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Abstract 

In the past two decades, porous silicon (PSi) has attracted increasing attention for its potential 

biomedical applications. With its controllable geometry, tunable nanoporous structure, large 

pore volume/high specific surface area and versatile surface chemistry, PSi shows significant 

advantages over conventional drug carriers. In this review, we overview the recent progresses 

of PSi in drug delivery and cancer immunotherapy. First, we provide an overview of the 

fabrication of PSi with various geometric structures and highlight how the unique geometry of 

PSi facilitates its biomedical applications, especially for drug delivery. Second, surface 

chemistry and modification of PSi are discussed in relation to strengthen its performance in 

drug delivery and bioimaging. Then, emerging technologies for engineering PSi-based 

composites are summarized. This review also highlights the emerging advances of PSi in the 

context of cancer immunotherapy. Overall, the very promising research results encourage 

further exploration of PSi for biomedical applications, particularly in drug delivery and cancer 

immunotherapy, and future translation of PSi into clinical applications. 

 

1. Introduction 

Porous silicon (PSi) was accidentally discovered by the Ulhirs at the Bell Labs in 1956 when 

they were searching for a technique to shape the surface of silicon.[1] However, scientists did 

not show much interest in PSi until Canham discovered that PSi had quantum confinement 

effects with efficient visible photoluminescence in 1989.[2] Since then, the non-linear optical 

and electrical properties of PSi have been intensively studied. In 1995, Canham demonstrated 

that PSi is biocompatible and biodegradable,[3] and consequently, a new era was opened for 

the biomedical applications of PSi. The last two decades have witnessed the increasing 

application of PSi in drug delivery, bioimaging, biosensing, tissue engineering and 
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immunotherapy.[4] In addition, PSi has also been investigated as battery anode[5] and 

hydrogen-generating materials.[6] In this review, we will mainly focus on the fabrication and 

application of PSi for both drug delivery and cancer immunotherapy. 

The most common method to produce PSi is the electrochemical anodization of 

monocrystalline silicon wafers in a hydrofluoric acid electrolyte solution.[7] The pore size and 

porosity/pore volume of PSi can be precisely controlled by manipulating the fabrication 

parameters, and its biodegradability can be adjusted by porosity and pore size.[8] Importantly, 

PSi possesses several particularly appealing tunable properties for designing drug delivery 

systems: (1) high porosity/large pore volume (~50–80%/~0.5–2.0 cm3 g-1) for achieving high 

loading degree of payloads;[9] (2) tunable pore size (~5–150 nm) for loading a broad range of 

small molecules, macromolecules and nanoparticles;[9-10] (3) versatile surface chemistry and 

high specific surface area (up to 580 m2 g-1) that can be surface functionalized for controlled 

drug release and (multiple) biological functions;[7,11] (4) excellent biocompatibility and the 

ability to completely degrade into non-toxic orthosilicic acid [Si(OH)4] which is naturally 

present in the human body.[3,8,12] The PSi for constructing drug delivery systems are mostly 

(quasi-) spherical shaped micro- and nano-particles due to their wide applicability and 

easiness of fabrication. For example, (quasi-) spherical PSi micro- and nano-particles were 

either applied directly or formulated into micro- or nano-composites to enhance the intestinal 

absorption of oral delivered small molecules (indomethacin and 5-Flurorouracil), peptides 

(glucagon-like peptide-1 (GLP-1), peptide tyrosine tyrosine 3-36) and proteins (insulin),[4g,13] 

and they were also constructed into nanocomposites for the intravenous delivery of 

chemotherapeutics (methotrexate (MTX) and sorafenib (SFN)) for cancer therapy.[14] In the 

last decade, several novel “top-down” and “bottom-up” approaches have been developed to 

fabricate spherical PSi particles. For example, comminution of PSi films obtained from “top-
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down” approach by microfluidization shows a great potential for mass production of spherical 

PSi particles,[15] and the “bottom-up” approach using silicon tetrachloride for synthesizing 

spherical PSi particles avoids the use of hydrofluoric acid.[11b] Furthermore, the introduction 

of silicon microfabrication techniques into the fabrication process of PSi provides the 

possibility to precisely fabricate PSi in geometry other than common (quasi-) spherical shape. 

For example, quasi-hemispherical/discoidal PSi particles and PSi needles have been 

developed in the last decade for the delivery of therapeutics and imaging agents.[4i,4k,16] 

Before the successful accumulation of therapeutics specifically at diseased sites, biological 

barriers need to be overcome.[17] In the case of topical administration, needles can directly 

reach the desirable drug delivery sites by physically and straightforwardly crossing the 

barriers such as skin or cell membrane.[4i,16b] While upon intravenous administration, drug 

carriers encounter a complex series of biological barriers that prevent the achievement of 

satisfactory therapeutic effects. These hurdles include opsonization and subsequent 

sequestration of the drug carriers by the mononuclear phagocyte system (MPS), nonspecific 

distribution, pressure gradients, cellular internalization, escape from endosomal and 

lysosomal compartments and drug efflux pumps.[18] Substantial research efforts have been 

made to incorporate multiple functionalities and moieties within the overall design of PSi-

based composites/hybrids for crossing these frustrating barriers, utilizing the combined power 

of particle geometry control, surface modification and emerging technologies for physical 

encapsulation of particles, and many promising advances in fields, such as cancer 

therapy,[4j,13d,14a,19] have been reported during the last years. For example, the unique geometry 

of discoidal PSi microparticles enabled them to sequentially overcome the biological barriers 

that particles encountering from the intravenous administration site to the disease site, i.e., 

tumors;[4j] the surface modification of PSi nanoparticles with polyethylenimine (PEI) 
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contributed to the sustained delivery of small interfering RNA (siRNA) to human breast 

cancer cells;[20] and the physical encapsulation of PSi nanoparticles in acid-degradable 

acetalated dextran (AcDX) facilitated the simultaneously loading of multiple 

chemotherapeutics into the nanocomposites for combination cancer therapy.[14b] 

However, every coin has two sides. The opened and interconnected nanopores of PSi facilitate 

the straightforward loading of a broad range of payloads including small molecules,[14b,21] 

peptides,[4g,13a-c,22] proteins,[16b,23] nucleic acids[4i,20,24] and nanoparticles.[4k,19a,25] The easy 

accessed pores of PSi are likely to lead to premature and uncontrolled release of the payloads 

and deactivation of loaded fragile therapeutics, especially when the therapeutics loaded in PSi 

need to be transported from the administration sites to the diseased sites. In order to overcome 

these limitations, many strategies have been developed in recent years in terms of controlled 

drug release for PSi using surface modification and/or physical encapsulation.[13b,13d,14a,23c,26] 

For example, the surface modification of PSi nanoparticles with temperature responsive 

polymer enabled the controlled drug release in response to the heating induced by infrared or 

radiofrequency radiation,[27] and the physical encapsulation of PSi nanoparticles in pH-

responsive polymers protected GLP-1 and insulin from the harsh conditions of the 

gastrointestinal tract, and provided site specific drug release in small intestines for enhanced 

absorption.[4g,28] 

Recently, cancer immunotherapy has also attracted tremendous attention as a new paradigm in 

cancer treatment given the significant increase in patient survival that has been achieved in 

clinical trials.[29] The emerging multidisciplinary research in cancer biology, immunology, 

bioengineering and biomaterials shows great potential to further enhance the therapeutic 

effects and reduce the side effects of cancer immunotherapy.[30] Among the biomaterials, PSi 

is being increasingly explored for its potential as an adjuvant,[4b,31] and the excellent loading 
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capacity and versatile surface chemistry of PSi also make it a unique candidate for combined 

chemoimmunotherapy.[32] Exciting progress has also been made in the last few years.[4a,4c] 

To provide an overview of the latest research advances and future developments of PSi in 

drug delivery and cancer immunotherapy, this review is organized as follows. We firstly 

outline the fabrication and application of PSi in different geometry. Subsequently, the 

strategies to boost PSi for drug delivery applications by using the versatile surface chemistry 

of PSi for surface modification and by employing emerging technologies to engineer PSi-

based composites are discussed. Then, the recent advances in using PSi for cancer 

immunotherapy are highlighted and discussed. The conclusions and outlook of the role of PSi 

for drug delivery and cancer immunotherapy are finally presented. 

 

2. PSi with controllable geometry 

The size and geometry of the particles play an important role in their in vitro and in vivo 

behavior.[33] For example, upon intravenous administration of the particles, size and geometry 

affect circulation time, hemorheological dynamics, extravasation through leaky vasculature, 

cellular uptake and in vivo distribution. In addition, the geometry also drives the initial 

cellular internalization of the particles.[18] PSi particles can now be produced with precise and 

uniform size, and the utilization of silicon microfabrication techniques also makes it possible 

to fabricate PSi in geometries other than spherical shape, such as quasi-hemispherical, 

discoidal and needle shape. In this section, we present and discuss the recent advances in the 

fabrication and application of PSi characterized by various geometric features. 
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2.1. Spherical PSi particles 

PSi is a nanostructured material most commonly prepared by the electrochemical etching of 

single-crystal silicon wafers. Recent developments in engineering micro/nano-sized particles 

of PSi have attracted much attention. After anodization, the PSi layer is detached from the 

silicon wafer as intact membranes or large flakes (Figure 1a). The production of particles 

from anodized silicon wafers requires a “top-down” approach. Comminution of PSi can be 

achieved by ultrasonication,[34] milling,[35] or high-pressure microfluidization,[15] and the 

obtained PSi particles are in (quasi-) spherical shape. The spherical shape is the dominant 

shape of PSi particles due to its wide applicability, easiness of fabrication and wide range of 

fabrication methods available.[36] 

Ultrasonication is the first comminution method developed to prepare small particles of 

PSi.[34b] In a liquid, such as ethanol, the sonication radiation fractures the PSi film into small 

particles. Depending on the liquid used and the duration of sonication, the average size of 

obtained PSi particles can be tuned from a few microns to hundreds of nanometers.[34a] The 

engineering of PSi nanoparticles smaller than 300 nm is challenging by ultrasonication, which 

typically proceeds for several hours (Figure 1b). In such a long ultrasonication duration, the 

dissolution of PSi in the ultrasonication medium can be excessive.[15] The dissolution process 

is also accompanied by the oxidation of PSi particles.[15] With the help of high power 

ultrasonication, the particle size of PSi could be reduced to as low as around 50 nm (Figure 

1d).[37] The size distribution of PSi particles prepared by ultrasonication is relatively broad. 

To achieve a specific size cut, the PSi particles can be centrifuged or filtered,[38] which 

however reduces the final yield. Qin et al.[34c] applied periodical high-current density pulses 

during the etching process, and therefore a porous multilayer was obtained, in which porous 

layers were separated by thin layers of much higher porosity. Ultrasonication selectively 
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fractured the porous film along these high-porosity perforations, providing better size control 

and 5 times higher yield of the resulting PSi nanoparticles.  

PSi layers can also be milled into powders. The milling comminution techniques include rotor 

milling, ball milling and jet milling,[39] among which rotor milling and ball milling are energy 

intensive processes. The choice of milling technique and condition governs the average 

particle size, size distribution, and crystallinity of the obtained PSi particles. For example, ball 

milling can even render the crystalline structure of bulk silicon into amorphous.[40] 

Mechanochemical processes based on ball milling have been used to produce functionalized 

powders from PSi.[41] Since PSi feedstock is highly reactive with high surface area, great care 

must be taken to minimize pressure and temperature buildup. Both milling techniques and 

conditions are important considerations for the comminution of PSi layers. After milling, the 

size distribution of PSi particles can be narrowed to a specific range by incorporating a 

classifier or using graded sieves.[35b] 

The high-shear microfluidization, also called high pressure homogenization, is a rapid, 

reproducible, and high-yield method to prepare nanoparticles with a narrow size 

distribution.[42] Roberts et al.[15] compared the features of PSi nanoparticles prepared by 

microfluidization and ultrasonication (Figure 1c). Without a filtration step, PSi nanoparticles 

fabricated by microfluidization showed a narrower size distribution (polydispersity index 

(PDI) = 0.263 vs. 0.47) than those prepared by ultrasonication. Toward microfluidization, the 

average size of PSi particles can be adjusted between 150 and 350 nm by tuning the process 

parameters. In comparison to ultrasonication, microfluidization is a more rapid method for 

PSi particle engineering (20 min vs. 16 h). By introducing a silicon oxidant (e.g., sodium 

tetraborate) in the carrying fluid, a core/shell structured nanoparticle with a silicon core and a 

silicon oxide shell was obtained. The photoluminescent core/shell PSi nanoparticles with a 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



  

9 

 

quantum yield around 19% were obtained by microfluidization in a single step. Overall, 

microfluidization is an approach with a great potential for large-scale production of PSi 

nanoparticles.[15] 

In addition to the top-down approach, PSi nanoparticles can be synthesized from silicon 

tetrachloride by a bottom-up strategy.[11b] Rather than chemical corrosion of silicon, the self-

forming salt byproducts served as the templates for pore formation (Figure 1d). Simple water 

rinse removed the salt templates easily. In comparison to the top-down strategy, the bottom-

up approach avoided the use of harsh etchants, such as hydrofluoric acid. By simply changing 

the treatment temperature, the average particle size, pore diameter and specific surface area of 

PSi nanoparticles can be tuned. For example, three heat treatment temperatures, 600, 700 and 

820 ºC, were employed to prepare PSi materials, PSi-600 (Figure 1f), PSi-700 (Figure 1g) 

and PSi-820 (Figure 1h). The transmission electron microscopy (TEM) images of all three 

PSi particles presented similar disordered mesoporous structures. The high resolution-TEM 

(HR-TEM) images show that the crystallite sizes of PSi-600, PSi-700 and PSi-820 are 3–5, 7–

10 and 10–20 nm, respectively. The resulting PSi materials show high surface areas, up to 

580 m2/g, a value much higher than those of the PSi prepared by electrochemical etching. 
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Figure 1. Engineering (quasi-) spherical PSi particles. (a) Comparing the ultrasonication and 

high-shear microfluidization methods for preparing PSi nanoparticles. (b) Photographs of 

vials containing PSi nanoparticles prepared by microfluidization (left) and ultrasonication 

(right). (c) Transmission electron microscopy (TEM) images of PSi nanoparticles fractured by 

microfluidization (upper) and ultrasonication (bottom). (d) TEM images of PSi nanoparticles 

fractured by high power ultrasonication. Scale bars, 500 (upper) and 100 (bottom) nm, 

respectively. (e) Scheme of the bottom-up synthesis route for PSi particles. (f-h) TEM (upper) 

and HR-TEM (bottom) images of PSi particles, which were fabricated at (f) 600, (g) 700 and 

(h) 820 ºC, respectively. Scale bars, 20 (upper) and 5 (bottom) nm, respectively. Figures are 

reproduced with permissions: (a-c) from ref. [15], Copyright 2017, WILEY-VCH; (d) from ref. 

[37], Copyright 2011, MDPI AG; and (e-h) from ref. [11b], Copyright 2014, Macmillan. 
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A production rate of particles of kilograms or more per day is desirable both for clinical 

studies and for industrial scale production.[43] The comminution of PSi wafer is the easiest 

method to prepare (quasi-) spherical PSi particles. Among all the abovementioned 

comminution methods, microfluidization can rapidly and high throughput prepare PSi 

particles with a narrow size distribution, therefore showing a great potential for the mass 

production of PSi particles.[44]  

Much work has also been focused on PSi-based particulate drug delivery systems, which can 

be ascribed to their wide applicability and relative ease of fabrication as well as 

administration.[44] PSi particles are being assessed for biomedical applications,[4c,4g,13b,26a,45] 

and some of them have already been tested in clinical trials by pSiMedica Ltd, UK (pSivida 

Corp, USA).[46] The loading of small drug molecules, peptides, proteins, genetic materials and 

even nanoparticles in PSi has already been successfully demonstrated,[44-45,47] and they 

showed promising therapeutic effects in the therapy of diseases such as cancer,[13d,48] 

diabetes,[13b,49] heart diseases,[50] wound healing[51] and immunotherapy.[4a,4c,4d,31-32] The 

applications of spherical PSi particles will also be discussed more in detail in Sections 3–5. 

 

2.2. Quasi-hemispherical and discoidal PSi particles 

Quasi-hemispherical and discoidal PSi particles, usually in the micrometer range, have been 

developed as a key component to construct multistage vectors (MSVs),[4k] which are designed 

with the aim of overcoming multiple biological barriers to improve the accumulation of 

payloads in disease sites such as tumors. MSVs are typically composed of three components 

with different sizes: quasi-hemispherical or discoidal PSi microparticles are the first stage 

vector for loading the second stage vector, which is usually nanoparticles; and the third stage 

vector is the therapeutic which is encapsulated by the second stage vector.  
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PSi was selected as the material for the first stage vector due to its complete biodegradability, 

excellent biocompatibility, and controllable geometry, pore size and porosity during 

fabrication.[4k,9b,9c] Rather than spherical geometry, PSi was designed and fabricated in a non-

spherical geometry, specifically quasi-hemispherical or discoidal shape, to obtain superior 

blood tumbling and margination dynamics and to preferentially adhere to disease sites for 

delivering the successive staged vectors.[52]  

 

2.2.1. Fabrication and properties of quasi-hemispherical and discoidal PSi particles 

To precisely control the geometry, pore size and porosity, quasi-hemispherical and discoidal 

PSi micro- and nano-particles are produced by a combination of photolithography/colloidal 

lithography and electrochemical etching.[9b,9c,16a] The geometry of the PSi particles is 

precisely controlled by photolithography[9b,9c] or colloidal lithography,[16a] while the 

nanoporous structure is determined by the electrochemical etching. The fabrication methods 

for quasi-hemispherical and discoidal PSi micro- and nano-particles were reported in detail by 

Chiappini et al.[9b], Godin et al.[9c] and Alhmound et al.[16a], and are briefly described in 

Figure 2. Quasi-hemispherical PSi particles can be tailored to diameters of 0.97–3.2 m, 

porosities of 47–80% and pore sizes of 5–50 nm.[9b] Discoidal PSi microparticles are typically 

with diameters ranging from 0.5–2.6 m, heights from 200–700 nm, porosities from 40–90% 

and pore sizes from 5–150 nm.[9c,16a] The tunable pore size of these PSi particles makes them 

flexible to load nanoparticles of different sizes within their nanoporous structure. 

Both quasi-hemispherical and discoidal PSi micro- and nano-particles showed excellent in 

vitro and in vivo biocompatibility.[16a,53] For example, they were non-toxic towards cell types, 

including macrophages, human umbilical vein endothelial cells (HUVEC), mouse adipose-

derived mesenchymal stromal cells (ADMSC) and erythrocytes.[16a,53a,53b] Both acute single 
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dose (107, 108, 5 × 108 particles/mice) and subchronic multiple dose (108 particles/mice/week 

for 4 weeks) of negatively charged oxidized or positively charged (3-

aminopropyl)triethoxysilane (APTES) modified quasi-hemispherical PSi microparticles were 

intravenously injected into mice, and these particles did not change plasma levels of blood 

urea nitrogen, creatinine and lactate dehydrogenase (LDH), as well as 23 plasma cytokines. 

Also, they did not change LDH levels in liver and spleen, nor lead to infiltration of leukocytes 

into the liver, spleen, kidney, lung, brain, heart and thyroid.[53c] In addition, quasi-

hemispherical PSi microparticles did not cause any significant acute or chronic effects on 

tissues in a long term (up to six months) in vivo study.[53b] 

Moreover, quasi-hemispherical and discoidal PSi micro- and nano-particles are biodegradable 

in physiological conditions, and their degradation rates can be tuned by pore size, porosity 

and surface modifications.[9c,16a,54] For example, discoidal PSi nanoparticles (diameter of 600 

nm and thickness of 400 nm) fully degraded in Tris buffer (pH 7.2) after 2 h at a degradation 

rate of 2.3 mM h-1, while surface modification with semicarbazide and undecylenic acid 

decreased the degradation rate to 18 × 10-3 mM h-1 and 27 × 10-3 mM h-1, respectively.[9c] 

Quasi-hemispherical PSi microparticles (diameter of 3.2 μm and thickness of 900 nm) were 

also completely degradable in PBS (pH 7.4), cell culture medium, serum and blood within 24 

h.[54e] The timely degradation of quasi-hemispherical and discoidal PSi microparticles is 

crucial for MSVs as it guarantees the delivering of second stage vector to the target sites. 
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Figure 2. (a) Fabrication process of quasi-hemispherical PSi microparticles using the 

combination of photolithography and electrochemical etching.[9b] a1) Pattern transfer to the 

photoresist layer on top of the sacrificial SiN layer. a2) Trench formation in the silicon 

substrate through a combination of dry and wet etching. a3) Formation of the PSi 

microparticles and release layer following anodic etching. a4) PSi microparticles ready to be 

released by ultrasonication following stripping of the SiN mask. Scanning electron 

microscope (SEM) images of a5) particle array on wafer, a6) released particles and a7) cross-

section of particles. (b) Fabrication process of discoidal PSi microparticles using the 

combination of photolithography and electrochemical etching.[9c] b1–b4) Process flow. SEM 

images of b5) particle array on wafer, b6) released particles and b7) cross-section of particles. 

(c) Fabrication process of discoidal PSi nanoparticles using the combination of colloidal 

lithography and electrochemical etching.[16a] c1) Self-assembly of polystyrene nanospheres 

(PSNS) onto a silicon wafer, c2) Size reduction of PSNS by O2 plasma treatment, c3) Ag 

deposition and c4) removal of the PSNS layer, c5) Discoidal nanoparticles array on the silicon 

wafer after metal-assisted chemical etching (MACE) in HF/H2O2, c6) Removal of the Ag 

layer and the subsequent electropolishing step done to lift off the discoidal nanoparticles from 
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the silicon wafer using electropolishing, c7) Discoidal nanoparticles after removal from the 

silicon wafer. SEM images of c8) discoidal nanoparticles array on the silicon wafer and c9) 

Released discoidal nanoparticles. TEM images of c10) top view and c11) side view of an 

individual discoidal nanoparticle. Figures are reproduced with permissions: (a) from ref. [9b], 

Copyright 2010, WILEY-VCH; (b) from ref. [9c], Copyright 2012, WILEY-VCH; and (c) 

from ref. [16a], Copyright 2015, WILEY-VCH. 

 

2.2.2. Quasi-hemispherical and discoidal PSi microparticles for carrying therapeutics or 

nanoparticles 

Quasi-hemispherical and discoidal PSi microparticles, as the first stage vector, transport 

payloads that are loaded in their nanopores and protect them during the transportation from 

the administration sites to the target sites. The first stage vector can be directly loaded with 

therapeutics. For example, small molecule drugs,[21a,55] peptides,[56] proteins,[23a] 

siRNAs,[19a,20,24a,57] and micro RNAs (miRNAs)[24a] have been successfully encapsulated in 

quasi-hemispherical or discoidal PSi microparticles through electrostatic attraction or covalent 

bonding. Therapeutics can also be pre-loaded in nanoparticles, which are then entrapped in 

quasi-hemispherical or discoidal PSi microparticles. Depending on the application, the second 

stage vector can be any currently available nanoparticles, such as liposomes,[19a,24b,57-58] 

micelles,[25c,55,59] polyplexes,[60] polymer nanoparticles,[24b,25d] and imaging agents.[4m,25b] At 

the lesion sites, nanoparticles released from the quasi-hemispherical or discoidal PSi 

microparticles address the biological barriers in extracellular and intracellular compartments, 

delivering the third stage vector, such as chemotherapeutic agents like paclitaxel (PTX),[25c,25d] 

doxorubicin (DOX),[55] and docetaxel,[24b] nonsteroidal anti-inflammatory drug,[59] and 

siRNAs,[19a,24b,57,58b,60] for the treatment of diseases. For example, clinically used nanoparticle 
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albumin-bound paclitaxel (nAb-PTX) was loaded into discoidal PSi microparticles (diameter 

of 1 m and thickness of 400 nm), which enabled the cross of the drug through the tumor 

vessel wall and enhanced its interaction with liver macrophages, and eventually increased the 

efficacy of nAb-PTX and survival in mouse models of breast and lung liver metastasis.[25d] 

 

2.2.3. Discoidal PSi microparticles for generating nanoparticles 

Instead of directly loading nanoparticles, Xu et al.[4j] developed an alternative approach to 

load discoidal PSi microparticles with nanoparticles by triggering the formation of 

nanoparticles inside the nanopores of the microparticles (Figure 3a). In detail, DOX was 

conjugated to poly(L-glutamic acid) through a pH-sensitive cleavable hydrazine linker to 

form a polymeric drug (pDox), which was then loaded into the discoidal PSi microparticles 

(diameter of 2.5 m and thickness of 700 nm) with pore size of 40 or 80 nm to assemble PSi-

pDox with a loading degree of 25 wt% for pDOX. Intravenously injected PSi-pDox 

accumulated in metastatic MDA-MB-231 tumors and consequently released the pDox 

molecules which assembled in situ into pDox nanoparticles with a diameter in the range of 

30–80 nm (Figure 3a). The particle size of the formed pDox nanoparticles was influenced by 

the pores of the PSi. The pDox nanoparticles were released for up to 2 weeks at pH 7.4 in a 

sustained manner and were internalized by tumor cells. Intracellularly, pDox nanoparticles 

underwent trafficking to the perinuclear regions of the cells. The pH-sensitive linker was 

cleaved in the acidic environment of the endosomes, yielding high intracellular concentrations 

of activated Dox and avoiding the excretion by drug efflux pumps. Compared to the 

individual components of PSi-pDox, including PSi, pDox nanoparticles and Dox, or Doxil 

(FDA-approved nanodrug), PSi-pDox showed enhanced therapeutic effects in mouse models 

of metastatic breast cancer, including functional cures in 40–50% of the treated mice. The 
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distinct biological barriers that each component of PSi-pDox can overcome following 

systemic administration are presented in Figure 3a. Compared to other MSVs, this PSi-pDox 

construct has the unique capability to in situ generate nanoparticles for a sustained site-

specific drug release, which acts as an intravascular drug depot for prolonged drug exposure 

at therapeutically relevant levels. 

 

2.2.4. Quasi-hemispherical and discoidal PSi microparticles for enhancing imaging 

Owing to the relatively large overall size and tunable pore size, quasi-hemispherical and 

discoidal PSi microparticles have great potential to be flexibly used for the simultaneously 

delivery of multiple therapeutics for combination therapy[24b] or simultaneously delivery of 

therapeutics and imaging agents for theranostics.[4k] When quasi-hemispherical or discoidal 

PSi microparticles are applied as carriers of imaging agents only, like other types of PSi 

particles, their surface has the possibility to be used for the electrostatic attraction or covalent 

bonding of numerous kinds of dyes, fluorophores, fluorescent/radioactive molecules and other 

imaging agents.[16a,25b,26b,54e,59,61] The most unique characteristic of quasi-hemispherical and 

discoidal PSi microparticles is that they do not only act as carriers for magnetic resonance 

imaging (MRI) contrast agents, but also enhance the imaging capability of the MRI contrast 

agents.[4m] [25b] MRI is one of the most powerful and non-invasive diagnostic imaging 

technique, and contrast agents are widely used to improve its sensitivity and specificity. The 

most commonly used MRI contrast agents in clinic are based on Gd3+ ions, which are toxic as 

solubilized aqueous ions. Chelation can significantly reduce the toxicity of Gd3+ ions, which 

however also lowers the relaxivities in a large extend, i.e., weakens the ability of Gd3+ to 

perform as an MRI contrast agent. 
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Ananta et al.[4m] designed a new class of MRI contrast enhancing agents through the loading 

of Gd-based contrast agents into the nanopores of quasi-hemispherical or discoidal PSi 

microparticles. Enhanced efficiency was obtained on three different Gd-based contrast agents, 

namely Magnevist (MAG) (r1 ≈ 14 mM-1 s-1/Gd3+ ion), a clinically used chelate, and two 

carbon nanostructure-based lipophilic agents, gadofullerenes (GFs) (r1 ≈ 200 mM-1 s-1/Gd3+ 

ion) and gadonanotubes (GNTs) (r1 ≈ 150 mM-1 s-1/Gd3+ ion). The longitudinal relaxivity 

values of the resulting new MRI constructs were ~4–50 times larger than that of the clinically 

used MAG (r1 ≈ 4 mM-1 s-1/Gd3+ ion). The enhancement in the MRI contrast is due to the 

geometrical confinement of the Gd-based contrast agents within the nanopores of PSi, which 

influences the paramagnetic behavior of the Gd3+ ions. 

Besides Gd-based contrast agents, SPIONs represent another popular contrast agent.[62] Serda 

et al.[25b] found that the loading of SPIONs into the discoidal PSi microparticles (Figure 3b) 

led to shorter relaxation times in a SPIONs concentration dependent manner. The differences 

in signal intensity were more obviously at lower echo times in gradient-echo images. The 

entrapment of a large amount of SPIONs inside the protective nanopores of PSi microparticles 

also facilitated the delivery of an abundance of contrast agent to the target sites which boosted 

the ability for biological imaging (Figure 3b).[25a,25b] 
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Figure 3. (a) Discoidal PSi microparticles for generating nanoparticle.[4j] a1) Schematic 

diagram depicting PSi-pDox composition, pDox prodrug encapsulation, and pDox 

nanoparticle assembly and release from nanopores. a2) Z-series confocal microscopy images 

of the PSi-pDox particles, highlighting the presence of pDox (red) within the nanopores of the 

PSi particle (gray). a3) 3D reconstruction following sagittal cross-sectioning of the PSi-pDox 

particles, depicting pDox (red) within the nanopores of the PSi particle (gray), as well as the 

presence of pDox nanoparticles (red) released from the microparticles. a4) Cryogenic TEM of 

pDox nanoparticles released from PSi-pDox. a5) Schematic diagram demonstrating the 

individual components of the PSi-pDox construct and the distinct biological barriers that each 

component is capable of overcoming following systemic administration. (b) Discoidal PSi 

microparticles for enhancing MRI imaging.[25a,25b] b1) and b2)–b3) SEM of the surface of PSi 

microparticles before and after loading with SPIONs. b4) TEM of the cross-section of 

SPIONs loaded PSi. b5–b13) MRI images of a melanoma tumor growing in the right flank of 

a mouse before, 4 h, and 24 h post injection of free SPIONs with a static magnet applied over 

the tumor, and injection of PSi-SPIONs with and without a static magnet applied over the 

tumor.[25a] Figures are reproduced with permissions: (a) from ref. [4j], Copyright 2016, 

Springer Nature; and (b) from ref. [25a,25b], Copyright 2010 and 2014, WILEY-VCH. 

 

2.3. PSi needles 

2.3.1. Evolution of silicon needles: from solid to porous 

Injection using a hypodermic needle provides a rapid and direct way to deliver almost any 

type of molecule into the body. However, hypodermic needles cannot be easily used by 

patients themselves, and the injection pain leads to poor patient compliance. In order to 

improve the patient compliance and safety while making full use of its powerful delivery 
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capability, needles are envisaged to be miniaturized to micron size for painlessness and 

minimal invasiveness.[63] In this review, needle is used in its broad meaning referring to 

conical needle, cylindrical wire and pillar. With the development of silicon microfabrication 

techniques in semiconductor industry, the first microneedle was fabricated out of silicon in 

1990s for biomedical applications.[64] Silicon microneedle is also the first microneedle used 

for drug delivery.[65] The details of the fabrication methods, functions and applications of 

conventional silicon micro/nano-needles can be found in some review papers.[66]  

The conventional silicon needles are non-porous, i.e., either solid [64-65,67] or hollow.[68] These 

silicon needles can directly interface with tissues or cells for therapeutics delivery. However, 

they have limited loading capacity of payloads due to their non-porous structure with low 

specific surface area, which limits their therapeutic efficacy. In addition, the miniaturization 

of silicon needles to micro/nano-meter size increases the risk of mechanical failure during 

insertion of needles into tissues or cells. The non-porous silicon needles are poorly 

biodegradable, which raises concern that the broken silicon needle tips might cause biological 

complications. Therefore, the mechanical failure of non-porous silicon needles must be 

prevented in clinical applications. Unfortunately, it is not possible to completely avoid the 

mechanical failure of silicon needles because of the brittle characteristic of silicon. Thereby, 

the development of biodegradable silicon needles becomes strongly necessary. 

 

2.3.2. Fabrication and properties of PSi needles 

In order to increase the loading capacity of therapeutics and biodegradation rate that 

ultimately maximize the biological benefits of silicon needles, PSi needles were 

developed.[4i,16b] The fabrication method of PSi needles, in several variations, combines the 
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arrangement of the needle array by lithography with the porosification of the silicon substrate 

by (electro-) chemical etching.[4i,16b,69] 

At the early development stage of PSi needles, silicon needles were porous only at the tips 

level. Chen et al.[70] fabricated pyramidal silicon microneedles with porous tips by selective 

electrochemical etching of pyramidal silicon microneedles, which were obtained by deep 

reactive ion etching (RIE), using the photoresist reflow effect and RIE notching effect. The 

porous tip had a height of ~30 µm (Figure 4a). The in vitro transdermal drug delivery 

experiments showed that the skin permeability of calcein and bovine serum albumin (BSA) 

was enhanced to 5–6 and ~7 times with these microneedles, respectively, compared to the 

passive transdermal delivery without microneedles.[70-71] However, the potential of the PSi tip 

for drug delivery was not fully exploited in this study, because these needles were used as a 

pretreatment for pore formation in the skin rather than employed as carriers of payloads. In 

another study conducted by Gentile et al.,[69b] cylindrical silicon microneedles with porous 

tips (Figure 4b) were fabricated by deep RIE of UV photolithography patterned disks to form 

silicon microneedles and followed by electrochemical etching of the microneedle tips for 

porosification. The drug delivery capability of the developed needles, however, was not 

investigated. 

Ideal porous needles should be a single unit drug delivery system, whereby the whole needle 

is porous and loaded with therapeutics.[66c,72] Several methods have been developed to 

fabricate silicon needles with fully porous structure, and the typical ones combine the 

methods of nanosphere lithography and templated MACE (Figure 4c),[16b] or standard 

microfabrication and MACE (Figure 4d).[4i,69c] By the later method, conical PSi nanoneedles 

with variable sizes (Figure 4d3) were fabricated, and the one that had 5 µm length, 50 nm 

apical width and 600 nm base diameter provided an over 300-fold increased surface area for 
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drug adsorption compared to a solid cylindrical nanoneedles of equivalent apical width. The 

porosity of the PSi nanoneedles could be tailored between 45% and 70%, enabling the 

adjustment of mechanical properties, degradation rate and drug loading capacity. Chiappini et 

al.[4i,69c] confirmed the excellent biodegradability of PSi needles (Figure 4d4). PSi 

nanoneedles completely dissolved within 72 h, which enable the PSi nanoneedles to 

temporarily interface with cells or tissues, i.e., completely degrade after delivering the 

payloads. Moreover, in addition to porosity, the degradation rate of PSi needles can be 

adjusted by surface treatments.[4i,69c]  

 

Figure 4. (a) SEM images of pyramidal silicon microneedles with porous tips.[70] (b) SEM 

images of cylindrical silicon microneedles with porous tips.[69b] (c) Fabrication of cylindrical 

PSi nanoneedles using nanosphere lithography and tMACE method.[16b] c1) A hexagonal 

close-packed (hcp) monolayer of monodisperse PSNS was assembled on a silicon wafer via 

convective assembly and then c2) transferred into a nonclose-packed (ncp) PSNS array via O2 

plasma etching. c3) The array was used as a mask for Ag metal layer deposition by sputter 

coating. c4) After removing the PSNS by lift off, an ordered array of holes was produced in 
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the Ag film. Subsequently, the metal layer served as a catalyst for the wet etching of silicon 

by MACE. c5) Using this method, arrays of vertically aligned PSi nanoneedle arrays were 

fabricated with different aspect ratios. c6) The Ag layer was finally removed with nitric acid. 

c7–c8) SEM images of PSi nanoneedles with different diameters. (d) Conical PSi 

nanoneedles.[4i] d1) Schematic of the PSi nanoneedle fabrication process combining 

conventional microfabrication and MACE. d2–d3) SEM images of PSi nanoneedles showing 

the nanoneedles’ porous structure and the tunable tip diameter. d4) Progressive 

biodegradation of PSi nanoneedles in cell culture medium at 37 ◦C. Figures are reproduced 

with permissions: (a) from ref. [69a], Copyright 2006, IOP Publishing; (b) from ref. [69b], 

Copyright 2014, RSC; (c) from ref. [16b], Copyright 2015, WILEY-VCH; and (d) from ref. [4i], 

Copyright 2015, Springer Nature. 

 

2.3.3. PSi needles for the delivery of therapeutics 

The first study that used PSi needles for drug delivery, consisting of completely porous 

needles with 10–40 nm in diameter and 1–3 m in length, was reported by Brammer et al..[73] 

These PSi needles were able to provide a sustained release of penicillin and streptomycin for 

42 days. Loading capacity of therapeutics is another important evaluation index for porous 

carriers including PSi needles. Peng et al.[21b] demonstrated that PSi nanoneedles had an 

ultrahigh DOX loading capacity of 20,800 mg g-1. 

Chiappini et al.[4i] performed intracellular delivery of nucleic acids by PSi nanoneedles, which 

also represents the first use of nanoneedles in an in vivo study. These PSi nanoneedles (tip 

diameter 50 nm and pitch 2 µm) were shown to be robust: they could penetrate the cells for 

nanoinjection (Figure 5a), and their structure was substantially maintained after pressing 

against skin or muscle. Nanoinjection through PSi nanoneedles was completed by either 
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cellular activity (Figure 5a) or application of an external force,[4i] and the cells impaled by the 

former approach exhibited a higher transfection efficiency.[16b] Furthermore, nanoinjection did 

not induce neither significant toxicity nor leakage of intracellular material.[4i] 

Nucleic acids were also effectively loaded in PSi nanoneedles and were released over 12–18 h 

in a sustained manner. Nanoneedles were able to overcome biological barriers (such as cell 

membrane or the endolysosomal system), and intracellularly co-deliver nucleic acids with a 

transfection efficiency over 90% to the same cell via nanoinjection process, and the delivered 

nucleic acids were able to simultaneously regulate gene expression.[4i] Nanoinjection can 

mediate in vivo delivery (Figure 5b) and it showed in vivo safety. Furthermore, the 

nanoinjection of vascular endothelial growth factor (VEGF) modulated the local gene 

expression, heightened the tissue neovascularization, and increased the local blood perfusion 

for six times when compared to direct injection of VEGF.[4i] 

Compared to microneedles, nanoneedles provide a more uniform delivery owing to the higher 

density of nanoneedles per surface area. They further reduced the invasiveness of the injection, 

limited the impact on the overall structure of the tissues, and confined the treatment to a 

localized region (Figure 5c–d). However, due to the limited penetration depth of nanoneedles, 

they can only deliver the payloads to the cells in a localized superficial area of tissue and 

require a surgical incision to access the non-exposed tissues. In addition to drug delivery 

application, PSi nanoneedles have also been used for intracellular delivery of nanoparticles[25e] 

and intracellular sensing of protease/small molecule.[74] 
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Figure 5. (a) Confocal microscopy, SEM and FIB-SEM cross-sections of cells over PSi 

nanoneedles at 4 h show cell spreading, adhesion and nanoneedle interfacing. (b) PSi 

nanoneedles mediate in vivo delivery. Longitudinal imaging of mice treated with nanoneedles 

on top of the skin or underneath the skin on the back muscle and loaded with a near-infrared 

fluorescent dye. The distribution and diffusion of the delivered fluorescent dye was monitored. 

(c) Near-infrared fluorescent imaging on the skin of mice, comparing the delivery of DyLight 

800 using a drop (left), flat Si wafer (middle), or nanoneedles (right). (d) Intravital confocal 

image, showing the delivery pattern of dye-loaded nanoneedles. Reproduced with permission 

from ref.[4i], Copyright 2015, Springer Nature. 
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3. Surface chemistry and modification of PSi 

Despite the bottom-up methods developed to produce PSi, the biomedical applications of 

these PSi are not widely investigated yet. The most commonly used PSi for biomedical 

applications is still produced by electrochemical etching. Eventhough freshly etched PSi may 

be feasible for the development of drug delivery systems,[49,75] there are several undesirable 

characteristics that may mitigate its further applications. Freshly etched PSi is highly reactive 

because of its hydride terminated (SiySiHx, x+y=4) surface.[76] Such a reactive surface is not 

stable due to the slow oxidation upon its exposure to atmospheric conditions, which may 

further lead to changes in structural and optoelectronic properties.[76] In addition, the 

reactivity may also result in some undesirable chemical reactions with payloads.[77] 

Furthermore, previous studies demonstrated singlet oxygen generation from non-treated PSi 

under certain condition whereas reactive oxygen species (ROS) generation on oxidized PSi 

surfaces was no longer evident.[78] To better apply PSi for biomedical usage, more specifically, 

as drug delivery systems, further surface chemical modification should be performed. 

The first step towards the surface chemical modification of PSi is through direct oxidation to 

stabilize its surface (Figure 6). The back-bond oxidation of PSi takes place at 300–400 °C 

where the oxygen bridges are formed between the surface Si atoms and the second atomic Si 

layer (OySiH). A further increase of the temperature leads to an increase of the oxidation 

degree: oxidation at 600 °C and above removes all SiHx species.[79] Besides of thermal 

oxidation, other oxidation methods have also been proposed including aqueous oxidation,[39] 

anodic oxidation,[80] photo-oxidation[81] and chemical oxidation.[82] Despite different methods, 

all these oxidations are characterized with the disappearance of SixSiHy bond and the 

generation of OySi-OH and Si-O-Si species. Along with the increased stability, this oxidation 

process also changes the surface of PSi from hydrophobic to hydrophilic,[83] which is 
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beneficial for many drug delivery applications under physiological conditions, as discussed in 

the following sections. 

In addition to oxidation, thermal carbonization is an alternative method to modify the surface 

chemistry of PSi (Figure 6), which was firstly proposed by Salonen et al.[84] via the thermal 

decomposition of acetylene, which starts at 400–900 °C. According to the processing 

temperature, it can be divided into two distinct categories, namely, thermally hydrocarbonized 

PSi (THCPSi) and thermally carbonized PSi (TCPSi) which are yielded at lower and higher 

temperatures, respectively.[7,84-85] Carbonized films show improved stability against thermal 

oxidation due to the almost complete coverage of the original silicon hydride surface.[86] 

Another main advantage of this process is that after this treatment there is not a significantly 

reduction in the specific surface area of PSi.[87] A drawback of thermally carbonized PSi is 

that the characteristic luminescence of PSi disappears.[88] An interesting feature of carbonized 

PSi is manifested after its immersion into HF solution, since a Si–OH termination is 

formed.[85] The appearance of silanol groups facilitates the use of silane coupling chemistry, 

typically utilized for the functionalization of silica based or oxidized silicon materials. 

Other methods used for the stabilization and the functionalization of PSi are hydrosilylation 

and silanization chemistry (Figure 6).[89] Upon the exposure to Lewis acids, thermal treatment, 

UV-irradiation and ultrasound sonication, surface silicon hydride can undergo a series of 

hydrosilylation reactions with the existence of unsaturated compound such as alkenes, alkynes 

and aldehydes.[11a,90] One of the main advantages of this method is the relatively mild reaction 

condition: some of the surface modifications can take place even at room temperature.[90b,90e] 

Other advantages include the versatile possibility to provide different functional groups.[11a] 

Ligand containing unsaturated groups can simultaneously have specific functional groups on 

the opposite end of the chain. In this way, various PSi with functional terminations including 
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carboxylic groups, amine groups, alkenes and hylohydrocarbons are formed.[91] Silanization is 

also a suitable method for PSi functionalization. However, it is more commonly used with 

porous silica materials, as the silane coupling reactions usually proceed on oxide surfaces 

requiring a pre-oxidation of the PSi.[92] After the primary surface stabilization, secondary 

surface modification can take place, owing to the appearance of the functional groups such as 

amine, carboxyl, alkynyl and aldehyde, for further achieving multiple functions. 

 

Figure 6. Basic graphic illustration of primary surface modification for freshly etched PSi. 

 

3.1. Surface modification of PSi for controlled drug loading and release 

From the chemical point of view, PSi is a favorable carrier for developing drug delivery 

systems, because its relative stability enables further surface chemical modifications. A 

variety of chemical modifications have been realized on the surface of PSi and on the surface 

of its pores.[44,93] Table 1 summarizes typical examples applying PSi with various geometries 

as carriers for therapeutics/imaging agents. In the following sections, we will discuss about 
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the recent advances focusing on the improvement of the drug loading and release behavior of 

PSi, and relative aspects which may need further investigation. 
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Table 1. Typical examples of using PSi as carriers for therapeutics and imaging agents. 

Geometry 
of PSi Application Average 

size (nm) 
Primary 

modification 
Secondary 

modification 
Targeting 
Moieties Loaded Cargos Loading 

Degree (%) Imaging Strategies for 
Controlled Release Ref. 

Sp
he

ri
ca

l P
Si

 p
ar

tic
le

s 

Cancer 16000 THCPSi NA NA Fenofibrate, furosemide 
methotrexate, ranitidine 25 NA Solid lipid 

encapsulation 
[94] 

Cancer 188 TCPSi APTES iRGD SFB 6 NA NA [95] 

Cancer 228 THCPSi Un Hyaluronic acid NA NA NA NA [96] 

Cancer ca. 400 TOPSi NA CPP PTX, SFB, MTX PTX, SFB 5, 
MTX 0.1 NA Polymer 

encapsulation 
[14b] 

Cancer ca. 200 THCPSi 
1,7-

octadiyne−mes
itylene  

iRGD, 
Poly(glutamic 
acid), dextran 

NA NA NA NA [97] 

Cancer 202 THCPSi 

Un, Radio 
labeling, 

Fluorescence 
dye labeling 

iRGD SFB 27 
SPET/CT, 

Fluorescence 
imaging (FI) 

NA [56] 

Cancer 200 THCPSi APTES NA MTX, SFB SFB 6, MTX 
3 NA Drug conjugation [98] 

Cancer 260 TOPSi NA NA SFB  6 NA Polymer 
encapsulation 

[14a] 

Cancer ca. 80000 THCPSi APTES NA DNA, DOX DNA 15. 
DOX 30 NA Liposome 

encapsulation 
[99] 

Cancer 126 Freshly Etched PSi NA NA DOX 5 Photolumines
cence (PL) 

Polymer 
encapsulation 

[4l] 

Cancer 260 THCPSi Un, quercetin Quercetin DOX 24 FI Non-covalent bond 
stacking (chelation) 

[100] 

Cancer 388 THCPSi Un, 
cyclodextrin NA SFB 18 NA Polymer conjugation [101] 

Cancer 252 TOPSi APTES, NA DOX, MTX DOX 1.2, NA Polymer conjugation [102] 
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poly(beta-
amino ester  

MTX 1.8 

Cancer ca. 200 THCPSi Un, aptamer, 
PEI MTX SFB 

SFB 1, 
Aptamer ca. 

30 
NA Polymer conjugation [103] 

Cancer 193 THCPSi 

Un, carbonic 
anhydrase IX 

targeting 
ligand 

Carbonic 
anhydrase IX 

targeting ligand 
DOX 21 FI 

Non-covalent bond 
stacking (hydrogen 

bond) 
[104] 

Cancer 190 THCPSi Un, cysteine, 
DNA CPP SFB, calcein 9.3 FI 

Polymer 
encapsulation, DNA 

encapsulation 
[21d] 

Cancer 190 Hydrosilylation 
(semicarbazide) 

MLR2, 
Rituximab, 
mAb528 

 

Antibodies Camptothecin 11 NA NA [105] 

Cancer 245 Hydrosilylation  
(allylisocyanate) 

Anionic 
porphyrin NA Anionic porphyrin 1.3 NA Drug conjugation [106] 

Cancer 151 THCPSi Un, PEI, 
PMVEMA PMVEMA Fluorouracil, celecoxib 

Fluorouracil 
7.1, 

celecoxib 6.9 
NA Polymer 

encapsulation 
[13d] 

Cancer 257 Hydrosilylation  
(divinylbenzene) NA NA DOX 40 NA 

Non-covalent bond 
stacking (π-π 

stacking) 
[107] 

Cancer ca. 200 Hydrosilylation  
(undecylenic acid) NA NA DOX 7 PL 

Non-covalent bond 
stacking 

(hydrogen bond) 
[48b] 

Cancer 226 

Hydrosilylation  
([Ru(5-Fluo-
Phen)2(5-E-

Phen)](PF6)2) 

Isocyanopropyl
triethoxysilane Mannose Ruthenium(II) complex 1.8 NA Drug conjugation [108] 

Cancer 36000 Hydrosilylation 
(undecylenic acid) Chitosan,  NA Tamoxifen 33 NA Polymer conjugation [109] 
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Cancer 94 TOPSi APTES NA IR820 dye, 
DOX 

IR820 21, 
DOX 14 NA Outer-stimuli 

(photothermal) 
[110] 

Cancer 422 Silanization 
(APTES) FITC NA DNA (EF1-Egfp) 1 NA NA [45a] 

Cancer ca. 350 TOPSi APTES, 
PNIPAm NA DOX 24 NA 

Outer-stimuli 
(infrared and 

radiofrequency 
electromagnetic 

heating) 

[27] 

Cancer ca. 236 THCPSi NA NA siRNA ca. 5 NA Polymer 
encapsulation 

[111] 

Anti-bacteria 256 THCPSi 

Isocyanato-
silane acid, S-
nitrosothiol, S-
nitrosoglutathi

one 
 

NA nitric oxide NA NA Drug conjugation [47c] 

Anti-virus 129 THCPSi NA NA Saliphenylhalamide 2.88 NA NA [21e] 

Myocardial 
infarction 182 THCPSi Un, Radio 

labeling 
Heart homing 

peptide NA NA SPET/CT NA [112] 

Diabetes 258 THCPSi Un Chitosan Insulin ca. 20 NA Polymer conjugation [13b] 

Wound 
Healing ca. 50000 THCPSi NA NA Resveratrol, vancomycin  RSV ca. 15, 

VCM ca. 3 NA Polymer 
encapsulation 

[51d] 

Wound 
Healing 161 THCPSi NA NA siRNA  5 NA Polymer 

encapsulation 
[113] 

NA 
TOPSi 144, 

THCPSi 
170 

TOPSi, 
THCPSi NA NA Indomethacin, 

peptide ca. 15 NA NA [13c] 

NA ca. 200 THCPSi NA NA furosemide 15–21 NA Solid lipid 
encapsulation 

[114] 

NA 15000 THCPSi NA NA piroxicam 19 NA Solid lipid 
encapsulation 

[115] 
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Q
ua

si
-h

em
is

ph
er

ic
al

/d
is

co
id

al
 P

Si
 p

ar
tic

le
s 

Cancer 19000 Freshly etched PSi NA NA SPIONs, DOX 4.4 PL Outer-stimuli 
(magnetic) 

[116] 

Cancer 2600×700 TOPSi 
APTES, PEG-
PLGA-peptide 
nanoparticles 

NA Coumarin 6 4 FI Polymer  
encapsulation 

[117] 

Cancer 600×400 TOPSi 

tert-butyl-2 
[(allylamino)ca
rbonyl]hydrazi
ne-carboxylate 

MLR2 antibody Camptothecin 11 NA NA [16a] 

Cancer 1000×700 TOPSi APTES NA SiRNA loaded in 
liposome NA NA Liposome loading [57] 

Cancer 3500 TOPSi APTES PMVEMA SWNTs, QDs NA FI Nanoparticle loading [4k] 

Cancer 2600×700 TOPSi APTES NA 
Docetaxel-encapsulated 
polymeric nanoparticles, 
siRNA loaded liposomes 

114.90 ± 
11.76 µg 
billion-1 

NA 
Liposome loading, 

nanoparticle 
conjugation 

[24b] 

Cancer 1000×400 TOPSi APTES NA PTX loaded in PEG-
PCL polymer micelles 58 NA Nanoparticle (PEG-

PCL) loading 
[25c] 

Cancer 1000×400 TOPSi APTES, PEI NA siRNA 70 µg billion-

1 NA Polymer conjugation [20] 

Cancer 1000×400 TOPSi APTES, L-
arginine NA siRNA 31.4 µg 

billion-1 NA Polymer conjugation [24a] 

Anti-bacteria 93 Freshly etched PSi NA Trans-activating 
protein Silver nanoparticles NA PL Nanoparticle loading [118] 

Anti-
parasites 5800×500 THCPSi APTES, 

rhodamine NA Cry5B protein  11 FI NA [45b] 

Ocular 15000×200
0 TOPSi NA NA Daunorubicin 10.8 NA Drug conjugation [119] 

Ocular ca. 50000 TOPSi NA NA Daunorubicin 5 NA Nanoparticle (PLGA) 
encapsulation 

[120] 

Ocular 20000×360
00×14000 TOPSi Succinic 

anhydride NA Dexamethasone 7 NA Drug conjugation [121] 
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Ocular 52000×360
00×21000 TOPSi Methoxy(dimet

hyl)octylsilane NA Rapamycin, 
dexamethasone ca. 8 NA Drug conjugation, 

drug absorption 
[122] 

NA 21000 Freshly etched PSi Nitrite induced 
oxidation NA Cobinamide, rhodamine 

B 11 NA Pore self-sealing [123] 

Central 
neuron 
disease 

180 TOPSi Dicalcium 
orthosilicate 

CPP 
(transportan) siRNA 20–25 NA Pore self-sealing [124] 

Central 
neuron 
disease 

170 TOPSi 

3-
(ethoxydimeth

yl)- 
propylamine 

silane 

Rabies virus 
glycoprotein siRNA 7 NA 

Nanoparticle 
(graphene) 

encapsulation 
[125] 

Tissue 
engineering 24500 TOPSi APTES NA BSA ca. 20 µg 

billion-1 NA Polymer 
encapsulation 

[4h] 

Tissue 
engineering 8200 TOPSi APTES NA IL-4, IL-4 loaded PLGA 

particles  NA NA 

Nanoparticle (PLGA) 
encapsulation, 

nanoparticle (PLGA) 
loading 

[126] 

Tissue 
engineering 5000–9000 TOPSi APTES NA Growth factor ca. 0.1 µg 

billion-1 NA Polymer (PLGA) 
encapsulation 

[127] 

NA 1600 TOPSi 

APTES, E-
selectin 

thioaptamer 
ligand 

E-selectin 
thioaptamer 

ligand 

QDs, iron oxides, 
liposomes NA FI Nanoparticle loading [58a] 

PS
i n

ee
dl

es
 

Cancer 50 Freshly etched PSi NA NA DOX 80 FI NA [21b] 

Anti-bacteria 
10–

40×1000–
3000 

Freshly etched PSi NA NA Penicillin, streptomycin NA NA NA [73] 

Vascularizati
on 50×5000 Oxidized PSi APTES NA siRNA NA NA NA [4i] 

NA 
330–

600×400–
6300 

Oxidized PSi NA NA siRNA NA NA NA [16b] 
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NA 
50–

600×5000–
7000 

Oxidized PSi NA NA BSA, siRNA, QDs NA FI NA [25e] 

Note: CPP, cell penetrating peptide; FITC, fluorescein isothiocyanate; IL-4, Interleukin 4; mAb528, anti-EGFR antibody; MLR, Anti-p75NTR 

mouse monoclonal antibody; PCL, poly(ε-caprolactone); PEG, polyethylene glycol; PLGA, poly(lactic-co-glycolic) acid; PMVEMA, poly(methyl 

vinyl ether-co-maleic acid); PNIPAm, N-isopropylacrylamide based polymers; QDs, quantum dots; SWNTs, single-walled carbon nanotubes; 

TOPSi, thermally oxidized PSi; Un, Undecylenic acid. 
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3.1.1. Surface modification of PSi for enhancing drug loading 

The loading of molecules into PSi can be carried out via a number of methods, including 

physical adsorption, covalent bonding, non-covalent bond stacking and drug/particle 

entrapment.[44,128] 

Physical adsorption is the most simple and convenient method relying on the spontaneous 

adsorption between the payload and the PSi. The surface nature of PSi plays the most critical 

role in this process. For example, the surface of TCPSi usually tends to be hydrophobic: 

results suggest that the application of hydrophobic PSi, such as TCPSi and THCPSi, can 

hugely increase the solubility and dispersity of hydrophobic drugs by altering the crystalline 

structure of the drug into amorphous state, and further increase their bioavailability.[129] 

Besides of the hydrophilic-lipophilic property, the surface charge of PSi is also another key 

factor. Wu et al.[45b] loaded anthelmintic pore-forming protein Cry5B in thermally oxidized 

PSi. The rationale behind the choice of the thermally oxidized PSi is that at pH 3, the protein 

is highly soluble and bears a net positive charge (isopotential point 5.1), whereas the charge 

on the oxidized PSi surface is negative. The loading efficiency, determined by measuring the 

difference in protein concentration (Bicinchoninic acid assay) in the loading solution before 

and after loading, was 110 ± 10 μg of Cry5B/mg of PSi, or 10% by mass. However, this facile 

and convenient method generally lacks reproducibility and the relative weak bond between 

the drug and the particle makes the loading unstable under physiological conditions.[44] In 

addition, to achieve maximum loading degree, this loading process usually takes place in a 

saturated drug solution, which may lead to a vast waste of the drugs. 

Covalent bonding provides a convenient means to directly conjugate drug molecules on to the 

surface of PSi. Wang et al.[98] successfully conjugated MTX onto the surface of amine 

terminated PSi (APSTCPSi) with a conjugating/loading degree of ~0.4%, and the construction 
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of MTX-PSi composite achieved a MTX sustained release up to 96 h. However, it should be 

noted that the released compound was MTX attached with a fragment 3-aminopropylesilicic 

acid moiety, suggesting the decomposition of the particles. This method can effectively 

prolong the drug release time, however one concern is about the change in chemical structure 

of the released compound. 

Instead of constructing drug conjugates, one can also attach a specific biomolecule to capture 

the drug via non-covalent bond such as chelation bonds or hydrogen bonds. For example, by 

modifying PSi with iron ions via a dopamine-inspired molecule, the newly developed PSi 

structure can capture one commonly used anti-cancer drug DOX by chelation bond.[100] The 

DOX loading capacity of the developed PSi composite was 24 ± 2 wt%, which is higher than 

the loading capacity of bare PSi (10 ± 1 wt%).[100] This relative delicate method can 

effectively achieve satisfying loading and release feature of the drug, being even able to 

respond to acidic condition (pH 6.5). However, these methods are rather related to specific 

drugs thus lack the pervasiveness of a more general method. 

The pores’ self-sealing induced drug loading is mainly caused by an alteration of the pore 

structure, which can be achieved with different procedures. One approach is by oxidation. 

Upon oxidation of the freshly etched PSi, a volume expansion occurs to accommodate the 

extra oxygen atoms and therefore the pore structure tends to shrink and collapse, leading to 

the entrapment of the previously loaded cargo.[123] For example, two model drugs, cobinamide 

and rhodamine B were loaded into PSi film by this method.[123] Sodium nitrite was added into 

the drug solution to ensure the oxidation and shrinking of the pore openings. After oxidation, 

cobinamide and rhodamine B were successfully trapped in the porous matrix. For drug 

entrapment by oxidation, the drug loading efficiency was increased up to 10-fold and the 

release rate prolonged by 20-fold. However, one concern is that the oxidation process usually 
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tends to have a relatively harsh condition and therefore this method is normally applied for 

constructing multifunctional nanohybrid instead of loading therapeutic molecules. For 

example, by this method, Dorvee et al.[130] synthesized Fe3O4@PSi nanohybrid in which iron 

oxide nanoparticles were effectively encapsulated inside the pores. A multilayered PSi 

dielectric mirror (rugate filter) was first etched into a single-crystal silicon substrate. A second 

rugate filter with a different periodicity was etched into the substrate, immediately beneath the 

first. The bifunctional, freestanding film was placed in water and fractured into micro-sized 

particles by ultrasonication. The particles were then exposed to a solution of 

superparamagnetic Fe3O4 nanoparticles. The high pH of the magnetite suspension 

spontaneously induced oxidation of the second PSi layer, presumably trapping the magnetite 

nanoparticles in an oxide matrix. Another pore-sealing method relies on the reaction between 

the outer solution and the slowly degraded silicic acid from the PSi, a relatively mild process 

that can be applied for the entrapment of bio-macromolecules such as RNA.[124] In solutions 

containing high concentrations of calcium (II) ions, Ca2SiO4 was formed where the source of 

silicate in the shell derived from local dissolution of the PSi matrix. This shell formation 

occurred primarily at the PSi surface and was self-limiting. After mixing siRNA alone with 

calcium ion solution, the oligocucleotide became trapped in the porous nanostructure during 

shell formation. However, in some cases, together with the increased drug loading efficiency, 

this loading procedure may also lead to some problems such as lack of drug release. For 

example, previous studies found that one peptide, PYY3-36, can be trapped into the pores of 

undecylenic-acid-modified thermally hydrocarbonized PSi (UnTHCPSi). The release time of 

the peptide was prolonged, however, its in vivo bioavailability decreased due to limited 

release.[131] Similar phenomenon was observed when PSi was used as drug carrier for anti-

parastic application. The anthelmintic protein Cry5B was incorporated into the PSi particles, 
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in vivo experiments with hookworm-infected hamsters showed no significant reduction in 

worm burden with the Cry5B-loaded particles, which was attributed to slow release of the 

protein from the particles.[45b] 

Despite the various methods proposed so far, a more versatile, robust method with high 

loading degree and controlled release behavior is urgently needed. Among all the methods, 

increasing the loading degree by manipulating the crystal structure of the loaded drug is 

emerging as a new paradigm and shows promising results.[132] By alternating the solvent 

composition, pH value, solvent evaporation or applying microfluidic assisted drug 

crystallization, one can effectively achieve ultrahigh drug loading.[133] Moreover, in the case 

of PSi, former studies confirmed that after the loading of drugs, such as indomethacin (IMC) 

and griseofulvin (GSV), within the pores of PSi, they existed in an amorphous state, which 

also partly contributes to the improved solubility of the drugs.[129] One can assume that for the 

drug loaded within the pores of PSi, upon in situ crystallization, the irregular morphologies of 

the pores could be locked due to the newly formed drug crystals, thereby the condensed drug 

crystalline structures can not only increase the loading degree but also effectively reduce the 

premature release, yet few studies have been focused on this. 

 

3.1.2. Surface modification of PSi for controlled drug release 

Due to the easily accessed pores of PSi, one main challenge for PSi is to achieve a controlled 

release behavior. Mainly two approaches have been explored to design and equip PSi with 

controlled release capabilities (Figure 7). One solution is the “gating” approach. This 

involves attaching organic or inorganic materials at the pore openings thus preventing release 

of the cargo stored in the pores. For example, Kang et al.[124] constructed a self-sealing PSi by 

taking advantage of the dissolved silicate to form a calcium silicate outer layer to block the 
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pores. For bare PSi, most of the drug (>70%) will be released within 1 h whereas the self-

sealing PSi can detain the drug release time up to 5 h. Moreover, the conjugation of polymers, 

such as β-cyclodextrin on the surface of PSi can effectively control the drug release 

process.[101] Bare PSi released ~60% and ~80% of the loaded drug (SFN) after 4 h at pH 7.4 

and 5.5, respectively. In contrast, upon the surface modification with heptakis(6-amino-6-

deoxy)-β-cyclodextrin (HABCD) , the release of SFN from the PSi−HABCD after 4 h was 

only ~40% at both pH 7.4 and 5.5. A pH-sensitive release behavior was observed by applying 

a stimuli-responsive polymer, polyethylene glycol-block-poly(L-histidine).[14a] Drug release 

from this polymer coated PSi in plasma at pH 7.4 was low (<5%), whereas in PBS−fetal 

bovine serum (FBS) at pH 6.8 and 5.5 a burst release was observed. This pH-dependent 

behavior of the nanocomposites could be explained by the protonation of the pH-responsive 

copolymer when exposed to mild acidic media, increasing the repulsive forces among the 

chains of the polymer to render a less tightly packed structure, and eventually leading to the 

total disruption of the nanocomposite and release of the drug loaded PSi nanoparticles. 

Similarly, pH-responsive nanovalve system consisting of an aromatic amino group and a 

cyclodextrin cap was chosen to be adapted to the PSi nanoparticles. This nanovalve was 

shown to be tightly closed at the physiological pH of 7.4 and to open autonomously under the 

acidic conditions (pH <6).[134] The co-encapsulation of gold nanorod and PSi nanoparticles 

into giant liposome can achieve a photo-thermal release of loaded drug.[135] Mi et al.[117] used 

metalloproteinase-2 (MMP-2) substrates to coat the pores of PSi, further achieving an enzyme 

sensitive drug release behavior. MMP2 peptide substrate was conjugated to PLGA-PEG 

nanoparticles, which were further conjugated to the surface of discoidal PSi microparticles. A 

hydrophobic model drug, coumarin 6, was encapsulated in the polymeric nanoparticles. In the 

presence of MMP2 enzymes, the polymeric nanoparticles disassociated from the PSi 
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microparticles. In the absence of MMP2, 40% of coumarin 6 were released from the PSi 

microparticles after 6 h, as compared to 80% in the presence of MMP2. Outer stimuli such as 

electromagnetic heating can also be applied to trigger the drug release when PSi is modified 

with temperature sensitive polymer (N-isopropylacrylamide based polymers (PNIPAm)) at 

the pores of PSi.[27] However, the application of nanovalves, which is commonly employed in 

the capping of mesoporous materials such as mesoporous silica, is less investigated in the 

controlled release from PSi, maybe due to the irregular morphology and the relatively large 

size (~ 10 nm) of the pores of PSi not in favor of applying small sized uniform nano-gate or 

even molecular-gate.[100] Moreover, the relative lower functional groups coverage (~30%) on 

the surface of the PSi sets another obstacle for this method.[85,131] The other approach to equip 

PSi with controlled release features is to attach drugs to the surface of PSi via stimuli-

responsive linkages. For example, the introduction of a polydopamine or dopamine analogues 

will endow the PSi with the ability to form a ligand-metal ion-drug complex, further 

achieving a pH-responsive release. One ligand (3-aminopropoxy-linked quercetin) inspired by 

the structure of dopamine was applied for PSi modification. At pH 7.4, only 14.8 ± 0.9% of 

the loaded drug (DOX) was released within 4 h, and no clear extra drug was released in the 

following 20 h. However, the released drug amount was increased at more acidic condition, 

where 77.3 ± 1.6% of the loaded drug was released at pH 5 within 24 h.[100] Other examples 

include the formation of a hydrogen bond between the conjugated ligand and the loaded 

cargo: the pH-induced protonation or de-protonation will disturb the stability of the PSi-drug 

complex, leading to the release of the drug.[104]  

However, the concept “controlled release” is not only about the sustained release or stimuli-

responsive release. In clinical application, it is important that different drugs are present in the 

human body at distinct time points. Typically, this is achieved by a sequential administration 
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of different therapeutic agents. A much easier alternative would be to develop a drug delivery 

system containing a whole set of medically active compounds which are liberated in an 

orchestrated and controlled manner. Yet, such a periodically, sequential release of drugs from 

PSi has been less investigated. 

 

Figure 7. Design and operation of PSi with controlled release behavior. a1) pH sensitive 

polymer or a2) Lipid encapsulation of PSi can achieve specific drug release behavior; b1) 

Covalent bonding or b2) Non-covalent bonding can sustain the drug release in specific 

manner; (c) Polymer conjugation can also retain the drug release rate; (d) The pores’ self-

sealing can be applied into controlled release. Figures are reproduced with permissions: a1) 

from ref. [14b], Copyright 2015, Elsevier; a2) from ref. [94], Copyright 2013, WILEY-VCH; b1) 
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from ref. [98], Copyright 2015, Elsevier; b2) from ref. [100], Copyright 2017, WILEY-VCH; (c) 

from ref. [101], Copyright 2015, American Chemical Society; and (d) from ref. [124], Copyright 

2010, WILEY-VCH.  

 

3.2. Surface modification to enhance targeting ability of PSi 

Surface modification of PSi with special ligand will endow the carrier with enhanced 

adhesion to specific cells, therefore increasing the particle and the drug accumulation at lesion 

sites.[112,136] Different kinds of targeting ligands are applied for multiple diseases. For example, 

chitosan modified PSi with mucoadhesive property was applied for the oral administration of 

insulin.[28,137] Atrial natriuretic peptide (ANP), a heart-homing peptide, was also conjugated to 

PSi for chronic heart failure reverse. In vivo biodistribution of PSi modified with ANP was 

monitored in Wistar rats. Animals received subcutaneous injection of isoprenaline (5 mg kg-1) 

24 h before intravenous administration of radiolabeled peptide modified PSi nanoparticles for 

establishing the infarcted heart model. Results showed up to 3-fold PSi accumulation within 

the heart after the peptide modification (Figure 8a).[112] Rabies virus glycoprotein (RVG) 

conjugation of PSi loaded with siRNA was investigated as potent brain targeting drug carrier, 

and the monitor of the emission from a Dy677 tag attached to the siRNA payload showed that 

the RVG–PSi construct delivered a substantial quantity of siRNA to the injured site and can 

reach up to 3-fold more accumulation in damaged brain tissue comparing to healthy brain 

(Figure 8b).[125] A carbonic anhydrase IX (CA IX, 3-(cyclooctylamino)-2,5,6-trifluoro-4-((2-

hydroxyethyl)sulfonyl)benzenesulfonamide) targeting ligand-functionalized PSi showed high 

affinity towards cancer cells under hypoxia condition, which presented potent application into 

cancer targeting.[104] PSi surface biofunctionalization was developed for tumor associated 

endothelial cells and in macrophages targeting. Due to the increased expression of Ly6C, 
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mouse homolog of CD59, in tumor associated endothelial cells and macrophages within the 

stroma, PSi surface modified with Ly6C antibody can accumulated in tumor associated 

endothelial cells within 15 min after intravenous injection. At 4 h after administration, 9.8 ± 

2.3% of injected dose/g tumor of the Ly6C targeting nanocarriers accumulated in the 

pancreatic tumors (L3.6pl tumor bearing mice) as compared to 0.5 ± 1.8% with non-targeted 

nanocarriers (Figure 8c).[19b] Various of other antibodies were also tested for tumor 

targeting.[26b,105] Besides targeting ligand conjugation, strategies employing outer stimuli are 

also applied for the active targeting.[138] PSi grafted with a temperature responsive polymer 

(N-isopropylacrylamide), whose critical temperature was tailored to be around 40 °C, leaded 

to spatiotemporal triggered drug release through infrared and radiofrequency electromagnetic 

heating. In vivo experiments were carried out with lung carcinoma (3LL) tumors inoculated at 

the left hind paw of male mice of the CBA line. After tumor site specific infrared irradiation, 

the therapeutic effect, i.e., radiofrequency triggered the release of the cytostatic drug from PSi, 

could significantly suppress the growth of a carcinoma tumor at local site.[27] 

Besides of the conventional targeting methods by connecting targeting moieties on the surface 

of the nanoparticles, its feasibility and efficiency are sometimes confined by the unintended 

high uptake by normal tissues/cells, degradation or structure transformation caused by the 

interaction between ligand and the enzyme or protein in the blood.[139] Furthermore, when 

they are applied in vivo, we usually have to face the variable physiological changes or 

different requirements, sometimes this may even cause antilogy or paradox. For example, to 

prolong the circulation time by evading from the MPS system, the most common way is 

modifying the particle with polyethylene glycol (PEG).[140] However, PEG can hugely hinder 

the cellular uptake of the particles, therefore may inhibit the release of the drug within the 

cells.[141] Thereby, we anticipate the well-designed drug delivery system to present different 
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properties at different stages. To fulfill this idea, nowadays there is a strategy called 

hierarchical targeting.[142] The designed PSi has the ability to change their properties in 

response to different environments. Common methods include the changeable size or zeta 

potential, in-activation and re-activation of the targeting ligand, PEG detachment as well as 

the morphology switch.[4j,4k,47a] Previously, researchers developed several discoidal PSi 

microparticles based structure, where several other reagents, such as QDs and carbon 

nanotubes, are embedded within the pores, further achieving a multi-stage delivery 

effect.[4j,4k,20,143] Zhang et al.[103] fabricated a receptor-mediated surface charge inversion 

nanoparticle consisted by PSi nanoparticle core and sequentially modified with PEI, MTX, 

and DNA aptamer AS1411 for enhancing the cell uptake of nucleolin-positive cells. The 

efficient interaction of AS1411 and the relevant receptor nucleolin caused the disintegration 

of the negative-charged AS1411 surface. The subsequent surface charge inversion and 

exposure of the active targeting ligand, MTX, enhanced the cell uptake of the nanoparticles. 

The newly synthesized nanocomposites with a hydrodynamic diameter around 242 nm were 

efficiently internalized by nucleolin-positive MDA-MB-231 breast cancer cells, with an 

efficiency around 5.8 times higher than that of nucleolin-negative cells (NIH 3T3 fibroblasts. 

Another convenient way to achieve this hierarchy targeting is layer-by-layer coating. PSi 

conjugated with targeting ligand can be encapsulated within a protection matrix, when 

reaching the lesion sites the matrix will degrade and further expose the targeting moiety.[14b] 

To achieve this aim, a better and a more robust encapsulation method should be further 

developed, which we will discuss in detail in the following sections. 

 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



  

46 

 

 

Figure 8. Surface modification of PSi to increase its targeting ability towards corresponding 

disease. (a) Increased heart targeting ability of ANP modified PSi. Representative sagittal 

SPECT/CT images showing the biodistribution of intravenously administered [111In]NPs at 10 

min time point. H denotes for heart, Lu for lung, Li for liver, and S for Spleen. ANP-modified 

PSi NP-to-control ratio in heart for different peptides at 10 min, 20 min, 4 h, and 24 h time 

points. (b) Luminescence images testing specific targeting of RVG modified PSi to injured 

mouse brain. b1) Time-gated luminescence image of injured mouse brains (lex: 365 nm). 
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Dashed white circles indicate region of penetrating brain injury. Targeted (‘‘RVG-

conjugated’’) and nontargeted (‘‘no RVG’’) nanoparticles are compared. Inset: Bright field 

image (in gray scale) under ambient light.Lipid encapsulation of PSi can achieve specific drug 

release behavior; b2) Signal-to-noise ratio (SNR) calculated for luminescent PSi accumulated 

at healthy (left hemisphere) or injured (right hemisphere) region of the brain tissues. b3) 

Fluorescence image of Dy677-labeled siRNA accumulated in mouse organs obtained from 

IVIS 200 imaging system (lex: 670 nm, lem: 700 nm). b4) Relative fluorescence intensity of 

Dy677-labeled siRNA at healthy (left hemisphere) or injured (right hemisphere) region of the 

brain tissues. (c) Biodistribution and immunofluorescent analysis of the Ly6c Ab modified 

PSi intravenously injected into the L3.6pl human tumor bearing or normal mice. c1) Ex vivo 

fluorescent imaging (IVIS) of the organs of normal mouse and the tumor bearing mice 

injected with the nanocarriers conjugated with Ly6C Ab (Ly6C-Ab-S1MP), control IgG (IgG-

S1MP) or unconjugated nanocarriers (S1MP). c2 and c3) Immunofluorescent analysis of 

pancreatic tumors in the mouse injected with the nanocarriers conjugated with Ly6C Ab 

(labeled with Dylight 649 and detected through Cy5 channel). The nanocarriers attached to 

endothelial cells (CD31) in capillaries which also expressed Ly6C (emitted yellow 

fluorescence) 15 min after intravenous injection (indicated by white arrows). The nanocarriers 

were further engulfed by CD68 and Ly6C positive tumor associated macrophages as 

identified 4 h after the injection. (d) In vivo assessment of efficiency of RF radiation-based 

spatiotemporal triggered treatment of the tumor with PSi. d1) Inhibition of the tumor growth 

after injection of 0.05 ml solution of DOX at a concentration of 2 mg/kg (blue), 5 min of the 

RF irradiation of power 40 W (cyan), 0.05 ml suspension of modified PSi nanoparticles with 

DOX concentration of 2 mg/kg (magenta) and combined actions of the nanoparticles, DOX 

and RF irradiation (black). d2) The histological image of the tumor before the treatment, the 
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tumor consist of alive cancer cells. d3) The histological image after 1 day of the injection of 

TR-NDA PSi nanoparticles + DOX irradiated with RF, nanoparticles and DOX are 

penetrating the tumor at the place of the injection. d4) The histological image after 3 days of 

injection shows necrotic parts of the tumor. Figures are reproduced with permissions: (a) from 

ref. [112], Copyright 2016, Elsevier; (b) from ref. [125], Copyright 2016, The Royal Society of 

Chemistry; (c) from ref. [19b], Copyright 2013, Elsevier; and (d) from ref. [27], Copyright 2016, 

Elsevier. 

 

3.3. Surface modification to increase physiological stability and biocompatibility of PSi 

As mentioned previously, freshly etched PSi with a hydride surface obtains the high reductive 

ability and can react with multiple biological molecules. Another well-known property of 

hydride terminated PSi is its photoluminescence, and investigations into the causes and decay 

of PSi photoluminescence have led to the discovery that this surface is capable of generating 

singlet oxygen (1O2) molecules under certain conditions which will further cause cellular 

toxicity.[78a] Low et al.[78b] incubated silicon wafer, freshly etched PSi and thermal oxidized 

PSi with human lens epithelial cells (SRA 01/04) and found out a dramatic decrease of cell 

viability when incubating with freshly etched PSi particles, which is caused by the extra ROS 

generated from the reaction between silicon hydride and the substance within the cell culture 

medium. However, the observed toxic effect can be completely mitigated by protective 

surface treatments of PSi microparticles including thermal oxidation, as the surface 

stabilization may be able to eliminate the remaining excitons trapped in the crystal which are 

able to transfer electrons to oxygen molecules adsorbed on the surface, converting them into 

singlet oxygen or other ROS species, therefore the surface modification can vastly increase 

the biocompatibility of PSi. While several methods applied this feature to achieve 
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photodynamic anti-cancer therapy, for drug delivery system, a more stable PSi is also 

needed.[144] However, some of the surface modification, such as thermal carbonization, will 

end up with the production of hydrophobic PSi, even though this will facilitate the 

hydrophobic drug loading, it also restrict its dispersity within biological medium.[75] Methods 

such as secondary modification by PEGylation or dextranylation were proposed to increase its 

biological stability and MPS stealth ability (Figure 9a). For example, studies suggested that 

TOPSi nanoparticles agglomerated extensively in PBS, and the 0.5 kDa PEGylated PSi 

nanoparticles also agglomerated, however to a lesser extent than bare PSi due to the presence 

of PEG, stabilizing the size at ∼1.4 μm. In comparison, the 2 kDa PEG-TOPSi nanoparticles 

dispersion was stable for up to 3 days;[145] dextranylation of THCPSi can also reduce the 

plasma protein adsorption. Wang et al.[97] investigated plasma proteins’ association onto the 

PSi modified with dextran with two different molecular weight (6 kDa and 40 kDa), and the 

amount of bonded protein was determined by analyzing the opsonized proteins with SDS-

PAGE gel electrophoresis and further verified by mass spectrometry. THCPSi-Dex40k 

showed more negligible protein adsorption than the other modification moieties or the 

unmodified nanoparticles. Conjugating amphiphilic polymer (PEI-PMVEMA) can also reduce 

the aggregation of PSi without interfering the hydrophobic drug loading ability. Stability 

assessment in aqueous medium showed that the particle size (hydrodynamic diameter) and 

PDI of the bare PSi (THCPSi) increased to over 1 μm and 0.4, respectively, in less than 90 

min as a result of aggregation, while polymer-functionalized particles showed no substantial 

change in both particle size and PDI. Further stability assessment of the nanoparticles for 2 

days revealed no change in the size of bare and polymer-conjugated nanoparticles from 2 h to 

48 h.[146] 
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In general, the circulation time of a micro/nano-particle is determined by multiple factors, 

including size, shape, surface stiffness and protein corona.[18,147] Concerning the influence of 

the size on the circulation time, a systematic study of the circulation time of unmodified PSi 

nanoparticles in mice was presented by Park et al.[4l]: small PSi nanoparticles (15 nm) were 

rapidly excreted by the kidneys, with a half-life of 12 min. Particles presenting a size of 

around 270 nm were taken up by the reticuloendothelial system (RES) in less than 5 min. 

Finally, particles characterized by an intermediated size (around 150 nm) exhibited a longer 

circulation time, 27 min, as reported also by other studies: the surface modification with BSA 

increased the circulation time to 264 min.[148] In the case of THCPSi, the amount of 

nanoparticles retrieved in the circulation decreased rapidly already after 15 min; the 

encapsulation of the particles in solid lipid nanoparticles did not enhance the circulation 

time.[149] Wang et al.[150] investigated the biodistribution of iRGD-modified UnTHCPSi 

nanoparticles, labelled with 111In; after 65 mins from the injection, only 1.5% of the injected 

dose was still circulating, while after 27 h this value decreased to less than 0.3%. 

As for microparticles, the circulation time and the organ accumulation are size and shape 

dependent.[151] After 4 h from the injection, the particles were mainly found in liver and 

spleen, with minimal distribution to lung, heart, and kidneys;[19a] the particles distributed in 

the whole body during the first min, then accumulated within the RES, and ended up in the 

liver.[152] 

Besides biocompatibility, physiological stability and dispersity, the biodegradability of PSi is 

another key factor to evaluate its further clinical application. The inherent factors that 

influencing PSi degradation are also its overall size, porosity, pore size and surface 

functionalization. For example, the increase of porosity increases the diffusion rate of species 

in and out the pores, and thus, accelerates the dissolution rate of the silicon network,[54c] the 
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decreased size of PSi will also accelerate the degradation rate due to the augmented 

surface/volume ratio.[24a] Freshly etched PSi will undergo fast dissolution, and surface 

stabilization, such as oxidation and carbonization, will generate a protection layer which can 

detain the dissolution process of PSi.[153] Alhmoud et al.[16a] conducted hydrosilylation 

reactions with undecylenic acid (Un) and tert-butyl-2 [(allylamino)carbonyl]hydrazine-

carboxylate (Sc), respectively, on freshly prepared silicon hydride-terminated particles, and 

these surface modifications significantly reduced the degradation rate of PSi, as already 

discussed in Section 2.2.1. In the similar mechanism, secondary surface conjugation or 

encapsulation such as PEGylation will protect PSi from outer medium, thus tailoring the PSi 

degradation behavior. The degradation kinetics of PSi modified by PEG with different 

molecular weight (PEG 245, PEG 333, PEG 509, PEG 686, PEG 862, PEG 1214, PEG 3400, 

and PEG 5000) were investigated in PBS buffer (pH 7.2) and FBS medium through 

inductively coupled plasma atomic emission spectroscopy (ICP-AES) method, and the results 

revealed that the degradation rate decreased with the increased length of the attached PEG 

chain and the most dramatic effect was observed for PEG 3400 and PEG 5000, which 

inhibited the degradation of the systems over more than 3 days and in the case of PEG 5000 

almost no degradation was seen within the first 48 h (Figure 9b).[54d] The rationale for the 

altered degradation kinetics is the surface modification can change the interaction between the 

particle and outer medium as discussed previously, as factors such as pH, temperature, salt, 

amino acid, protein and redox environment of the outer medium can also hugely affect the 

degradation of PSi,[154] Tzur-Balter et al.[155] tested the effect of pH, human serum, ROS and 

combination thereof on the in vitro erosion process of PSi and the results revealed that among 

which, ROS is the most critical parameter to accelerate the degradation process. The 

degradation of PSi at different pH (PBS buffer with pH 7.4 and pH 6.5 respectively) did not 
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dramatically influence the degradation of PSi as the ML50 (time needed for 50% of the PSi 

mass loss) at both pH values were around 7 h, the addition of extra serum decreased the ML50 

into 6 h, whereas the addition of extra 2 mM of 3-morpholinosydnonimine N-ethylcarbamide 

(SIN-1), which can be used to generate physiologically relevant levels of peroxynitrite, a 

highly reactive oxygen species involved in human carcinogenesis, can vastly decrease the 

ML50 to 3 h. Many studies have shown that the degradation of PSi in physiological media 

involves the oxidation of the Si scaffold into Si-dioxide, followed by the hydrolysis of the Si–

O bonds to release soluble orthosilicic acid species.[8,156] Recent studies also suggested after in 

vivo administration, PSi will be eroded directly through the degradation of the crystalline Si 

scaffold.[155] More importantly, they found out that PSi undergoes enhanced degradation in 

diseased environment compared with healthy state, owing to the upregulation of ROS in the 

lesion vicinity that oxidize the silicon scaffold and catalyze its degradation. As previously 

shown (Figure 6), after the thermal oxidation or carbonization, the surface of PSi is 

composed by SiC or OxSiHy, which is fairly stable, and the ROS accelerated degradation 

partly suggested that the degradation is related to the decomposition of the surface silicon 

layer and back-bond oxidation of the Si;[155] however, the degradation and erosion rate among 

PSi with different surface stabilization method and different surface property is less 

investigated. Moreover, recent papers suggested that some metal silicate can slowly release 

orthosilicic acid, followed by the in situ formation of SiO2 compact and inducing the capillary 

occlusion and tumor starvation, however whether PSi will undertake the same process is also 

lack of investigation.[157] 

Meanwhile, PSi nanoparticles can be effectively uptaken by different kinds of parenchymal 

cells and MPS systems. The interactions between micro- and nano-systems and the cells or 

the organisms are mediated by the presence of a hard and a soft protein corona forming on the 
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surface of particles.[158] In the case of PSi, the presence of the corona influences the uptake of 

particles by vascular endothelial cells: negatively charged particles coated with the protein 

corona are taken up in lower amount compared to the same particles in protein-free medium; 

as for positively charged particles, the incubation with plasma and the formation of the corona 

turns the surface charge to negative, however, there is no effect on their uptake.[152] 

Interestingly, the incubation of the same particles together with immune cells leads to a 

selectively uptake of the negatively charged particles, due to the adsorption of 

immunoglobulins on the protein corona, leading to their uptake by the gamma 

immunoglobulin receptors.[159] The proteomic analysis of the protein corona showed that 

cationic PSi microparticles preferentially adsorb alpha fibrinogen, IgG light chain variable 

regions and complement component 1, while negatively charged particles preferentially 

adsorb apolipoproteins A and E; this may partially explain the differences in the 

biodistribution of cationic and anionic particles, with higher accumulation of negatively 

charged particles in the liver.[160] 

When the surface of PSi particles is modified with other elements (dextran, targeting peptides, 

hydrophobins), there is a change in the profile of the protein corona. In particular, the protein 

corona of THCPSi-alkyne particles includes proteins adsorbed along the whole range of 

molecular weights, except for the complement C3fraction. After surface modification with 

targeting moieties (iRGD), the protein corona was composed also by the complement C3 

fraction. The adsorption of hydrophobin on the surface of THCPSi particles resulted in a 

change in the protein corona, with the adsorption of both complement C3 fraction and 

apolipoproteins.[161] On the contrary, after modification of the particles with dextran chains, 

there was a reduction in the adsorption of proteins with molecular weight higher than 70 kDa, 

in a fashion dependent on the molecular weight of the dextran.[97] Thus it has the potent to 
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interact with different intracellular organell and different intracellular proteins. Recent studies 

demonstrated the effect of PSi with different surface properties on human P450 metabolism 

(CYP) (Figure 9c).[162] Three different surface chemistries, including TCPSi, APSTCPSi and 

alkyne-THCPSi were compared for their effects on the enzyme kinetics of the major CYP 

isoforms (CYP1A2, CYP2A6, CYP2D6, and CYP3A4) in human liver microsomes in vitro, 

and the enzyme kinetic parameters, Km and Vmax, and the intrinsic clearance (CLint) were 

determined to evaluate their corresponding effects. Results showed statistically significant 

alterations of most isoenzyme activities in human liver microsomes in the presence of 

nanoparticles, which may be due to the competitive, noncompetitive and uncompetitive 

inhibition caused by the particle and other interactions such as nonspecific adsorption of lipids 

or electrostatic interactions with salts. Among which, and CYP2D6 inhibition was shown to 

be the most vulnerable enzyme and exhibited a dose-dependent tendency in case of thermally 

carbonized PSi and thermally hydrocarbonized PSi nanoparticles and attenuated at the 

concentrations as low as 1 μg ml-1. This is the first study confirmed that even relatively large 

PSi (in the range of 160–180 nm) may inhibit the CYP enzyme activities in vitro and also 

suggested the potent interaction between intracellular PSi and critical protein within the cells. 

Former experiments suggested that extra dietary silicon can ameliorate the liver oxidation 

stress by enhancing the Nrf2 (nuclear factor erythroid 2) pathway.[163] Also there are paper 

suggesting that orthosilicic acid, the main degradation product of PSi, can stimulates 

osteoblast differentiation by antagonizing NF-κB activation,[164] considering the inherent 

nature of PSi that it can be vastly uptaken by various kinds of cells, this triggered the thought 

to further investigate the potent effect of PSi and its corresponding degradation product on 

cellular signal pathway. This may provide further fundamental information for further 

application of PSi into biomedical areas. However, the corresponding studies are less 
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investigated. Meanwhile, its interaction with immune cells also induces the investigation of 

immunoresponsive effect of PSi which we will discussed in detail in the following sections. 

 

Figure 9. The effect of surface modification on biocompatibility, physiological stability, 

degradability and critical protein’s activity. (a) Human lens epithelial cells on a1) a non-
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treated PSi membrane and on a2) a thermally-oxidized PSi membrane after a 24 h incubation, 

suggesting the viability loss caused by freshly etched PSi. Cells were stained with DiOC5. (b) 

Increased physiological stability by surface modification. The b1) size and b2) PDI change of 

bare PSi or PSi modified with a zwitterionic bi-polymer PEI-PMVEMA after dispersing in 

aqueous medium for 2 h, demonstrating high stability of the polymer-conjugated 

nanoparticles over time.  b3) Photographs of the dispersion stability of the nanoparticles, from 

A to F: THCPSi-alkyne, THCPSi-Dex6k, THCPSi-Dex40k, THCPSi-PGA, THCPSi-RGDS, 

and THCPSi-iRGD at time points 0, 1, 3, and 6 h. For each surface functionalization, 100 μg 

mL-1 of the nanoparticles were dispersed in HBSS−HEPES buffer (pH 7.4). c1) Degradation 

of PSi as determined by silicic acid release over 6 h in Tris buffer (pH = 7.2) at room 

temperature. ND: Non-treated PSi; ND-UA: undecylenic acid modified PSi; ND-SC: tert-

butyl-2 [(allylamino)carbonyl]hydrazine-carboxylate modified PSi and degradation kinetics of 

PEGylated PSi within c2) PBS pH 7.2 and c3) FBS. d)  Inhibition of CYP2D6 by TCPSi, 

APSTCPSi, and Alkyne-THCPSi nanoparticles relative to the control with different 

nanoparticle concentrations. The control activity (without nanoparticles) is adjusted to 100% 

(dash line). Figures are reproduced with permissions: (a) from ref. [78b], Copyright 2010, 

WILEY-VCH; (b1 and b2) from ref. [146], Copyright 2014, Elsevier; (b3) from ref. [97], 

Copyright 2015, American Chemical Society; (c1) from ref. [16a], Copyright 2015, WILEY-

VCH; (c2 and c3) from ref. [54d], Copyright 2010, WILEY-VCH; and (d) from ref. [162], 

Copyright 2017, Elsevier. 

The surface chemistry of PSi influences its colloidal stability. In detail, the colloidal stability 

of bare PSi, presenting a hydrophobic surface (e.g., THCPSi, UnTHCPSI), is limited both in 

saline solutions (PBS and HBSS–HEPES) and in human plasma. Particularly, the stability in 

HBSS–HEPES is time and surface modification-dependent; the more hydrophobic particles 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



  

57 

 

are characterized by lower stability, starting to aggregate and precipitate after 1 h.[97] The 

surface modification with tumor targeting peptides improves the stability of THCPSi 

nanoparticles in plasma.[136] Moreover, the modification of the surface with polymers (like 

PEI), cyclodextrins, or proteins (hydrophobin) greatly enhances the stability both in saline 

solutions and in human plasma.[101,146,161] 

 

3.4. Surface modification of PSi to facilitate bioimaging 

At the intersection between treatment and bioimaging, interest has grown in combining both 

paradigms into clinically effective formulations, this concept is coined as theranostics.[165] 

Applying PSi as an imaging agent also draws a lot of attentions recently. Photoluminescence 

of PSi is surface chemistry related. Completely reversible shifts in the photoluminescence 

spectra between green luminescence and red luminescence were obtained repetitively.[166] The 

mechanism for the photoluminescence is silicon oxide growing on the hydrogen-terminated 

PSi surface, generating significant luminescence attributed to quantum confinement effects 

and to defects localized at the Si–SiO2 interface.[4l] For biomedical usage, photoluminescent 

PSi provides attractive chemical alternatives to heavy-metal-containing quantum dots, which 

have been shown to be toxic in biological environments. Based on this, Park et al.[4l] applied 

photoluminescent PSi for in vivo tumor imaging (Figure 10a). The nude mouse bearing an 

MDA-MB-435 human carcinoma tumor (~0.5 cm, one side of flank) was used and 

photoluminescent PSi (in 200 μL PBS) were intravenously injected into nude mice at a dose 

of 20 mg kg-1 body mass and the tumor area was imaged under anaesthesia several different 

times after the administration using the IVIS 200 imaging system equipped with excitation 

filters including GFP (445-490 nm), DsRed (500-550 nm), and Cy5.5 (615-665 nm) and the 

emission filter ICG (810-875 nm). After the injection, the PSi with the size of 125.7± 9.7 nm 
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showed a passive accumulation within the tumor area as revealed in the near-infrared 

fluorescence image. Moreover, photoluminescent PSi displays a very long radiative lifetime 

(>10 μs), and this has been harnessed for time-gated imaging. Gated luminescence 

spectroscopy is the registration of luminescence emission spectra at different decay times 

from the excitation pulse. This technique can be used to distinguish compounds with different 

decay time. Particularly in bioimaging application, a fluorescence imaging material with long 

decay feature can be easily separated from the background signal, which most often consists 

of short decay fluorescence and scattering which can be achieved by altering the measurement 

time.[167] In a previous study, photoluminescent PSi was administered through retro-orbital 

injection of mice bearing 4T1 breast tumors. After 4 h of circulation, the major organs 

including the tumor were harvested and the fluorescence images of corresponding organ were 

first acquired by a conventional fluorescence imaging system (IVIS 200, Xenogen), under 

which the photoluminescent PSi groups only showed slightly more intense signals than PBS-

injected control group. However, when applying gated luminescence imaging system, which 

was mainly composed by excitation source at a repetition rate of 10 Hz and a software (Andor 

SOLIS) to program delays and timing pulses and to analyze images including signal-to-noise 

ratio (SNR), a greater fluorescence signal was observed comparing to the background. 

(Figure 10b).[168] However, most of the photoluminescent PSi suffers from the unstable 

luminescence properties and relatively large emission band. For example, Park et al.[4l] found 

out that when photoluminescent PSi is placed in biological solution (phosphate buffered 

saline (PBS), pH 7.4, 37 ◦C), the particles lose their luminescence in a short time and dissolve, 

and also it also lacks a satisfied quantum yields comparing to other heavy-metal quantum dots, 

all these needs further surface modification to improve the photoluminescent behavior of PSi. 

Moreover, photoluminescent PSi applied into bioimaging can also be excited by UV-light, 
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which has the inefficient tissue penetrating ability and potential damage to the tissues. One 

convenient method to solve this issue is by applying up-conversion nanoparticles. Rare earth 

elements Er/Yb-doped porous silicon plate has already shown to obtain the potent to 

effectively act as an up-conversion material due to the vast residence of Er/Yb within the pore 

structure,[169] yet the investigation for nano-sized up-conversion PSi is less noticed. 

Due to the unstable nature of the photoluminescent PSi, sometimes the luminescent signal of 

the particles is not sufficient post implantation,[155] meanwhile, after the thermal oxidation or 

carbonization, the photoluminescence of surface stabilized PSi is usually quenched, thus other 

methods for in vivo imaging is required. One common method is by conjugating fluorescence 

dye on the surface. Janoniene et al.[104] applied one fluorescence ligand, 3-(cyclooctylamino)-

2,5,6-trifluoro-4-((2-hydroxyethyl)sulfonyl)benzenesulfonamide (VD11-4-2), into the surface 

modification of PSi. This is a fluorescence compound with maximum emission wavelength at 

500 nm while the λex of DOX is 490 nm. This gives us the opportunity to assemble a system 

resulting in the formation of a fluorescence resonance energy transfer (FRET) complex: a 

donor VD11-4-2 energy transfer to the acceptor DOX, where the fluorescence of VD11-4-2 is 

quenched as a result of DOX absorbance. Furthermore, this FRET pair is quite stable under 

various of physiological conditions including temperature (37℃), ionic strength (0.1 M NaCl), 

and pH (MES buffer at pH 7.4, 5.3, 4.9). Owing to this surface modification and the FRET 

pair construction, the cellular uptake and drug release process in vitro can be effectively 

monitored. An alternative choice is by radiolabeling. Radiolabeling of the nanocarrier-based 

therapeutic systems with γ-emitting radionuclides, such as 111In, 99mTc, 123I, and 131I, can 

provide a highly sensitive and quantitative evaluation of their in vivo biodistribution and 

imaging. Wang et al.[150] chelated 111In on the surface of PSi enabling the monitoring of the in 

vivo biodistribution of the nanocarriers by single photon emission computed tomography 
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(SPECT) in an ectopic mouse xenograft model of PC3-MM2 cells bearing nude mice. The 

mice were dosed with 111In-radiolabeled PSi and PSi-iRGD nanoparticles either intravenously 

or intratumorally and the whole-body SPECT/CT images were acquired at different time 

points (Figure 10c1). In the similar regards, fluorine-18 in the form of [18F]KF/Kryptofix 

2.2.2 was conjugated onto PSi via heat treatment, and further applied for imaging the 

distribution of PSi within digestive tract (Figure 10c2).[144] 

The formation of nanohybrids by combining PSi together with other imaging agents into one 

carrier is also one routine to achieve the theranostic platform, and this loading is also largely 

dependent on the surface modification of PSi. For example, Serda et al.[170] successfully 

loaded SPIONs into thermally oxidized PSi microparticles, and they found out that 

carboxylated SPIONs were not retained in the porous matrix, while both amine- and chitosan-

coated SPIONs were found in abundance, which is mainly caused by the electronic interaction. 

This SPIONs loaded PSi microparticle can further be used as intracellular trafficking or MRI 

imaging (Figure 10d).[170-171] Also, surface deposition of Au nanoparticles or QDs can be 

used for special optical imaging, and the loading or deposition is also vastly dependent on the 

surface modification of PSi.[4k,47a] Tasciotti et al.[4k] loaded QDs and SWNTs into the hemi-

spherical PSi microparticles with a diameter of 3.2 μm and an average pore size of 30 nm, and 

further applied this nanocomposites into cellular fluorescence imaging. The results showed 

that carboxyl QDs, which had a negative surface charge (zeta potential, –32.8 mV), and PEG-

FITC-SWNTs (zeta potential, –9.21 mV) could be loaded more efficiently into APTES-

modified PSi (zeta potential, +6.52 mV) than into oxidized PSi (zeta potential, –10.1 mV). 

The deposition of Au nanoparticles onto PSi surface can also improve the photoluminescence 

feature of PSi via surface plasmon enhancement, and extra surface modification leads to an 

increase and a blue shift into the photoluminescence which may due to the extra oxidation of 
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Si–H bonds.[172] However, a nano-sized nanohybrid consisted by PSi and other small 

nanoparticles are less investigated. We recently used a microfluidic assisted method to 

encapsulate PSi and Au nanoparticles into a nano-sized polymer matrix through single-step 

nanoprecipitation, further conducted in vivo computed tomography (CT) imaging. This 

method also provides the possibility to construct different theranostic platform in the future. 

 

Figure 10. (a) Fluorescence images of photoluminescent PSi as a function of concentration 

using different excitation filters (GFP: 445–490 nm; Discosoma red fluorescent protein 

(DsRed): 500–550 nm; Cy5.5: 615–665 nm; ICG: 710–760 nm). The emission filter used is 

ICG (810–875 nm). (b) Representative fluorescence images of a mouse bearing an MDA-

MB-435 tumor. b1) Schematic showing the instrumental setup for gated photoluminescence 
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imaging of PSi. The iCCD camera and the light source were controlled by an external pulse 

generator. In the case of laser illumination, the laser fired under control of the laser's internal 

pulse generator, and the camera was configured to slave to it via TTL trigger. b2) Digital 

color photograph and b3) Gray scale image of mouse brain obtained under ambient light. b4) 

CW and b5) GLISiNimages of the same brain under UV LED excitation (λex= 365 nm, λem= 

460 nm long-pass filter; gate width, 400 μs, 40 accumulations, gate delay for CW = 0 μs, gate 

delay for GLISiN = 5 μs). Phantom samples corresponding to 150 ng of PSi nanoparticles and 

2.5 ng of the molecular dye Alexa Fluor 647 (“AF647”) were dropped next to the brain for 

comparison, as indicated. Note that the signals from the AF647 sample (fluorescence) and the 

brain tissue (autofluorescence), readily visible at steady state, almost disappear in the GLISiN 

image, whereas the longer-lived luminescence from PSi nanoparticles is much stronger in the 

GLISiN image. (c) Radio labeled PSi applied into bioimaging c1) SPECT/CT fused images of 

the whole mouse local injected with 111In labeled PSi and c2) macroautoradiographs and 

respective photographs of the GI tracts of rats 2, 4, and 6 h (from left to right) after oral 

administration of 18F-labeled THCPSi nanoparticles and (d), PSi loaded with d1) QDs or 

SWNTs for fluorescence imaging or d2) SPIONs for MRI. Figures are reproduced with 

permissions: (a) from ref. [4l], Copyright 2009, Springer Nature; (b) from ref. [168], Copyright 

2015, American Chemical Society; c1) from ref. [150], Copyright 2015, Elsevier; c2) from ref. 

[144], Copyright 2010, American Chemical Society; d1) from ref. [4k], Copyright 2008, 

Springer Nature; and d2) from ref. [25a], Copyright 2010, WILEY-VCH. 

 

4. Emerging technologies for engineering PSi-based composites 

As mentioned in Section 3.1, the loading of therapeutics into PSi particles by electrostatic 

interactions and/or physical adsorption is easily achieved.[7,44] Due to the freely accessible 
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pores, the payloads can directly interact with the metabolites, ions, and enzymes in body 

fluids. These interactions can lead to the premature release and even the inactivation of the 

cargos.[173] To control the release of payloads from PSi, a variety of strategies have been 

developed. We classify these strategies into two categories: surface chemistry modification 

and physical encapsulation. The surface chemistry modification has been discussed in Section 

3.1. In this section, we will review the PSi-based composites fabricated by physical 

approaches, including the conventional emulsion method, droplet microfluidics, microfluidic 

nanoprecipitation, film extrusion and flow reactor. We summarize the physicochemical 

properties, such as average particle size and release profiles, of the PSi-encapsulated 

composites in Table 2, according to the encapsulation methods. 

Table 2. The physicochemical properties of the PSi-encapsulated composites. 

Encapsulatio
n techniques 

Particle precursors 
Drug loading 

degree 
Solvent/non-

solvent 
Stabilizers 

Average 
size 

Estimated t50 and t100 Ref. 

Conventional 
emulsion/solv

ent 
evaporation 

Hemispherical PSi 
in PLGA 

FITC-BSA,  ̶  Dichloromethane/
water 

2.5% PVA 
24 ± 10 

μm 

In PBS, t50 varied from 
ca. 14 h to ca. 19 days, 

depending on the relative 
amount of PLGA 

[4h] 

Hemispherical PSi 
in PLGA 

FITC-BSA,  ̶  Dichloromethane/
water 

2.5% PVA 
11 ± 3 

μm 
In PBS, t50 varied from 

ca. 2 to 17 days 
[23b] 

Discoidal PSi in 
PLGA 

FITC-BSA,   ̶ Dichloromethane/
water 

2.5% PVA 
5 ± 0.4, 6 
± 1, 9 ± 3 

μm 

In PBS, t50 varied from 
ca. 4 to ≥ 10 days 

[174] 

Spherical PSi in 
glycerol 

monosterate 

Furosemide, 
ca. 15% 

Ethanol/water 1% PVA 
ca. 200 

nm 

At pH 7.4, t50 ≈ 1.5 h, t100 
≈ 10 h; at pH 5.5, t50 ≈ 
4.0 h, t100 ≈ 12 h; at pH 
1.2, t50 ≈ 7.0 h, t100 ≥ 14 

h. 

[114] 

Droplet 
microfluidics, 

oil/water 

Spherical PSi in 
HPMCAS mixtures 

Atorvastatin 
and 

celecoxib, ca. 
15% for each 

Ethyl acetate/ 
water 

2% 
Poloxamer 

407 

ca. 129 

µm 

No drug released at pH 
1.2; 40% released at pH 
6.0; the rest released at 

pH 7.4 

[175] 

Spherical PSi in 
HPMCAS 

Fluorouracil 
and 

celecoxib, ca. 
7% 

Ethyl acetate/ 
water 

2% 
Poloxamer 

407 

ca. 30 

µm 

No drug release at pH < 
6.5; the drugs are burst 

released at pH 7.4 

[13d] 

Spherical PSi in 
HPMCAS 

GLP-1, 15% 
in PSi 

Ethyl acetate/ 
water 

2% 
Poloxamer 

407 

ca. 60 

µm 

At pH 1.2, no drugs 
released; at pH 6.8, t50 ≈ 

400 min 

[4g] 

Spherical PSi in 
HPMCAS 

Dipeptidyl 
peptidase 4, − 

Ethyl acetate/ 
water 

2% 
Poloxamer 

407 

ca. 60 

µm 

At pH 1.2, t50 < 10 min; 
at pH 6.8, released in 

minutes. 

[4g] 
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Droplet 
microfluidics, 
water/oil/wate

r 

PSi in phospholipid 
vesicle 

Piroxicam, 
19% 

Water/chloroform 
and hexane 

(1:1.18, v/v)/water 
10% PVA 

ca. 114 

µm 
At pH 6.0, t100 ≈ 50 min; 
at pH 7.4, t100 ≈ 350 min 

[115] 

Spherical PSi, DNA, 
Gold nanorods in 

lipid 

DOX, 30%; 
erlotinib, 
10%; 17-

AAG, 15% 

Water/lipid in 
oil/water 

10% PVA 
ca. 100 

µm 
t50 is ca. 9 h and t100 ≥ 24 

h 
[99] 

Microfluidic 
nanoprecipitat

ion 

AcDX and spherical 
PSi 

SFN, ca. 
5.0% 

Ethanol/water 
PVA (2 mg 

mL-1) 
ca. 350 

nm, 
At pH 5.0, t50 ≈ 3.5 h and 

t100 ≈ 16 h 
[14b] 

AcDX and spherical 
PSi 

PTX, ca. 
5.0% 

Ethanol/ water 
PVA (2 mg 

mL-1) 
ca. 350 

nm, 
At pH 5.0, t50 ≈ 2.5 h and 

t100 ≈ 24 h 
[14b] 

AcDX and spherical 
PSi 

MTX, ca. 
4.5% 

Ethanol/ water 
PVA (2 mg 

mL-1) 
ca. 350 

nm, 
At pH 5.0, t50 ≈ 2 h and 

t100 ≈ 8 h 
[14b] 

PHIS-b-PEG, PLA-
b-PEG and spherical 

PSi 

SFN, ca. 
4.9% 

Ethanol and 0.1 M 
hydrochloric 
acid/water 

Poloxamer 
407 

solution (2 
mg mL-1, 
pH 12.8) 

ca. 260 
nm 

At pH 6.8, and 5.5, t50 
<10 min and t100 <1 h  

[14a] 

Film 
extrusion and 
flow reactor 

Spheical PSi 
nanoparticles and 

CCM 

Horseradish 
peroxidase,  ̶ 

Sodium phosphate 
buffer, pH 7.4 

  ̶ ca. 243 ± 
2 nm 

  ̶ [176] 

Spheical 
PSi@AcDX and 

CCM 
̶ Water   ̶ ca. 430 

nm 
  ̶ [4c] 

Spheical PSi in 
HPMCAS 

Insulin, ca. 
13% in 

chitosan-PSi  
Water   ̶ ca. 830 

nm 

No release at pH 1.2; at 
pH 6.8, t50 ≈ 7 min and 

t100 ≈ 15 min 

[28] 

Spheical PSi in 
HPMCAS 

DPP4,   ̶ Water   ̶ ca. 830 
nm 

At pH 6.8 and 1.2, t50 < 7 
min and t100 ≈ 15 min 

[28] 

Note: t50, the release duration half-life; t100, duration for release equilibrium; CCM, cancer cell 

membrane; DPP4, dipeptidyl peptidase 4; HPMCAS, hydroxypropyl methylcellulose acetate 

succinate; PVA, polyvinyl alcohol. 

 

4.1. Conventional emulsion approach 

Since the particle matrix, such as PLGA and solid lipid, is hydrophobic, it is a challenge to 

encapsulate hydrophilic drugs.[13c] The high drug loading capacity of PSi particles, especially 

for hydrophilic compounds, can be utilized to regulate the drug loading degree of 

nanoparticles. Specifically, PSi particles can be encapsulated into the polymer matrix, which 

is beneficial for drug delivery applications, especially for those hydrophilic therapeutics. 

Theoretically, the encapsulation of particles loaded with high mass fraction of therapeutics 

can enhance the loading of drugs that are poorly water soluble in or incompatible with the 
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polymer or lipid matrix. The encapsulation of PSi particles also shielded their free accessible 

pores and controlled the drug release from PSi particles.[114,175] 

Fan et al.[4h] employed the conventional emulsion/solvent evaporation method to encapsulate 

the quasi-hemispherical PSi microparticles in PLGA microspheres. A model drug, FITC-

labeled BSA (FITC-BSA), was loaded into PSi microparticles. The FITC-BSA-loaded PSi 

microparticles were then encapsulated into the PLGA matrix.[4h,23b,174] The PSi-encapsulated 

microcomposite, PSi@PLGA, contained multiple PSi particles in each PLGA matrix. Both 

PLGA and PSi contributed to the sustained release of FITC-BSA. Specifically, the complete 

release of FITC-BSA form bare PSi particles was ~1 day. In contrast, it took more than 28 

days for FITC-BSA to be completely released from PSi@PLGA. PSi@PLGA protected BSA 

from degradation during the long-term release test. Furthermore, PSi neutralized the acidic 

degradation by-products of PLGA, minimizing the potential inflammatory responses toward 

PLGA. In addition to FITC-BSA, the water soluble daunorubicin[120] and the poorly water 

soluble furosemide[114] were also loaded into PSi-based composites, respectively, for 

sustained release of payloads. 

 

4.2. Droplet microfluidics 

The microfluidic technique has brought unique opportunities toward the full control over the 

production processes forming droplets with a homogeneous size for controlled drug 

delivery.[177] Microfluidics also represents an effective technique for PSi particle 

encapsulation with a particle encapsulation efficiency close to 100% (Figure 11a). Due to 

their homogenous size, the amount of PSi particles and therapeutics in each droplet or particle 

should be in an exactly similar level. By encapsulating the PSi particles loaded with 

hydrophilic drugs, such as ranitidine and methotrexate, the loading of hydrophilic drugs by 
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solid lipid particles greatly enhanced.[94] The co-delivery of atorvastatin and celecoxib with a 

precisely controlled ratio has been achieved by encapsulating the atorvastatin-loaded PSi 

microparticles[175] in HPMCAS microparticles using single emulsion droplet microfluidics.  

The fluorouracil-loaded PSi nanoparticles encapsulated in HPMCAS polymer matrix achieved 

the co-delivery of fluorouracil and celecoxib.[13d] Benefiting from the high drug loading to 

peptides and proteins, the co-delivery of GLP-1 and DPP4 enzyme inhibitor for diabetes 

therapy by oral administration was achieved.[4g,178] Before the encapsulation by HPMCAS, the 

GLP-1 was loaded into the PSi nanoparticles, whose surface was sequentially modified with 

chitosan and CPP. Due to the pH-responsive properties of the HPMCAS polymer, all the 

payloads released in responsive to the pH condition of the release medium (Figure 11b). 

With the help of droplet microfluidics, micro- and nano-particles can also be encapsulated in 

double emulsions. The piroxicam-loaded PSi microparticles were encapsulated into 

phospholipid vesicles, in which the release of piroxicam was sustained. Specifically, the 

release half-life for piroxicam increased from ~15 to ~60 min after encapsulating the 

piroxicam-loaded PSi particles into the phospholipid vesicles.[115] Kong et al.[99] developed a 

giant vesicle by double emulsion droplet microfluidics for co-delivery of multiple drugs and 

particles. Water soluble doxorubicin, and the poorly water soluble 17-allyl-

aminogeldanamycin were directly incorporated into the core and shell of the giant vesicles. 

The incorporation of erlotinib was achieved by encapsulating the erlotinib-loaded PSi 

nanoparticles into the giant vesicles. The release of doxorubicin from the giant vesicles was 

sustained to be similar to that of poorly water soluble erlotinib. 

 

4.3. Microfluidic nanoprecipitation 
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The carriers prepared by droplet microfluidics are usually in micrometer range. Microfluidic 

nanoprecipitation is also a versatile approach to form structured nanocomposites by 

encapsulating nanoparticles.[177a] When polymer precursors experience a change in solvent, 

they can assemble into nanoparticles. The fluid mixing time in microfluidic devices can be 

faster than the nucleation time for the nanoparticle precursors. This fast mixing by 

microfluidic devices enables the formation of smaller nanoparticles with a narrower size 

distribution than the counterparts prepared by conventional methods. With the help of 

microfluidic nanoprecipitation (Figure 11c), drug-loaded PSi nanoparticles were encapsulated 

into a pH-responsive AcDX matrix with a number ratio of 1:1 (PSi@AcDX).[14b] With the 

help of microfluidic nanoprecipitation method, no free PSi particles were observed in the 

obtained nanosuspension, and the percentage of the PSi-encapsulated nanocomposites was 

more than 92%. This high PSi-encapsulation efficiency enabled by the microfluidic 

nanoprecipitation method facilitates the direct use of the obtained nanosuspension without 

sorting. 

As a result of their high loading capacity for MTX, the encapsulation of MTX-loaded PSi 

nanoparticles enhanced the drug loading degree of MTX from ~0.1% (w/w) to the same level 

(~5%) of PTX and SFN inside the PSi@AcDX.[14b] The release of all three payloads was 

controlled by the degradation of the AcDX layer, which occurred at the acidic condition (pH 

5.0) (Figure 11d). The cell uptake of triple-drug loaded nanocomposites greatly enhanced 

after the surface functionalization with CPP. Poly(L-histidine)-b-PEG (PHIS-b-PEG) micelles 

assembled onto the surface of SFN-loaded PSi (SFN-PSi) nanoparticles to form the 

nanocomposites (SFN-PSi@PHIS-b-PEG).[14a] PHIS-b-PEG micelles both temporally sealed 

the pores of PSi nanoparticles and enhanced their stability in plasma. In the acidic condition, 
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the pH-responsive PHIS-b-PEG micelles disassembled and PSi nanoparticles were uncovered 

to release SFN. 

 

4.4. Film extrusion 

Recently, PSi@AcDX nanocomposites were also engineered for cancer immunotherapy.[4c] 

Because of the efficient and fast mixing in microfluidic device, the obtained nanocomposites 

presented narrow size distributions (PDI was ca. 0.17). By film extrusion, the PSi@AcDX 

nanocomposites were encapsulated into the nanovesicles derived from CCM. The 

PSi@AcDX encapsulated CCM, PSi@AcDX@CCM, merged the best of the antigenic feature 

of tumor lysates and the adjuvant property of PSi nanoparticles. All the obtained 

nanocomposites were highly compatible with two human immortalized cell lines, KG 1 

macrophages and B cells with dendritic cells morphology (BDCM). PSi@AcDX@CCM 

greatly enhanced the secretion of interferon-γ (IFN-γ) for ~ 700% in peripheral blood 

monocytes (PBMC), without inducing the secretion of IL-4. Therefore, PSi@AcDX@CCM 

can polarize the newly primed T cells toward a Th1 cell-mediated response.[4c]  

The horseradish peroxidase (HRP) enzymes-loaded PSi (HRP-PSi) nanoparticles were 

directly encapsulated by CCM through film extrusion to form nanoreactors, HRP-PSi@CCM 

(Figure 11e–f).[176] In comparison to free enzymes, the HRP-PSi@CCM nanoreactor showed 

enhanced substrate affinities (Km, 1.90×10–6 vs. 0.14×10–6 M) and improved reaction rates 

(Vmax, 1853×10–6 vs. 659×10–6 M/min), indicating a good catalytic activity for the 

nanoreactors. Under the stimulated oxidative stress conditions, the HRP-PSi@CCM 

nanoreactor significantly reduced the intracellular ROS levels and supplemented the 

subcellular organelles functions.[176] Usually, proteins are sensitive to organic solvents and 
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heat. The film extrusion approach avoids the use of organic solvents and heating, which can 

preserve the functionality of membrane proteins at the greatest extent. 

 

 

4.5. Flow reactor 

The aerosol flow reactor is a simple one-step approach that can be utilized to encapsulate 

nanoparticles within polymer matrix, forming the nano-in-nano vectors. As shown in Figure 

11g, the nanoparticle precursors are atomized into small droplets by a Collison-type jet 

atomizer. Benefiting from the small diameter and relatively high surface area, the formed 

droplets can be dried in laminar flow reactor at a relatively low temperature, such as 80 °C. 

With the help of an aerosol flow reactor, GLP-1-loaded PSi nanoparticles together with DPP4 

inhibitor were encapsulated into a pH-responsive HPMCAS nanomatrix (Figure 11g).[28] The 

surface functionalization by chitosan enhanced the mucoadhesiveness of PSi nanoparticles, as 

well as their interaction with cells for ~50 times. The outer HPMCAS matrix successfully 

protected the encapsulated GLP-1 from degradation in harsh stomach environment. The 

obtained nanocomposites improved the intestinal permeability of GLP-1 from less than 1×10-8 

to ~6×10-8 cm s-1. This high GLP-1 permeability can be ascribed to the permeability 

enhancement effect of chitosan and the reduced degradation of GLP-1 by DPP4 inhibitor. In a 

non-obese type 2 diabetes rat model, the oral administration of GLP-1 and DPP4 inhibitor co-

loaded nanocomposites resulted in around 32% decrease in blood glucose levels and 

approximately 6-fold increase in pancreatic insulin content, as compared to the aqueous 

solution of GLP-1 and DPP4 inhibitor.[179] The obtained nanocomposites were successfully 

used for advanced oral type 2 diabetes mellitus therapy. Although the obtained droplets were 
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dried at 80 °C, this relatively low temperature may still harm the stability and activity of the 

encapsulated therapeutics, especially the proteins and peptides. 

 

Figure 11. Encapsulation of PSi particles. (a) Schematic of the droplet microfluidic approach 

to prepare the pH-responsive multidrug loaded PSi@HPMCAS microcomposites. (b) 

Dissolution of PSi@HPMCAS at different pH conditions. (c) Schematic of the process to 

synthesize multidrug loaded PSi@AcDX. (d) Degradation of PSi@AcDX at different pH-

conditions as a function of time. (e) Schematic of a biomimetic nanoreactor composed of HRP 

enzyme loaded in PSi nanoparticles and surface decorated with CCM. (f) TEM images of f1) 

PSi nanoparticles, f2) cell membrane vesicles, and f3) PSi@CCM nanoreactors. Scale bars are 
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200 nm. (g) Schematic of the flow reactor for the preparation of PSi@HPMCAS co-loaded 

with GLP-1 and DDP4 inhibitors. Figures are reproduced with permissions: (a–b) from ref. 

[175], Copyright 2014, WILEY-VCH; (c–d) from ref. [14b], Copyright 2015, Elsevier; (e–f) 

from ref. [176], Copyright 2017, WILEY-VCH; and (g) from ref.[28], Copyright 2015, Elsevier. 

 

5. PSi for cancer immunotherapy 

As discussed in the previous sections, PSi has proven to be an excellent material for the 

loading and delivery of therapeutics. Recently, the materials science field has moved towards 

the evaluation of the immunogenic properties of the materials.[180] The immunogenicity of 

silicon platforms has been investigated by Ainslie et al.:[181] this surface induced the secretion 

of proinflammatory cytokines by PBMC. Moreover, PSi micro- and nano-particles, 

characterized by different surfaces, show different immunogenic profiles on cells of the 

immune system.[31,54a,182] 

Immunotherapy is nowadays one of elective treatments for cancer.[183] Cancer immunotherapy 

aims to fight the proliferation of the tumor cells by employing elements of the immune 

system.[184] Passive immunotherapy leans on the administration of cytokines, monoclonal 

antibodies (used in targeted therapies against cells overexpressing a marker), or T-cells (tumor 

infiltrating, adoptive and chimeric antigen receptor (CAR)).[185] Monoclonal antibodies have a 

long tradition in the clinics as targeted therapies. They mainly act according to four 

mechanisms: ability to induce the formation of the complement, leading to cell lysis; 

signaling to the cells of the immune system; antibody dependent cell cytotoxicity (ADCC), 

due to the binding to the Fc receptor on immune cells (like natural killer cells); targeting of 

drug and drug-loaded nanoparticles to the cancer cells.[186]  

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



  

72 

 

In an opposite fashion, active cancer immunotherapy enrolls the patient’s own immune 

system by administration of checkpoint inhibitors (monoclonal antibodies targeted to the 

immunological synapsis or to the connections between T cells and cancer cells), or by cancer 

vaccines.[30,185] A vaccine presents disease-relevant peptides to antigen presenting cells 

(APCs), like dendritic cells (DCs), to stimulate an immune response against the diseases.[187] 

The APC will process the peptide, presenting an epitope on the major histocompatibility 

complexes I and II (MHC I/II) to prime, respectively, CD8+ or CD4+ T -cells.[184,188] 

Nanoparticles have a potential application as vaccines vehicles and adjuvants: they are in the 

same size range of virus and bacteria; they can directly delivery the antigens to the DCs 

population in the lymph nodes; moreover, they can serve as depot formulation for the antigen, 

achieving a prolonged release; their surface can be functionalized with adjuvant molecules, 

mimicking a pathogen and finally, the delivery of adjuvants through nanoparticles increases 

the cross presentation of antigens on MHC I with the priming of CD8+ T -cells, of great 

significance in cancer immunotherapy.[189] 

 

5.1. PSi particles as vaccine adjuvants 

Micro- and nano-particles own intrinsic adjuvant properties based on their physicochemical 

characteristics: size, surface charge, elasticity, shape, hydrophilicity/hydrophobicity of the 

particles, hydroxyl content of the surface, and functionalization of the surface.[180b,188]  

As for PSi microparticles, the intrinsic adjuvant effect of the particles is achieved by induction 

of an interferon I response and activation of the inflammasome used by the innate immune 

system in presence of a viral infection.[4b] Furthermore, PSi microparticles localize within the 

early endosomes and move to the endoplasmatic reticulum, avoiding the late endosomes and 

recycling endosomes, thereby delivering the antigens intracellularly, as shown in Figure 12a. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



  

73 

 

The incubation of discoidal PSi microparticles further loaded with immunogenic liposomes 

encapsulating an antigen against human epidermal growth factor receptor 2 (HER-2) resulted 

in an increased activation of DCs both in vitro and in vivo. The pulsing of DCs with particles 

loaded with a model antigen, chicken ovalbumin (OVA), promoted the maturation of the DCs 

together with a successful presentation of the antigen, inducing the proliferation of B3Z OVA 

specific T cells and the secretion of interleukin 2. As for the in vivo evaluation, the 

intravenous administration of the antigen-loaded particles partially controlled the tumor 

growth; however, a prolonged control over the development of the tumor, with an enhance 

activation of the immune system, was achieved after administration of DCs pulsed with the 

antigen-loaded particles, as presented in Figure 12b1. Furthermore, the vaccine formulation 

demonstrated also a prophylactic effect in transgenic mice models, retarding the development 

of the tumor lesions (Figure 12b2).[4b]  
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Figure 12. (a) Internalization dynamics of antigen-loaded PSi microparticles into DCs at 

different time points. The particles were loaded with FITC-labeled ovalbumin (FITC-OVA), 

while the different subcellular organelles were stained specifically: early endosome antigen 1 

(EEA1) for early endosomes, Rab7 for late endosomes, transferrin receptor (TR) for recycling 

endosomes, endoplasmic reticulum protein retention receptor 1 (KDEL) for the endoplasmic 

reticulum). Scale bar, 25 m. b1) Inhibition of the tumor growth in a TUBO murine breast 

cancer model after intravenous administration of antigen-loaded PSi microparticles 

(PSM/p66) or DCs primed by antigen loaded PSi particles (DC+PSM/p66); b2) Tumor 

nodules developed by Balb-neuT mice injected intravenously with the treatments. Modified 

and reprinted with permission from ref. [4b], Copyright 2015, Cell Press. 
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The surface of these microparticles can also be modified with adjuvants: Meraz et al.[190] 

adsorbed lipopolysaccharide (LPS) or monophosphoryl lipid A (MPLA) on PSi microparticles 

evaluating first the effect of the particles on the immune system, as shown in Figure 13, 

followed by the assessment of the efficacy of a combinatorial therapy based on adjuvant-

modified microparticles administered with DOX-loaded liposomes.[190] The microparticles 

alone (presenting a positively charged surface, APTES), despite promoting the secretion of 

the pro-inflammatory cytokine interleukin-1β (IL-1β) due to activation of the inflammasome, 

did not induce the maturation of murine bone marrow-derived dendritic cells (BMDC).[182] On 

the contrary, the administration of the LPS/MPLA-modified particles alone or in combination 

with DOX resulted in maturation of DCs, migration of DCs pulsed with the particles to the 

lymph nodes, enhanced control over the tumor development in a murine model of breast 

cancer after intravenous administration, and in a modification of the tumor microenvironment, 

with the increase in the number of CD8+ T-cells.[182,190] 

The effect of the different surface chemistry of PSi nanoparticles on the immunogenicity of 

the particles was investigated by Shahbazi et al.:[31] the incubation of human monocyte-

derived DCs with the particles, at the cytocompatible concentration of 25 µg mL-1, lead to the 

identification of two highly immunostimulant surface modifications, THCPSi and TOPSi, 

while the other nanoparticles (TCPSi, APTES functionalized THCPSi (APSTCPSi) and 

UnTHCPSi) did not induce the expression of costimulatory signals (CD80,83,86, human 

leukocyte antigen - antigen D related (HLA-DR)), as shown in Figure 13a1–2.[31] UnTHCPSi 

and APSTCPSi particles, after further modification respectively with PEI or with PMVEMA 

showed an intermediate profile of immunoactivation. Moreover, the incubation with THCPSi 

and TOPSi particles induced a Th1-biased immune response, with the secretion of 
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Interleukin-12 (IL-12) and IFN-γ, and the priming of CD8+ T-cells, particularly after 

incubation with TOPSi, as shown in Figure 13a3–4. The immunogenicity of THCPSi 

particles can be explained based on their hydrophobicity, as reported also in other studies,[191] 

as well as the lack of immunostimulation for particles rich in OH and NH groups.[192] TOPSi 

particles however present hydroxyl groups on the surface and are hydrophilic, yet they are 

still highly immunostimulant. According to Shahbazi et al.,[31,193] this effect is due to the 

immunogenicity of the ortho-silicic acid released by the fast degradation of TOPSi particles in 

physiological conditions.  
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Figure 13. (a) Percentage of human monocyte derived DCs expressing the costimulatory 

signals a1) CD80 and a2) CD86 after incubation with PSi nanoparticles with different 

surfaces at the concentration of 25 µg mL-1, a3) Proliferation of T-cells after incubation with 

the different PSi nanoparticles at the concentration of 25 µg mL-1 for 6 days; a4) Proliferation 

of the subpopulations CD4+ and CD8+ cells after incubation with the PSi nanoparticles for 6 

days. Modified and reprinted with permission from ref. [31], Copyright 2014, Elsevier, and 

from ref. [190], Copyright 2014, Public Library of Science. 

 

Recently, a combination of TOPSi particles with a biocompatible polymer with known 

adjuvant properties (AcDX) and an innovative source of antigens, membrane derived from 

cancer cells, was described by Fontana et al..[4c] PSi particles were first encapsulated within a 

polymeric matrix by nanoprecipitation in microfluidics, followed by the film extrusion 

together with the cell membrane derived from cancer cells, as shown in Figure 14. The 

incubation of the multistage system, at the concentration of 100 µg mL-1, with PBMC induced 

the maturation of antigen presenting cells (shown by the increase in the presentation of both 

CD80 and 86) and in the secretion of IFN-γ; moreover the co-culture of PBMC, previously 

activated with the systems, with cancer cells with homologous membrane resulted into the 

inhibition of the cancer cells’ proliferation.[4c] 
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Figure 14. SEM images of (a) TOPSi; (b) TOPSi@AcDX; (c) TOPSi@AcDX@CCM 

nanovaccines. Scale bars: (a) and (b) 100 nm left, 20 nm center and right; (c) 200 nm left, 50 

nm center, and 20 nm right. Modified and reproduced with permission from ref. [4c], 

Copyright 2016, WILEY-VCH. 

 

5.2. Loading of PSi with chemotherapeutics and functionalization with antibodies for 

combined chemoimmunotherapy 

PSi nanoparticles are versatile platforms that allow the simultaneous loading of a 

chemotherapeutic drug and the functionalization of the surface with monoclonal antibodies, 

useful both for the targeting of the nanoparticles to the cancer cells and to stimulate 

complement activation, ADCC and immune response against the cancer cell.[32,186b]  

PSi nanoparticles show potential applications in the delivery of monoclonal antibodies for 

immunotherapy: Gu et al.[4a] first loaded avidin in the pores of the particles, followed by 

biotinylated-anti CD40 antibodies to stimulate the activation of antigen presenting cells, as 

shown in Figure 15a. The stimulation of B cells was entirely due to the antibody delivered 
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rather than any intrinsic adjuvant effect of the particles; moreover the administration of 

antibody-loaded particles induced higher immunostimulation compared to the soluble 

antibody (Figure 15a2).[4a]  

Secret et al.[105] employed PSi nanoparticles for the delivery of camptothecin. Three different 

monoclonal antibodies, proposed for the targeting of three different tumors (neuroblastoma, 

glioblastoma, and B-cell lymphoma) were covalently bound on the surface of the 

nanoparticles. The antibodies were bound to the surface of the particles via a semicarbazide 

chemistry, to preferentially orient the antibody molecule, as shown in Figure 15b1. However, 

the authors only evaluated the targeting functionality of the antibody in vitro and did not 

investigate the possible immunological applications (Figure 15b2). Moreover, antibody-

functionalized PSi nanoparticles have been co-loaded with camptothecin and gold 

nanoclusters for targeted combined chemothermotherapy in B cells as a proof-of-concept.[194] 

UnTHCPSi particles have been loaded with the kinase inhibitor SFN, while an antibody 

against the epithelial cell adhesion molecule (CD326) was covalently attached on the surface 

by 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) / N-

hydroxysuccinimide (NHS) chemistry.[32] The loaded chemotherapeutic resulted in the 

inhibition of the proliferation of two immortalized breast cancer cell lines, while the presence 

of the monoclonal antibody induced ADCC and secretion of IL-12 by the effector immune 

cells, only in the cell line expressing the target marker on the cell membrane, as presented in 

Figure 15c1–4. 
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Figure 15. a1) Schematic of the method to load anti-CD40 antibody into PSi nanoparticles; 

a2) Enhancement in the presentation of CD86 by B cells after incubation with the antibody-

loaded particles at different concentrations for 42 h. Modified and reprinted with permission 

from ref. [4a], Copyright 2012, WILEY-VCH. b1) Schematic of the semicarbazide reaction to 

functionalize the surface of PSi nanoparticles with monoclonal antibodies; b2) Proposed 

mode of action of the formulation. Reprinted with permission from ref. [105], Copyright 2013, 

WILEY-VCH. c1) ADCC effect of the developed formulation onto two different breast 

cancer cell lines, MCF-7 and MDA-MB-231; c2) False color SEM image of the association 

between immune cell (blue) and cancer cell (red) after incubation with the system; c3) and c4) 

Production of IL-12 in MCF-7 and MDA-MB-231 after incubation with the 

chemoimmunotherapeutic platform for 24 h. Modified and reprinted with permission from ref. 

[32], Copyright 2015, Springer. 

 

6. Conclusions and outlook 

Here, we have presented a comprehensive overview of recent advances in the area of PSi for 

biomedical applications with focus both on drug delivery and cancer immunotherapy. PSi 
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with their controllable geometry, tunable nanoporous structure and versatile surface properties 

has unique advantages that may allow clinically applicable formulations for disease therapy.  

From the point view of fabrication, novel approaches have been developed to fabricate 

spherical PSi particles. Comminution of PSi films derived from “top-down” approach by 

microfluidization shows a great potential for mass production of spherical PSi particles. 

Bottom-up strategy using silicon tetrachloride for synthesizing spherical PSi particles reduces 

the mass loss of silicon and avoids the use of harsh etchants such as hydrofluoric acid. The 

combination of electrochemical etching and silicon microfabrication technique contributes to 

the precise fabrication of quasi-hemispherical/discoidal PSi particles and PSi needles. Quasi-

hemispherical/discoidal PSi particles are applied as the matrix to construct MSVs which show 

great potential to sequentially overcome the multiple biological barriers that particles 

encountering from the intravenous administration site to the disease site, while PSi needles 

can deliver therapeutics intracellularly and induce localized therapeutic effects. Meanwhile, 

new fabrication methods of PSi focusing on bottom-up approach should be further explored. 

Most of currently proposed alternative methods, such as magnesiothermic reduction, halide 

reduction and silica template reduction, generally tend to involve harsh reaction conditions 

and the newly formed PSi is usually micro-sized. An alternative method, especially using 

relatively mild reaction conditions, to produce nano-sized PSi is highly desired. 

From the point view of surface chemistry, the inherent drawbacks of freshly etched PSi can be 

solved by various primary surface modification and secondary surface modification methods, 

and the choice of surface modification method for PSi can be adjusted according to its 

specific application. PSi after surface modification is able to achieve controlled release 

behavior such as sustained release, pH triggered release, and thermal-sensitive release as well 

as photodynamic release. The conjugation of targeting moieties can alter cellular interactions, 
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and thus can be tailored for different disease. Furthermore, surface modification of PSi plays 

the most critical role in its photoluminescence. Comparing to other photoluminescence agents, 

such as QDs, photoluminescent PSi shows a much better biocompatibility due to the 

endogenous element silicon, and the photoluminescence properties can be further adjusted by 

surface modification. Different surface properties of PSi can not only affect its drug loading 

and release behavior, targeting ability and imaging ability, most importantly it may also 

impact its biofate. Given the breadth of currently arising opportunities and concerns 

associated with PSi in living systems, it is of great importance to deeply understand the 

complex processes that govern its cellular uptake and intracellular behavior, as well as in vivo 

fate, which are largely dependent on the surface properties of PSi. Especially considering the 

great importance of orthosilicic acid, which is the main degradation product of PSi, within the 

biological pathways, further investigation about nano-toxicology of PSi with different surface 

properties holds its great value. 

In addition to chemical modification, another strategy to control the release of payloads from 

PSi particles is by physical encapsulation them in polymeric and solid lipid particles. For 

polymeric and solid lipid particles, their drug loading capacity can be enhanced by 

encapsulating the PSi particles with high mass fraction of therapeutics. The PSi particles-

encapsulated composites merge the high drug loading of PSi particles and controlled drug 

release of conventional solid particles. Toward the physical approaches, the PSi-based 

composites could be fabricated by the conventional emulsion method, droplet microfluidics, 

microfluidic nanoprecipitation, film extrusion and flow reactor. In comparison to the 

conventional emulsion method, microfluidic technique provides the precisely and full control 

over the production processes to form microparticles and nanoparticles with a homogeneous 

size for controlled drug delivery. For conventional emulsion method, droplet microfluidics 
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and microfluidic nanoprecipitation, the use of organic solvents is inevitable. This might affect 

the stability and activity of the therapeutics loaded in PSi particles, especially for the sensitive 

proteins and peptides. Benefiting from their high drug loading capacity, PSi particles have 

been embedded inside the polymeric and solid lipid particles to enhance their drug loading 

capacity. However, the organic solvent used to dissolve the particle precursors and to disperse 

the drug-loaded PSi particles is possible to extract the payloads from PSi particles. The 

leakage of payloads from PSi particles during the preparation process weakens the loading 

degree enhancement ability of PSi particles for polymeric and solid lipid particles. 

Proteins and peptides are sensitive to enzymes in the body fluids, therefore, the encapsulation 

of proteins and peptides-loaded PSi particles will protect the payloads from degradation. 

However, organic solvents may inactive the proteins and peptides. The organic solvent free 

approaches, such as film extrusion and flow reactor, are favorable for encapsulating the 

proteins and peptides loaded PSi particles. Proteins and peptides can be adsorbed onto the 

surface of PSi particles through the physicochemical interactions. Due to the relatively strong 

interactions with PSi, the release of proteins and peptides is in a relatively slow manner in the 

aqueous medium. This slow release minimizes the loss of proteins and peptides during the 

preparation process. The relatively high temperature (80 °C) has been used to dry the formed 

small droplets in the flow reactor. The flow reactor method is restricted to the payloads that 

are stable to the set drying temperature. For film extrusion, PSi particles are stopped by the 

film easily, which may hamper the coating efficiency. The optimization of the suspension 

medium is critical to perform the film extrusion for PSi particles. All the physical 

encapsulation methods have their own limitations, we need to carefully select the most 

appropriate method to perform the PSi particle encapsulation. In general, the selection of 
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encapsulation method depends on the solubility and stability of payloads, the loading degree 

of payloads in PSi particles and the surface properties of PSi particles. 

The field of immunotherapy with nanoparticulate carriers is in continuous evolution. The 

applications of such systems in cancer immunotherapy have been widely investigated.[30,180] 

PSi has shown promising applications as a platform for chemoimmunotherapy and as material 

displaying intrinsic adjuvant properties useful in cancer immunotherapy.[4c,31-32,182,190] 

Innovative applications of nanoparticles are currently being researched for the treatment of 

autoimmune diseases, both as carrier for immunomodulatory drugs like rapamycin, and as 

platform for nanovaccines able to induce an immunotolerant response. [195] Based on the 

research about the material’s interactions with the immune system,[31,195e] we envisioned 

potential future applications of PSi particles also in the treatment of autoimmune diseases. 

In conclusion, the promising research results of some PSi structures encourage further 

exploration of PSi for biomedical applications, particularly in drug delivery and cancer 

immunotherapy. Nevertheless, the clinical application of PSi is still in its infancy as there 

remain significant barriers to the clinical applications of PSi. These barriers include 

understanding the performance of PSi under specific disease pathology, while taking into 

consideration the effects of the geometry, surface chemistry and modification, and physical 

encapsulation of PSi. Such mechanistic understanding is crucial for determining and 

predicting the in vivo fate of PSi-based materials when applied for both drug delivery and 

cancer immunotherapy. Although encouraging in vitro, in vivo and human safety data are 

available for some PSi structures, the biocompatibility, biodistribution and biodegradability of 

PSi-based materials in vivo still need to be further comprehensively investigated, especially 

for nano-sized composite PSi after surface modification. It is anticipated that the combination 

of multidiscipline, including materials, chemistry, engineering, pharmaceutical science, 
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biology and medicine, can make exciting breakthroughs in the near future and accelerate the 

clinical translation of PSi.  
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Porous silicon (PSi) has attracted increasing attention for biomedical applications. With 

controllable geometry, tunable nanoporous structure, large pore volume, high specific surface 

area and versatile surface chemistry, PSi exhibits superior performance as a versatile drug 

carrier. In this review, the recent progresses of PSi in drug delivery and cancer 

immunotherapy are reviewed and discussed. 
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