient and

effective. Thus, we select MAXP as our redundancy detection algorithm.

MAXP selects a position i.e., index in a byte array as chunk boundary if its byte

value i.e., byte directly as digit is the maximum (or minimum) over all of the byte values

found over the p-byte region centered at that position. The packet payload is divided into

chunks by these boundaries, as shown in Figure 3.6. The expected chunk size is p and all

chunks must have length at least ⌊p/2⌋ except the last one at the end of payload [31]. We

ignore the last chunk if its size is less than ⌊p/2⌋ such as the chunk following Chunk2 in

35

Algorithm 1 MAXP chunk partitioning algorithm

Input: Stream (bytes)

Output: Hash list

Initialisation :

1: w = 128 //Minimal chunk size

2: p = 256 //Sampling interval

3: len = length(Byte Stream) //Stream Length

//Marker Identification and Hash computation Over the Byte

Stream

4: previousMarker = 0

5: nextMarker = 0

6: index = 0

7: while (index < len) do

8: index = previousMarker

9: nextMarker = maxima(i,i+p,data)

10: chunk = data prevMarker:nextMarker

11: hashList.add(SHA1(chunk))

12: previousMarker = nextMarker

13: end while

14: return hashList

36

Figure 3.6: MAXP chunk partitioning.

Figure 3.6. p should be significantly larger than the sum size of a chunk hash and shim

in TailoredRE because the effective bandwidth saving resulted from a successful chunk

prediction is essentially chunk size minus the sum of the sizes of hash and shim. The

determination of chunk size should consider the trade-off between prediction overhead and

bandwidth savings. A larger chunk size reduces the number of chunks cached in the cache,

which will increase the lookup speed while a smaller chunk size can increase the detection

efficiency of redundant bytes. In TailoredRE system, p is set to 256 bytes, accordingly, the

minimum chunk size is 128 bytes.

3.6 Cache sharing among the clones

Several previous studies [51] [49] [27] [22] have shown that redundancy exhibited in

network traffic is of two types intra-user temporal redundancy and inter-user redundancy.

Inter-User redundancy occurs when a peer group of users frequently accesses the same web-

sites or applications due to their similar interests. In [26], Keralapur et al. have conducted

a real network traffic trace-driven study of similarity between the users to formulate the

user behavior profiling problem as a “co-clustering” problem.

In order to reduce the total cache consumption in the cloud, TailoredRE system is

designed to share the cache resource between clones. However, there are two challenges we

need to consider: the first challenge is how to group the clones in order to make the cache

37

sharing efficient and the second challenge is how to share cache in the cloud, while keeping

the cache in the cloud and that in the smartphone synchronized. To solve the first challenge,

we propose two-step clone grouping algorithm and designed a two-layer caching strategy to

solve the second.

3.6.1 Two-step clone grouping algorithm

Our proposed algorithm includes geographically grouping and user interest-based

grouping.

Firstly, TailoredRE roughly groups the clones based on their localities in the cloud,

since the cache sharing between the clones with long distance will cause remote communi-

cation thus incur large bandwidth overheads in the network. For example, if clone A and

clone B locate in the same virtual machine (VM) or physical machine (PM), and they share

the memory resource in the same VM or PM, the communication bandwidth overhead be-

tween the shared memory and each clone will be small. However, if clone A and clone B are

in two different machine clusters, if they share the memory resource, the communication

bandwidth overhead will be high since they cost not only the private bandwidth (within

PM), but also the public bandwidth (inter PM). Considering this, our TailoredRE system

initially groups the clones by the locality, specifically, the clones which locate in the same

PM will be grouped into a section.

Subsequently, TailoredRE system will group the clones in the same section into clus-

ters based on their belonged user’s application preference. Denote the user i’s application

set as Ui = {app1, app2, ..., appk}, where appk is the application ID, defined by the clone

based on the application information in the traffic. Ui can be easily obtained in UBP,

since UBP component keeps profiling user’s behaviors. We assume that two users with the

same application set will have the same interest, and there will be highly similarity in their

data transmission. However, sometimes it is not easy to find two users who have complete

overlap of their application preference, and the users have the lots of common applications

also have the same interest with high probability and their inter-user redundancy would

38

also be high. For example, if user A and user B will have similar interest, they will watch

the same objects online, such as the same figures, the same videos, thus, there will be high

inter-user redundancy in their traffic. Considering this, we design the user interest based

clone grouping algorithm as follows: Firstly, the grouping controller randomly picks up a

user, and compare its application set with other users and count the number of common ap-

plications between this user and other users. Secondly, rank the user based on their count,

and group the top N users’ clones into one cluster. Subsequently, repeat these two steps for

the left users in this section until all the clones are clustered. But some special case should

be considered. If a certain user’s the highest count of common applications with other users

is less than 2, which means that this user’s interest is not similar with other users, we will

not group this user.

By geographically grouping and user-interest grouping, the clones in the cloud are

grouped into clusters. The grouping operation generally happens when there is a batch of

new users join in the section. There is a threshold for the grouping update, which means

that if the increasing number is larger than this threshold, the grouping operation will be

executed.

After the clones are grouped, the clones within the same cluster will share the cache,

the clones inter-cluster will not. By this way, the cache resource can be used efficiently.

3.6.2 Two-layer caching mechanism

In our TailoredRE system, cache in the clone should be synchronized with that in

the client for the purpose of improving the redundancy hit ratio, however, sharing cache

with other clones will break this kind of synchronization. For example, assume clone A’s

cache and client A’s cache both have the chunk 1 and clone B’s cache and client B’s cache

both have chunk 2. When clone A and clone B share the cache with each other, clone A’s

cache will have chunk 1 and chunk 2, but client A just have chunk 1, thus the clone A’s

cache and client’s cache are no more synchronized.

In order to solve this problem, we design a two-layer caching mechanism, in which

39

Figure 3.7: Operation of Clustered Clones

there are two kinds of caches as shown in 3.7: logical cache for individual clone and physical

cache for all the clones in one cluster. The chunk information for each clone, including chunk

hashes and chunk address in the physical cache, will be stored in the individual logical cache

and the real chunk data will be stored in the shared physical cache. The logical cache is

used to keep synchronized with the cache in the client while the physical cache will store

the chunks to keep the correctness during the TRE. The logical cache is deployed in the CC

component mentioned above and we just need to replace the regular cache with the logical

cache. For other components, the logical cache has no difference with the regular cache.

But there will be communication between the logical cache and the physical cache.

In the data structure of physical cache, for each chunk, there is a marker list or

owner list of chunks denoting which clones the chunk belongs. For example, for chunk1, its

marker list stores the clone IDs of clone A, clone B, and clone C, which means that this

chunk belongs to clone A, clone B and clone C. Each operation in the logical cache, such as

chunk insertion and chunk remove, will incur the chunk update in the physical cache. The

operations in each clone’s logical cache and simultaneous operation in the cluster’s physical

cache can be shown as below:

• Chunk movement: After chunk partitioning and chunk hashing, clone’s RD com-

ponent will check whether the chunk exists in the cache. CC component will firstly

40

check chunk hash in the clone’s logical cache, and the logical cache will check whether

the chunk really the same with this chunk (to avoid the hash collision) in the cluster’s

physical cache. After a clone’s RD component finds that the chunk’s hash exists in

its logical cache and the chunk exit in the cluster’s physical cache, it will move that

chunk to the front of the clone’s logical cache. In this case, the cluster’s physical cache

needs to do nothing about the chunk update.

• Chunk insertion: After a clone’s RD component finds that a chunk is a new chunk,

and if the clone’s logical cache is not full, this chunk will be inserted into the cache.

Firstly, the hash will be inserted into the clone’s logical cache, and the logical cache

will check whether the chunk is already in the physical cache inserted by other clones.

If the chunk exists already, the physical cache will put this clone’s ID into the chunk’s

marker list or owner list, otherwise, the physical cache will insert this chunk into its

cache table.

• Chunk deletion: After a clone’s RD component finds that a chunk is a new chunk,

and if the clone’s logical cache is full, then the last one in the clone’s logical cache

will be removed. Firstly, the logical cache will find the chunk in the cluster’s physical

cache according to its address and check its marker list. If there are the markers from

other clones in the list, the physical cache will just remove the clone ID of the clone

logical cache belongs to in the marker list, otherwise, the physical cache will remove

the chunk.

The logical cache provides the CC component with the interface, such as lookup

(Chunk), insert (Chunk), delete(Chunk), the same with cache we mentioned above. Thus,

for the CC component and other components in the clone, they are the same. But inside

these two kinds of caches, they are different. In the logical cache, it just stores the chunk

information, such as the chunk hash and its address in the physical cache. However, the in

the regular cache, it will store both the hashes and chunk.

41

3.7 Summary

Overall, this chapter provided a detailed description of the important components

of TailoredRE and how all the components together constitute to provide efficient person-

alized cloud based redundancy elimination service. We have also looked into some of the

distinguishing factors of TailoredRE that makes it advantageous than the existing TRE

systems. The next chapter starts by discussing the real world trace analysis of the network

traffic captured from various widely used smartphone applications. Then, we define the

metrics to evaluate the TailoredRE system and analyze the results we obtained through the

simulation of TailoredRE system. After that we delineate the details constituting the real

implementation of TailoredRE system followed by analysis of the results obtained from real

experimentation.

42

Chapter 4

Experiments

This chapter starts by presenting the trace analysis and simulation results of Tai-

loredRE performed on the real data traffic traces collected over a period of approximately

two months beginning January, 2016. We look at some of the implementation details of

the Simulation along with metrics that we utilize to measure the performance. Then we

dive into trace collection and analysis methods along with results we have observed from

analyzing the traces. Then we describe our simulation methodology and analysis of results

obtained through simulation. We then pivot to discuss the implementation details of real

world prototype of TailoredRE system. We describe the details involved in all the necessary

modules in our prototype to provide readers a perspective of how the TailoredRE system

operates in real time. Finally we analyze the results obtained through the experimentation

of our real world prototype.

4.1 Simulation and Metrics

To explore the effectiveness and efficiency of our TailoredRE system, we developed

a simulation program consisting of a pair of clone (sender) and client (receiver) developed

in Java. Also, a simulation platform, including three java classes: Cloud.java, Cluster.java

and Clone.java, were developed to simulate the performance of the our proposed caching

43

sharing mechanism in the cloud. All of our simulation experiments are real trace-driven,

and traces we use are shown in Table 4.1 and 4.2.

We measured the following metrics in our experiment:

• Redundancy hit ratio: It denotes the ratio of the total bytes of chunks that hit the

cache to the total data volume and computed by Vhit

Vtotal
, where Vtotal is the total data

volume and Vhit is the total bytes of the chunks that hit the cache.

• Bandwidth saving ratio: It is calculated by Vhit−Voverhead

Vtotal
, where Voverhead is the data

volume of chunk information in content transmission and Vtotal is the size of the total

transmitted content data.

• Normalized throughput: It is computed by rRE

rNo−RE
in order to show the final through-

put improvement caused by both RE and network overhead reduction.

• Average Cache Saving: It denotes the reduction of the cache resource consumption

caused by cache sharing between the clones in the same cluster.

4.2 Trace Analysis

This section is devoted to discussing the results we obtained from the large scale

data trace analysis.

4.2.1 Trace Collection

We conduct our statistical data analysis on payloads of packets from real wireless

traces. To perform our data collection we set-up a Wi-Fi hotspot or AP(Access Point) in

a Intel Core i7 laptop PC powered by Windows 10 operating system using mHotSpot [29],

a HotSpot management application. The laptop PC has 802.11ac Wi-Fi card for Wireless

Internet connection using which we created Wi-Fi hotspot. We then let the mobile device

connect to this hotspot, and then use the device to browse web contents provided by various

applications ranging from multimedia to news applications. We then capture all the traffic

associated with the HotSpot connection through Wireshark [44], a packet sniffing tool,

44

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
e

d
u

n
d

a
n

cy
 r

a
ti

o

Traces of Applications

Figure 4.1: Trace Analysis

running on the laptop PC. We have collected network traffic generated the single user for

a period of two months. Then, we segregate packet traces of various applications based on

the their IP addresses using Wireshark’s filtering tool to ensure that traces contain traffic

from a single application.

Then, we perform preprocessing of the traffic traces by using python script to strip

the packet headers including physical, MAC, IP and transport layer headers of each packet.

We perform this preprocessing step to isolate the application data payloads from the packet

headers since our TailoredRE is performing on application data above the TCP or UDP

layer. We collected about 68GB data traces in total, including 5 large-scale data traces: Web

Browser (10GB), Quora (8.45GB), Facebook (7.10GB), Instagram(10.4GB) and Spotify

(12GB), listed in Table 4.1, and other 22 short data traces shown in Table 4.2.

4.2.2 Trace Analysis

We have run our simulator to analyze the redundancy ratios of all the application

data traces. The chunk size is set to [128, 394] bytes. We set the cache size as large as

10MB, which is large enough to detect almost all the redundant chunks in the data traces.

After the chunk partitioning, hash computing and caching operations, we detect the total

data size of the chunks that hit the cache and calculate the total hit ratio as the trace’s

45

Traces
Data size
(GB)

Redundancy ratio
(GB)

Activity

Web Browser 10.1 81.3% 0.4
Quora 8.7 20.6% 0.2
Youtube 7.3 16.7% 0.2
Instagram 10.4 18.8% 0.1
Spotify 12 11.4% 0.1

Table 4.1: Traces in the simulation experiment

redundancy ratio. The redundancy ratios for different data traces are shown in Figure 4.1.

From Figure 4.1, we can see that different applications indeed have different redun-

dancy ratios. Some application data, such as Web Browser trace and Quora trace, have

higher redundancy ratios, while others, like facebook and Bloomberg, have lower redun-

dancy ratios. However, since the smart phone always have limited memory resource, the

applications with lower redundancy ratio will occupy the cache resource but contribute

less hit ratio and less bandwidth saving. In next section, we will show how our proposed

TailoredRE system improves the redundancy hit ratio and improve the RE efficiency.

4.3 Analysis of TailoredRE efficiency

In this section, we describe our simulation methodology and then compare our

simulation to the performance of some of the existing TRE techniques in terms of the

metrics we discussed in the previous sections.

At the sender side, we developed a TailoredRE based Clone which consists of three

main components: Chunk Partitioning module, Chunk hash computing module and Chunk

caching module. The receiver in our simulation conducts the functions chunk caching and

data recovery. The clone and receiver pair consists our simulator.

We evaluate the effectiveness and efficiency of TailoredRE with the changes of

time and cache size respectively, and compared TailoredRE with the following RE meth-

ods:

• EndRE [2]. The chunk caches at the sender and receiver are tightly synchronized, the

same as TailoredRE, so a chunk presented in the sender’s cache is guaranteed to be in

46

the receiver’s cache. However, it conducts TRE against the data traces from all the

applications.

• Asymmetric Caching (AC) [38]. If the receiver receives a chunk that hits the cache, it

will send back the hashes of the chain after that chunk as the feedback to the sender.

The sender thus performs RE operations based on its feedback cache storing the hashes

and its regular cache that stores chunks.

TailoredRE uses MAXP to find the chunk boundaries and the traffic data are divided

into chunks by these boundaries. Least Recently Used(LRU) caching policy is used in our

experiment in order to improve the caching efficiency. We limit the chunk sizes to [128,384]

bytes in order to balance the redundant chunk recognition accuracy and the transmission

overheads. The traces we use to simulate our TailoredRE method are shown in Table 4.1.

We define the activity factor of an application as the probability that data from that

application will be sent at a certain time slot. By this way, we can simulate the activity

degrees of applications for a certain user. In this simulation, the application activity factors

are also shown in Table 4.1.

4.3.1 Performance metrics along time

In this simulation, the cache size is set to 2.5MB. We measured the redundancy hit

ratio, bandwidth saving ratio and normalized throughput with time changing. The results

are respectively shown in Figure 4.2, Figure 4.3 and Figure 4.4.

From Figure 4.2 we can see that in every time slot, the redundancy hit ratio conforms

TailoredRE>EndRE>AC. The reason is that compared with the EndRE, our proposed

method considers the profiling of user behavior and redundancy and always choose the

applications with high redundancy ratio and activity to conduct redundancy elimination

against. Thus, the cache in TailoredRE can be used much more efficiently and TailoredRE

has higher cache hit ratio than EndRE. Compared with EndRE, in AC, the chunks are stored

in the form of flowlet (chunk chain), and redundant chunks exist between flowlets, which

degrades the cache’s utilization efficiency. In addition, because of the asynchronization

47

0%

10%

20%

30%

40%

50%

0 20 40 60 80 100 120 140 160 180 200

TailoredRE EndRE AC

Time slots

R
e

d
u

n
d

a
n

cy
h

it
 r

a
ti

o

Figure 4.2: Redundancy Hit ratio over time

0%

10%

20%

30%

40%

50%

0 20 40 60 80 100 120 140 160 180 200

TailoredRE EndRE AC

Time slots

B
a

n
d

w
id

th
 s

a
v
in

g
 r

a
ti

o

Figure 4.3: Bandwidth saving ratio over time

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 20 40 60 80 100 120 140 160 180 200

TailoredRE EndRE AC

Time slots

N
o

rm
a

li
ze

d
th

ro
u

g
h

p
u

t

Figure 4.4: Normalized throughput over time

48

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0.1 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

TailoredRE EndRE AC

R
e

d
u

n
d

a
n

cy
h

it
 r

a
ti

o

Cache size(MB)

Figure 4.5: Redundancy Hit ratio over Cache Size

between the sender and receiver, the chunk information stored in both the feedback cache

and regular cache can only indicate parts of the chunks in receiver’s cache. For these two

reasons, the redundancy hit ratio achieve lower than EndRE.

Figure 4.3 shows that at each time slot, the redundancy hit ratio also conforms

TailoredRE>EndRE>AC. It is because that compared with TailoredRE and EndRE which

use offset in the cache to replace chunk with, AC uses hashes to do that, which have

larger size than the offset and consume much more bandwidth. Additionally, as shown in

Figure 4.2, the redundancy hit ratio conforms TailoredRE>EndRE>AC, which means the

bandwidth reduction. Thus, TailoredRE can conduct highest bandwidth saving, and AC

the lowest.

As shown in Figure 4.4 that, at each time slot, the normalized throughput also

conforms TailoredRE>EndRE>AC. Since TailoredRE can eliminate the most redundant

chunks during the data transmission, and reduce the highest transmission time and improve

the throughput to the most.

4.3.2 Performance metrics along cache size

We measured the redundancy hit ratio, bandwidth saving ratio and normalized

throughput with cache size changing from 0.1 MB to 2MB. The results are respectively

shown in Figure 4.5, Figure 4.6 and Figure 4.7.

Figure 4.5 shows that the redundancy hit ratio conforms TailoredRE>EndRE>AC

49

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0.1 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

TailoredRE EndRE AC
B

a
n

d
w

id
th

sa
v

in
g

 r
a

ti
o

Cache size(MB)

Figure 4.6: Bandwidth saving ratio over Cache Size

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.1 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

TailoredRE EndRE

AC Non-TRE

N
o

rm
a

li
ze

d
th

ro
u

g
h

p
u

t

Cache size(MB)

Figure 4.7: Normalized throughput over Cache Size

50

due to the same reason with 4.2. In addition, with the increase of cache size, the redundancy

hit ratios in both TailoredRE, EndRE and AC increase. The reason is that with larger

cache size, more chunks can be cached and the chunks in transmission have much higher

probabilities to hit the cache.

From Figure 4.6, we can see that bandwidth saving ratio also conforms TailoredRE>EndRE>AC

due to the same reason with 4.3. The bandwidth saving ratio also increases with the cache

size, since the redundancy hit ratio increase with the cache size.

As is shown in Figure 4.7, that normalized hit ratio conforms TailoredRE>EndRE>AC

for the same reason shown in Figure 4.4. The normalized throughput also increases with

the cache size as more cache can store more chunks.

4.3.3 Performance of shared caching for multiple users

In this section, we developed our TailoredTRE simulation platform which mainly

consists of three Java classes: Cloud.java, Cluster.java and Clone.java. In our simulation,

each user has a personalized Clone instance, which has the functions including chunk parti-

tioning, hash computing and caching method and forwarding. Cloud instance is responsible

for the application traces initialization for each user and grouping their clones based on

the our proposed user interest-based grouping algorithm. The grouped clones will consist

a cluster and share a common physical cache. The trace pool shown in table 4.2 contains

all the traces we use to simulate our cache-shared method in the cloud.

Firstly, we simulate the cache savings over time changing with different cluster size

increasing from 2 to 5 in a cluster. The similarity between users in this cluster is described

by a similarity factor, which is defined as the probability that the next user has the traces

from the same application with the previous user. In this simulation, the similarity factor

is set to 0.4. The simulation results are shown in Figure 4.8. From Figure 4.8, with the

increasing of the cluster size, the cache savings will increase. That is reasonable, since more

clones sharing the cache will incur much more common chunks in the cache, which would

cause much more cache savings.

51

Traces Traces
Data size
(GB)

Redundancy
ratio

1 WebBrowser1 0.85 90.18%
2 Techcrunch1 1.11 76.10%
3 Techcrunch2 1.09 74.09%
4 Bloomberg1 1.28 69.47%
5 NYTimes1 1.40 52.60%
6 Bloomberg2 0.90 40.67%
7 Quora1 1.36 26.73%
8 Quora2 0.81 22.26%
9 Quora3 1.12 20.41%
10 Twitter1 1.03 20.10%
11 CNN1 0.98 20.01%
12 Instagram1 1.40 19.57%
13 Spotify1 1.01 18.17%
14 Twitter2 1.13 17.91%
15 Instagram2 0.84 17.68%
16 Youtube1 1.58 17.58%
17 Youtube2 1.02 16.31%
18 Facebook1 0.94 9.80%

Table 4.2: Traces Pool

We assume that all the clones are already geographically grouped into a section and

just consider the user interest-based clone grouping. Given the user number, we initialized

each user’s applications by randomly choosing 4 application traces from the trace pool.

The Could instance then groups the clones and build up the Cluster instance based on the

grouping algorithm we mentioned in the last section. All the clones within the same cluster

will share a common physical cache, but the clones in two different clusters will not. The

cluster size is set to [1,8]. The chunk size is set to [256, 768] bytes, and the cache size at

the receivers are uniformly set to the 2MB.

We simulate the relationship between the average total cache resource consump-

tion at the cloud side with user number changing from 45 to 1000. We also compare our

method with both the randomly grouping method and the one without grouping. In order

to compare them clearly, we quantify the average cache consumption with the uniformly

configured cache size for each clone. The simulation results are shown in Figure 4.9.

52

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 200 400 600 800 1000

Cluster Size:2 Cluster Size:3

Cluster Size:4 Cluster Size:5

Time slots

C
a

ch
e

sa
v

in
g

(u
n

it
s)

Figure 4.8: Cache saving over time

0

100

200

300

400

500

600

700

800

900

1000

3

4
5

9
0 5 0 5 0 5 0 5 0 5 0 5

Without grouping

Profiling grouping

Random grouping

A
v
e

ra
g

e
 c

a
ch

e
 c

o
st

 (
u

n
it

s)

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700 800 900 1000

Without grouping
Profiling grouping
Random grouping

A
v
e

ra
g

e
 c

a
ch

e
 c

o
st

 (
u

n
it

s)

User number

Figure 4.9: Cache consumption over Number of users

53

Figure 4.9 shows that for a certain user number, the average cache consumption in

cloud conforms interest-based grouping¡random grouping¡without grouping. Both interest-

based grouping and random grouping method consume less cache resource than method

without grouping, since without grouping, the clones will not share the cache resource and

it will consume much more cache resource. Our proposed interest-based grouping method

can reduce cache consumption by over than 40%, and random grouping can conserve about

20% of the cache consumption. Thus, our proposed TailoredRE method can conserve 100%

more than randomly grouping method. The reason is that our proposed grouping method

considers the user application usage similarity and the cached chunks between two clones in

the same cluster will have much more common chunks and share much more cache resource

in the shared cache. In addition, we can see from Figure 4.9 that with the increasing of

user number, the cache resource consumption increase linearly, but the cache saving caused

by grouping also increases.

4.4 Implementation of TailoredRE prototype

In this section, we outline the implementation details of the TailoredRE system in-

cluding the platforms and the programming languages we utilized to successfully implement

the TailoredRE system both on the client side and the server side. Then we go on to analyse

the metrics we measured to show the highlights of TailoredRE system.

4.4.1 Implementation Details

As we have seen in Chapter 3, TailoredRE System can be divided into two subsys-

tems Tailored Clone and TailoredRE client. TailoredRE clone basically constitutes a proxy

server that is capable of redundancy deduction and elimination while performing data for-

warding. TailoredRE client application includes Data Recovery and Chunks Caching oper-

ations.

54

4.4.1.1 TailoredRE Clone

As we discussed in the last chapter, the proxy or clone of the smartphone consti-

tutes a crucial part of the TailoredRE system. It forwards the data requests arising from

smartphone applications to their respective web servers. Upon receiving the data response

from web servers, they perform necessary Redundancy detection, elimination, user activity

information gathering and profiling routines on the response and forwards the resulting

response back to the respective application in the smartphone. The clone or proxy of the

smartphone in our prototype is implemented in Python 2.7. In doing so we utilized the

extensible library packages of Python like os, sys, thread, socket, hashlib, urllib2, threading

to support our implementation.

The clone listens for the socket connections from the smartphones. Upon success-

fully connecting to the client (the smartphone), it spawns a thread to handle all the data

request sent by the client. Whenever the thread spawned from the proxy receives an URL

from a smartphone application we open an http URL connection to the web server. Upon

successfully connecting to server, we read the data and store it in a buffer. We perform

MAXP partitioning and hashing of the data in the buffer to store the hashes and chunks

in data structures. Before performing this step, we first determine whether the RE should

be performed by referring to a global variable in our Python program. This variable is

assigned by a separate monitoring thread which is responsible for monitoring the data re-

quests and responses going through the clone and selecting an application against which

the redundancy elimination will be performed. We call this thread Activity Monitor. Ac-

tivity Monitor makes use of the Activity Table which is populated during every request

and response activity. This activity table is a hash table containing ¡key,value¿ pairs as

¡AppName,Activity¿. Here Activity is a user defined data structure that holds necessary

variables such as cumulative response size, average redundancy hit ratio, activity factor

and value factor for an AppName. The detailed explanation of activity and value factor is

described in Section 3.4 in Chapter 3.

Once the data response is parsed through MAXP partitioning and hash computation

55

modules, it is presented to the encoding module to encode the response according to the

marker outputs provided by MAXP algorithm. There are two types of markers called Hit

Markers and Cached Markers, which are outputted as list of tuples from the MAXP module

in the program. The list of Hit Markers denote the indices in data response buffer at which

the chunk marked by the indices are encoded with only Hash or offset as the chunk is found

to be previously cache. The list of Cached Markers denote the indices in data response

buffer at which the chunk marked by the indices are encoded with Hash,Chunk since the

chunk is found to be new and cached during the current response. The encoding module

uses special symbols called shims to distinguish the hashes from the chunks while encoding

the response. The Hash or offset along with shims are considered as overheads in the

encoding process. After the encoding the response, we send the data response back to the

smartphone application using the same socket connection. The socket remains open for

future requests.

4.4.1.2 TailoredRE Client

Now we look at the Client application implemented in the smartphone. We make

use of Android platform to realize the client side subsystem of TailoredRE. According to

the system architecture we have observed in Chapter 3, in the client side subsystem, the

applications the users use are isolated from the RE application which is responsible for

caching newly arrived chunks into the cache and recovering previously cached chunks from

the cache. We call this RE application TailoredRE Client. We realize its implementation

with the help of Intent service provided by Android framework for passing the data between

two applications. It is also to be noted that since all the news and multimedia applications

that constitutes and motivates the need for the Redundancy Elimination are not open

source, we develop special Android applications that mimics the original applications. This

accommodation can be justified by fact that all these news and multimedia applications

typically send data request to their respective web servers to get data and then they present

it attractive way by parsing the web contents and displaying it in different UI components

56

provided in the Android framework.

As most of the compute intensive TRE operations in our system has been offloaded

from the mobile device to its proxy or clone in the cloud, the modules present in the client

are simplistic and does straight-forward operations. The data requests in each individual

applications are sent through a common TailoredRE client application. The overall data

flow in this process can be explained as follows. When a user using an application clicks a

button requesting web contents, the application sends the string of the respective URL to

the TailoredRE client application installed on the smartphone. TailoredRE client opens a

socket connection to the clone and sends the URL data request. The clone upon receiving

the data request forwards the data request to the respective web server.

TailoredRE Client upon receiving the data request from the clone performs the

chunks caching and data recovery. Chunks Caching module in the client involves parsing

the data response and identifying the chunks that are to be cached in the memory. If the

response is encoded with Hash,Chunk pair with the appropriate shim, it stores the necessary

chunks and hashes in to the data structure. Data recovery module involves parsing the

data response and identifying the hashes encoded with the shim and recovering the chunks

that correspond to identified hashes from the memory. After the necessary operation of

Chunks Caching and Data Recovery, we now pass on the data response back to the original

application. This lets the original application display or store web contents obtained.

4.5 Performance Evaluation of TailoredRE prototype

While introducing the motivation behind TailoredRE, we mentioned two important

factors that encourage the need for any RE system for smartphones and mobile devices.

The first one being the bandwidth savings that could be obtained by performing redun-

dancy elimination. The second one being power or energy savings obtained through less

usage of Wi-Fi and cellular network modems (3G/4G/LTE). Therefore we evaluate our real

prototype of TailoredRE using the necessary metrics to accommodate the above factors.

57

In order to successfully test our real system, we used Amazon’s Elastic Compute

Cloud’s (EC2) virtual server instance to host and run our clone program. The server

instance we obtained is powered by Ubuntu 14.04 LTS operating system. The client Android

application are run on mobile device named Asus Fonepad powered by Android Version

4.1.2. We used 802.11 Wi-Fi modem in our mobile device to establish communication

between the between itself and its clone. The window size w and sampling period p are the

two key parameters of MAXP Chunk Partitioning algorithm. In our experiments we set

w and p to be 128 and 256 respectively. This setting results in chunks ranging from 128

to 384 bytes which we find it to be optimal and efficient through earlier trace analysis and

simulations that we have conducted. The cache size in our experiments are set to 2MB.

During our experiment, we measure bandwidth and power consumption over time slots.

The experiments are conducted over a period of 2 hours. Two hours are divided into 1

minutes time slots during which we send 50 data requests and receive 50 corresponding

data responses.

We conducted a survey about user’s application preferences (http://goo.gl/forms/

LZ4YM5ZWzZ). The survey is performed among 12 students in our research lab. In the sur-

vey, we let the students to select the applications they preferred and the time they spend

regularly on them in one week. In the survey, we let 12 users to select the applications they

preferred and the time they spend regularly on them in one week. They can also enter the

applications which are not enlisted in the ’Others’ field. We used the survey data obtained

to conduct the our evaluation. In order to account for the user preferences that we obtained

from the student survey, while performing the experiments, we made sure that the ratio of

number of requests sent from each application to the total number of requests equals the

ratio of amount of time the user spends on the application to the total amount of time the

user spends in all the applications together. For example, say a user has recorded in his/her

survey form that he/she spends a total of 10 hours on his smartphone using Internet based

applications. This includes 2 hours on YouTube, 2 hours on CNN, 3 hours on Bloomberg

and 3 hours on Twitter. The normalized distribution of time the user spend on his pre-

58

http://goo.gl/forms/LZ4YM5ZWzZ
http://goo.gl/forms/LZ4YM5ZWzZ

ferred array of applications [YouTube, CNN, Bloomberg, Twitter] can be given as [0.2, 0.2,

0.3, 0.3]. The distribution of the 50 requests sent during every time slot in our experiment

also conforms to this normalized distribution of [0.2, 0.2, 0.3, 0.3] (i.e., 10 data requests to

YouTube, 10 data requests to CNN, 15 data requests to Bloomberg and 15 data requests

to Twitter).

As a means to highlight the advantages behind TailoredRE, we plot Bandwidth

savings and Power Consumption obtained in TailoredRE against EndRE and AC. In addi-

tion to this, as a baseline measurement we also compare this with Bandwidth savings and

Power Consumption when no TRE operations are performed. The following subsections

describes our evaluation in detailed manner. As part of our evaluation, we have included

the figures 4.10-4.21((a),(b)) which represents Bandwidth savings and Power Consumption

plotted over time slots corresponding to each of 12 users who have taken part in the survey.

Figure 4.22 and 4.23 represents the average bandwidth savings and power consumptions

for each user obtained by employing TailoredRE, EndRE, AC and WithoutRE. Figure 4.24

indicates the energy savings in percentage achieved by TailoredRE, EndRE and AC with

respect energy consumed when no TRE operations are performed

4.5.1 Evaluation of Bandwidth savings

In order to be able to perform a good evaluation of Bandwidth Savings obtained

by TailoredRE, we conducted our experiments over a period of 2 hours. The experiments

are conducted individually for each user in accordance to the data we obtained through

survey. To automate the evaluation process the clone automatically calculates and logs all

the necessary information for every the data requests and responses it forwards. Band-

width Savings is denoted in percent and is calculated by
VOriginalResponse−VREencodedResponse

VOriginalResponse
.

In this formula, VOriginalResponse is the cumulative sum of data volume of original Response

over a period of time slot i.e., the sum of the sizes of the data responses as it is without

any TRE operations performed. In TailoredRE and EndRE, VREencodedResponse is the cu-

mulative sum of data volume of encoded Response sent from the clone to its associated

59

smartphone after performing Traffic Redundancy Elimination over a period of time slot.

Here, VREencodedResponse primarily includes sizes of the chunks, offsets and shim if the data

response found to comprise of chunks that have not been cached prior (i.e., newly cached

chunks) or only the sizes of the offsets and shim for the chunks that have been found in the

cache. In the case of Asymmetric Caching (AC), as it also involves feedbacks arising from

the smartphone’s cache, VREencodedResponse would be the cumulative sum of data volume of

encoded Response sent from the clone to its associated smartphone as well as the sizes of the

chunks and hashes received by its clone sent from the smartphone. In our experiment, we

have set 1 minutes time slot and total of 120 time slots which equates to 2 hours. Therefore

data points in the Bandwidth Savings Curve represent aggregate of ratio of total bytes saved

from transmitting due to RE to the total bytes in original response in that time slot i.e.,

the calculations are done for time slot x based on the accumulated data from minute(x-1)

to minute x. Cache size of 2MB is set in the client and the server while conducting our

experiments in TailoredRE and EndRE. For our implementation of Asymmetric Caching,

the server’s cache size is set at 0.5MB, a fraction (one fourth) of the client cache size of

2MB.

The bandwidth savings plots comprises of Figures 4.10-4.21(a) representing the

bandwidth savings obtained for each individual user over time slots in our experiment and

Figure 4.22 representing the bar diagram of average bandwidth savings over all the time

slots obtained by the users. In Figures 4.10-4.21(a), we can see that TailoredRE provides

significantly higher bandwidth savings than EndRE and AC. For a frame of reference, we

have plotted bandwidth savings achieved when no TRE is performed as a baseline. It can

be seen from the figures that the bandwidth savings obtained by AC is very closer to the

baseline. EndRE provides a significantly higher bandwidth savings than AC and it still lags

far behind bandwidth savings achieved when TailoredRE is performed. The lower perfor-

mance of EndRE and AC can be attributed to the overhead that had been incurred due

transmission of Hash or Offset values over the network. As EndRE and AC performs RE

against all data responses in agnostic manner, it results in encoding and caching of chunks

60

which will not constitute any future transmissions. AC performs worse than EndRE be-

cause of the feedback of cache chunks involved while doing redundancy elimination. Unlike

EndRE and AC, TailoredRE takes into account heavily used application for conducting

personalized TRE resulting in encoding and caching of only chunks that will be utilized in

future transmissions. This eventually results in higher bandwidth savings. In Figure 4.22,

we can see that the overall bandwidth savings obtained by TailoredRE for every user is

almost twice high when compared to EndRE and almost 4 times higher when compared to

AC. Thus our Bandwidth Savings evaluation proves the potential benefit of our method.

4.5.2 Evaluation of Power Consumption

Minimization of Power Consumption is one of the important motivating factors

behind TailoredRE system. Mobile Devices are typically power constrained along with

limited battery lifecycle. The devices tend to incur significant amount of power while using

radio interfaces such as cellular and Wi-Fi hardware modules. In our experiments, in order

to estimate the power consumption too we use PowerTutor, a component power management

and activity state introspection based tool. This tool, backed by reasearch work in [47]

has been widely used by research community and application developers to estimate the

power consumed by their applications. PowerTutor lets us monitor the power consumed by

various applications in different hardware components of a smartphone such as Wi-Fi, 3G

modules, LCD displays and CPU. PowerTutor utilizes different power models given in [47]

and deduces the power consumed by the various components individually for every running

application.

In order to evaluate power consumption, we performed experiments over a period

of 2 hours. In the same manner as Bandwidth Savings measurement, we have set time

slots to be 1 minutes each and a total of 120 time slots equating to 2 hours. During this

time period, we used the array of applications in the user survey to fetch contents from

their respective web server. Cache size of 2MB is set while conducting our experiments.

The procedure is repeated when there is no TRE enabled, when EndRE is enabled, when

61

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

B
an

dw
id

th
 S

av
in

gs
 (

pe
rc

en
t)

-20

0

20

40

60

80

100
TailoredRE EndRE AC Without RE

(a) Bandwidth Savings along time

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

P
ow

er
 C

on
su

m
pt

io
n

(p
er

ce
nt

)

40

60

80

100

120

140

160

180

200

220

240
TailoredRE EndRE AC Without RE

(b) Power Consumption along time

Figure 4.10: Performance Metrics for User 1

62

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

B
an

dw
id

th
 S

av
in

gs
 (

pe
rc

en
t)

-20

0

20

40

60

80

100
TailoredRE EndRE AC Without RE

(a) Bandwidth Savings along time

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

P
ow

er
 C

on
su

m
pt

io
n

(p
er

ce
nt

)

40

60

80

100

120

140

160

180

200

220

240
TailoredRE EndRE AC Without RE

(b) Power Consumption along time

Figure 4.11: Performance Metrics for User 2

63

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

B
an

dw
id

th
 S

av
in

gs
 (

pe
rc

en
t)

-20

0

20

40

60

80

100
TailoredRE EndRE AC Without RE

(a) Bandwidth Savings along time

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

P
ow

er
 C

on
su

m
pt

io
n

(p
er

ce
nt

)

40

60

80

100

120

140

160

180

200

220

240
TailoredRE EndRE AC Without RE

(b) Power Consumption along time

Figure 4.12: Performance Metrics for User 3

64

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

B
an

dw
id

th
 S

av
in

gs
 (

pe
rc

en
t)

-20

0

20

40

60

80

100
TailoredRE EndRE AC Without RE

(a) Bandwidth Savings along time

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

P
ow

er
 C

on
su

m
pt

io
n

(p
er

ce
nt

)

40

60

80

100

120

140

160

180

200

220

240
TailoredRE EndRE AC Without RE

(b) Power Consumption along time

Figure 4.13: Performance Metrics for User 4

65

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

B
an

dw
id

th
 S

av
in

gs
 (

pe
rc

en
t)

-20

0

20

40

60

80

100
TailoredRE EndRE AC Without RE

(a) Bandwidth Savings along time

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

P
ow

er
 C

on
su

m
pt

io
n

(p
er

ce
nt

)

40

60

80

100

120

140

160

180

200

220

240
TailoredRE EndRE AC Without RE

(b) Power Consumption along time

Figure 4.14: Performance Metrics for User 5

66

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

B
an

dw
id

th
 S

av
in

gs
 (

pe
rc

en
t)

-20

0

20

40

60

80

100
TailoredRE EndRE AC Without RE

(a) Bandwidth Savings along time

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

P
ow

er
 C

on
su

m
pt

io
n

(p
er

ce
nt

)

40

60

80

100

120

140

160

180

200

220

240
TailoredRE EndRE AC Without RE

(b) Power Consumption along time

Figure 4.15: Performance Metrics for User 6

67

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

B
an

dw
id

th
 S

av
in

gs
 (

pe
rc

en
t)

-20

0

20

40

60

80

100
TailoredRE EndRE AC Without RE

(a) Bandwidth Savings along time

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

P
ow

er
 C

on
su

m
pt

io
n

(p
er

ce
nt

)

40

60

80

100

120

140

160

180

200

220

240
TailoredRE EndRE AC Without RE

(b) Power Consumption along time

Figure 4.16: Performance Metrics for User 7

68

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

B
an

dw
id

th
 S

av
in

gs
 (

pe
rc

en
t)

-20

0

20

40

60

80

100
TailoredRE EndRE AC Without RE

(a) Bandwidth Savings along time

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

P
ow

er
 C

on
su

m
pt

io
n

(p
er

ce
nt

)

40

60

80

100

120

140

160

180

200

220

240
TailoredRE EndRE AC Without RE

(b) Power Consumption along time

Figure 4.17: Performance Metrics for User 8

69

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

B
an

dw
id

th
 S

av
in

gs
 (

pe
rc

en
t)

-20

0

20

40

60

80

100
TailoredRE EndRE AC Without RE

(a) Bandwidth Savings along time

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

P
ow

er
 C

on
su

m
pt

io
n

(p
er

ce
nt

)

40

60

80

100

120

140

160

180

200

220

240
TailoredRE EndRE AC Without RE

(b) Power Consumption along time

Figure 4.18: Performance Metrics for User 9

70

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

B
an

dw
id

th
 S

av
in

gs
 (

pe
rc

en
t)

-20

0

20

40

60

80

100
TailoredRE EndRE AC Without RE

(a) Bandwidth Savings along time

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

P
ow

er
 C

on
su

m
pt

io
n

(p
er

ce
nt

)

40

60

80

100

120

140

160

180

200

220

240
TailoredRE EndRE AC Without RE

(b) Power Consumption along time

Figure 4.19: Performance Metrics for User 10

71

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

B
an

dw
id

th
 S

av
in

gs
 (

pe
rc

en
t)

-20

0

20

40

60

80

100
TailoredRE EndRE AC Without RE

(a) Bandwidth Savings along time

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

P
ow

er
 C

on
su

m
pt

io
n

(p
er

ce
nt

)

40

60

80

100

120

140

160

180

200

220

240
TailoredRE EndRE AC Without RE

(b) Power Consumption along time

Figure 4.20: Performance Metrics for User 11

72

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

B
an

dw
id

th
 S

av
in

gs
 (

pe
rc

en
t)

-20

0

20

40

60

80

100
TailoredRE EndRE AC Without RE

(a) Bandwidth Savings along time

Time Slots
0 10 20 30 40 50 60 70 80 90 100 110 120

P
ow

er
 C

on
su

m
pt

io
n

(p
er

ce
nt

)

40

60

80

100

120

140

160

180

200

220

240
TailoredRE EndRE AC Without RE

(b) Power Consumption along time

Figure 4.21: Performance Metrics for User 12

73

AC is enabled, and when TailoredRE is enabled. Similar to bandwidth savings curve, data

points in the Power Consumption Curve represent average power consumed during a time

slot. In order to make a fair comparison of power consumption the number and type of the

data requests in each time slots for each measurement is ensured to be same. Total power

consumption of all the applications are summed for every time slot. Power measurement

does not contain power consumed by display and 3G components and only includes CPU

and Wi-Fi components. This is done by deselecting the display and 3G module in the menu

of the PowerTutor application. This is because of the fact that display power consumption

will be same across all the TRE methods as they dont affect any display component. As we

are conducting our experiments with Wi-Fi modem, power consumed by 3G module would

be irrelevant and essentially be a noise in our measurement.

Power Consumption of EndRE and TailoredRE would be dominated by the Tailore-

dRE Client application since all sending and receiving of data requests and data responses

are performed through this application. The power consumption plots comprises of Fig-

ures 4.10-4.21(a) representing the power consumption for each individual user over time

slots in our experiment and Figure 4.23 representing the bar diagram of average power

consumption obtained by the users. It can be seen that the power consumption of Tailore-

dRE is significantly lower than EndRE’s consumption. We can also see from the figures

that power consumption of WithoutRE and AC is much higher than the TailoredRE’s and

EndRE’s power consumption. In most cases, AC’s power consumption is fairly higher than

the power consumed when no TRE is performed. This is mainly attributed to the fact that

computational and uplink transmission overhead involved in AC.

Figure 4.22 and Figure 4.23 show respectively the relationship between the average

bandwidth bandwidth saving ratio and different user preferences, and that between the

average power consumption and different user preferences. From Figure 4.22 we can see

that different user preference have different bandwidth saving ratios, which indicate the

necessity to conduct personal TRE for individual user. In addition, compared with EndRE

and AC, for each user preference, TailoredRE always has better bandwidth saving than

74

-10.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 2 3 4 5 6 7 8 9 10 11 12

B
a

n
d

w
id

th
 S

a
v

in
g

s

Users

AC EndRE TailoredRE

Figure 4.22: Bandwidth Savings among Users

0.0

40.0

80.0

120.0

160.0

200.0

1 2 3 4 5 6 7 8 9 10 11 12

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
m

W
)

Users

WithoutRE AC EndRE TailoredRE

Figure 4.23: Power Consumption among Users

75

EndRE and AC for the same reason in Figures 4.10-4.21(a). We can also see from Figure

4.23 that with different user preferences, the smartphone’s power consumption is varying. In

addition, for each user, both TailoredRE and EndRE consume relatively lower power when

compared with AC and the case without TRE, for the same reason in Figures 4.10-4.21(b).

In order to further elaborate on the huge upside potential for energy savings achieved

by our TailoredRE system, we have plotted overall percentage of energy savings that could

be obtained by a typical mobile device in a day. Energy Savings is calculated using the

formula EWithoutRE−EWithRE

EWithoutRE
. In this formula, EWithoutRE is the amount of energy consumed

when no TRE operations are performed and EWithRE is the energy consumption observed

when any particular TRE technique is used. As we have mentioned earlier, the device we

used for experimentation is Asus Fonepad whose battery capacity is 4325 mAh. Through

our experimentation we have found that, in a typical day with the regular usage of the

device, the battery is found to last for 21 hours at which point it needs to be recharged.

When TailoredRE client and clones are put to use, we could achieve energy savings of

over 43% - 53% which translates in terms of battery capacity to 1860mAh - 2300mAh. In

perspective of battery lifetime, on average the mobile device battery lasted over 40 - 45

hours. In figure 4.24 we have plotted the percentage of overall energy savings that could

be achieved by our method along with other compared methods. It can be seen that our

method by personalizing the TRE operations could achieve more than twice the energy

savings when compared to EndRE and more than four times the saving of Asymmetric

Caching (AC) which most of the times has negative effect.

The rationale behind the negative energy savings effect in AC can be explained as

follows. In AC, the server upon receiving the data response conducts MAXP and SHA1

hash computation to detect the redundant hashes and chunks. When the chunks are found

in its cache it sends the compressed or encoded response (hash and shim) to the client

otherwise it sends the original chunks as it is. The mobile client, upon receiving the data

from the server, checks whether the data received are hashes or the chunks. If the data

received are hashes, it checks if they are in the cache otherwise it conductsMAXP and SHA1

76

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1 2 3 4 5 6 7 8 9 10 11 12

E
n

e
rg

y
 S

a
v

in
g

s

Users

AC EndRE TailoredRE

Figure 4.24: Potential Energy Savings

hash computation and then checks if they are cached. In either cases if they are found to

be cached, then this will act as a trigger for feedback mechanism. It is to be noted from the

survey data that some users use only two or three applications overall while many others

use up-to 12 applications. When the number of applications is small, we encounter same

chunks often as they are from those few applications. This obviously gives us the higher hit

ratio of chunks. However, When the number of applications is large, we encounter much

more distinct chunks often as they are from wide variety applications resulting in mediocre

hit ratio of chunks. Hit Ratio impacts Bandwidth Savings of AC in two ways. If the hit

ratio is high, there will be lot of compressed data transmissions (only hash with shim). Even

though there are feedbacks occurring simultaneously, since there are high number reduced

data transmissions, it overtakes the overhead incurred due to feedback. Hence, we achieve

positive Bandwidth Savings in these cases. Contrarily, if the hit ratio is mediocre, there

will be relatively lesser compressed data transmissions. Thus, it cannot offset the overhead

incurred due to feedback. Hence, we achieve negative Bandwidth Savings in those cases.

77

4.6 Summary

This chapter has provided the results and analysis involved in performance eval-

uation of TailoredRE system. Through simulation, we have evaluated TailoredRE using

various metrics of a typical redundancy elimination system, such as the redundancy hit ra-

tio, Bandwidth Savings ratio, and the normalized throughput. Through implementation of

real prototype, we were able to highlight the performance of TailoredRE in real time using

metrics such as bandwidth savings and power consumption. The following chapter provides

summary of our contributions and provides a perspective to readers on the importance of

TRE.

78

Chapter 5

Conclusion

This chapter summarizes and concludes the work we have done in this thesis on

TailoredRE. We summarize the critical design elements that make the TailoredRE look

distinguishing and advantageous than existing TRE solutions.

Traffic Redundancy Elimination (TRE) systems play a crucial role in improving

the throughput performance of any network link especially the last-hop access link which

traditionally have scarce bandwidth availability to support all the end users. The growing

importance TRE systems has led to the numerous research developments that are directed

towards making the TRE system more effective. The motivation for this research is to

increase the efficiency of TRE conducted which would result in higher bandwidth savings

attainable on the network links. Towards this motivation, we have developed a traffic re-

dundancy elimination system called TailoredRE. TailoredRE, unlike other systems, takes

into account various factors like application usage behavior of each individual mobile users,

resource constrainment (or otherwise limited resource availability) of the mobile devices for

expensive TRE operations so that it can make the design better and more suited for the mo-

bile computing environment. Specifically the distinguishing design elements of TailoredRE

can be summarized as follows

(1) Cloud-Clone based TRE: TailoredRE system has been designed to leverage the

rich computation resources available the cloud to offload the operational cost of per-

79

forming the TRE from the mobile devices to their clones in the cloud. In the cloud,

the TailoredRE clone, acting as a proxy for a mobile device, performs major TRE

operations such as redundancy detection in data streams, hash computation, caching

and encoding of data streams. Clones and mobile devices maintain a synchronized

caches between them.

(2) Application-adaptive RE: Different from other TRE systems, TailoredRE clone

provides personalized TRE to its mobile device users based on the profile informa-

tion obtained through Redundancy Profiling. Redundancy profiling involves analysis

of redundancy metrics such as the ratio of redundant bytes to total bytes in byte

streams of traffic belonging to various application the mobile user uses on his mobile

phones. Through this analysis, we select an application against which redundancy is

conducted, rather than performing redundancy application agnostically.

(3) MAXP Chunk Partitioning algorithm: There exists a plenty of chunking or

fingerprinting algorithms to compute a set of representative fingerprints in a data

stream. These algorithms pose significant trade-offs between each other. TailoredRE

system adopts MAXP algorithm to find the boundaries since it has been found optimal

among all because of its minimal overhead and maximal effectiveness of RE.

(4) Cache sharing among clones: Mobile traffic data naturally exhibit Inter-User

Redundancy since multiple users access same popular contents in the web during a

given period of time [48] [26]. In order take advantage of this phenomenon and utilize

the cache resource efficiently in the cloud, we design a cache sharing mechanism in

which clones are clustered based on the profile information of the mobile users.

TailoredRE incorporating the above four novel design elements to provide an effi-

cient TRE system when compared to the existing methods. To conduct evaluation of our

system we have collected real network traffic from the mobile device over a period of two

months. We have evaluated our proposed system through the analysis and simulation driven

by real traces. We have compared the results of the simulation with two existing methods:

80

a receiver-based TRE method named Asymmetric Caching and the sender based method

called as EndRE. We have found that TailoredRE system performed better in experiments

conducted over a wide variety of real data traces and improvements in all necessary per-

formance metrics that evaluates a TRE system. In order to assess the performance of

TailoredRE in real time, we implemented a working prototype of our system and measured

two key metrics as part of our evaluation. We have shown that the TailoredRE system

performs better in both the scenarios. Thus, we are optimistic that TailoredRE system has

the potential to become a promising RE system in the future.

81

Appendices

82

Appendix A Preferred Applications Survey

Google form provided below in the following page preferred applications survey form

that we created using Google for collecting user information from research scholars in order

to assist in our experimentation of real prototype of Tailored RE.

Don't use

<30 minites

0.5h-2h

2h-4h

TailoredRE: A Personalized Cloud-based Traffic
Redundancy Elimination for Smartphones

Preferred Applications survey
Choose the applications or website you use, and select the time you spend in one week
If an application is accessed by browser but is listed in the application list, we can put them in to
that application.
However, if applications are accessed by browser but not listed in the application list, we put them
into browser.
Additionally, if some applications are not accessed by browser, we can list them (and their usage
time in one week) as an answer in other application item.
Thank you.

* Required

Youtube

83

4h-7h

>7h

Other :

Don't use

<30 minites

0.5h-2h

2h-4h

4h-7h

>7h

Other :

Don't use

<30 minites

0.5h-2h

2h-4h

Facebook

CNN

84

4h-7h

>7h

Other :

Don't use

<30 minites

0.5h-2h

2h-4h

4h-7h

>7h

Other :

Don't use

<30 minites

0.5h-2h

Quora

Techcrunch

2h-4h

85

4h-7h

>7h

Other :

Don't use

<30 minites

0.5h-2h

2h-4h

4h-7h

>7h

Other :

Don't use

<30 minites

0.5h-2h

NYTimes

Twitter

86

2h-4h

4h-7h

>7h

Other :

Don't use

<30 minites

0.5h-2h

2h-4h

4h-7h

>7h

Other :

Don't use

<30 minites

0.5h-2h

Instagram

Spotify

87

2h-4h

4h-7h

>7h

Other :

Don't use

<30 minites

0.5h-2h

2h-4h

4h-7h

>7h

Other :

Don't use

<30 minites

0.5h-2h

Bloomberg

Browser *

88

2h-4h

4h-7h

>7h

Other :

This form was created inside of Clemson University. Report Abuse - Terms of Service - Additional Terms

Other applications you prefer and the regular using time in one
week *

Your answer

Never submit passwords through Google Forms.

SUBMIT

89

Bibliography

[1] Mikhail Afanasyev, David G Andersen, and Alex C Snoeren. Efficiency through eaves-
dropping: Link-layer packet caching. In Proc. of NSDI, 2008.

[2] Bhavish Agarwal, Aditya Akella, Ashok Anand, Athula Balachandran, Pushkar Chit-
nis, Chitra Muthukrishnan, Ramachandran Ramjee, and George Varghese. Endre: An
end-system redundancy elimination service for enterprises. In Proc. of NSDI, 2010.

[3] Mohammed Al-Laham and Ibrahiem MM El Emary. Comparative study between var-
ious algorithms of data compression techniques. IJCSNS, 7(4):281, 2007.

[4] Ashok Anand, Archit Gupta, Aditya Akella, Srinivasan Seshan, and Scott Shenker.
Packet caches on routers: the implications of universal redundant traffic elimination.
In Proc. of SIGCOMM, 2008.

[5] Ashok Anand, Chitra Muthukrishnan, Aditya Akella, and Ramachandran Ramjee.
Redundancy in network traffic: findings and implications. In Proc. of SIGMETRICS,
2009.

[6] Ashok Anand, Chitra Muthukrishnan, Aditya Akella, and Ramachandran Ramjee.
Redundancy in network traffic: findings and implications. In Proc. of SIGMET-
RICS/Performance, 2009.

[7] Ashok Anand, Vyas Sekar, and Aditya Akella. Smartre: an architecture for coordinated
network-wide redundancy elimination. In Proc. of SIGCOMM, 2009.

[8] Ulrich Appel and Achim V Brandt. Adaptive sequential segmentation of piecewise
stationary time series. Information sciences, 29(1):27–56, 1983.

[9] Nikolaj Bjørner, Andreas Blass, and Yuri Gurevich. Content-dependent chunking for
differential compression, the local maximum approach. J. Comput. Syst. Sci., 76(3-
4):154–203, 2010.

[10] A. Broder. On the resemblance and containment of documents. In Proceedings of
the Compression and Complexity of Sequences 1997, SEQUENCES ’97, pages 21–,
Washington, DC, USA, 1997. IEEE Computer Society.

[11] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti.
Clonecloud: Elastic execution between mobile device and cloud. In Proc. of EuroSys,
2011.

90

[12] Cisco. Cisco visual networking index. http://newsroom.cisco.com/

press-release-content?type=webcontent&articleId=668380. [Accessed in
March 2016].

[13] Cisco. Cisco wide area application acceleration services. http://www.cisco.com/

en/US/products/ps5680/Products_Sub_Category_Home.html. [Accessed in March
2016].

[14] Computerworld. Wan optimization continues growth. http://www.computerworld.

com.au/article/141254/wan_optimization_continues_growth/. [Accessed in
March 2016].

[15] Philipp B. Costa, Paulo A. L. Rego, Lincoln S. Rocha, Fernando A. M. Trinta, and
José N. de Souza. Mpos: A multiplatform offloading system. In Proc. of the 30th
Annual ACM Symposium on Applied Computing, 2015.

[16] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu,
Ranveer Chandra, and Paramvir Bahl. Maui: Making smartphones last longer with
code offload. In Proc. of the 8th International Conference on Mobile Systems, Appli-
cations, and Services, 2010.

[17] Fahad R Dogar, Amar Phanishayee, Himabindu Pucha, Olatunji Ruwase, and David G
Andersen. Ditto: a system for opportunistic caching in multi-hop wireless networks.
In Proc. of MobiCom, 2008.

[18] Donald Eastlake and Paul Jones. Us secure hash algorithm 1 (sha1), 2001.

[19] IT Facts. Wan optimization revenues grow 16 http://itfacts.biz/

wan-optimization-market-to-grow-16/1205. [Accessed in March 2016].

[20] Aaron Gember, Ashok Anand, and Aditya Akella. A comparative study of handheld
and non-handheld traffic in campus wi-fi networks. In Passive and Active Measurement,
pages 173–183. Springer, 2011.

[21] Archit Gupta, Aditya Akella, Srinivasan Seshan, Scott Shenker, and Jia Wang. Un-
derstanding and exploiting network traffic redundancy. UW-Madison, Madison, WI,
USA, Tech. Rep, 1592, 2007.

[22] Emir Halepovic, Majid Ghaderi, and Carey Williamson. On the performance of redun-
dant traffic elimination in wlans. In Proc. of ICC, 2012.

[23] Emir Halepovic, Carey Williamson, and Majid Ghaderi. Dynabyte: A dynamic sam-
pling algorithm for redundant content detection. In Proc. of ICCCN, 2011.

[24] Emir Halepovic, Carey Williamson, and Majid Ghaderi. Enhancing redundant network
traffic elimination. Computer networks, 56(2):795–809, 2012.

[25] Sunghwan Ihm, KyoungSoo Park, and Vivek S. Pai. Wide-area network acceleration
for the developing world. In Proc. of the 2010 USENIX Conference on USENIX Annual
Technical Conference, 2010.

91

http:// newsroom. cisco. com/press-release-content? type=webcontent& articleId=668380
http:// newsroom. cisco. com/press-release-content? type=webcontent& articleId=668380
http://www.cisco.com/en/US/products/ps5680/Products_Sub_Category_ Home.html
http://www.cisco.com/en/US/products/ps5680/Products_Sub_Category_ Home.html
http://www.computerworld.com.au/article/141254/wan_optimization_continues_growth/
http://www.computerworld.com.au/article/141254/wan_optimization_continues_growth/
http://itfacts.biz/wan-optimization-market-to-grow-16/1205
http://itfacts.biz/wan-optimization-market-to-grow-16/1205

[26] Ram Keralapura, Antonio Nucci, Zhi-Li Zhang, and Lixin Gao. Profiling users in a 3g
network using hourglass co-clustering. In Proc. of MobiCom, 2010.

[27] Cristian Lumezanu, Katherine Guo, Neil Spring, and Bobby Bhattacharjee. The effect
of packet loss on redundancy elimination in cellular wireless networks. In Proc. of
SIGCOMM, 2010.

[28] Udi Manber et al. Finding similar files in a large file system. In Usenix Winter,
volume 94, pages 1–10, 1994.

[29] mHotSpot. http://www.mhotspot.com/. [Accessed in March 2016].

[30] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-bandwidth network
file system. In Proc. of SIGOPS, 2001.

[31] A. Blass N. Bjorner and Y. Gurevich. Content-dependent chunking for differential
compression, the local maximum approach. Technical Report 109, Microsoft Research,
2007.

[32] PeerApp. Video and p2p caching. http://www.peerapp.com/Technology/

VideoCaching.aspx. [Accessed in March 2016].

[33] Pennysleuth. Invest in cell phone infrastructure
for growth in 2010. http://pennysleuth.com/

invest-in-cell-phone-infrastructure-for-growth-in-2010/. [Accessed in
March 2016].

[34] Diego Perino, Matteo Varvello, and Krishna P. N. Puttaswamy. Icn-re: Redundancy
elimination for information-centric networking. In Proc. of the Second Edition of the
ICN Workshop on Information-centric Networking, 2012.

[35] Feng Qian, Junxian Huang, Jeffrey Erman, Z Morley Mao, Subhabrata Sen, and Oliver
Spatscheck. How to reduce smartphone traffic volume by 30%? In Passive and Active
Measurement, pages 42–52. Springer, 2013.

[36] Sean C. Rhea, Kevin Liang, and Eric Brewer. Value-based web caching. In Proc. of
the 12th International Conference on World Wide Web, 2003.

[37] Riverbed. Riverbed networks: Wan optimization. http://www.riverbed.com/

solutions/optimize/. [Accessed in March 2016].

[38] S. Sanadhya, R. Sivakumar, K. Kim, P. Congdon, S. Lakshmanan, and J. Singh. Asym-
metric caching: improved network deduplication for mobile devices. In Proc. of Mobi-
Com, 2012.

[39] Shan-Hsiang Shen, Aaron Gember, Ashok Anand, and Aditya Akella. Refactor-ing
content overhearing to improve wireless performance. In Proc. of MobiCom, 2011.

92

http://www.peerapp.com/Technology/VideoCaching.aspx
http://www.peerapp.com/Technology/VideoCaching.aspx
http://pennysleuth.com/invest-in-cell-phone-infrastructure-for-growth-in-2010/
http://pennysleuth.com/invest-in-cell-phone-infrastructure-for-growth-in-2010/
http://www.riverbed .com/solutions/optimize/
http://www.riverbed .com/solutions/optimize/

[40] Cong Shi, Karim Habak, Pranesh Pandurangan, Mostafa Ammar, Mayur Naik, and
Ellen Zegura. Cosmos: Computation offloading as a service for mobile devices. In
Proc. of the 15th ACM International Symposium on Mobile Ad Hoc Networking and
Computing, 2014.

[41] Yang Song, Katherine Guo, and Lixin Gao. Redundancy-aware routing with limited
resources. In Proc. of ICCCN, 2010.

[42] Neil T Spring and David Wetherall. A protocol-independent technique for eliminating
redundant network traffic. In Proc. of SIGCOMM, 2000.

[43] Squid. Web proxy cache. http://www.squid-cache.org/. [Accessed in March 2016].

[44] Wireshark. https://www.wireshark.org/. [Accessed in March 2016].

[45] Alec Wolman, Geoff Voelker, Nitin Sharma, Neal Cardwell, Molly Brown, Tashana
Landray, Denise Pinnel, Anna Karlin, and Henry Levy. Organiz at ion-basedanalysisof
web-objectsharingandcachi ng. 1999.

[46] Daniel Zeng, Fei-Yue Wang, and Mingkuan Liu. Efficient web content delivery using
proxy caching techniques. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 34(3):270–280, 2004.

[47] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick, Zhuo-
qing Morley Mao, and Lei Yang. Accurate online power estimation and automatic
battery behavior based power model generation for smartphones. In Proc. of Hard-
ware/Software Codesign and System Synthesis, 2010.

[48] Yan Zhang and Nayeem Ansari. On protocol-independent data redundancy elimination.
Communications Surveys & Tutorials, IEEE, 16(1):455–472, 2014.

[49] Zhenyun Zhuang and Raghupathy Sivakumar. Wireless memory: Eliminating commu-
nication redundancy in wi-fi networks. In Proc. of WoWMoM, 2011.

[50] Eyal Zohar, Israel Cidon, and Osnat Mokryn. Pack: Prediction-based cloud bandwidth
and cost reduction system. IEEE/ACM Transactions on Networking (TON), 22(1):39–
51, 2014.

[51] Eyal Zohar, Israel Cidon, and Osnat Ossi Mokryn. Celleration: loss-resilient traffic
redundancy elimination for cellular data. In Proc. of HotMobile, 2012.

93

http://www.squid-cache.org/

	Clemson University
	TigerPrints
	5-2016

	TailoredRE: A Personalized Cloud-based Traffic Redundancy Elimination for Smartphones
	Vivekgautham Soundararaj
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Related Works
	Redundancy Elimination: Inception and Evolution
	In-Network RE Solutions
	Receiver Based RE Solutions
	Sender Based RE Solutions
	Summary

	System Design
	Overview of Generic RE
	System Overview of TailoredRE
	Cloud-Clone based TRE
	Application-adaptive RE
	MAXP-chunk partitioning algorithm
	Cache sharing among the clones
	Summary

	Experiments
	Simulation and Metrics
	Trace Analysis
	Analysis of TailoredRE efficiency
	Implementation of TailoredRE prototype
	Performance Evaluation of TailoredRE prototype
	Summary

	Conclusion
	Appendices
	Preferred Applications Survey

	References

