
workingpaper

:'' i , : 47 . ~~~S--A i. t~ V ,ff0T d0t 00f i 9 M ASACHUSETTSt IN STI TUTE0 0:
-- :t : OF T ECHN OLOGY-:- -:

..".i7..7;
.

;;- - -- ;. - - ; ..~0

I ~ i'. -, . ~' ~ I I ~~ ~ ~ - .:: - :'-~ ~ !"' I - - -. I :~ I- . -C : ·. -:··. ·. i-·�.-·_·

Tailoring Benders Decomposition
For Uncapacitated Network Design

Thomas L. Magnanti
Richard T. Wong
Paul Mireault

OR 127-84 September 1984

ABSTRACT

Because of its imbedded network flow structure, the generic network design
problem is an attractive candidate for integer programming decomposition.
This paper studies the application and acceleration of Benders decomposition
for uncapacitated models from this problem class and illustrates the potential
flexibility of the Benders solution strategy. In particular, it (i) shows that sev-
eral lower bounding inequalities from the literature can be derived as Benders

cuts; and (ii) introduces new Benders cuts for the network design problem.

The paper also reports on computational experience in using Benders
decomposition with a dual ascent and variable elimination preprocessing
procedure to solve uncapacitated network design problem with up to 90 binary
variables and 15,080 continuous variables, or 45 binary variables and 105,600
continuous variables.

KEY WORDS: Network Design, Benders Decomposition, Dual Ascent,
Variable Elimination, Integer Programming.

ABBREVIATED TITLE: Benders Decomposition for Network Design

INTRODUCTION

Conceptually, integer programming models of network design are very

simple. They address the following basic question: what configuration of the

network minimizes the sum of the fixed costs of arcs chosen to be in the

network (a set of binary decisions) and the costs of routing goods through the

network defined by these arcs? And yet, when specialized, even the simplest

version of this problem with linear routing costs and without arc capacities

models many of the most well-known problems in combinatorial optimization.

These special cases include shortest path problems, minimal spanning tree

problems, optimal branching problems, and the celebrated traveling salesman

problem and network Steiner problem (Magnanti and Wong [1984a]).

Moreover, as illustrated by several books and edited collections of papers

(e.g., Boesch [1975], Boyce [1979], and Mandl [1981]), the generic network

design problem has numerous applications. Not only does it model a variety of

traditional problems in communication, transportation, and water resource

planning, but it also arises in emerging problem contexts such as flexible and

automated manufacturing systems (Graves and Lamar [1983] and Kimenia and

Gershwin [1979]). In addition, familiar node splitting devices permit the

model to represent facility location decisions that have applications in

warehouse and plant location, emergency facility location, computer

networking, and many other problem domains. (See Francis and White [1974],

Handler and Mirchandani [1979], Larson and Odoni [1981], and Tansel, Francis

and Lowe [1983] for extensive citations to this literature.) Finally, the

-2-

network design problem arises in many vehicle fleet planning applications that

do not involve the construction of physical facilities, but rather model

service decisions, i.e., do we dispatch a vehicle on a link or not (e.g., see

Simpson [1969] or Magnanti [1981]).

Although these applications have attracted numerous algorithmic studies, even the

uncapacitated network design problem remains essentially unsolved. Surprisingly,

the largest roblems solved to optimality (and verified as such) contain only

about 10 nodes and 40-50 arcs. This experience is, in part, explainable

theoretically. Not only are the simplest versions of the network design

problem NP-complete (Johnson, Lenstra and Rinnooy Kan [1978], Wong [1978]),

but finding even approximate solutions (to problems with budget restrictions

on the fixed costs incurred) is NP-complete (Wong [1980]). Even so,

there does not appear to be any compelling evidence to explain why

network design remains among the most computationally elusive of all integer

programs encountered in practice.

In this paper, we study Benders decomposition-based algorithms for the uncapacitatec

network design problem. Although Benders decomposition has proved to be a

useful planning tool in several problem contexts including distribution system

design (Geoffrion and Graves [1974]), aircraft routing (Richardson [1976]),

and rail engine scheduling (Florian, Guerin and Bushel [1976]), its successes

remain limited. We nevertheless feel that the method continues to have great

potential. By studying the algorithm as applied to the uncapacitated network design

problem and using it together with other integer programming solution techniques, we

(i) report on computational results on some of the largest network design
problem solved to optimality to date. The problems studied in this
paper contain up to 90 binary variables and 15,080 continuous
variables or 45 binary variables and 105,600 continuous variables
(more compact models with as few as 480 and 6,600 continuous

-3-

variables are possible, though these alternate formulations are much
less attractive computationally);

(ii) adapt and enhance algorithmic ideas from Magnanti and Wong [1981,
1983b] that demonstrate the potential for accelerating Benders
decomposition and for generating a rich variety of lower bound
inequalities for the network design problem and other mixed integer
programs. In particular, we show that several lower bounding
procedures for the network design problem from the literature, even
though originally derived by other means, can be viewed as special
instances of Benders cuts; and

(iii) illustrate the importance of using other solution procedures
(bounding-based variable elimination methods, dual ascent) together
with Benders decomposition as part of a comprehensive approach to
solving integer programming problems.

Previously, researchers have attempted to solve uncapacitated network design

problems using a variety of solution techniques. Hoang [1973], Boyce, Farhi and

Weischedel [1973], Dionne and Florian [1979], Boffey and Hinxman [1979], and

Los and Lardinois [1982] have all studied branch and bound algorithms for the

problem. Gallo [1981] has proposed a branch and bound procedure for the

related "optimal network design problem" that eliminates the fixed costs from

the objective function, and instead limits fixed cost expenditures by imposing

a given budget as a constraint. Although these branch and bound algorithms

can successfully solve problems with a small number (in some cases up to

40-50) of arcs, their computation time grows very quickly in the problem size.

Heuristic procedures are capable of generating solutions to much larger

network design problems. Billheimer and Gray [1973] describe an add-drop

heuristic method with provisions for eliminating non-optimal variables. Los

and Lardinois [1982] suggest improvements to this method and discuss

statistical methods for analyzing the solutions that it generates. Dionne and

Florian [1979] and Boffey and Hinxman [1979] propose heuristics for the optimal

network design problem. Wong [1984] gives a special heuristic for optimal

network problems on the Euclidean plane. He shows that with high probability,

-4-

the cost of the solution generated by this heuristic will, under certain

conditions, be very close to the cost of the optimal solution.

These various heuristics can usually solve larger-sized problems (20-50

nodes) in a small amount of computation time. However, it is usually

difficult to assess the quality of the heuristics' solutions since no

satisfactory method is known for solving problems of this size optimally.

In one study of integer programming decomposition for the network design

problem, Rardin and Choe [1979] have devised a Lagrangian relaxation

algorithm. Their computational results seem to be quite promising.

Our computational results in this paper demonstrate that choosing Benders

cuts judiciously can have a marked effect on the algorithm's performance. We

introduce a new type of cut, which is generated by using information from

solving a single shortest-path problem over all candidate arcs at the outset

of the computations. This new cut and a Pareto-optimal cut generated by

specializing the methodology from Magnanti and Wong [1981] are an order of

magnitude more effective than cuts generated by the usual implementation of

Benders method.

Our computational experience also indicates that Benders decomposition can

be much more effective when used in conjunction with other integer programming

techniques (dual ascent and variable elimination procedures). Equipped with

these enhancements, the algorithm was able to solve to optimality 19 of 24

test problems with 45 arcs (in three cases) and 90 candidate arcs, and to find

solutions to 23 of these problems that are guaranteed to be within at most

1.44% of optimality (and to within at most 5.53% for the 24th problem). The

computations took from about one minute to about 1-1/2 hours on a VAX 11/780

computer, which we estimate would correspond to about 7 seconds to 10 minutes

on an IBM 3033. These solution times were obtained using the branch

-5-

and bound facilities in the Land and Powell [1973] mathematical programming

system. They could be reduced, and quite likely significantly, by using a

commercial branch and bound code or specialized computer codes for solving the

Benders master integer program.

This experience indicates that large-scale uncapacitated network design

problems are within the reach of current integer programming capabilities;

moreover, it highlights the importance of adopting a holistic view of integer

programming methods, rather than treating each solution procedure in isolation.

1. MODELING AND SOLUTION APPROACH

Problem Formulation

The basic ingredients of the model are a set N of nodes and a set A of

undirected arcs that are available for designing a network.

The model has multiple commodities. These might represent distinct

physical goods, or the same physical good but with different points of origin

and destination. We let K denote the set of commodities and for each kK,

assume (by scaling, if necessary) that one unit of flow of commodity k must

be shipped from its point of origin, denoted 0(k), to its point of destination

denoted D(k). This formulation can model problems in which any commodity has

either multiple origins or multiple destinations by considering the flow

from each origin to each destination as a separate commodity (i.e., by

disaggregating low). Tche formulation cannot, however, model problems

with both multiple origins and multiple destinations since it then loses

its imbedded shortest path structure.

The model contains two types of variables, one modeling discrete choice

design decisions and the other modeling continuous flow decisions. Let Yij

-6-

be a binary variable that indicates whether (Yij = 1) or not (Yij 0)arc

k
{i,j} is chosen as part of the network's design. Let x.ij denote the

flow of commodity k on arc (i,j). Note that (i,j) and (j,i) denote directed

arcs corresponding to the undirected arc {i,j}. Even though arcs in the

model are undirected, we refer to these directed arcs because the flows are

k
directed. Then, if y = (j) and x = (x.j) are vectors of design and flow

variables, the model becomes:

: minimize Z Z (Ci ki ki j ije k k kminimize Z Z (C.. x. + c.. x..) + Z F..y..{FK i,j}-A cij i{i,j~cA 31

(1.1)

subject to:

-1 if j= O(k) all jeN

x E- £ X 1 if j = D(k) all kK (1.2)
i£N lJ 9eN j 0 otherwise

k

xij < Yij |all {i,j}EA (1.3)

k all k£K
iji Yij

k k
xk >0, Y = 0 or 1 all kcK, {i,j}eA (1.4)
xiji, xji > 0 i

ye Y. (1.5)

k
In this formulation ci is the nonnegative per unit cost for routing commodity

ii

k on arc (i,j) and Fi.. is the fixed charge design cost for arc {i,j}. In
1J

k k
general, c..ij need not equal ci... Constraints (1.2) imposed upon each commodity

1J ~~~~~J 1

k are the usual network flow conservation equations (multiplied through by -1

to facilitate later interpretations of our algorithmic development). The "forcing"

constraints (1.3) state that if arc {i,j} is included in the design, i.e., if

Yij = 1, then the total arc flow is unlimited (since the flow of any

commodity k on arc (i,j) or (j,i) is at most one, anyway) and if arc i,j is

not included in the network design, i.e., if yij = 0, then the total arc flow

must be zero. Finally, the set Y imposes any possible restrictions on the design

-7-

variables such as multiple choice constraints (Yij + + y < 1) orYjpq rs -

precedence constraints (Yij < rs)

Like most integer programming problems, this design problem could be

modeled in a variety of ways. In particular, the forcing constraints (1.3)

are equivalent to the more aggregated constraints

k
Z xij < IKly ij

kEK

and for all {i,j}lA. (1.6)

k
Z x ji IKlYij
kEK

k k
Both versions of these constraints force each xij and x.i for kK to be

zero if Yij = 0, and become redundant if yi =1.

This aggregation could substantially reduce the number of constraints in

the formulation for even moderately sized problems. With 50 commodities and

100 arcs, the disaggregate formulation (1.3) contains 10,000 forcing

constraints; the aggregate version contains only 200 forcing constraints.

Note that the formulation (.l)-(l.5) includes a single commodity k for

each origin-destination pair of demand. This definition of commodities gives

rise to 2 constraints of the form (1.3) for each origin-destination pair.

Alternatively, when the per unit routing costs are independent of the destination,

k
we could distinguish commodities only by their point of origin (then x is

the total flow from origin k on arc (i,j)), and model the forcing constraints as

k Jk INly
xij < INlytj

k
X < INly..
ji 1 ij

In a problem with as few as two origins shipping goods to 25 destination nodes

over 100 candidate arcs, this modified model would reduce the number of

continuous variables from 2.25.2.100 = 10,000 to 2.2.100 = 400.

-8-

Surprisingly, the seemingly less efficient and substantially larger dis-

aggregate formulation with forcing constraints (1.3) instead of (1.6), and with

flow variables for each origin-destination rather than for each origin, leads

to more efficient algorithms. The disaggregated model is preferred computationally

for two reasons. First, many techniques for solving integer programs like the network

design problem first solve the linear programming relaxation of the model that

results by replacing yij = 0 or 1 with 0 < ij < 1. Because the linear programming

version of the disaggregate formulation is much more tightly constrained than the

linear programming version of the aggregate formulation, the disaggregate

linear program provides a sharper lower bound on the value of the integer

programming formulation; that is, it more closely approximates the integer

program. A number of authors have noted the important advantages of using

"tight" linear programming relaxations. (See, for example, Cornuejols, Fisher

and Nemhauser [1977], Davis and Ray [1969], Beale and Tomlin [1972], Geoffrion

and Graves [1974], Mairs et al. [1978], Magnanti and Wong [1981], Rardin and

Choe [1979], and Williams [1974]).

In addition, solution methods such as Benders decomposition that utilize

information obtained from the dual of the linear programming relaxation will

also be much more effective when applied to the disaggregate formulation

(1.1)-(1.5). Because the disaggregate linear programming formulation has more

constraints, it has a richer collection of linear programming dual variables and,

therefore, provides more flexibility in algorithmic development. Indeed, these

two advantages of the disaggregate formulation are intimately related (Magnanti

and Wong [1981]).

Benders Decomposition

Benders decomposition assumes a particularly simple form when applied to

the uncapacitated network design problem defined by problem Pi. The

algorithm alternately solves for a tentative network configuration in the

-9-

integer variables y and a routing problem in the continuous variables x. For

any particular choice of the y variables, the design model (1.1)-(1.5) reduces

to a collection of independent shortest path problems, one for each commodity

k. Since the mechanics of Benders decomposition is the same for one commodity

as it is for many, while describing the algorithm we drop the index k and assume

that there is only one commodity (and hence only one routing subproblem) for

any fixed value of y. Let S(y) denote this routing subproblem and let R(y)

denote its optimal objective value (ignoring the fixed costs). In addition,

let ui and vij (vji) denote any feasible dual variables corresponding to

the constraints (1.2) and the negative of constraints (1.3), respectively, and

suppose that node 1 is the origin node for this single commodity and that node

n is its destination node.

By linear programming duality theory, for any fixed choice of y, the value

of the dual objective function to the subproblem S(y) is a lower bound on

R(y). That is,

R(y) > u u- Z (vi + ji)yij

Moreover, this inequality is satisfied as an equality if the variables ui

and vii solve the dual problem. Therefore,

R(y) = minimum w

subject to: (1.7)

- n -u 1 - (vj+ vji)Yij for all (u,v) D.
{i, j} EA

In this formulation, u = (ui) and v = (vij) are vectors of dual variables

and D denotes the dual feasible region for the subproblem formulated with con-

straints (1.3) multiplied by minus one. This convention of multiplying by minus

one ensures that the variables vij. and vj.. in D are nonnegative.
1J j1

-10-

Since the optimal value C* of the design problem equals the minimum of the

fixed costs Z Fi.yi. and routing costs R(y) over all feasible network
{i,j}EA

configurations,

C* minimum z

subject to:

z F Y + u - u1 - Z (v + vj)Yij for all (u,v)eD
{i, j}EA ijij n 1 {ij}A ij ji ij

(1.8)

ycY and yi = 0O or 1 for all i,j}eA.

This reformulation of the original problem is known as the master problem.

Note that z and the ijs are its decision variables.

Benders decomposition solves the master problem by relaxing the inequality

constraints (1.8) on z for most (u,v)CD and replacing them with a finite

number of constraints obtained by restricting the (u,v)'s to some small set

D' C D. Since the constraints are relaxed, the value C' of the relaxed master

problem is a lower bound on C*. The algorithm then checks to see if the

solution C'=z' and y' = (y!.) to the relaxed master problem is feasible in the

full problem by solving the routing subproblem; that is, by solving the

shortest path problem defined by y' or its dual reformulation (1.7) with

y=y'. If the optimal dual variables (u', v') to this problem satisfy (1.8),

i.e., if

Z > F1 Y. + u' - -i (v' + V'.)Y, (1.9)
-{i, J1EA¢ {ijA ij +21A

then (1.8) is satisfied for every other (u,v)ED and thus C* = C', and y' is

an optimal configuration. Otherwise, we add the Benders cut (1.9) to the

restricted master problem and repeat the procedure.

This procedure requires one further elaboration. For some values y of y,

the subproblem might be infeasible. That is, the network defined by y might

not contain any path from the commodity's origin to its destination. In this

-11-

case, there must be a cut set C separating the origin and destination with

i 0 for all arc i,j}E C. When this occurs, we add the feasibility

cut

~~~~~~E y....lJ

Z Yij 1
{i,j}eC c

to the relaxed master problem and proceed as before. (The full master

problem would contain all cuts of this nature.)

For multiple commodity formulations, we let Sk(Y) denote the routing

subproblem for commodity k for a fixed value y of y, let Rk(y) denote its

optimal objective value, and let R(y) = SkKRk(y). Also, let

uk = (uk) and vk = (vkj) denote dual variables for the kth subproblem.
1 i

Then the method is much the same, except that the Benders cuts in (1.8) becomes

k k k k
> F Fi jYi + Z [(UD(k) uO(k)) - i (vi + )Yij]. (1.10)

{i,j}cA j kK J i 'k)

This cut can be interpreted as follows. Let uk denote the length ofi

the shortest path from node (k) to node i with respect to distances ck and k
ji

in the network defined by those arcs {i,j}cA with yi, = 1. Furthermore, let

vk max f k uk ck 0}
vi max u - u i- cij(

k k k k
and vji = max {u. - u - c , 0 

k k
Then {u. J and {vk. I} solve the dual to the kth subproblem, and any positive

1 1J

k k k k
coefficient (v.j + vi), and the term (v.j + vi)yij, of (1.10) can be inter-

1J Ji 1J :i ij, f(. a eitr

preted as a potential reduction in the shortest path distance between nodes O(k)

and D(k) caused by setting yij = 1 and introducing arc i,j}£A. The coefficient

k k
(kVj + v) of yi represents this total potential savings (generally an overesti-k i ji 1j

mate) over all commodities. The reduction might not be realized because arc {i,j}

need not lie on the shortest path joining some of the origins and destinations.

Moreover, the savings of introducing two arcs {i,j} and {r,s} might not achieve the



-12-

k k k k
total potential ZkcK (vj + v ) + (v + v ) because of interaction effects;

kF- i 3 ji Z vaK rs sr

that is, even if a new shortest path joining the origin and destination

of some commodity k were to use both arcs {i,j} and {r,s}, we need not realize

k k k +k.
v. + v.. + + v+ in savings. For that reason, the righthand side of (1.10)
13 j

m rs sr

is a lower bound on the total cost z, and need not necessarily be equal to this cost.

2. STRZKGTHENING BNDERS CUTS

The usual (or standard) Benders cut (1.10) is but one of many possible

lower bounds on the cost of the network design problem. As we have already

noted, this cut is derived from dual variables to the linear programming

relaxation of the problem which is a shortest path problem. Since network

problems are typically degenerate, their dual problems typically have

alternate optimal solutions each defining a Benders cut. Are some of these

cuts to be preferred to others? How might better cuts be generated?

In this section, we discuss five other Benders cuts. The first three are

known lower bounds on the network design problem's objective value derived

previously in the literature from arguments unrelated to Benders

decomposition. We show that each of these lower bounds is a Benders cut

derived by a judicious choice of the dual variables or the tentative network

configuration used to generate the cut. This demonstration illustrates the

richness of Benders cuts for the network design problem as well as the

fundamental role of duality (in generating the Benders cut) for developing

objective function bounds.

The fourth cut, which is new, dominates (in a way to be described later)

the usual cut (1.10). Like some of these other lower bounds, it sharpens the

cut inequality by considering penalties for eliminating arcs from the current



-13-

configuration as well as savings attributed to adding new arcs (as in the usual

cut). The fifth cut, which is of this same variety, has no explicit representa-

tion. Rather, it is generated by solving an auxiliary linear program to

the subproblem which selects a "good" alternate solution to the dual.

Although this procedure is a specialization of a more general cut generation

procedure (Magnanti and Wong [1981]), because of the special structure of the

network design problem it can be implemented efficiently by solving one network

flow problem for generating each cut.

We might note that the general conception in this section of strengthening

Benders cuts applies to other problem settings as well. In particular, similar

results are possible in the context of facility location problems (Magnanti

and Wong [1984b]), where the Benders cuts are related to the theory of

submodular inequalities (Nemhauser and Wolsey [1981]).

2.1 Interpreting Lower Bounds as Benders Cuts

Previously, Boyce et al. [1973] proposed the following lower bound on the

total cost z of the network design problem:

> Z FijYij + R(ya) (2.1)
- {i, j}eA

aIn this inequality, y denotes a candidate design that includes all possible

a
arcs, i.e., yij = 1 for all {i,j}eA. We shall refer to this special

candidate network as the all-inclusive design. Recall that R(y) denotes the

total (minimum cost) routing cost for the given candidate network y. There-

fore, since all arcs are available in the all-inclusive design, R(ya) is the

minimal possible routing cost for the problem. In particular, since R(y) >

R(y ) for any network configuration y, (2.1) is a valid lower bound on total

costs. Notice that the righthand side of this lower bound is actually a lower

bounding function on total cost z(y) as a function of y. We have subsumed the



-14-

dependence on y to conform with standard conventions from the literature on

Benders cuts.

Independently, Gallo [1983] and Magnanti and Wong [1984] proposed another

lower bound:

z > ijY ij + c (y] + R(ya )

{i3j}jA JiJ (2.2)
{iij}EA ~ kEQij

The formidable looking second term in this lower bound, which adds penalties

for eliminating arcs from the all-inclusive design, requires some explanation.

The variable yi l-yij equals 1 if arc i,j} is eliminated from

the all-inclusive design and has value zero, otherwise. The term within

brackets multiplying Yi. is a routing cost penalty for eliminating arc

{i,j} from the all-inclusive design. The sets Qij define any partition

ka
of the commodities and Iij(y ) is the incremental routing cost for

commodity k incurred by deleting arc i,j} from the all-inclusive design.

Note that this incremental cost term is zero if and only if some shortest path

from O(k) to D(k) does not contain arc i,j}.

k a
Notice that since each ycj and each incremental cost I(y) is nonnegative,

ij 

if~~~~~ anycefcetIif any coefficient I (y ) is positive the lower bound (2.2) dominates the

lower bound (2.1) in the sense that the righthand side of (2.2) is as large as

the righthand side of (2.1) for all values of y and is strictly larger for at

least one value of y.

We next show how to interpret both lower bounds (2.1) and (2.2) as Benders

cuts. For (2.1), the interpretation is easy to derive. Simply consider the

Benders cut generated by the all-inclusive design. Since every arc

{i,j}eA belongs to this network configuration, for each commodity k, the

k
shortest path distances u. from 0(k) to node i satisfy the optimality

1-



-15-

k _ k k
conditions c + uk - u. > 0. Consequently, the vij and

ij i 3-

k
ji in (1.11) are zero and the usual cut (1.10) becomes the lower bound

(2.1).

Showing that (2.2) is a Benders cut is a bit more difficult. To establish

this fact, consider a given arc {g,h} and a given commodity kQgh.

Suppose that we solve a shortest path problem for commodity k on the

all-inclusive network with cost data specified as follows:

= k kcj Cij and c.. = c.. if i,j} # g,h}
31 31

~k = ck +k (ya)
gh gh gh

~k =k k ya
Chg Chg + Igh ) 

~kLet u. denote the shortest path distance from node O(k) to node i, with

k
respect to these costs. For all i,j}cA, let vi be defined by (1.11)

k ~k ~ k ~ k ~k k ~k k k kwith u. = u.;i.e. v.. = max(0 - u - i ax(0,u - u. - c.)-i i i J max(O,uj j Ui C . 3 31

k ~k
Property 1: The ui and v. are feasible variables in the dual of the kth

13

subproblem Sk(ya) corresponding to the all-inclusive design.

of~k
Proof: By substitution in the dual problem. (For any values of ui ,

~kthe vij defined in this way correspond to a dual feasible solution.) 

~ k ~ k
Property 2: The ui and vij are optimal variables in the dual of the kth

subproblem Sk(ya).

Proof: Since these variables are dual-feasible, it suffices to show that

their dual objective value equals the length of the shortest path from O(k) to

D(k) in the all-inclusive design.



-16-

First, note that by definition of the incremental cost Igh(ya), the

length UD(k) - U0(k) of the shortest path for commodity k in the all-inclusive

~ka
network with costs cij equals Igh(y) plus the shortest path length for costs
k
cij . That is,

k -k = a ka
UD(k) (k) R(y) + I ( (2.3)) gh~y)

~kNext note that since ui are shortest path distances on the all-inclusive

~k ~ k ~k
network, the optimality conditions cij + ui - u. > 0 are valid for all

k a~k k k
{i,j}cA. But then since c = c i and cj i = c. for all i,j} # {g,h}, = 

and v. = 0 for all {i,j} {g,h}.

k a -k k -k k
Now consider arc {g,h}. If Igh(Y) = 0, then c gh= Cgh Chg= chg and, there-

Cgh gh' Chg- hg,

~k ~k k a
fore,v gh = Vhg = 0. If Igh( ) >0, then arc g,h} must lie in a shortest path P

k
in the all-inclusive network with arc cost cij. Moreover, this path has length

Rk(ya) + Ikgh(Ya ) in the all-inclusive network with the costs cij. Consequently, by

(2.3) arc {g,h} must also lie in a shortest path in this network and, thus, either

~k ~k ~k ~ k ~k ~k
Cgh + ug -u h

= 0 or hg + uh - ug 0. Assume the former (the argument is the

.k ~ _k k k a
same in either case.) Then vgh = ug - uh - Cgh= Igh(y ) > . Finally, note

~k ~k
that this conclusion implies that Vhg = 0, for otherwise summing vgh and

-k -k -k k k k
vhg = u - h - chg > 0 gives - c - chg > 0, which is a contradiction. Note

Vhg~I Uh _k Ik _ k= g hg C gh Chg,
that whether Ikh (ya) equals zero or not, we may assume that vgh = gh and Vhg

Using all of these computed values for the vikj and (2.3), now evaluate the

~k ~ k
dual objective function corresponding to ui and vij. Its value is given by



-17-

-k -k -k -k a = [ Rk (ya) + k~a .k a
~Dk) ~0k) +V ) R(y) + vi)Y]-
UD(k)- UO(k) {i, j}A iii gh y Vgh Ygh

= R ak (y ) - Ih(Y) = Rk(ya).
k~ )+ gh gh 

Since this value agrees with the routing cost for the kth subproblem, the

~k ~ k
ui and vij are optimal dual variables. 

By Property 2fz, w e c n ksBy Property 2, we can use {ui, vij kcK to produce the Benders cut

k -k k + _~kkk>EKI Z ( +V. )y.] + z F..y.
z kZ [UD(k) O(k)) fi eA ij ji i + iYi,] + ij

or

z > Z Rk(y ) + k
kEK {i,j}leA keQij

kc~~ij

_ £ Ik y + F y
{i,j}eA keQij ij ij {i,jlA ij ij

ii

c
which, upon substituting yij = 1-yij, is exactly (2.2). So the lower bound

inequality proposed by Gallo and Magnanti and Wong can be viewed as a Benders

cut.

Hoang [1973] has proposed a cut that is an intermediary between (2.1) and

(2.2); it is obtained by setting Qo(k),D(k) = {k} for all kcK.

Therefore, the set Qij partitions the commodities into singletons and

ka
Iij(ya) for i = O(k) and j = D(k) corresponds to the incremental cost between

ij 

the origin and destination of commodity k if we eliminate the possibility of

single-arc direct routing. Here, we have assumed that

O(k1) = D(k2) and D(k1) = (k2) is never true; otherwise, we would set

Qo(kl), D(k2) = {kl,k2} and the interpretation would be similar.



-18-

Figure 2.1 illustrates an example of the usual and improved Benders cuts

we have discussed. In this example, one unit of flow is to be sent from node

1 to node 3 and another unit from node 1 to node 4. The set A consists of all

arcs drawn in the figure. The arc labels specify the arc routing costs which

are the same for both commodities. Let k=3 and k=4 refer to the two

destination nodes of the commodities. The optimal dual variable values for

uk with k=3 or 4 have three different values corresponding to the usual,

Hoang, and Gallo-Magnanti-Wong Benders cuts.

The first set of dual variables yields Boyce et al.'s usual cut,

corresponding to (2.1)

z > Z F y. + [(2+5) = 7].
{i,j}TA 1JiJ

The second set of dual variables indicates that deleting arc 1,3} from

3the network increases the routing cost between nodes 1 and 3 from u + 2

= 2 to = 11 for a net increase of 9 units (i.e., I13 = 9). Thus,

Hoang's cut is

z > Z Fijyij + 7 + 9(1 - y13
-- i,j~z JiJ-Y3

The third set of dual variables corresponds to the Gallo-Magnanti-Wong cut

(2.2) where commodity 3 belongs to Q13 and commodity 4 belongs to Q3 4.

This cut provides the additional information that deleting arc 3,4} from

the network increases the routing cost between nodes 1 and 4 from

4 4 4 3 =9u4 + 5 = 5 to u4 = 9 for a net increase of 4 units (i.e., I34 = 4 and I13 = 9).

The resulting cut is

z > L Fijyij + 7 + 9(1-y 13) + 4(1-y 3 4 )
{i,j}cA ( 1



-19-

2 = 3,10, 10

u 2 -= 3,3,3

I0

u3 0,0,

U4 = 0,0,I

2

6

= 5,14,14

4= 5,5,9
= 5,5,9

u 3 = 2,11

u = 2,2,2
3

Figure 2.1 A Step of Benders Decomposition with
Alternate Dual Solutions

I



-20-

This example illustrates the potential for strengthening the usual Benders

cut by incorporating information about the penalties for deleting arcs in

the current design. Although we discussed these ideas for only the specific

design y = ya, they can easily be adapted to any arbitrary candidate network.

2.2 Strong Benders Cuts for the Network Design Problem

In Section 1, we saw that the optimal dual variables for the usual Benders

cut could be interpreted as upper bounds for estimating the decrease in

network routing cost due to the addition of arcs not in the current design y.

The previous subsection demonstrated how the usual Benders cut could be

improved by considering penalties caused by removing an arc already in the

current design.

Next, we discuss another technique for strengthening the usual Benders

cuts which utilizes more accurate estimates of the decrease in routing cost

due to the addition of an arc. As before, we introduce this new Benders cut

as an alternate optimal dual solution to the Benders subproblem.

k ^k
Let u~, vij kEK be the dual variable values corresponding to the

usual Benders cut for a candidate design y = y. We define a "strong" Benders

-k -k
cut by specifying a new dual solution {ui, vij 1kcK as follows:

_k ^ k
UD(k) = UD(k) = routing cost for commodity k

_k ^k
uO(k) = uO(k) = 0

k -k k
i UD(k) Di

-k ^k k
ui = min(ui, i) i (k) or D(k)

-k = -k -k
v max{O,u - u. -ij 1 ~~~~~~~~~~~~~ ~(2.4)



-21-

In the expression defining Ak., Dk denotes the minimum cost of

routing one unit of commodity k from node i to node D(k) on the all-inclusive

network given by y = y.

As noted in Section 1, for the usual Benders cut with the dual variables

k ^k 
{k, vij}k£K , we could interpret

.k (Q'k k k
vii = max(O, uj- u - ci)
viim

as an upper bound on the decrease in the routing cost for commodity k if arc

{i,j} is added to the current design y = y.

Although the strong cut dual variables have a similar interpretation, they

provide lower bound estimates that are no worse than,and usually improve upon,

-k ^k
the ones provided by the usual cut. That is, every vij < vij.

-k -kProperty 3: a) For every kK, {ui, vij} is an optimal solution for the

dual to the kth subproblem Sk(y).

-k ^k -k ^kb) vij < v and v < v.. for all {i,j}cA and all kK.
- ] lJi - ]z

-k ^k
Proof: We begin by proving v.. < v.i in part b.

_ _ _ _~~ ~ ~~ -- 'l l '-2

-k k -k ^k -k -k ^k -^kCase 1: Suppose ui = ui. Then since u < u, we have u - u < u. - u.
J- J 1 - j 

which by the definitions (1.11) and (2.4) of the vi. s implies that

-k ^k
vij < v .

-k kCase 2: Suppose u = A i. The triangle inequality implies that

D. < D + c
1- J ij

or
k k k
i cij < 



-22-

Consequently,

k k k k k k k k k
Aj = D(k) - Dj UD(k) - (D c UD(k) - Di) + cij

and thus

k k k
j ' i+ c ij 

-k Ak
This inequality and the fact that u. <. implies that

3 - J
-k -k k -k _ k k k k
uj - ui < Aj ui - Ai < A i + c i

or-k -k kor uj ui < cij.

-k ^k
From (2.4), this last inequality implies that vij = 0, and since vij > 0,

-k ^~k -k ^kwehave v V. Vi.we have vk < . A similar argument shows that v.. < v.A and, thus,ij- i 31 - 3

completesthe proof of part b.

k kIn part a, substituting the values {ui v i} into the dual of P shows they are,~~~~~~~1 ii

-k -k ̂ k
dual-feasible. By definition, (uD(k) - uO(k)) (D(k) - ) which is the optimal

objective value to the dual of Sk(y). Now Yij = 1 implies that

-k = -k ^k k
vi 0 since v i < vij by part (b) and vij = 0 by the optimality

k ^Ak skm-
condition c + ui - uj > 0 of the shortest path subproblem Sk(y). A similar

argument shows that yij = 1 also implies that vJi = . Therefore, the objective

function value of the dual solution {u., V1j} is and so the solution
i ij D(u)

is optimal as well as feasible.

-k -k
Substituting {ui, Vij kcK into (1.10) yields

_k -k -k -k
keK (UD(k) - u(k)) (- ( ii + vi)Yij + Z FijYij
-kcK fi~jlci{i,j}iA {i,j}¢A

-k ^ k -k ^ kor since UD(k) = D(k) and uO(k) = uO(k) 0,

z > Er (ak (vk+ k(UD(k) - uO(k)) - (v + vji)Yij + Z F1.y1.

kcK {i,jjA F iJ'eA



-23-

-k ^k -k ^k
Since v < vij and v. < v.. for all i,jl, the strong cut will be no

ij- ] l --- l 

worse than the usual cut and will frequently dominate it.

Figure 2.2 depicts an example comparing the two types of cuts. The design

problem is the same as the one in Figure 2.1 except that the only flow require-

ment is to route one unit between nodes 1 and 4. Assume that the current design

consists of all arcs except for arc 2,3}.

The first set of dual variables corresponds to the usual cut

z > 5 - 7Y23.

The second set of dual variables leads to the strong cut

z > 5.

The usual cuts estimate that arc 2,3} would belong to a shortest path

4 4 3between nodes 1 and 4 and potentially save u2 - u3 - c2 = 10-2-1 = 7

units of cost. Looking ahead, though, from node 3 to 4 by computing the

shortest path distance from every node to node 4, we "see" the high cost of

arc 2,4}. Thus, by looking for additional costs "further down the road,"

we are able to produce a more accurate estimate of the value of adding arc

(2,3} to the network design.



-24-

u= 10,o1

I10

U4 =0,0

2

6

u4= 5,5

u4= 2,2

Figure 2.2 One Step of Benders Decomposition
with Usual and Strong Cuts

I



-25-

2.3 Pareto-Optimal Cuts for Network Design Problems

To this point, we have seen several methods for generating Benders cuts

for the network design problem that "improve" upon the usual ones in the sense

that they are no worse than, and usually dominate, the usual cuts. In

general, we would prefer to have cuts that are not dominated by any other

cut. We call such undominated cuts Pareto-optimal.

Magnanti and Wong [1981] have introduced a general methodology for

generating Pareto-optimal Benders cuts for any mixed integer programming

problem. Their method conveniently specializes to the network design problem

in the following way. Suppose that we have solved the dual to the subproblem

Sk(y) for the current design y = y. Now consider the auxiliary linear program:

k k k k 0
(Aky)) maximize (uD(k) uO(k3 i}A (vi + vji)Yij

maximize~~ (Uvk). U yk)-i jc

k k k -
Cv~~~~ (ij? Rk Y

uD(k) - uO(k) {i ,j}A + vi)yij > (Rk )

k k k k
u-ui -v < c

iu j - ij all {i,jiEA

k k k k all kcK
ui -u- vji< cji

k k >0
vii, vi > 

0

where y is a point in the relative interior of the convex hull of Y. Notice

that APk(y) is similar to the dual Sk(y) except that it has a different

objective function and an additional constraint that restricts the feasible

region to the set of optimal solutions to this dual problem.

Suppose that we find an optimal solution for APk(y). Magnanti and Wong

proved that the corresponding cut is Pareto-optimal.



-26-

For the network design problem, Benders decomposition can produce

Pareto-optimal cuts at the price of solving an additional IKI auxiliary

linear programs. In fact, it can do so by solving IKI minimum cost flow

problems. To demonstrate this fact, we form the linear programming dual of

APk(y).

k k -
Min Z (cijxij + cjix.i ) Rk(Y)x0

{i,j }A Ji J

subject to:

Xj - x = -(1 + x) where s = O(k)

is j Sij

xji - xij = 0 for all i 0(k) or D(k) (2.5)

j i

Z xjt - xtj = +(1 + x0 ) where t = D(k)

j i

0
xij < Yij + X0 Yij

0 +Yj for all {fi,J}A

x~~ >x ji Yij + XoYij

xij 0, x 0 > 0 

In this formulation x0 is the dual variable associated with the first

constraint of problem APk(y) and xij are dual variables associated with

the other constraints. This reformulation shows that we are dealing with a

parametric minimum cost flow problem in the scalar parameter x0 which

induces a variable demand of (1 + x0) units, a variable arc capacity of

0
Yi + x0 for the arcs in the current design (i.e., with Yij = 1), and a

0
fixed arc capacity of Yij for the arcs not in the current design (i.e., with

Yij = 0). We receive a rebate of Rk(y) for each unit after the first one

that is sent from O(k) to D(k) and must send a flow of at least one unit from

O(k) to D(k). Once that unit is sent, if the marginal cost of sending



-27-

additional units is less than Rk(y), there is incentive to increase the

value of x0 until the marginal cost becomes greater than or equal to

Rk(y). At this point, no further increase in the value of x can improve

the objective function of (2.5)

0We claim that any value of x0 > Z Yj is optimal in (2.5). To establish
-{ i,j}cA iJ

0-this fact, note that the total capacity y + XoYij for arcs not in the current

- ~ ~~~~~~~ 0design (those with y.i = 0) is at most Z y . Also, each unit of the
~~~1J {i,j}eA ij

(l+x0) demand must flow along some path(s) from O(k) to D(k). At most

0
Z Yij of these units can use path(s) containing an arc not in the

{i,j}eA

current design defined by y since each unit of flow along such paths must use

at least one unit of capacity of arcs not in the current design. Any

additional flow must use path(s) that contain arcs only in the current design

and, therefore, their marginal cost will be R(y).

0So any value of x0 > Z Y must be optimal for (2.5).
{i, j}cA

0
By fixing x0 > Z Y' we can solve (2.5) as a minimum cost flow

{i,j}cA

problem and the optimal dual variables will be an optimal solution for APk(y).

Solving IKI such minimum cost flow problems determines the coefficients

{ui keK for a Pareto-optimal Benders cut.

Note that like all of the procedures given in this section for generating

improved cuts, the Pareto-optimal cut algorithm requires more computational

effort than the usual cut algorithm. However, the improved cuts should

accelerate the convergence of the master problem and thus decrease the overall

computation time of Benders decomposition. Our computational results in

Section 4 confirm this suspicion.

-28-

3. PROBLEM PREPROCESSING

In the past several years, researchers have made substantial progress in

solving integer programs. Indeed, recent computational experience has

demonstrated an important lesson-the synthesis of varied solution strategies

often significantly extends solution capabilities and permits integer

programming algorithms to solve large-scale applications. Moreover, the

research community is witnessing a resurgence of several previously discarded

methods such as cutting planes. This renaissance and the improved performance

of these methods is attributable in part to the way that these methods are now

being integrated with other solution approaches.

For example, Crowder and Padberg [1980], Crowder, Johnson, and Padberg

[1983], Barany, Van Roy, and Wolsey [1983], and Martin and Schrage [1982] all

have successfully solved large-scale integer programming problems by using

cutting planes of the integer programming feasible region. These methods

incorporate facet generating inequalities, logical inequalities, coefficient

reduction, and/or variable elimination procedures within a branch and bound

framework. Lemke and Spielberg [1967], Guignard and Spielberg [1981], and

Gutgnard [1982], have made similar proposals, and Geoffrion and Marsten [1972]

and Land and Powell [1979, 1981] have given integrating frameworks of integer

programming methods and surveys of computational codes and computational

experience.

For specific applications to the network-design problem, Billheimer and

Gray [1973] used methods for eliminating variables with a heuristic local

improvement scheme.

In preliminary testing with pure Benders decomposition for the network

design problem, we observed that the algorithm's performance was quite erratic

-29-

for larger-scale problems with more than 50 integer variables. This

observation prompted us to consider preprocessing procedures that would

(i) eliminate variables to reduce problem size;

(ii) incorporate information from the linear programming relaxation

for bounding purposes; and

(iii) produce logical constraints that further restrict the integer

variables.

Our preprocessing procedure works by first obtaining a feasible solution

to the dual of the linear programming relaxation of the network design

formulation (1.1)-(1.5). (In fact, the routine uses a slightly more

complicated formulation of the network design problem adopted from Magnanti

and Wong [1984c]. We will not discuss this modified integer programming

formulation since it would unnecessarily encumber the presentation of our

main ideas.)

Notice that any dual feasible solution (u,v) to the full linear

programming relaxation is also a feasible solution to the dual for the Benders

subproblem. Rewriting (1.10) using a dual feasible solution produces the

Benders cut

z > a0 + Z aijyij (3.1)
{i,j}cA

where

a k k
a0 Z (UD(k) Uo(k)

and

aij = Fij- Z (vj + vki) for all i,j}eA .
keK ii Vi

Inspection of (1.1) -(1.5) and the dual feasibility of (u,v) allows us to

interpret a as the dual objective function value of (u,v) and each aj as

the nonnegative slack in the dual constraint corresponding to the variable Yij..

-30-

We use a heuristic technique known as dual ascent to generate a dual

feasible solution. The procedure exploits the simple form of the objective

k
function and iteratively increases each UD(k) variable and adjusts the

other variables in order to preserve feasibility. The algorithm terminates

k
when it reaches a local optimum and no further change of a single uD(k)

variable can improve the objective function. Note that by linear programming

duality theory the dual objective function value a0 is a lower bound for

the value of the linear programming relaxation and consequently, for the value

of the integer programming problem (1.1)-(1.5). We can also use the dual

ascent solution to derive an upper bound a1 for the optimal design cost.

To do so, we form a candidate design consisting of all arcs i,j} whose

dual slack aij is zero in the final solution. Then we improve this design

by applying a simple drop-add local improvement heuristic to generate a

feasible solution to the problem. The full details of this dual ascent-based

algorithm for obtaining upper and lower bounds for the network design problem

are rather complicated and will be given in a separate paper (Magnanti and

Wong [1984c]).

A number of authors have successfully used dual ascent procedures to solve

combinatorial optimization algorithms. The method has produced excellent

computational results in solving large-scale problems for uncapacitated plant

location (Bilde and Krarup [1977] and Erlenkotter [1978]), for plant location

with side constraints (Guignard and Spielberg [1979]), for data base location

(Fisher and Hochbaum [1980]), for generalized assignment (Fisher, Jaikumar and

Van Wassenhove [1980], for dynamic plant location (Van Roy and Erlenkotter

[1982]), for asymmetric traveling salesman problems (Balas and Christofides

[1981]), and for the Steiner tree problem on a graph (Wong [1984]). In keeping

with the objectives of this study, we decided not to implement dual ascent as

-31-

a solution technique by itself, but rather to use it in a variable elimination

routine for preprocessing.

The elimination routine works in the following way. We use the dual

ascent-based algorithm to obtain upper and lower bounds a1 and a0 on the

optimal objective value to the design problem as well as a Benders cut (3.1).

Consider any arc g,h} with agh > (al-a0). Then arc g,h} can

be eliminated from the problem since no design with arc g,h} can be

optimal. To see this, recall that the coefficients aij in the dual ascent-

based Benders cut (3.1) are nonnegative. Therefore,

a0 + agh > a1
is a lower bound for the cost of any design containing arc {g,h} and any

design with arc {g,h} is worse than the design corresponding to the upper

bound a1.

The preprocessing routine also derives other information from the dual

ascent solution. Let S = [{i,j}EA : aij > (a1 - a0)/2]. Any

optimal design solution must satisfy the multiple choice constraint

Z yij < 1 . (3.2)
{i,j}eS (j.

Any solution containing two or more members {il,jl} and i2 ,j2}

of S cannot be optimal since it has a cost of at least

a0 + a + ai > a0 + (al -a0)/2 + (al -a0)/2 al
il 1 ai2 2

Although several other inequalities like (3.2) are possible, we have limited

our implementation to this multiple choice constraint.

The overall preprocessing routine works by applying the dual ascent-based

algorithm to eliminate as many variables as possible. We then reapply the

dual ascent routine to the reduced network design problem and try to eliminate

additional variables. This process continues until no further variable

elimination is possible and a minimum of 5 dual ascent iterations have been

performed. The final dual solution also generates a Benders cut (3.1) and a

-32-

logical constraint (3.2). Notice how important it is for the ascent-based

procedure to produce close upper and lower bounds in order for the

variable elimination routine and the generated constraints (3.1) and

(3.2) to be effective.

4. COMPUTATIONAL RESULTS

Our computational results tested three versions of Benders decomposition

(with the usual cuts, strong cuts, and Pareto-optimal cuts) as well as the

preprocessing procedures discussed in the last section. We undertook two sets

of experiments:

(1) using a pure Benders decomposition on a set of test problems with up

to 45 0-1 variables; and

(ii) using Benders decomposition with preprocessing on a set of test

problems with up to 90 0-1 variables.

In each case, we implemented all algorithms in FORTRAN on a VAX 11/780 or

a CYBER 76 computer. We solved master problems using a rudimentary linear

programming- based branch and bound code (Land and Powell [1973]). The

implementation used a state-of-the-art primal simplex code (eunington and

Helgason [1980]) to solve the minimum cost network flow problems required for

generating Pareto-optimal cuts. We also used a naive implementation of

Dijkstra's algorithm for finding shortest paths. Since most of the computation

time is spent solving the master problem, a ore efficient shortest path

algorithm would not have produced any significant improvement in the overall

computation time.

4.1 lenders Decomposition Without Problem Preprocessing

The first sets of experiments clearly demonstrated the superiority of both

the strong and areto-optimal cuts over the usual cuts, though as the problem

size grew, the increase in computational time led us to consider problem

preprocessing.

-33-

Tables 1 and 2 specify the results for the first set of test problems.

For these experiments, we used a problem generation procedure that selected

nodes randomly from a 50x100 rectangle in the plane. The procedure generated

the arc set A by randomly choosing arcs from the set j{i,j}: iN,jeN t

so that each was equally likely to be chosen, using an efficient procedure discussed

in Knuth [1969, section 3.4.2]. In addition, for some of the tests we

discarded arcs whose distance exceeded a maximum distance problem parameter.

Although this procedure does not guarantee feasibility, all of the test

problems generated were feasible.

Arc Costs and Commodity Types

We selected the routing cost cij for each arc i,j} in several

ways. In some cases, we chose the routing costs randomly using a uniform random

variable U(a,b) defined on the interval [a,b]. In other cases, we let the cost

on an arc be equal to its Euclidean length, independent of commodity type.

The fixed cost Fij.. for arc i,j} was either a constant times cj or a
1J 1J

constant minus cij. Thus, they were either proportional or inversely

related to the routing costs. The set of commodities K consisted either of

all origin-destination pairs or of all origin-destination pairs originating

from two arbitrarily selected nodes.

Arcs That Are In Every Network Design

For all of the test problems, we modified the fixed costs in order to

ensure that some arcs remain in all candidate designs. For these types of

problems, which can be viewed as network improvement problems, Benders

decomposition encounters fewer infeasible candidate solutions, and thus

concentrates on cost trade-offs. The procedure specifies a set X of arcs from

A by random selection, with the number #DARCS of these arcs fixed as a problem

-34-

parameter. It then redefines the fixed costs of the remaining (#ARC - DARCS)

arcs at value zero. Since all such arcs can trivially be included in an

optimal design, the number of actual 0-1 variables becomes #DARCS.

Tables of Computational Results

In tables 1 and 2 the entry for each test problem is grouped together into

a set of rows headed by the problem name DATAXX. The first row with the entry

DATAXX describes the number of nodes, arcs and commodities and the optimal

solution value for the problem. The succeeding rows summarize computational

experience on the application of Benders decomposition with a particular cut

type.

The column headed #ITER specifies the number of times the master problem

was solved for any problem. Of these, in #ITERl iterations, the master

problem was modified by the addition of feasibility cuts. The columns headed

#CUTS and #FCUTS give the total number of cuts (objective function plus

feasibility) used to solve the problem. Notice that #FCUTS exceeds #ITER1

since some iterations added more than one feasibility cut to the master

problem (since the network had more than one O-D pair that was disconnected).

The terms CPU and MAS% describe the total CPU time and the percentage of CPU

time spent on solving the master problems. For those cases when Benders

algorithm did not identify an optimal solution, UB and LB give the best upper

and lower bounds obtained and DIF = [(UB-LB)/UB] - 100% gives the

percentage difference between the two bounds. For problems that terminated

prematurely without a verified optimal solution, the letter after the CPU time

indicates whether termination was due to a computer time limit (T), or due to

a numerical instability and/or a choice of program parameters (e.g., maximum

number of reinversions) in the Land and Powell integer programming routine that

led to looping (L) in the algorithm or caused the system to terminate abnormally (A).

-35-

Looping occurs when the master problem continues to generate the same nonoptimal

solution (i.e., the new cut does not eliminate the nonoptimal solution that

generated it). The system terminated abnormally when it generated a lower bound

on the objective function that exceeded the upper bound.

Every test problem has a COST ASSUMPTION entry that summarizes the way in

which we generated the variable and fixed costs for the arcs.

Notice from Tables 1 and 2 that the problem sizes for these test problems

ranged from #DARCS = 35 to #DARCS = 45 binary variables and from 2 (#ARCS)

* IKI = 810 to 105,600 continuous variables. (The factor of 2 is included

k kin the last count because there are two flows x.. and x.. for each
ii Jj1

commodity k on each undirected arc {i,j}.)

Interpreting The Computational Results

Notice from the column entitled CPU in Tables 1 and 2 that the usual cut

could solve only 3 of the 16 test problems in this first group within our time

limit of about 2 hours. In fact, at termination the percent difference (%DIF)

between the best lower bound and best feasible solution generated by the usual

cuts was as much as 20% for over a quarter of the problems. On the other

hand, the strong cuts solved all these problems within the time limit

(averaging 963 seconds on problems DATA01 - DATA10, and 1264 seconds on

problems DATAll - DATA13A) and the Pareto-optimal cuts solved all but one of

these test problems within this time limit (averaging 128 seconds on problems

DATA01 - DATA10, and 1511 seconds on problems DATAll - DATA13A). For most of

the test problems, the Pareto-cut implementation required fewer cuts

(objective function cuts #CUTS plus feasibility cuts #FCUTS) than the strong

cut implementation, though at the expense of larger computation time for

generating each cut. In none of the cases did the usual cut outperform the

other two cut strategies in solution time or number of cuts. Finally, note

from the column entitled MAS% that solving the master problem consumed about

100%, 88%, and 54% of the solution time of the usual, strong, and Pareto cuts

in the test problems DATA01 - DATA10.

-36-

4.2 Benders Decomposition with Problem Preprocessing

For our second set of computational experiments, we tested Benders

decomposition with our problem preprocessing algorithm on the previous set of

16 problems (DATA1 to DATA13A) and on a second set of test problems that

contained 90 binary variables, except for three cases that had 45 binary

variables. The number 2(#ARCS) IK! of continuous variables was

4(#ARCS)(#NODES-l) since the problems had 2 source nodes each with a commodity

destined for every other node. For these test problems, the number of

continuous variables ranged from 6,700 to 15,080.

For the second set of test problems, we generated the node set, arc set,

and set of arcs with zero fixed costs as before. Wie generated arc routing

costs and fixed costs in several different ways.

Arc Costs

In defining arc costs, we divided the second set of test problems into

several groups. For the first group of these problems (DATA14 to DATA18), we

generated the routing and fixed costs for each arc by sampling from

a uniform U(50,150) distribution and a uniform U(500,1000) distribution,

respectively. Problems 19 and 20 also used uniform distributions for both the

routing and fixed costs. The third group of test problems (DATA21 to DATA26)

used arc routing costs drawn from a U(100,200) distribution and fixed costs equal

to fixed constant times the arc routing cost. For the fourth group (ATA28 to DATA31),

we let

arc routing cost = 10 (arc length) + b

and

arc fixed cost = 2(routing cost) + b2

where b1 and b2 are values drawn from a U(50,150) and a U(-100,100)

distribution, respectively.

The remaining problems were generated by procedures that are variants of

those used for these four groups of problems.

-37-

Tables of Computational Results

Tables 3 and 4 document the computational results of Benders algorithm for

our two sets of test problems. These tables have the same layout as Tables 1

and 2 except for the additional results on the dual-ascent-based preprocessing

routine. Tables 3 and 4 specify the preprocessing computation time, CPU, the

number #RARCS of integer variables remaining after application of the

preprocessing, and #MCHU the number of variables present in the logical multiple

choice constraint (3.2). The columns headed UB and LB specify the best upper

and lower bounds produced by the dual ascent-based algorithm. The column DIF

indicates the percentage difference [(UB-LB)/UB 100%] between these two

bounds. Notice that when UB = LB for the dual ascent routine, it found and

verified an optimal solution. For these cases, the use of Benders

decomposition was not necessary. When UB LB from the dual ascent, we

applied Benders decomposition using the usual strong or pareto-optimal cuts.

Interpreting the Computational Results

Table 4 shows that Benders decomposition with preprocessing was able to

solve to optimality 19 out of the last group of larger 24 test problems and to

find solutions to 23 of the problems that are guaranteed to be within at most

1.44% of optimality. For one particularly difficult problem, the Benders algorithm

did not improve upon the bounds generated by the dual ascent procedure, which

found a solution guaranteed to be within 5.53% of optimality.

For seven of the problems (15,17,18,20,28,32, and 34), the preprocessing

routine itself found and verified an optimal solution. For the remaining

problems, the processing routine was usually able to eliminate 75 to 95% of a

problem's zero-one variables.

-38-

For the 17 of these problems that used Benders decomposition, the strong

cut version clearly dominated the one with usual cuts. For the 12 problems

when the strong Benders cut implementation converged within our time limit, it

was as fast as the usual cut implementation in one case, at least twice as

fast in every other case, and as much as 145 times as fast (even without

counting the additional time that would be required for the usual cut imple-

mentation to converge.) For the five problems where Benders algorithm using

strong cuts terminated permaturely due to time limitations, the strong cuts

showed a moderate advantage.

The Pareto-optimal cut version was usually more effective for the more

difficult problems. For the five problems that terminated prematurely, the

Pareto-optimal cuts performed better than either the strong or usual cuts.

For the other 13 problems, the strong cuts out-performed the Pareto-optimal

cuts, but the Pareto-optimal cuts improved considerably upon the usual cuts.

Recall that generating Pareto-optimal cuts requires the solution of IKI

minimum cost network flow problems while generating strong cuts requires the

solution to only 101 shortest path tree problems (where 0 = {ili=0(k),

k=l...K} is the set of nodes that are the origin of at least one

commodity). Therefore, the Pareto-optimal cut strategy might be expected to

require more solution time than the strong cut strategy. On the other hand,

the Pareto cuts seem to generate somewhat better cuts and this improvement

seems to be more pronounced for the more difficult problems.

We might also note that the preprocessing routine procedures are effective

in reducing problem sizes considerably. Indeed, the resulting reduced

problems are as small as problems that could be solved by more

straightforward branch and bound procedures. However, the reduced

problems appear to be much more difficult than non-preprocessed problems of

comparable size (e.g., the problems in our first set of test problems).

-39-

Comparing Tables 1 and 2 with Table 4 highlights this fact. Table 3 also

shows that the dual ascent procedure is very effective in solving

smaller-sized problems even without using preprocessing to eliminate

variables. The overall performance of the algorithm is very encouraging,

especially since the test problems were generated with such a wide range of

cost data relationships. These results indicate that Benders decomposition

with problem preprocessing could be an effective method for solving a broad

class of large-scale network design problems.

Finally, we note, as reported in Table 4, that solving the master problem

consumed a large proportion of the solution time for every implementation of

Benders decomposition that we tested. In particular, it consumed over 90 of

the computation time for the five most difficult problems--numbers 29, 30, 35,

36, and 37 (an appendix gives the data for these problems). Consequently,

solving the master integer programming problem with a commercial branch and

bound code or by a specialized implicit enumeration algorithm could

conceivably have dramatic effects upon the algorithm's performance, and might

enable the procedures described in this paper to solve very large-scale

applications.

Acknowledgement: The authors are grateful to Anantaram Balakrishnan for his

helpful comments on an earlier version of this paper.

-40-

TABLE 1 -- USUAL, STRONG, AND PARETO CUTS *

NAM'E N,-.S .ARCS A..-S ,0.s OPT VAL COST
ClUT TYPE TE I TER I - 'RL S C , UT: C3' 1 "S'" U LB D F ASS T i"

= , = = -= ~ _ , ' = = = = = = = = = = = = = = = _.= = = = = = = = = = = = = = _._.= __= = _ = = = =o

15 60 45 28
73 2 75 4i
10 2 '2 4
7 2 9 4

15 60 45 28
76 3 78 5
26 3 28 5
19 3 21 5

15 60 45 28
75 2 76 3
19 2 20 3
10 2 11 3

15 60 45 28
6I 0 61 0
25 0 25 0
14 0 14 0

15 60 45 28
66 1 66 1
38 1 38 1
20 1 20 1

15 60 45 28
55 2 56 3
60 2 61 3
26 2 27 3

10 45 35 18
58 i 58 1
12 1 12 1
8 1 8 1

10 45 35 18
33 1 33 1
7 1 7 1
7 1 7 1

15 60 45 28
63 2 64 3
25 2 26 3
16 1 16 1

15 60 45 28
65 1 65 1
44 1 44 1
18 1 18 1

7135T
10
12

7005T
201
125

7130T
64
23

7124T
240

71

6792T
829
139

6860T
6645
724

2514
11
8

571
3
7

.7086T
170
73

7134
1453

102

99 99

64. 17
13.33

9.) 97

95.55
76.17

?9) 9

88.31
35.88

,,.,,,

95.80
65.50

99 99

98.29
76.28

? 9')

99.6681
93.81

99.84
81.86
24.47

99.59
55.24
20.06

94.35
52.03

99 ,9

9.73
69.91

8258
8258 7351

7024
7024 5963

S.56

15.11

8444

10071
10071 7749

9683
9925 7093

10858
11165 7695

V = (50,150)
F = 10*V

V = U(5O,150)
F = 10*V

V = U(50,250)
F = U(500,1000)

23.06

28.53

31.08

3988

V = (50,250)
F = U(500,1000)

V = U(100,200)
F = 1000 - 2V

V = U(100,200)
F = 1000 - 2*V

V = U(50,150)
F = 10*V

4304
V = U(50,150)
F= 1O*V

23808
24046 29738 13.76 V = 10*D + 'J(0,50)

F = 2*V + (25,75g)

V = 10* + U(O,0)
F = 2*V + U(250,750)

COMPUTATIONS (IN
T = TIME LIMIr

SECONDS) ON A VAX 11/7&3

*EACH GROUP OF ROWS SPECIFIES RESULTS FOR A SINGLE PROBLEM. THE FIRST ROW GIVES THE PRQBLEM
DESCRIPTION IN THE FORMAT OF THE FIRST ROW I THE HEADING. THE REMAINING ROWS WITHIN EACH GROUP
GIVE THE COMPUTATIONAL RESULTS IN THE FORMAT OF THE SECOND ROW OF THE HEADING.

DATAO 1
USUAL
STRONG
PARETO

DATAC2
USUAL
STRONG
PARETO

DATA03
USUAL
STRONG
PARETO

DAT\04
USUAL
STRONG
PARETO

DATA05
USUAL
STRONG
PARETO

DATA06
USUAL
STRONG
PARETO

DATA07
USUAL
STRONG
PARETO

DATA08
USUAL
STRONG
PARET0

DATA09
USUAL
STR0:G
PARETO

DATA 10
USUAL
STRO'.G
PARETO

-41-

CL

LLJ LU

LU

=>

3: CO
0 O:f Z:
m

V) LLJ

cr_

LL LU

LLJ LLJ

LL

LU O

r

LU

_j , O

co O =
ozo
W-u
0- 0 LU

En
LLI LLJ

LU

Z LLI

- r
(n �_ LL

0

z

oxx

LL 0 w

ck: 0

U) LL

I Le) LLJ

Ul LL

w z

LU

LLI

LL LL _j

LU I--- ui

0- IX

XU.Z
0 0
W LIJ -

LL.

CL

27

CL C

LU

a-

U LLI

Lu -

Uj 0 LD

tfi
Z-

C:]0I--P-
0U:-

oO

VL

r-_,

I

0

I I-

11

:>LL

I

0)

I

0
C_

I

0

I I

0

11 u 11 If 11 11 11 11 11 11~~~~~~~~~~I

. U_

0s

Lr

· . eC-OL

IO-

CY\

Cr

0go

D
x~oN-N-. r

r
I.-

0s

-o

e¢~w-

LIA rn

r ~~o0 ~~~o0J - O0,1 ta' mOD C7\O,,ecn C~OdLr~~ C~OJ
fl- LrN O
C) m C)

UN

CO

co

oS

co
CD

O0

:'

LL.
0

co

I.I

N

LI~

I.-
!R

cl- --11 C C, -LrN C",
C,- -C \0

C"Lf� ,
V_C': C\j :I-

II

11
c 11w I·1
-

-

LCIN00 c

!-

'IO O.-d-
'~ (\I..-
r_ UN l

I-
0

0' " Lf",

CvO Ox,

xJt

I- J
Ln

nI0

t

Cmu¢:Z~OLL

ect Zl

C)

U-
(,_ ,

llJ

I' CN >0n0Wooo Looo Wooo
37 N~

U-LM LM-r1-01 LlLUrNouN

mO"J Mr-m" :_r
L"% -L W SN U O-N LL- L U- OD 0L
-4, (\ _, A1-- -L"% "o

V_ Z

ZO.co

o000 0--"- -- O .) Z

1-- 0 0 LIJ'LLr__ ~ _) C ww

3

zu--

ZJ-UJ)-- F--LU_:I-U r , t-l I - -__~- ~~

-.% C' C) m = c L. ~.' C) LLI CD.._ OO sO _k- O--~u 0 lLI
< <0 < C0 CDO w -

<VI~< ,W < <t V)_< 0>c

, ,,

*11il

11

%D000 U0O 000

II
rL 11

01-- II
Z ~ I I
;t~; ; III

LLJ I I
0.. I I

II
I--, II

Li_ I I
ZI-1

ML). ! I

0CN" ser - _

~0
* CD~
<CD I1i
~_ = r
<v)o.-I
r",=) V L

- cm C

<00'
1=Z_

CN CD

<C _ -:r

-42-

TABLE 3 -- BENDERS DECOMPOSITION WITH PREPROCESSING*

NAM'E #NODES #ARCS #DARCS #ODS OPT VAL
ASCEN'T #RARCS #MCHV CPU UB LB %DIF COST
CUT TYPE #ITER #1TERI #CUTS #FCUTS CPU MAS% UB LB %DIF ASSUMPTIONS

15 60 45 28
4 0

15 60 45 28
7 0

46 3 48 5
14 3 16 5
18 3 20 5

15 60 45 28
6 1

28 2 29 3
8 2 10 3

12 2 13 3

15 60 45 28
4 0

15 60 45 28
3 0

15 60 45 28
4 0

10 45 35 18
2 0

10 45 35 18
2 0

15 60 45 28
6 0

15 60 45 28
6 0

14

19
81
10
36

15
24
7
19

15

96.07
73.20
38.78

92.18
54.92
27.60

14

14

5

5

15

14

8258
8258 8258

7024
7024 6923

8444
8444 8360

10071
10071 10071

9683
9683 9683

10858
10858 10858

3988
3988 3988

4304
4304 4304

23808
23808 23808

22259
22259 22259

0.00

1.44

0.99

0.00

O .00

0.00

0.00

0.00

0.00

0.00

V = U(50,150)
F = 10V

V U(50,150)
F = O*

V = U(50,250)
F = U(500,1000)

V = U(50,250)
F -= 'J(0,1000)

V = IJ(o100,200)
F 1000 - '*V

V = U(1O0, 20')
F = 100 - 2V

V - U(50,150)
F = 10*J

V = U(50,150)
F = 10V

V = 10*D + (0,50)
F = 2*V + U(250,750)

V - 10* + (0,50)
F = 2*V + U(2'50,750)

COMPUTATIONS (IN SECONDS) ON A VAX 11/780

*EACH GROUP OF ROWS SPECIFIES RESULTS FOR A SINGLE PROBLEM. THE FIRST ROW GIVES THE PROBLEM DES-
CRIPTION IN THE FORMAT OF THE FIRST ROW IN THE HEADING. THE SECOND ROW GIVES THE RESULTS OF THE
DUAL ASCENT USING THE FORMAT OF THE SECOND ROW OF THE HEADING. THE REMAINING ROWS, IF NEEDED, USE
THE FORMAT OF THE THIRD ROW OF THE HEADING TO GIVE THE COMPUTATIONAL STATISTICS FOR COMPLETING THE
OPT IMI/ATION USING BENDERS' DECOMPOSITION.

DATAO 1
ASCENT

DATA02
ASCENT
USLIA',
STRONlG
PARETO

DATAO3
ASCENT

STRf'!G
PARETO

DAT,04
ASCENT

DATA05
ASCENT

DATA06
A -r=":IT

DATA07
ASCE.~ T

DATA08
ASC.IT

OATA-9
ASCF-.JNT

DATA 10
ASCEN4T

-43-

TABLE 4 -- RENDERS DFCOCPOSITION WITH PREPROCESSING*

.E , "I ARCS DR OPT VAL
ASCE'L #,ARC£ #' t V UB LB DOF COST
CUT T YPE IYE? T. F.., C -CUT Cp ".AS% US LB 1F A'SSU?'PT I 3iS

30 130 90
12

198 3 200
17 3 19
26 3 28

58
3
5
5
5

30 130 90 58
7- 0

25 120 90 48
7 1

62 0 52 0
15 0 15 0
19 0 19 0

25 120 90 48
6 0

25 120 90 48
5 0

25 120 90 48
9 1

54 2 65 3
10 2 11 3
,2 2 13 3

25 120 90 48
5 0

25 120 90 48
7 0

18 2 20 4
10 2 12 4
10 2 12 4

25

152
18
23

25

30
11
16

120 90 48
20 7

4 155 7
5 21 8
5 26 8

120 90 48
6 1

1 30 1
1 11 l
1 16 1

159
F76'4L
5039239

79
170

22
113

87

80

89
198
10
58

76

86
14
9

42

90
6999T
48

185

88
26
11
85

25 120 90 48
15 3 93

58 3 60 5 585
12 3 14 5 17
13 3 15 5 68

25 120 90 48
9 1

18 2 20 4
13 2 10 4

12 2 14 4

25 120 90 48
5 0

12 2 13 3
7 2 8 3
8 2 9 3

25 110 90 48
15 2

3?- 10 51 24
18 10 32 24
24 9 38 23

87
15
7

56

84
5
5

33.

99.19
69.87
33.27

93.93
50.81
18.47

94.62
41.66
12.24

79.29
29.73
9.08

74.19
45.97

81.44
32.49
10.50

98.30
59.63
25.39

79.83
25.19
10.57

65.02
21.57
4.09

4
194 97.41
39 80.66
176 60.32

19179
19179 190L42
19179 19172

17096
17096 17096

12702
12702 12530

15257
15257 15257

13120
13120 13120

13449
13493 13424

17484
17484 17484

23076
23076 23049

31890
31890 31270
31890 31810

28310
28310 28117

28522
28522 27211

28641
28861 28316

2.157
28157 28077

67315
67315 66721

0.71
0.04

0.00

1.35

0.00

0.00

0.51

0.00

0.12

1.94
0.25

0.68

: J(50, 150)
= U(530, 1000)

V = U(50,150)
F = U(500,1000)

V U(50,150)
F = U(500,1000)

V = U(50,150)
F = U(500, 000)

V = U(50,150)
F = U(500,1000)

V = U(50,150)
F = U(650,850)

V = U(50,250'
F U(650,8530)

V = U(lO!,20O)
F = IOV

V = U(100,0)
F = 20*V

V = U(100,200)
F = 20*V

4.60 V = U(100,200)
F = 20*V

1.89 V = U(100,200)
F = 20*V

0.28

0.88

V = U(100,200)
F = 20*V

V = (2?5,25)
F = 30*V + U'--10,lC

(TABLE CONTINUED)

DATA 14
ASCEN
USUAL
STRON;
PARETO

DATA 15
ASCENT

DATA 16
ASCENT
USUAL
STRONG
PARETO

DATA 17
ASCENT

DATA 18
ASCENT

DATA19
ASCENT
USUAL
STRONG
PARETO

DATA20
ASCENT

DATA21
ASCENT
USUAL
STRONG
PARETO

DATA22
ASCENT
USUAL
STRONG
PARETO

DATA23
ASCENT
USUAL
STRONG
PARETO

DATA24
ASCENT
USUAL
STRONG
PARETO

DATA25
ASCENT
USUAL
STRONG
PARETO

DATA?(
AS'CENT
USUAL
STRONG
PARETO

DATA27
ASCENT
USJUAL
STRONG
PARETO

-44-

TABLE 4 (CONTINUED)*

'-!-.: ! ! "10"ES #"CC 4ntRCS #ODS

-. ,CENT #PARCS H,.CHV
.. TY ? ,, E T ; - ,_ I VFr , T CUTS

OPT VL
L'D LB

-I ., _.
n9 I F COST

:_I F ASS' -T i0S

25 120 90 4R
12 0

25 120 90 48
42 8

131 0 131 0
27 0 27 0
28 0 28 0

25 120 90 48
23 2

199 2 200 3
57 2 58 3
51 2 52 3

25 120 90 48
15 3

200 1 200 1
41 1 41 1
57 1 57 1

25 100 45 48
2 0

'25 70 45 48
18 2

172 4 176 8
29 4 33 8
17 4 21 8

25 70 45 48
9 0

25 105 90 48
90 11

74 20 97 43
43 33 75 65
51 39 82 80

25 120 90 48
21 4

160 2 161 3
71 2 72 3
70 2 71 3

25 120 90 48
45 21

128 3 130 5
67 3 69 5
48 2 50 4

113

147
3169L
1488A
2106A

131
3495L
4178A
4484A

87
6911L

395
1122

96

92
7164T

205
99

4411°
44118 44118

9
L7166

98.96 `7166
98.22 47166
91.97 47166

98.84

94.00

99.48
91.93
74.23

99 99.. . .

89.16
51.03

51489
51489
51489
5148951489

46591
46691
46691
46768

51313
51313
51356
51356

43024
43024 42897

42388
42388 42388

63407
63407 62254
63407 62418

43391
68 43391 43391

368
2747A
7071T
7087T

127
7103T
7031T
7141T

137
7171T
7008T
7051 T

99 99.....

17381
17381
17381
17381

39422
??.?? 39422
??.?? 39422
??.?? 39422

16420
16420
16420
16420

39131
39131
39131
39131

19115 18677
'9113 18677
19115 18791
19115 18840

0.00

1.01
1.01
0.89
0.84

0.34
0.34
0.26
0.26

0.30

0.00

V = 1*D + (50, 150)
F = 2*V + U(-100,100)

V = 10*D + U(50,150)
F = 2*V + U(-100,100)

V = 10*D + U(50,150)
F = 2*V + U(-100,100)

V = 10* + U50,150)
F = 2*V + U(-100,100)

V = U(25,325)
F = 20*V + U(-100,100)

1.82 V = U(25,325)
1.56 F = 20*V + U(-75,75)

0.00

5.53
5.53
5.53
5.53

0.74
0.74
0.74
0.74

2.29
2.29
1.70
1.44

V = U(25,325)
F = 3000 - 10*V - U(0,150)

V = U(30,90)
F = 10*V + U(100,200)

V = U(60,140)
F = 1000 - V + U(-50,50)

V = D U(50,150)
F = 5*V + 5*0

-I.PUTATIONS (IN SECR:CS) ON A VAX 11/780
-= SYSTE!4 TERMNIJATED ANORMALLY

*- =SYSTE:t LOOPED
= li:E LiMIT

*ACH GROU? OF ROWS SPECIFIES RESULT' FOR A SINGLE PROBLEM. THE FIRST ROW GIVES THE PRCBLEY' OES-
--IPT ON :N THE FORMAT OF THE FIRST R,;i IN THE HEADIN. THE SECOND R GIVES T4E RESULTS oi

c
THE

ASCENT US: .' TE FOR.iAT O TE SECOND ROW GF THE HEAD'NG. THE REMAINING RWS, iF NEEFni'), USF
FOKC,'iT OF T ; THIRD ROW OF TE HiEADING TO GIVE THE COMPUTATIONAL STATISTICS FOR COt4LETING THE

.:PTIIM!ZAT!O', JF!'G BENDERS' DECOMPOSITION.

?'ATA28
ASCENT

- ATA 29
*C(NT
USUAL
.TR O!G

5ARETO

DATA30
ASCENT
USUAL
STRONG
?ARETO

DATA31
ASCENT
USUAL
STRONG
PARETO

DATA32
ASCENT

DATA33
ASCENT
USUAL
STRONG
PARETO

-ATA34
aSCENT

DATA35
ASCENT
JISUAL
STRONG
?PARETO

r~A36
.SCENT

JSUAL
STRONG
ARETO

'SCENT
'SUAL
STRONG
-ARETO

r-=,=====r================L==========TT=

-45-

REFERENCES

1. E. Balas and N. Christofides, "A restricted Lagrangean approach to the
traveling salesman problem", Mathematical Programming 21 (1981) 19-46.

2. I. Barany, T. Van Roy and L. Wolsey, "Strong formulations for multi-item
capacitated lot-sizing", CORE Discussion Paper 8312, Universite Catholique
de Louvain (Louvain-la-Neuve, Belgium, March 1983).

3. E. M. L. Beale and J. A. Tomlin, "An integer programming approach to a
class of combinatorial problems", Mathematical Programming 3 (1972) 339-344.

4. O. Bilde and J. Krarup, "Sharp lower bounds and efficient algorithms for
the simple plant location problem", Annals of Discrete Mathematics 1 (1977)
79-97.

5. J. Billheimer and P. Gray, "Network design with fixed and variable cost
elements", Transportation Science 7 (1973) 49-74.

6. F. Boesch, Large-scale networks: theory and design (IEEE Press, 1975).

7. T. B. Boffey and A. I. Hinxman, "Solving the optimal network problem",
European Journal of Operational Research 3 (1979) 386-393.

8. D. E. Boyce, ed., Transportation Research B 13B(1) (1979) 1-3.

9. D. E. Boyce, A. Farhi and R. Weischedel, "Optimal network problem: A
branch-and-bound algorithm", Environment and Planning 5 (1973) 519-533.

10. C. Cornuejols, M. L. Fisher and G. L. Nemhauser, "Location of bank
accounts to optimize flow", Management Science 23 (1977) 789-810.

11. H. Crowder, E. Johnson and M. W. Padberg, "Solving large-scale zero-one
linear programming problems", Operations Research 31 (1983) 803-834.

12. H. Crowder and M. W. Padberg, "Large scale symmetric travelling
salesman problems", Management Science 26 (1980) 495-509.

13. P. S. Davis and T. L. Ray, "A branch-bound algorithm for capacitated
facilities location problems", Naval Research Logistics Quarterly 16 (1969)
331-344.

14. R. Dionne and M. Florian, "Exact and approximate algorithms for optimal
network design", Networks 9 (1979) 37-59.

15. D. Erlenkotter, "A dual based procedure for uncapacitated facility
location", Operations Research 26 (1978)992-1009.

-46-

16. M. L. Fisher, R. Jaikumar and L. VanWassenhove, "A multiplier
adjustment method for the generalized assignment problem" (presented at
ORSA/TIMS Meeting, Washington, D.C., May 1980).

17. M. L. Fisher and D. S. Hochbaum, "Data base location in computer
networks", Journal of the ACM 7 (1980) 718-735.

18. M. Florian, G. Guerin and G. Bushel, "The engine scheduling problem in
a railway network", INFOR Journal 14 (1976) 121-138.

19. R. Francis and J. White, Facility layout and locations, an analytical
approach (Prentice-Hall, Englewood Cliffs, New Jersey, 1974).

20. G. Gallo, "A new branch-and-bound algorithm for the network design
problem", Report L81-1, Instituto Di Elaborazione Dell' Informazione (Pisa,
Italy, 1981).

21. G. Gallo, "Lower planes for the network design problem", Networks 13
(1983) 411-426.

22. A. M. Geoffrion and G. Graves, "Multicommodity distribution system
design by Benders decomposition", Management Science 5 (1974) 822-844.

23. A. Geoffrion and R. Marsten, "Integer programming algorithms: a
framework and state-of-the-art survey", Management Science 18 (1972) 465-491.

24. S. Graves and B. Lamar, "An integer programming procedure for assembly
system design problems", Operations Research 31 (1983) 522-545.

25. M. Guignard, "Preprocessing and optimization in network flow problems
with fixed charges", Department of Statistics, Report #47, Wharton School,
University of Pennsylvania (1982).

26. M. Guignard and K. Spielberg, "A direct dual method for the mixed plant
location problem with some side constraints", Mathematical Programming 17
(1979) 198-228.

27. M. Guignard and K. Spielberg, Logical reduction methods in 0-1
programming", Operations Research 29 (1981) 49-74.

28. G. Handler and P. Mirchandani, Location on networks: theory and
algorithms (MIT Press, Cambridge, Mass., 1979).

29. H. H. Hoang, "A computational approach to the selection of an optimal
network", Management Science 19 (1973) 488-498.

30. D. S. Johnson, J. K. Lenstra and A. H. G. Rinnooy Kan, "The complexity
of the network design problem", Networks 8 (1978) 279-285.

-47-

31. J. L. Kennington and R. V. Helgason, Algorithms for network programming
(John Wiley and Sons, 1980).

32. D. Knuth, The art of computer programming: Volume 2, seminumerical
algorithms (Addison-Wesley, 1969).

33. J. Krimenia and S. B. Gershwin, "Network flow optimization in flexible
manufacturing systems", Proceedings of 1978 IEEE Conference on Decision and
Control (1979) 633-639.

34. A. Land and S. Powell, Fortran codes for mathematical programming (John
Wiley and Sons, London, 1973).

35. A. Land and S. Powell, "Computer codes for problems of integer
programming", Annals of Discrete Mathematics 5 (1979) 221-269.

36. A. Land and S. Powell, "A survey of available computer codes to solve
integer linear programming problems", Research Report No. 81-09, Ecole des
Hautes Etudes commerciales, University of Montreal (April 1981).

37. R. C. Larson and A. R. Odoni, Urban operations research (Prentice-Hall,
Englewood Cliffs, New Jersey, 1981).

38. C. E. Lemke and K. Spielberg, "Direct search zero one and mixed integer
programming", Operations Research 15 (1967) 892-914.

39. M. Los and C. Lardinois, "Combinatorial programming, statistical
optimization and the optimal transportation network problem", Transportation
Research-B 16B (1982) 89-124.

40. T. L. Magnanti, "Combinatorial optimization and vehicle fleet
planning: Perspectives and prospects", Networks 11 (1981) 179-214.

41. T. L. Magnanti and R. T. Wong, "Accelerating Benders decomposition:
Algorithmic enhancement and model selection criteria", Operations Research
29 (1981) 464-484.

42. T. L. Magnanti and R. T. Wong, "Network design and transportation
planning: Models and algorithms", Transportation Science 18 (1984a) 1-56.

43. T. L. Magnanti and R. T. Wong, "Decomposition methods for facility
location problems" (1984b).

44. T. L. Magnanti and R. T. Wong, "A dual-ascent approach for network
design problems", in preparation (1984c).

45. T. G. Mairs, G. W. Wakefield, E. L. Johnson and K. Spielberg, "On a
production allocation and distribution problem", Management Science 24
(1978) 1622-1630.

-48-

46. C. Mandl, "A survey of mathematical optimization models and algorithms
for designing and extending irrigation and wastewater networks", Water
Resource Research 17(1) (1981).

47. K. Martin and L. Schrage, "Subset coefficient reduction cutting planes
for 0/1 mixed-integer programming", Graduate School of Business, University
of Chicago (Revised October 1982).

48. G. Nemhauser and L. Wolsey, "Maximizing submodular set functions:
Formulation and analysis of algorithms," Annals of Discrete Mathematics 11
(19) 279-301.

49. R. L. Rardin and U. Choe, "Tighter relaxations of fixed charge network
flow problems", Technical Report, No. J-79-18, School of Industrial and
Systems Engineering, Georgia Institute of Technology (Atlanta, GA, May 1979).

50. R. Richardson, "An optimization approach to routing aircraft",
Transportation Science 10 (1976) 52-71.

51. R. Simpson, "Scheduling and routing models for airline systems", MIT
Flight Transportation Laboratory Report (December 1969).

52. B. C. Tansel, R. L. Francis and T. L. Lowe, "Location on networks: A
survey, parts I and II", Management Science 29 (1983) 482-511.

53. T. J. Van Roy and D. Erlenkotter, "A dual-based procedure for dynamic
facility location", Management Science 28 (1982) 1091-1105.

54. H. P. Williams, "Experiments in the formulation of integer programming
problems", Mathematical Programming Study 2 (1974) 180-197.

55. R. T. Wong, "Probabilistic analysis of network design problem
heuristic", Krannert Graduate School of Management, Purdue University (West
Lafayette, Indiana, 1984).

56. R. T. Wong, "Worst-case analysis of network design problem heuristics",
SIAM Journal on Algebraic Discrete Methods 1 (1980) 41-63.

57. R. T. Wong, "A dual ascent approach for Steiner tree problems on a
directed graph", Mathematical Programming 28 (1984) 271-287.

58. R. T. Wong, "Accelerating Benders decomposition for network design",
Doctoral Dissertation, Department of Electrical Engineering and Computer Science,
MIT (February 1978).

-49-

APPENDIX

THIS APPENDIX CONTAINS DATA FOR THE FIVE TEST PROBLEMS
(29, 30, 35, 36, AND 37) THAT THE ALGORITHMS DESCRIBED IN THIS
PAPER DID NOT SOLVE TO OPTIMALITY.

-50-

TABLE A.1 DATA FOR PROBLEM DATA29

V = 10*D + U(50,150)
F = 2*V + U(-100,100)
D < 50
NODES = 25
#ARCS = 120

ARC VARIABLE FIXED
NODES COST COST

2
2
2
2
2
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
6
6
6
6
6
6
7
7
7
7
7
7
8
8
8
9
9
9
9
9
9
9
9
9

10
10.
10

3
4
5
6
8

10
11
3
4
5
9

10
4
5

10
12
5
6
7
8
9

10
11
12
14
16
6
7
8

11
12
15
17
7
9

10
12
14
15

8
9

10
16
17
21
9

11
18
10
12
13
14
17
18
19
20
21
11
13
15

418
263
469
298
444
483
465
460
273
477
385
474
272
223
448
524
307
180
353
256
228
309
346
448
573
563
321
190
216
370
344
454
510
421
208
275
439
421
535
271
362
318
491
501
609
224
291
479
243
382
333
359
474
482
518
537
612
200
383
314

909
494
919
584

0
1042
839
849
483
0

738
1013
616
346

0
0
0
0

729
611
415
519
0

840
0

1189
659
326
408
750
632
891
936
804
358
590
882
885

. 1142
631
700
651

0
906

1245
0
0

961
438
727
641
0

883
970
996
0

1254
334
770

0

ARC VARI ABLE FIXED
NODES COST COST

10
10
10
10
10
11
11
11
11
11
11
12
12
12
12
12
12
12
13
13
13
14
14
14
14
14
14
14
14
15
15
15
15
15
16
16
16
16
16
16
17
17
18
18
18
18
18
18
18
19
19
19
19
20
21
21
21
22
23
23

17
18
20
21
23
12
15
17
19
23
24
13
14
15
17
18
19
25
18
19
22
15
16
18
21
22
23
24
25
16
20
22
23
24
17
18
19
22
23
25
21
24
19
20
21
22
23
24
25
20
21
22
25
25
22
23
24
25
24
25

293
432
546
543
559
342
336
369
424
512
587
569
489
305
293
320
488
607
606
363
467
419
483
529
536
359
539
417
565
225
482
358
304
439
187
158
372
442
351
468
301
394
374
550
203
424
237
426
372
266
360
176
392
494
382
162
393
337
291
247

634
953

1119
0
0
0

729
0

841
1009
1082

0
995
606
532
614
0

1309
1256

0
1011
856

1006
1053
978
762
1156

0
1226
522
965
0

593
0

434
341
824

0
0

1006
0

713
778

0
309
821
425
841
679
0

817
388

0
932
669
349
783
664
483
544

1
1
1
1

l

J

TABLE A.2 DATA FOR PROBLEM AT430

V = 10*D + U(50,150)
F = 2*V + U(-100,100)
D 50
NODES = 25
#ARCS = 125

ARC VARIABLE FIXED
NODES COST COST

1 2 129
1 5 278
1 12 581
1 13 597
2 3 239
2 4 482
2 5 257
2 7 499
2 12 585
2 13 576
3 5 303
3 7 376
3 8 468
3 9 573
3 10 432
3 11 444
3 12 539
4 7 487
4 8 478
4 10 419
4 11 520
4 14 549
5 6 365
5 7 508
5 9 413
5 12 455
5 16 557
6 9 377
6 10 274
6 13 334
6 14 425
6 15 540
6 17 464
6 18 483
6 19 515
7 10 193
7 12 259
7 13 419
7 14 377
7 18 364
7 21 606
8 9 434
8 12 309
8 15 342
8 17 402
8 18 352
8 19 449
8 20 540
8 21 593
8 22 592
9 10 453
9 11 383
9 12 212
9 13 122
9 14 559
9 16 245
9 17 395
9 18 359
9 19 466
9 22 637

ARC VARIABLE FIXED
NODES COST cosr

209
573
0

1216
450
948
0

1056
1235

0
530
841
1033
1069
873
0

990
946
860
0

1070
1187

0
1089
903
892
1152
755
470
649
797
1146
892
867
998
327
474
910
659
655
0
0
0
0
0
0

914
1009

0
1201
962
689
0

216
0

416
744
0

900
0

9 24 593
10 11 119
10 12 313
10 14 255
10 16 410
10 21 547
11 12 367
11 13 419
11 14 248
11 17 313
11 22 518
12 15 538
12 17 387
12 18 274
12 20 556
12 21 497
12 22 525
12 23 506
12 24 572
13 14 568
13 15 623
13 16 289
13 17 407
13 18 342
13 19 450
14 16 469
14 18 365
14 22 489
14 24 510
14 25 516
15 16 522
15 17 308
15 20 268
15 21 521
15 22 436
15 23 590
15 24 530
16 18 191
16 21 342
16 22 437
16 23 336
16 25 637
17 18 155
17 20 311
17 22 368
17 23 340
17 24 352
17 25 453
18 19 286
18 20 390
18 22 299
18 23 345
18 25 552
19 23 307
20 23 478
20 24 446
21 23 90
22 25 287
23 24 95
24 25 401

1126
306
680
539
915
. 0
748
851
539
671
1054
1164
757
636
0

1086
0

1039
1054

0
0

663
0
0
0

841
737
1003
981
997
0

672
531
999
802
0

1016
340
615
814
683

1227
361
678
797
775
753
965
635

0
559
748

1089
596

0
798
226
504

0
797

-52 -

TABLE A.3 DATA FOR PROBLEM DATA35

V = U(30,90)
F = 10*V + U(100,200)
I NODES = 25
ARCS = 105

ARC VARIABLE FIXED
NODES COST COST

1 2
1 4
1 5
1 6
1 7
1 9
2 4
2 5
2 6
2 7
2 8
2 9
3 4
3 5
3 6
3 7
3 8
3 10.
3 11
4 5
4 6
4 7
4 8
4 9
5 6
5 7
5 8
5 10
5 11
6 7
6 8
6 9
7 8
7 9
7 13
8 10
8 11
8 12
9 13
9 16
9 17
10 11
10 12
10 14
10 15
11 12
11 14
11 15
12 14
12 15
12 18
12 19
13 14

39
61
86
72
64
60
46
66
45
47
85
81
57
49
65
83
59
74
77
68
50
56
67
66
57
63
48
81
60
40
64
72
60
50
81
59
61
74
60
79
77
52
53
80
69
56
68
70
73
72
80
67
84

578
0

1023
900
803
707
0

806
629
0

1015
923
686
600
785
0

756
911
911
856
0

745
783
803
766
812
582
955
711
555
761
845
700
610
1004
699
779
844
0

939
967
715

0
966
875
738
800
895
0

857
946
797
1023

ARC VARIABLE F I XED
NODES COST COST

13 16
13 17
13 18
13 20
13 21
13 22
13 24
14 15
14 18
14 19
14 20
14 21
14 22
14 23
14 24
14 25
15 18
15 19
15 21
15 23
15 25
16 17
16 18
16 20
16 21
16 22
16 24
17 18
17 20
17 21
17 22
17 24
18 19
18 20
18 21
18 22
18 24
18 25
19 21
19 23
19 25
20 21
20 22
20 24
21 22
21 23
21 24
21 25
22 24
22 25
23 25
24 25

52
67
53
69
67
66
73
65
52
76
56
47
71
78
80
64
72
59
71
43
59
52
70
50
77
71
60
76
54
63
61
50
70
58
50
47
66
58
70
34
70
65
38
41
48
65
65
63
49
85
56
75

703
771
684
864
770
839
843
821
707
0

687
589
815
975
954
782
837
757
836
0

725
639
0
0

933
0

774
893
677
746
797
641
874
0
0

654
775
764
896
527
863
779
544
572
615
808
847
782
590
982
668
923

-53

TABLE A.4 DATA FOR PROBLEM DATA36

V = U(60,140)
F = 1000 - V + U(100,200)
NODES = 25
#ARCS = 125

VARI ABLE FIXED
COST COST

ARC VARIABLE FIXED
NODES COST COST

1 3 128
1 6 257
2 3 61
2 4 221
2 5 217
2 6 251
3 4 213
3 6 202
3 7 348
4 6 167
4 7 211
4 8 273
4 9 386
4 10 393
5 8 262
6 7 140
6 8 220
6 9 330
6 10 255
6 11 279
6 13 380
6 14 376
7 8 82
7 12 298
7 13 282
7 14 365
7 15 317
7 16 336
8 9 106
8 11 211
8 13 242
8 15 273
8 16 313
8 17 366
9 10 241
9 11 230
9 12 153
9 13 205
9 16 298
9 17 290
9 19 382
10 14 159
10 16 151
10 17 260
10 18 270
10 19 257
10 20 344
10 21 371
11 12 218
11 15 176
11 16 134
11 19 239
11 20 322
11 21 362
11 22 403
11 24 398
12 13 103
12 15 80
12 17 143
12 18 388

0
810
955
0

875
845
877
0

676
846
799
813
634
619
809
876
855
715
771
792
652
0

979
763
0

718
708
0
0

839
0

790
0
0

855
776
866
842
778
710
675
854
881
773
0

772
722
692
0

861
915
781
690
655
0

628
996
958
939
691

12
12
12
12
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
17
17
17
17
17
17
18
18
18
18
18
19
19
19
19
20
20
20
20
20
21
21
21
22
22
24

19 267
20 211
22 332
23 366
14 222
16 96
17 129
20 202
21 357
22 318
23 327
24 344
25 360
15 257
16 144
17 266
18 128
22 366
24 295
16 112
18 303
19 184
20 178
21 354
22 286
25 334
17 134
18 193
19 104
20 202
21 264
22 271
23 268
24 272
19 149
20 89
21 300
22 195
23 218
24 262
19 146
21 113
22 302
23 242
24 194
21 177
23 166
24 165
25 277
21 314
22 127
23. 171
24 240
25 163
22 253
23 188
24 100
23 89
24 165
25 230

ARC
NODES

787
847
0

717
859
0

955
847
651
715
0
0

715
0

913
760
962
693
0

902
739
0

914
738
0
0

920
817
897
0

804
751
802
794
876
966
0

825
867
758
895
971
743
0
0

832
0

847
749
742
934
870
0
0

801
888
952
0

911
855

==========================

-54 -

TABLE A.5 DATA FOR PROBLEM DATA37

V = D + U(50,150)
F = 5*V + 5*D
D < 50
IRODES = 25
ARCS = 120

ARC VARIABLE FIXED ARC VARIABLE FIXED
NODES COST COST NODES COST COST

1 2 117 715 11 18 119 720
1 5 79 450 11 19 124 775
1 6 167 0 11 21 171 0
1 7 90 590 11 25 160 1020
1 8 91 0 12 13 164 940
1 9 128 820 12 14 89 495
2 3 114 0 12 16 88 590
2 6 107 590 12 17 129 755
2 7 154 850 12 20 168 965
2 8 98 610 12 22 126 830
2 10 143 935 12 23 150 0
2 11 150 990 13 14 182 1080
3 5 186 1125 13 15 69 405
3 6 129 685 13 16 95 530
3 7 72 440 13 18 148 0
3 8 81 510 13 19 138 910
3 11 128 870 13 20 159 955
4 5 72 370 13 22 158 950
4 6 96 0 1323 148 950
4 8 159 0 14 15 108 755
4 10 151 950 14 17 151 895
4 11 125 860 14 18 91 610
5 6 144 895 14 19 83 0
5 7 79 535 14 22 163 1045
5 8 144 0 14 23 129 805
5 9 129 775 14 24 146 0
5 10 170 1040 14 25 144 0
5 13 134 890 15 19 181 0
6 9 97 660 1520 108 710
6 11 140 890 15 25 115 780
6 12 99 695 16 17 86 505
7 8 60 345 16 18 109 620
7 9 169 0 16 19 113 0
7 10 145 860 16 20 173 1005
7 12 123 0 16 21 123 730
7 13 156 990 16 22 81 0
8 10 150 865 16 23 115 0
8 12 109 680 17 19 117 720
8 13 141 900 17 20 124 685
8 16 125 875 17 22 126 720
9 13 97 0 17 23 76 495
9 14 112 740 17 25 115 700
9 15 165 970 18 19 137 0
9 18 90 640 18 20 138 755
9 20 116 810 18 21 140 745
9 22 153 0 18 24 152 915
10 11 120 640 19 21 123 745
10 12 86 0 19 22 149 0
10 13 145 0 19 24 134 750
10 14 101 615 19 25 114 700
10 17 157 915 20 23 157 835
10 19 181 0 20 24 105 0
10 21 126 820 20 25 92 540
10 23 126 850 21 22 121 665
10 25 130 900 21 24 147 0
11 12 115 600 21 25 145 790
11 13 102 610 22 24 145 890
11 14 136 0 23 24 101 545
11 15 107 690 23 25 145 0
11 16 175 0 24 25 113 640

------- -- ~

