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Transition metal dichalcogenides (TMDs) with intrinsic spin-valley degrees of 

freedom hold great potential in the applications of spintronic and valleytronic 

devices. Monolayer MoS2 possesses two inequivalent valleys in Brillouin zone, and 

each valley couples polarized photons with specific helicity in the regime of 

quantum mechanism. Degree of valley polarization (DVP) is a parameter to 

characterize the purity of valley-polarized photoluminescence (PL) of monolayer 

MoS2. Usually, the detected value of DVP in monolayer MoS2 shows achiral 

property with opposite helicities excitation due to reciprocal phonon-assisted 

intervalley scattering process. Here, we report that valley-polarized PL of MoS2 

can be tailored with near-field interaction of plasmonic chiral metasurface. The 

resonance of chiral metasurface generates particular chiral near-field, couples 

with valley-polarized excitons, and tailors the PL spectra detected in far-field. Due 

to the tailoring effect, chiral DVP of monolayer MoS2 has been observed with 

opposite helicities excitation, and furthermore, valley-contrast PL can be pumped 

by linear polarized light in our chiral heterostructure. The manipulation of valley-

polarized PL in two-dimensional materials presents a solid step towards the 

optically accessible route for valley-polaritonic devices. 
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Introduction 

The spin and valley degrees of freedom in semiconductor are potential choices for 

exploiting new condensed-matter phenomena, which have been studied for a plethora 

of applications in spintronic devices and valley-selective light-emitters.1-3 The 

manipulation of valley degree of freedom remains a large unexplored area, and it may 

open up the way of exploiting the intriguing spin-valley physics for future quantum 

technology. An excellent valleytronic material should have a band structure composed 

of two (or more) degenerate but inequivalent valley “states”, which are usually related 

with spin electrons (holes) occupation near the band extrema.4, 5 In the field of spin-

electronic devices, manipulation of the spin electrons provides a feasible method to 

realize valley-dependent carriers transport.6 However, the ability to control valley-

polarized photoluminescence (PL) has been rather limited, which needs the selective 

addressing of distinct valleys through an external control, and also acquires that the 

valleys are direct band gap with high PL efficiency.  

The research of valley-polarized photoluminescence has been burgeoning with the 

rapid development of two-dimensional (2D) honey-combed structure, such as graphene, 

2D transition metal dichalcogenides (TMDs).7-9 TMDs are van der Waals layered-

semiconductors with direct band-gap energy in the visible spectral range.10, 11 

Benefiting from the properties of broken inversion symmetry and strong spin-orbit 

coupling of electrons, TMDs possess two inequivalent valleys K and K’ in Brillouin 

zone. These valleys (K and K’) show distinct responses to light with opposite helicities, 

in other words, right (RCP) and left-handed circularly polarized (LCP) photons couple 

to interband transitions in the K and K’ valley, respectively.8 Monolayer MoS2 is a 

member of TMDs family, and valley selectivity properties of pure MoS2 have been 

studied among valley selective rules9, inter-valley scattering12, exciton valley-Hall 

effect13 and valley-dependent opto-electronic devices14, 15. Recently, strong-coupling of 



exciton-polariton has been reported in monolayer MoS2 inserted micro-cavities, which 

helps to develop unique half-light half-matter system towards engineering valley-

polaritonic devices.16-18 TMDs interacting with nanowires and metasurfaces show 

direction-selective exciton-polariton propagation, which is arising from the effect of 

angular momentum coupling in hybrid system.19 However, tailoring the exciton 

emission of specific valley has less been studied, which may help to develop the 

advanced circularly polarized light-emitting devices. 

Light coupled to plasmonic nanostructures can induce coherent oscillations of surface 

electrons, which leads to enhanced electromagnetic response in the near-field.20 It has 

been reported that chiral plasmonic nanostructures show circular dichroism spectra,21-

23 which enhances the optical activity with chemical molecules and DNA structures.24-

26 This kind of enhancement is named as optical chirality C, which is sensitively related 

with environmental electromagnetic fields.27-29 High enhancement and large continuous 

regions of the optical chirality are important factors for tailoring the chirality of light-

matter interactions. Benefiting the advantages of chiral nanostructure and microcavity, 

a hybrid structure may show chiral near-field distribution and field-enhanced light-

matter interactions, which can be applied to control the polarization state of exciton 

radiation.30-33 

In this article, we utilise metal-dielectric-metal plasmonic chiral structures to 

investigate the manipulation of valley-polarized PL in MoS2-metasurface 

heterostructure. CVD-grown monolayer MoS2 was sandwiched in a micro-cavity 

formed by plasmonic chiral metasurface and golden reflection layer. The DVP in 

monolayer MoS2 was observed as 25±2% at 87 K due to intervalley scattering. 

Compared to pure MoS2, the DVP in MoS2-metasurface was increased to 43±2% under 

the excitation of LCP light (σ-), while it decreased to 20±2% under the excitation of 

RCP light (σ+). The distributions of electromagnetic field and optical chirality provide 

strong evidences for this near-field tailoring effect. We observe a chiral DVP with 

opposite helicities excitation in MoS2-metasurface heterostructure, and moreover, 

valley polarization phenomenon has been realized under the excitation of linear 



polarized laser. The capability to enhance valley-polarized PL distinctly shows a great 

opportunity towards the future development in valley-dependent optoelectronic devices. 

Results 

 

Figure 1∣Structure and spectral properties of MoS2-metasurface heterostructure. (a) 

Schematic of MoS2-metasurface structure, where CVD-grown monolayer MoS2 is placed into 

the SiO2 layer, and sandwiched between chiral metasurface and golden film. Valley-polarized 

PL of MoS2 are tailored with near-field interaction under the excitation of specific circular 

polarized light. (b) The SEM image of MoS2-metasurface structure fabricated by e-beam 

lithography, scale bar is 5 μm. (c) SEM image of MoS2-metasurface with the unit cell of 

400×400 nm (scale bar is 400 nm). Inset is the SEM image of metasurface unit. L1, L2 and L3 

are the unit length 400 nm, rod length 190 nm and rod width 75 nm. (d) PL spectra of sample 

obtained from different regions as the positions shown in the inset optical image, scale bar is 

10 μm. (e) The experiments (solid lines) and simulations (dashed lines) of spectral absorption 

obtained from pure MoS2, metasurface and MoS2-metasurface. (f) Raman spectra of MoS2 and 

MoS2-metasurface structure. Frequency differences of E1
2g and A1g between MoS2 and MoS2-

metasurface are 18.8 cm-1 and 19.9 cm-1, respectively. 

MoS2-metasurface structure and spectral properties. Figure 1a shows the schematic 

of the MoS2-metasurface heterostructure with C4 symmetric nanorods under the 

excitation of circularly polarized light. The monolayer MoS2 interacts with the near-

field modes resulting in great enhancement of specific valley-polarized PL. The MoS2-

metasurface heterostructure was fabricated in a series of micro-nano processing steps, 

and the substrate consists of 30 nm metasurface/25 nm SiO2/30 nm Au/Si. MoS2 

monolayers were sandwiched in SiO2 dielectric layer, and also placed between 



metasurface and golden reflection layer. Figure 1b presents the SEM image of MoS2-

metasurface structure with the scale bar of 5 μm. From the gray contrast of SEM image, 

CVD-grown MoS2 monolayer can be distinctly  observed as the dashed line shown. 

The MoS2 film was grown in a shape of triangle due to its 2H crystal phase, and the 

length of a side is about 40 μm. The metasurface shows greater brightness in the SEM 

image due to its metallic properties. Figure 1c shows the SEM image of MoS2-

metasurface with the scale bar of 400 nm. Inset shows the SEM image of metasurface 

unit with high magnification. L1 (400 nm), L2 (190 nm) and L3 (75 nm) are the 

statistical average values of period length, rod length and rod width (See Supplementary 

S2).  

Figure 1d shows the PL spectra of the sample at 87 K, which were measured from 

several positions as shown in the inset optical image. Two characteristic PL peaks of 

MoS2 monolayer are observed from the spectral measurements, one is the main direct 

band-gap transition (A exciton, 660 nm), and the other is the defect-state transition 

(bound exciton, 700 nm). The PL intensity of MoS2-metasurface is enhanced compared 

with pure MoS2 under the excitation of linear-polarized 633 nm laser, which is arising 

from the near-field electromagnetic modes induced emission enhancement. The PL 

intensity of metasurface structure is weak, and the PL energy is away from the A exciton 

energy but covers the energy of bound exciton. There is no PL signals obtained from 

the substrate, which excludes the influence of remaining PMMA in a wetting transfer 

process. More detailed PL spectra of MoS2 and MoS2-metasurface are shown in Fig. S1 

(See Supplementary S1). Figure 1e shows the absorption spectra of pure MoS2, 

metasurface and MoS2-metasurface in experiments (solid lines) and simulations 

(dashed lines) at room temperature of 300 K. The main absorption peak of metasurface 

is around 665 nm with a wide spectral shape. The intrinsic absorption peaks of MoS2 

monolayer is direct band-gap A (654 nm) and B exciton (609 nm). The energy 

difference (140 meV) of A and B exciton is arising from the spin-orbit coupling of 

electrons in valence band. With the near-field interaction of exciton and metasurface, 

both the characteristic absorption peaks A and B are increased obviously. And their 



peaks redshift to 660 nm (A exciton) and 615 nm (B exciton), which is due to the 

coupling of exciton and plasmon. The absorption spectra simulated by COMSOL 

consist well with the experiment results. More detailed absorption and reflection spectra 

of metasurface obtained from experiments and simulations are presented in Supporting 

Information. (See Supplementary S3). The monolayer property of MoS2 film can be 

verified by the frequency difference of in-plane (E1
2g) and out-of-plane (A1g) as shown 

in Fig. 1f. The frequency differences of phonon modes obtained from MoS2-

metasurface (pink line) and MoS2 film (blue line) are 19.9 cm-1 and 18.8 cm-1, 

respectively. And Raman signals are dramatically enhanced on MoS2-metasurface 

structure, which is arising from the surface plasmon enhanced Raman scattering.33 The 

shift of E1
2g mode (1.1 cm-1) that induced by the strong electron-phonon coupling 

provides strong evidence of near-field interaction effect.34 

 

Figure 2∣Valley-polarized PL spectra of MoS2 and MoS2-metasurface. (a-b) Circularly 

polarized PL spectra of MoS2 and MoS2-metasurface under the excitation of σ- light (633 nm) 

at 87 K. (d-e) Circularly polarized PL spectra of MoS2 and MoS2-metasurface under the 

excitation of σ+ light (633 nm) at 87 K. The DVP of MoS2 and MoS2-metasurface under  σ- 

excitation (c) and σ+ excitation (f). 



Valley-polarized PL. With the near-field interaction of MoS2 and metasurface, the 

valley polarization phenomenon was explored using polarized excitation and circularly 

polarized PL measurements. Figure 2 shows the polarized PL detection of monolayer 

MoS2 and MoS2-metasurface under the excitation of LCP light. The excitation laser is 

a 633 nm He-Ne laser, which energy (Epump = 1.96 eV) is close to the A exciton energy 

(EA = 1.88 eV). Linear polarizer (633 nm) and quarter-wave plate (633 nm) were placed 

after the laser irradiation to obtain circularly polarized excitation. And a pair of 

broadband linear polarizer and quarter-wave plate (400-800 nm) were placed before the 

spectrometer system. All the polarized PL measurements are operated at the 

temperature of 87 K in a liquid nitrogen–assisted cooling stage. 

From the valley-dependent optical selection rule of TMDs, the K’ valley can only 

couples and absorbs the LCP light with spin angular momentum (σ- = -1), and store the 

σ- exciton in the K’ valley. However, optical phonon assisted valley scattering 

participates in this unsteady process. Some excitons may scatter and occupy in the 

neighboring K valley with angular momentum exchange(??) (σ+ exciton). The 

intervalley scattering effect leads to impure detection of polarized PL, which mixes 

both LCP and RCP light as shown in Fig. 2a. In Figure 2b, the intensity of σ- PL is 

intensively boosted due to the enhancement of electromagnetic near-field. The intensity 

of σ+ PL is decreased and the spectral shape changes, which are due to the interactions 

of σ+ exciton and chiral near-field modes. The DVP p has widely been used to analyze 

the purity of polarized PL, and it is expressed as p = (I- - I+) / (I- + I+) in our work. I+ 

and I- are the RCP and LCP PL intensity obtained from the experiments, respectively. 

Figure 2c shows the DVP of pure MoS2 and MoS2-metasurface. A degree of 25±2% has 

been obtained from monolayer MoS2, which consists with previous reports ranging 

from 20% to 35%.35 Notably, the DVP of MoS2-metasurface rises up to 43±2% at the 

A exciton energy ranging from 650 to 680 nm. 

Under the excitation of RCP light, the polarized PL spectra and DVP are also plotted in 

Fig. 2d-e. The polarized PL spectra of monolayer MoS2 shows the similar results with 

LCP excitation in Fig.2d, which is fully expected under the mechanism of valley-



dependent optical selection rule. In Figure 2e, the intensities of σ+ and σ- PL detected 

from MoS2-metasurface are at the same level, but spectral shapes are different. It 

fluctuates with the wavelength, arising from the field interference between localized 

resonance of the metasurface and SPP resonance on golden film. The absolute value of 

DVP of monolayer MoS2 shows the same results under different polarized excitation as 

shown in Fig. 2c and Fig. 2f, owing to the reciprocal intervalley scattering process. The 

DVP of MoS2-metasurface with σ+ excitation is suppressed to 20±2% at the energy of 

A exciton in Fig. 2f. The similar results of valley-polarized PL were observed in Sample 

2 with inverse chirality of metasurface (See Supplementary S4). 

 

Figure 3∣Electromagnetic field distribution at 633 nm. (a-b) Electromagnetic field 

distribution under σ- and σ+ excitation at the plane z = -5 nm. (c-d) Near-field electromagnetic 

field distribution under σ- and σ+ excitation at the plane y = -147.5 nm.  

Discussions on super chiral near-field. The far-field valley-polarized PL spectra are 

resulted from the near-field interaction of valley exciton and surface plasmon modes. 

The mechanism of near-field interaction can be analyzed with the simulations of 

electromagnetic field modes by COMSOL. Figure 3a-b show the distributions of 

electromagnetic field under σ- and σ+ excitation at the plane z = -5 nm, which is the 

locating layer of monolayer MoS2. The difference of near-field modes excited from 

opposite circularly polarized light can be observed clearly. The hot-spots of 

electromagnetic field mainly locate at the corners and along the edge of nanorods, 



which is similar with the distribution of photonic local density of states (LDOS, See 

Supplementary S5). The electromagnetic field at the out contour corners of metasurface 

shows the largest intensity with σ- excitation, while at the inner contour corners with 

σ+ excitation. 

Figure 3c-d show the cross-section view of electromagnetic field distribution under σ- 

and σ+ excitation at the plane y = -147.5 nm. The difference in field distribution can be 

distinguished clearly, and most of the field energy permeates into the dielectric layer 

and couples with monolayer MoS2. The maximum of field enhancement is obtained as 

large as 50, which is arising from the tiny gaps between nanorods and also between 

metasurface and golden film. The field distributions with σ- and σ+ excitation are 

different, however, the far-field reflection spectra are almost the same in two cases (See 

Supplementary S5). It is suggested that the valley-polarized PL manipulation may not 

arise from the far-field optical absorption, but from the near-field coupling of exciton-

plasmon in the absorption and emission process. 

 

Figure 4∣Super chiral field at 665 nm. (a-b) Near-field optical chirality distributions under 

σ- and σ+ excitation at the plane z = -5 nm, and their 3D view. (c-d) Simulation of far-field PL 

spectra and DVP. 



The near-field optical chirality distributions are simulated at the resonant absorption of 

metasurface at 665 nm, as shown in Fig. 4a-b. As reported, some chiral metasurface can 

significantly enhance the signals detected from chemical and biological molecules. This 

kind of enhancement are named as optical chirality C,28 which is a time-even 

pseudoscalar to analysis the near-field chirality, and it can be obtained as 
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The optical chirality C has been analyzed in different excitation situations. When chiral 

metasurface interacts with σ- excitation, most of chiral fields surrounded the 

nanostructures show positive C/C0 as large as 15. C0 is the value of optical chirality 

obtained for circularly polarized light without the metasurface. The enhancement C/C0 

is larger than most of the planar nanostructures reported, which can be named as super 

chiral field. However, chiral field shows opposite sign of C with σ+ excitation as shown 

in Fig. 4b. Observed from the 3D view of chiral field, the fields are inhomogeneous as 

observed inside and outside of nanostructures, and the dominant phenomena of valley 

polarized PL arise from the contribution of exciton neighboring the border of 

nanostructures. Exciton inner the nanostructures is covered and contributes less to PL 

detection. 

Here we suggest the exciton of monolayer MoS2 is purely dipolar excitation, and the 

dipole excitation of MoS2 is closely related with C with the inherent valley-dependent 

chiral properties, as explained as 

A E Cαω β± ± ±∝ −  

where ω and E are the angular frequency and the local electric energy density of the 

surrounding field, respectively. α is the imaginary part of the electric polarizability, 

while β is the imaginary part of the mixed electric-magnetic polarizability. The symbol 

± represents the excitation of RCP (+) and LCP (-) light. The difference in A± therefore 



closely depends on the optical chirality C induced by nanostructures. A quantum theory 

model has also been discussed to give a more general explanation (See Supplementary 

S7). 

Besides, the exciton emission process is related with the chiral metasurface. In the 

FDTD simulation, 100 pairs of left-handed and right-handed electrical dipoles are 

placed randomly overlapping the period of metasurface, the far-field monitor has been 

detected to distinguish the left-handed (σ-) and right-handed (σ+) polarized field 

intensity as shown in Fig. 4c-d (See Supplementary S8). In the simulation of left-handed 

polarized dipoles, σ- intensity is dramatically enhanced compared with σ+ intensity. 

The DVP is larger than 75% near the resonant wavelength 665 nm. However, when it 

happens with right-handed polarized dipoles, σ- intensity is lower than σ+ intensity 

near the resonant wavelength 665 nm. The DVP shows obvious fluctuation with the 

wavelength, which consists well with the experimental results in Fig. 2. It is 

demonstrated that valley-polarized PL manipulation is arising from the near-field 

coupling effect in two processes, including enhanced exciton absorption and coupled 

optical emission. 



 
Figure 5∣Energy band and valley polarization in MoS2-mertasurface. (a-b) Schematics of 

energy band of MoS2 monolayer and MoS2-mertasurface. (c) The DVP distribution of MoS2 

and MoS2-metasurface. (d) Circularly polarized PL spectra of MoS2 and MoS2-metasurface 

under 633 nm linear laser excitation. 

Valley polarization excited with linear polarized light. In Figure 5a-b, the tailoring 

mechanism of valley-polarized PL can be understood in the framework of energy band. 

In monolayer MoS2, when K’ valley is coupled with left-handed circularly polarized 

light, σ- exciton (blue balls) is generated and occupied in the lowest energy level. Some 

σ- exciton scatters into K valley in the channel of phonon scattering, and changes the 

pseudospin state to σ+ exciton (red balls) as shown in Fig. 5a. However, when 

monolayer MoS2 interacts with chiral metasurface in the near-field range, the exciton 

absorption process is enhanced, resulting in the generation of large number of σ- 

exciton. The intervalley scattering process is related with temperature and excitation 

energy, but shows independent with local electromagnetic field. Therefore, the number 

of σ+ exciton scattered in the neighboring valley may not increase. In K’ valley, 



generated σ- exciton interacts with chiral near-field exhibiting giant optical activity, 

which contributes to enhanced PL intensity in the far field. In K valley, σ+ exciton 

emission is suppressed with the interaction of chiral field. This mechanism helps to 

understand the detected spectra in our experiments. 

Moreover, the chiral characteristics of DVP are analyzed and compared, and the DVP 

near exciton energy is noted in Fig. 4a. For monolayer MoS2, the DVP with opposite 

circularly polarized light excitation show nearly perfect symmetric properties, as 

observed as ±25%. Therefore, the absolute value of DVP in pure MoS2 shows achiral 

features with opposite helicities of optical excitations. However, it shows chiral 

properties in MoS2-metasurface heterostructure, which is arising from the tailoring 

effect of super chiral near-field. MoS2 monolayer are endowed with alternative chirality 

induced by chiral metasurface, and it can be predicted that valley polarization can be 

observed with the excitation of linear polarized laser. The polarized PL of MoS2 and 

MoS2-metasurafce are detected using 633 nm linearly polarized light. In Fig.5d, the 

detected spectra of σ- and σ+ PL of pure MoS2 show the same intensity, while 

remarkably, there is an obvious difference in the sample of MoS2-metasurafce. With the 

induced chirality by chiral metasurface, the valley polarization of MoS2 can be observed 

with simple excitation condition of linear polarized light. This experiment is a 

significant step toward the development of valley optoelectronics based on 2D materials. 

Conclusion 

In summary, we have demonstrated that valley-polarized PL of MoS2-metasurface can 

be tailored in the regime of near-field interaction with circularly polarized light. The 

dynamics is that chiral field induced by plasmonic chiral metasurface couples with 

MoS2 pseudospin valleys, which contributes to the processes of exciton absorption and 

emission. Compared with pure monolayer MoS2, the DVP of MoS2-metasurface is 

enhanced from 25% up to 43% with excitation of LCP light, while decreases from 25% 

to 20% with excitation of RCP light. Full wave simulations show that optical chirality 

C plays significant role in tailoring effect, which presents opposite signs with LCP and 

RCP light excitations. Monolayer MoS2 are endowed with alternative chirality from the 



plasmonic chiral metasurface, which helps to realize chiral DVP of MoS2 at the 

excitation of opposite circularly polarized light. Furthermore, it has been demonstrated 

that valley polarization of MoS2 can be pumped by linear polarized light, which is 

owing to the structural chirality of MoS2-metasurface. Our work provides a potential 

platform to exploit the manipulation of valley degree of freedom in the future 

application of spin-valleytronic devices based on 2D materials. 

Methods 

Preparation of MoS2 monolayers. MoS2 samples were synthesized by chemical 

vapor deposition method (CVD). Sulfur (S) and molybdenum oxide (MoO3) powder 

are the source of S and Mo, respectively. A boat with MoO3 powder was put into a fused 

quartz tube located at the center of the CVD furnace. A piece of SiO2/Si wafer was 

suspended on the boat. The furnace temperature was raised up to 750 °C in 15 min, and 

was held for 20 min, yielding MoS2 triangle domains. During the process, 50 sccm of 

argon was used as the carrier gas and the growth was carried out under atmospheric 

pressure. Samples with spin-coated PMMA can be transferred onto prepared substrates 

by wetting transfer methods. 

Fabrication of MoS2-metasurface heterostructure. Au reflection layer (30 nm) 

and SiO2 dielectric layer (20 nm) were deposited using e-beam evaporation system onto 

the prepared Si substrate chronologically. CVD-grown MoS2 monolayers were 

transferred onto the SiO2/Au/Si substrate via chemical wetting transfer technology. 

Another SiO2 dielectric layer (5 nm) was then deposited to separate the MoS2 and 

metasurface layer avoiding PL quenching. Finally, designed chiral metasurface was 

written by e-beam lithography system and then deposited with 30 nm Au film. The 

designed structure was drawn by nanometer pattern generation system (NPGS) and 

patterned by FEI Quanta scanning electron microscope (SEM). The substrate was well-

prepared after lift-off process, where MoS2 monolayers were sandwiched in SiO2 

dielectric layer, and also placed between metasurface and golden reflection layer.  

Simulations and optical measurements. Simulations on electromagnetic field were 

performed by COMSOL and Finite-Difference Time-Domain (FDTD) solutions. And 



the experimental spectra were measured by a home-built spectra system. An iHR550 

Raman spectrometer from Horiba was utilized with 600 g mm-1 and 2400 g mm-1 

gratings. PL spectra were measured with 600 g mm-1. The objective lens is 50× 

magnifications. The excitation laser is 633 nm He-Ne laser, which was focused to a 

diffraction-limited spot about 2 μm. For the detection of valley polarization, linear 

polarizer (633 nm) and quarter-wave plate (633 nm) were placed after the laser 

irradiation. And a pair of broadband linear polarizer and quarter-wave plate (400-800 

nm) were placed before the spectrometer. The cooling stage is LINKAM THMS600 

system, which can control the environment temperature of sample at 87±0.2K. 
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