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Abstract: Studying the interactions between biomolecules and material interfaces play a crucial role
in the designing and synthesizing of functional bionanomaterials with tailored structure and function.
Previously, a lot of studies were performed on the self-assembly of peptides in solution through
internal and external stimulations, which mediated the creation of peptide nanostructures from
zero-dimension to three-dimension. In this study, we demonstrate the self-assembly behavior of the
GNNQQNY peptide on the surface of mica and highly oriented pyrolytic graphite through tailoring
the self-assembly conditions. Various factors, such as the type of dissolvent, peptide concentration, pH
value, and evaporation period on the formation of peptide nanofibers and nanoribbons with single-
and bi-directional arrays are investigated. It is found that the creation of peptide nanoribbons on
both mica and HOPG can be achieved effectively through adjusting and optimizing the experimental
parameters. Based on the obtained results, the self-assembly and formation mechanisms of peptide
nanoribbons on both material interfaces are discussed. It is expected that the findings obtained
in this study will inspire the design of motif-specific peptides with high binding affinity towards
materials and mediate the green synthesis of peptide-based bionanomaterials with unique function
and application potential.

Keywords: self-assembly; peptide; nanofibers; nanobelts; surface; materials science

1. Introduction

Peptides are a kind of natural macromolecular compound composed of amino acids,
which have exhibited various functions and bioactivities, showing wide applications in
various fields [1]. Therefore, the design and synthesis of peptide-based nanomaterials
have attracted great interest in the last decades. Previously, more focus was on the folding,
unfolding, and aggregation mechanism of proteins and peptides that related to human
diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and type
II diabetes [2–4]. With the development of nanotechnology and materials science, it has
been realized that the aggregated peptide/protein nanostructures are excellent precursors
or templates for the synthesis of functional nanomaterials.

Nanomaterials formed by self-assembly of peptides have superior and unique phys-
ical and chemical properties, such as high mechanical strength, high thermal stability,
high biocompatibility, simple preparation, and customizable functions [5–7]. These ex-
cellent properties provide peptides with a wide range of biological applications, such
as biomedicine, bioimaging, photothermal diagnosis and treatment, biosensing, tissue
engineering, and other applications [8–13].

In the process of peptide self-assembly, the formation of nanostructures is affected by
factors such as pH, temperature, molecular concentration, ionic strength, and organic stim-
ulants [14,15]. Therefore, it is possible to obtain nanostructures with different dimensions
from monomer to one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D)
structure by adjusting appropriate conditions [16–18]. Peptides can not only self-assemble
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into excellent nanostructures in solution and on the interface, but also self-assemble on the
surface of inorganic templates (such as mica, highly oriented pyrolytic graphite (HOPG),
MoS2, and other substrates). Mica and HOPG are commonly used substrate materials for
AFM because of their smooth, clean, and renewable surface. The mica used for AFM is
generally muscovite; the structural formula is K2O·Al2O3·SiO2, the surface is negatively
charged, and the hydrophilic mica can be modified to become a hydrophobic surface [19].
HOPG is a relatively new form of high-purity carbon, and the freshly uncovered surface is
composed of many atomic layers of steps. Compared with mica, HOPG has no polarity
at all and has good electrical conductivity [20]. Furthermore, peptides have been proven
to be able to combine with a variety of functional nanomaterials, such as graphene [21],
metal organic frameworks [22], MXene [23], cellulose [24], etc., due to their tunable surface
groups. Peptides are often effectively combined with other functional materials through in-
teractions such as hydrogen bonds, electrostatic interactions, and hydrophilic/hydrophobic
interactions [25].

Previously, Zhang et al. found that the peptide Gav-9 (NH2-VGAVVAGV-CONH2)
self-assembled on the surface of hydrophilic mica and hydrophobic HOPG into nanowires
with triple symmetric orientation [26]. GAV-9 nanowires are horizontally oriented on
HOPG and “upright” oriented on mica. Chen et al. prepared ordered 2D arrays and films
on MoS2 and HOPG with specific peptide YSATFTY, and they further studied the formation
mechanism of ordered 2D arrays through in-situ AFM and molecular simulation [27].

GNNQNY is a heptapeptide derived from the yeast prion protein Sup35 and was
selected as the “Eisenberg family” [28]. In previous studies, it was found that they were
mainly incubated into nanofibers and nanocrystals [29]. As a classic peptide sequence,
people mainly focused on its fiber aggregation mechanism [30].

Here, we studied the ordered self-assembly of the sequence peptide GNNQQNY
derived from prion protein on the surface of hydrophilic mica and hydrophobic HOPG.
GNNQQNY peptides self-assemble on the surface of mica to form directional nanoribbons
or nanofiber structures with an angle of 60 degrees, mainly bidirectional nanoribbons, and
their self-assembly is affected by factors such as solvent, pH, concentration, and evaporation
time. Different from self-assembly on the surface of mica, GNNQQNY peptides are easier
to self-assemble on the surface of HOPG to form 2D nanoribbon structures with an angle of
60 degrees. While exploring the influencing factors of the self-assembly of GNNQQNY on
the surface of mica and HOPG, we obtained its formation mechanism, that is, the peptides
are affected by the substrate lattice and undergo one-dimensional orderly epitaxial growth
on the surface, and they are connected laterally to form nanobelts.

2. Materials and Methods
2.1. Materials and Reagents

The peptide (purity 95%) with a sequence of GNNQQNY was bought from the SynPep-
tide Biotechnology Co., Ltd. (Nanjing, China). Mica was purchased from the XingDongFu
electronic Co., Ltd. (Guangzhou, China), and HOPG (7 mm × 7 mm × 1 mm, Grade ZYB)
was purchased from the Structure Probe, Inc. (West Chester, PA, USA). Trifluoroacetic acid
(TFA, 99%), trifluoroethanol (TFE, 99.5%), HCl (36–38%), and NaOH (96%) were provided
by the Sinopharm Chemical Reagent Co., Ltd. (Beijing, China). All chemicals used in
this work were analytical reagent grade and directly used without additional purification.
Ultrapure water used in the whole experiment was produced from a Millipore system
(≈18.2 MΩ cm−1).

2.2. Self-Assembly of Peptide on Mica and HOPG Substrates

Peptide powder was solved with a solvent (such as ultrapure water) to prepare peptide
solutions with a concentration of 0.5 mg/mL. Then, the peptide solution was diluted with
corresponding solvent to a concentration of 0.25 mg/mL. After that, 10 µL peptide solution
was dropped onto the freshly cleaved mica or HOPG surface, letting the peptide molecules
self-assemble into various nanostructures. In order to mediate the self-assembly of peptide,
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the mica or HOPG with dropped peptide solution was kept in a closed sample box to
reduce the evaporation velocity of liquid. The environmental temperature was 20 ◦C, and
the relative humidity was about 50%.

2.3. Tailoring the Self-Assembly of Peptide under Various Conditions

Solvent effect: Five solvent systems, such as ultrapure water, 0.1% FEA, TFE, water/TFE
(v/v, 1:1), and 0.1% TFA/TFE (v/v, 1:1) were used to prepare and dilute the peptide samples.

Peptide concentration effect: Different peptide concentrations, such as 0.1, 0.2, 0.25, 0.3,
0.4, and 0.5 mg/mL were utilized.

pH value effect: To check the self-assembly of peptide on acidic, neutral, and basic
solutions, the pH of the peptide solution was adjusted to 2, 7, and 12, respectively.

Evaporation velocity effect: The closed and open sample box were used for adjusting the
evaporation velocity of liquid.

2.4. AFM Characterizations of Self-Assembled Peptide Nanofibers and Nanoribbons

All atomic force microscopy (AFM) samples were prepared by dropping 10 µL peptide
samples onto the freshly cleaved mica or HOPG substrates and dried in a closed or open
sample box in air for characterization. AFM measurements were performed in air using
the FM-Nanoview 6800 AFM (FSM-Precision, Suzhou Flying Man Precision Instrument
Co., Ltd., Suzhou China) with tapping mode. Silicon probes of type Tap300Al-G (300 kHz,
40 N/m) were used for AFM image capturing.

2.5. Statistical Analysis

The tapping mode images and corresponding section analysis, as well as 3D morphol-
ogy, were carried out with Gwyddion software (Version 2.57). The obtained data were
analyzed with Origin software (Version 2021) for statistical analysis on the height, width,
and length of self-assembled peptide nanostructures.

3. Results and Discussion

In this section, we studied the self-assembly of GNNQQNY peptide on the surface
of both mica and HOPG using AFM characterization. The molecular structure of the
GNNQQNY peptide is shown in Scheme 1a, and then Scheme 1b,c prove that the freshly
uncovered mica and HOPG are clean. The formation of peptide nanofiber and nanoribbon
arrays with fine arrangement is analyzed and discussed.
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Scheme 1. (a) Molecular structure of GNNQQNY peptide; (b) AFM image of freshly uncovered mica;
(c) AFM image of freshly uncovered HOPG.3.1. Self-assembly of GNNQQNY on mica surface.

GNNQQNY peptides self-assemble on the mica surface to form nanofibers and nanorib-
bons with the height of 0.6–1.5 nm and nanoribbons with the height of 1.5–2.2 nm. In addition,
the peptides also form some thin films on the mica surface. As shown in Figure 1a–c, the
formed nanostructures show highly regular directionality among each other, and several
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distribution patterns often appear mainly including single directional nanoribbons, bi-
directional nanoribbons with an intersection angle of 60◦, and tri-directional nanoribbons
with an intersection angle of 60◦. Among them, bi-directional nanoribbons with an intersec-
tion angle of 60◦ are the most common, and unidirectional and tri-directional nanoribbons
are not easily formed. As shown in Figure 1d–f, the section analysis corresponding to the
AFM height images of Figure 1a–c indicates that these nanoribbons/nanofibers are highly
uniformly distributed. Figure 1g–i shows a 3D morphological analysis that corresponds to
the AFM images in Figure 1a–c, which clearly proves the formation of directional structure
of GNNQQNY peptides on mica.
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Figure 1. AFM characterizations of self-assembled (a,d,g) mono-directional, (b,e,h) bi-directional,
and (c,f,i) tri-directional peptide nanobelts: (a–c) height images, (d–f) section analysis, and (g–h) 3D
morphologies.

To investigate the dimensions of the nanoribbons that were formed by the self-
assembly of GNNQQNY on the mica surface, we performed the statistical analysis of
the heights and width of peptide nanoribbons that are shown in Figure 1b, and the his-
togram distributions are shown in Figure 2. It can be found that the height of peptide
nanoribbons is mainly concentrated in the interval of 1.4–1.9 nm, with the average height
at 1.65 nm (Figure 2a). In addition, the width of peptide nanoribbons is mainly concen-
trated in the interval of 160–340 nm, with the average width at 240 nm (Figure 2b). It
should be noted that the height of the self-assembled peptide nanoribbons is uniform in
all the obtained AFM images, while the width of nanoribbons varies with the change of
experimental conditions.
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synthesized in mixed (v/v, 1:1) TFA (0.1%) and TFE.

3.1. The Effect of Organic Solvents on the Self-Assembly of Peptide

Polar organic solvents can promote the self-assembly of peptide molecules in solution
and on the surface of mica by affecting non-covalent interactions between molecules. To
explore the effects of organic stimulants on the self-assembly of GNNQQNY peptides on
mica surface, several solvent systems were used to test their effects.

As shown in Figure 3a, in pure water solvents, the AFM image indicates that GN-
NQQNY peptides form mainly irregular nanofibers or nanoribbons, which is consistent
with previous reports on the formation of GNNQQNY nanostructures in pure water [28].
In the TFE solution, it is found that straight peptide nanoribbon structure is arranged in
a single direction, and at the edge of the nanoribbons some small nanofiber structures
are created. It is interesting that the formed nanofibers are parallel in the other direction,
indicating that the self-assembly of peptide molecules on the surface of mica forms a single
direction nanoribbon structure at first and then begins to form directional nanostructure
with an angle of 60 degrees (Figure 3b).
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To see the detailed structure of bidirectional peptide nanoribbons, peptide nanoribbons
are magnified, and the zoomed AFM height image is shown in Figure 3c. It can be seen that
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the nanoribbons are formed by a horizontal connection of nanofibers and the double-layer
nanoribbon structure is formed. The height of the single-layer nanoribbons is about 2 nm,
and the height of the double-layer nanoribbons is about 4 nm. Meanwhile, the height of
the formed nanofibers at the edge of the nanoribbons is about 1 nm, which indicates that
the nanoribbon structure is not only formed by the horizontal connection between the
nanofibers, but also the vertical stacking of a few layers of nanoribbons. The AFM image
of GNNQQNY dissolved with TFA (0.1%) and incubated on the mica surface is similar
to that dissolved with a TFE solution, with a single direction of wide nanoribbons that
accompanied by a thin nanofiber in the other direction (Figure 3d). The difference is that
the nanoribbons formed with TFA (0.1%) show a width of up to 1.12 µm at their widest
point, and the height of the formed nanoribbons is only about 1.5 nm.

When the solution system was changed to the mixture (v/v, 1:1) of TFA (0.1%) and
TFE, the obtained AFM image (Figure 3e) indicates that dense bidirectional nanoribbons
and thin nanofibers are created, which arrange in the same direction. Similarly, the peptide
dissolved in a mixture (v/v, 1:1) of water and TFE also induced the formation of peptide
nanoribbons in one direction on mica surface, as shown in Figure 3f.

Based on these AFM data, we suggest that the addition of organic polar solvents to the
peptide solution system promotes the formation of peptide nanoribbons/nanofibers with
directional arrays, and different organic polarity solvents cause specific effects on the self-
assembly and conformation transition of GNNQQNY peptides [14]. However, water, which
is also a polar solvent, cannot affect the conformation transition of the GNNQQNY peptide.

3.2. The Effect of Peptide Concentration Is on Their Self-Assembly

The solution concentration is decisive for the incubation of peptides on the surface
of mica to form directional nanoribbons and nanofibers. Figure 4 shows AFM images of
different concentrations of peptides that incubated on mica for surface-guided molecular
self-assembly. When the peptide concentration was of 0.1, 0.2, 0.3, 0.4, and 0.5 mg/mL, the
fiber clusters were observed on mica, and no directional filament or nanoribbon structure
was observed. At the concentration of 0.25 mg/mL, it can be observed that not only
curved long fibers, but also directional nanofiber and nanoribbon structures were formed
on the surface of mica. According to previous report [28], the peptide GNNQQNY in
aqueous solution will self-assemble to form fibers immediately. We believe the peptide
concentration of 0.25 mg/mL is optimal for inducing the self-assembly and formation of
directional nanofibers and nanoribbons on mica surface.
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3.3. The Effect of pH on Peptide Self-Assembly

The pH of solution system also affects the self-assembly of peptides on the surface of
mica. To explore the effect of pH on the formation of peptide nanostructures, we selected
the mixture of water and TFE (v/v, 1:1) as the dissolvent system, and then adjusted the pH
of the peptide solution with HCl and NaOH.

Figure 5 presents typical AFM height images of peptide nanostructures that formed
under different pH conditions on mica surface. In the context of pH = 2, peptides form
a dense nanoribbon “cross-network” structure on the surface of mica. The reason for the
formation of this dense and uniform “cross-network” nanobelt cluster is that the decrease
in the pH of the solution regulates the adsorption of peptide molecules to mica and its
incubation rate [31]. It is clear that the formed nanoribbons exhibit uniform orientations
with a connection angle of about 60 degrees between the two directions (Figure 5a). We
suggest that the GNNQQNY peptide has a whole isoelectric point of 5.52, which reveals
positive charge in the acidic environment at pH = 2 [29]. Therefore, the electrostatic
interactions between positively charged peptides and negatively charged mica surface
mediated the surface structure-guided self-assembly of peptide molecules. When the
solution pH is below 2, the number of peptide nanostructures becomes smaller and smaller,
and when pH is below 1.6, there is virtually no orderly peptide nanoribbons on the surface
of mica. An over-acid environment is not conducive to the incubation of peptide molecules
on the surface of mica, which can lead to inactivation of peptide molecules.
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Under neutral conditions, the number of peptide nanoribbons decreased and more
nanofibers formed on the surface, as shown in Figure 5b. In addition, the density of the
formed peptide nanostructures on the surface decreased significantly compared to those
formed under acidic condition, and the formed peptide nanoribbons are arranged mainly
in one direction. In alkaline environment (pH = 12), the formed nanofibers/nanoribbons
become completely disordered (Figure 5c), and 2D large peptide layers appear. Here, it
should be noted that the peptide layers are not formed on the surface of mica, as the
alkaline environment facilitates the rapid assembly of peptides in solutions. On the other
hand, peptides in alkaline environments are negatively charged, and negatively charged
mica surface have electrostatic repulsion to the peptides, and therefore it is hard to induce
the ordered self-assembly and arrangement of peptides on mica surface. These results
reinforce the evidence that the formation of orderly peptide nanofibers/nanoribbons on
mica is related to the electrical properties of both peptide and material interfaces.

3.4. The Effect of Evaporation Period

The self-assembly of GNNQQNY peptides on mica surface is also related to the process
of deposition and evaporation, in which the evaporation period of peptide solution plays
an important role in the formation of final structures. The evaporation time of peptide
solution on mica is actually affected by a variety of factors, such as the solvent type, air
temperature, humidity, and flow conditions. To test the effect of the evaporation period on
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the self-assembly of GNNQQNY peptides on mica surface, we adjusted the flow of air to
control the evaporation period of the peptide solution.

Figure 6 show the AFM images of the peptide solution of mixture (v/v, 1:1) of TFA
(0.1%) and TFE in the sample box and the open environment, respectively. In the first
case, long evaporation time of peptide solution was set in a sample box, which provides
enough molecular interactions and self-assembly for the formation of dense bi-directional
nanoribbon arrays (Figure 6a). However, when the evaporation process was set in an open
environment, it is hard to form bi-directional peptide arrangement but only one-directional
peptide nanoribbons are found (Figure 6b). Based on the obtained AFM data, it can be
concluded that the longer the evaporation time, the more peptides can promote the orderly
growth of peptides on the surface of mica into dense bi-directional nanobelts structure.

Materials 2022, 14, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 6. The effect of evaporation time on the formation of peptide nanobelts: (a) in a closed sample 
box and (b) under open room temperature environment. 

3.5. Self-Assembly of Peptide on HOPG 
In order to study the influence of different material interfaces on peptide self-assem-

bly, we further examined the formation of peptide nanostructures on HOPG. Figure 7 
shows the AFM image of a peptide solution of TFA (0.1%) and TFE mixture (v/v, 1:1) in-
cubated on the surface of HOPG. As shown in Figure 7a,b, the surface of HOPG has a clear 
nanoribbon structure. The nanoribbons are arranged in two or even three directions (with 
an angle of 60 degrees). The height of the nanoribbons is about 1 nm, and the width is 
generally more than 200 nm. In the image, there are not only oriented nanoribbons, but 
also a certain number of curved nanofibers quickly assembled in the solution. Their height 
is higher than the self-assembled fibers on the surface, but they have no directionality. 
Compared with the incubation of peptides on the surface of mica under the same condi-
tions, self-assembly on HOPG will obviously generate nanoribbons with a larger width 
and that are flatter. The distribution is not so dense, but it is easy to form nanoribbons in 
three directions. The differentiation of the self-assembly of GNNQQNY on the surface of 
mica and HOPG is due to the hydrophilic and hydrophobic properties of mica and HOPG 
and the difference in surface crystal structure. 

 
Figure 7. AFM images of self-assembled peptide nanostructures on HOPG surface: (a) 10×10 μm; 
(b) 4 × 4 μm. 

3.6. Self-Assembly Mechanisms of Peptide on Mica and HOPG 
The isoelectric point of the GNNQQNY peptide is 5.52, and under the condition of 

pH = 2, the positively charged peptide is organized and self-assembled on the negatively 
charged mica surface under the influence of electrostatic interaction. In previous studies, 
many peptides have been shown to form similar orderly structures on mica or HOPG, 
such as YSATSTY [27],QQKFQFQFEQQ [32],GAV-9 [26,33,34], and EAK16-II [35]. 

Based on our obtained results and previous reports, we proposed the self-assembly 
mechanisms of GNNQQNY peptide on the surface of mica and HOPG, as shown in Figure 
8. When the peptide solution had just been dripped onto the surface of the clean mica, the 
peptide molecules in the solution were mainly present in a monomer state. As shown in 
Figure 8a, the surface of the freshly uncovered mica exposes the oxygen atomic layer of 
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3.5. Self-Assembly of Peptide on HOPG

In order to study the influence of different material interfaces on peptide self-assembly,
we further examined the formation of peptide nanostructures on HOPG. Figure 7 shows
the AFM image of a peptide solution of TFA (0.1%) and TFE mixture (v/v, 1:1) incubated on
the surface of HOPG. As shown in Figure 7a,b, the surface of HOPG has a clear nanoribbon
structure. The nanoribbons are arranged in two or even three directions (with an angle
of 60 degrees). The height of the nanoribbons is about 1 nm, and the width is generally
more than 200 nm. In the image, there are not only oriented nanoribbons, but also a certain
number of curved nanofibers quickly assembled in the solution. Their height is higher than
the self-assembled fibers on the surface, but they have no directionality. Compared with
the incubation of peptides on the surface of mica under the same conditions, self-assembly
on HOPG will obviously generate nanoribbons with a larger width and that are flatter. The
distribution is not so dense, but it is easy to form nanoribbons in three directions. The
differentiation of the self-assembly of GNNQQNY on the surface of mica and HOPG is due
to the hydrophilic and hydrophobic properties of mica and HOPG and the difference in
surface crystal structure.
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3.6. Self-Assembly Mechanisms of Peptide on Mica and HOPG

The isoelectric point of the GNNQQNY peptide is 5.52, and under the condition of
pH = 2, the positively charged peptide is organized and self-assembled on the negatively
charged mica surface under the influence of electrostatic interaction. In previous studies,
many peptides have been shown to form similar orderly structures on mica or HOPG, such
as YSATSTY [27],QQKFQFQFEQQ [32],GAV-9 [26,33,34], and EAK16-II [35].

Based on our obtained results and previous reports, we proposed the self-assembly
mechanisms of GNNQQNY peptide on the surface of mica and HOPG, as shown in Figure 8.
When the peptide solution had just been dripped onto the surface of the clean mica, the
peptide molecules in the solution were mainly present in a monomer state. As shown in
Figure 8a, the surface of the freshly uncovered mica exposes the oxygen atomic layer of
silicate, while other atomic layers of silicon, aluminum, and potassium are under it. As
shown in Figure 8b, under the influence of the pseudo-hexagonal surface geometry template
of mica (001), the polypeptide extension mica surface lattice began to spontaneously extend
two-way in 2D layer, gradually forming a 1D nanofiber structure that arranged in a single
direction. Among them, the structure formed by GNNQQNY peptides in this process is
β-folding configuration. The 1D nanofiber structure is then further connected horizontally
to form a 2D nanoribbon nanostructure. The self-assembly of peptides on mica templates
tends to form single-directional 1D nanofibers and then horizontally connect to form 2D
nanoribbons. When the self-assembly of peptides in a single direction reaches a certain
saturation state, the peptides begin to repeatedly form nanofibers and connect horizontally
into nanoribbons at an angle of 60 degrees in the previous direction. Therefore, in previous
AFM images, we have observed both one-directional and bi-directional nanoribbons.
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HOPG surface can be regarded as a single layer graphene structure, compared with
the pseudo-hexagonal surface geometry template of mica (Figure 8c). However, HOPG
surface hexagonal arrangement distribution is more obvious, so it is more conducive to the
formation of peptide nanoribbons in three directions. Figure 8d presents a self-assembly
mechanism of the GNNQQNY peptide on the HOPG surface. The self-assembly of peptides
on HOPG can extend its lattice to form good nanoribbons. Since the HOPG terrace is flatter,
the nanoribbons can be spread better and exhibit a higher width distribution, which has
been identified by the AFM images shown in Figure 7.

4. Conclusions

In summary, we achieved the self-assembly of GNNQQNY peptide on the surface
of mica and HOPG into an ordered nanoribbon or nanowire structures with an angle of
60 degrees by regulating the self-assembly conditions. Various influencing factors, such
as the type of solvent, peptide concentration, pH value, and evaporation time, on the
formation of peptide nanowires and nanoribbons with unidirectional and bidirectional
arrays have been studied, and by adjusting and optimizing experimental conditions, it can
effectively create ordered peptide nanobelts on mica and HOPG. Based on the above results,
the self-assembly and formation mechanisms of peptide nanoribbons at the interface of the
two materials are discussed. That is, the peptides are affected by the crystal lattice of the
substrate and undergo 1D orderly epitaxial growth on the surface, and further they are
laterally connected to form a nanometer belt. Our work explored the ordered self-assembly
of specific peptides on the surface of materials, and it is beneficial to design more peptide
sequences with high binding affinity to materials interfaces for the synthesis of functional
hybrid bionanomaterials.
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