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Tailoring the Engineering Design Process Through

Data and Process Mining
Laura Maruster and Alex Alblas

Abstract—Engineering changes (ECs) are new product devel-
opment activities addressing external or internal challenges, such
as market demand, governmental regulations, and competitive
reasons. The corresponding EC processes, although perceived as
standard, can be very complex and inefficient. There seem to be
significant differences between what is the “officially” documented
and the executed process. To better understand this complexity, we
propose a data-driven approach, based on advanced text analytics
and process and data mining techniques. Our approach sets the first
steps toward an automatic analysis, extracting detailed events from
an unstructured event log, which is necessary for an in-depth un-
derstanding of the EC process. The results show that the predictive
accuracy associated with certain EC types is high, which assures the
method applicability. The contribution of this article is threefold:
1) a detailed model representation of the actual EC process is
developed, revealing problematic process steps (such as bottleneck
departments); 2) homogeneous, complexity-based EC types are
determined (ranging from “standard” to “complex” processes);
and 3) process characteristics serving as predictors for EC types
are identified (e.g., the sequence of initial process steps determines
a “complex” process). The proposed approach facilitates process
and product innovation, and efficient design process management
in future projects.

Index Terms—Classification model, clustering, engineering
change (EC), innovation, process mining, process model, text
analytics.

I. INTRODUCTION

N
EW product development (NPD) encompasses a variety

of activities aiming to translate an idea into a new product

launch. Different process models for organizing NPD activity,

such as the stage-gate model [1] and the engineering change

(EC) management (ECM) process model [2], improve our under-

standing of managing NPD sequence of activities. Such models,

however, mostly focus on single actions, rather than the inter-

actions between them [3]. Most process behaviors emerge from

the interaction between activities through information flows and

deliverables [3] because deliverables such as documents might

require revisions and information flows may cause iteration.
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In this article, we examine a specific NPD process model for

ECM. ECs are caused by a glitch or a mistake in a component, or

new manufacturing procedures, which might require a change

to the design of that component.

To investigate the ECM process model, we compare the stan-

dard processes reported in the literature and the actual processes

conducted at a company. Irrespective of company or product, the

EC process is mostly perceived as a standard process, involving

similar phases. However, there seem to be significant differences

between the “official” documented process and the actual exe-

cuted process [4]. In addition, changes can take much longer

than anticipated [2], thus hindering process steps. A process

analysis allows managers to disentangle the various steps and

investigate the drivers and factors that influence cycle time.

Large gaps between the standard and actual process may imply

inefficiencies. For instance, frequent back and forth iterations

between some process steps suggest congestion, while lots of

different steps in the handling of a single EC imply complexity.

Also, an EC request can range from very simple (changing a

parameter in software) to very complex (redesigning an entire

part), which will be reflected in the duration of completing an

EC. Knowledge of the different types of EC is insightful because

it provides information about the actual volumes of ECs and their

associated key performance indicators (KPIs).

In order to gain a good understanding of the EC process, and

identify or eliminate its inefficiencies, we propose a data and

process mining framework for analysis. This involves raising

the following research questions.

1) How can the standard and actual EC process model be

automatically determined?

2) What EC types can we identify, and which process char-

acteristics can we apply to predict them?

Prior research highlights the need for tailoring and scaling

process models [3]. By investigating the process level of EC

cycle time, this article aims to provide new insights. By empha-

sizing the interactions between activities, our proposal is a novel

data-driven framework of analysis for investigating EC process

models. Process mining is a current technique for automatically

extracting business workflow models from event logs [5]. An

event refers to a case, an activity, and a point in time. An

event log can be seen as a collection of cases and a case can

be seen as a trace/sequence of events [6]. Archival data are

often unstructured, making it a huge challenge to derive process

models [7]. This article pushes further the understanding about

automatically scrutinizing the interactions at process level, also

by using unstructured data that allows more in-depth analysis.
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In the context of NPD and ECM, cycle time plays a vital role for

the survival of many companies [7], [8]. A key aspect of cycle

time research is seeking antecedents and consequences. This

knowledge tells us which major project-level factors determine

the cycle time. However, limited knowledge is available on how

managers should improve cycle time at the process level [9]. One

explanation for this lack of research is the challenges involved

in analyzing the inherently sequential structure of process data.

While one event can have a short cycle time in one process stage,

the same event may have longer cycle times in a subsequent

stage. Specifically, we are interested in whether the standard

and actual processes differ a great deal, and in the potential

characteristics of the fastest process. Importantly, understanding

the link between process characteristics and process complexity

will help managers to improve their processes. As such, our

approach enables tailor-made solutions for engineering design

processes by the use process mining and data science techniques.

While most process models assume that activities are known

a priori, our approach sets the first steps toward an automatic

analysis. Our study also contributes to process mining research,

presenting a new method to extract detailed events from an

unstructured event log, which is necessary for an in-depth un-

derstanding of the EC process.

The rest of this article is organized as follows: Sections II and

III review the relevant theories on ECM and process mining

techniques. Section IV describes the proposed methodology,

while Section V reports the results of a real-life case study.

Section VI concludes this article.

II. CHALLENGES OF ECM PROCESS MODELS

Process modeling is an essential activity in business process

management, and is becoming increasingly popular for many

purposes, such as business process redesign (BPR), simulation,

total quality management (TQM), and requirement engineering

[10], [11].

An EC refers to altering a product or a process after its

release to production. ECM focuses on three goals—avoiding

or reducing ECs, effective implementation of ECs, and learning

from them [12]. The ECM process is deemed important in

overall NPD cycle time, because it can become very complex,

inefficient, and negatively impact planning, scheduling, and

project costs [4], [13]. Moreover, ECs can propagate throughout

the entire design, leading to costly rework [14]. Although the

research community agrees on the causes of change [4], there is

no consensus about how ECs can be effectively and efficiently

executed [15]–[17]. It is thus well-established that ECM is an

important process area for managing product development in

general, and cycle time in particular [9]. Prior research confirms

that the best way to improve ECM is by scrutinizing the ECM

process in detail [2], [9]. Jarratt et al. highlight that innovation

in product development leads to ECs and that ECs are a major

source for problems in product development [4]. Organizational

issues are of the primary concern in managing EC; communi-

cation about and coordination of ECs have a great influence on

processing ECs effectively and the information flows are often

based on incomplete and dynamic information [18]. It is also

found that the EC process evolves over time [19]. This highlights

the need for flexible EC processes.

The ECM literature presents various prescriptive and descrip-

tive process overviews; see Table I. Table I shows the different

formal processes reported in the literature, it highlights the

diversity and novelty in approaches and perspectives in ECM.

Furthermore, it highlights the need for approaches to address

the informal aspects of ECM by referring to some articles. Most

studies suggest that these processes have a waterfall character

moving an EC through different stages, neglecting the iterative

nature, and only emphasizing a few “stereotype” processes [20].

In [21], the design and development process (DDP) is char-

acterized by involving elements of novelty, complexity, and

iteration, with implications for process modeling. First, the pro-

cesses involve novelty, because tasks progress and decisions are

made based on incomplete information resulting in procedures

to be concretized and adjusted as work proceeds. Second, DDP

involves complexity as information flows are highly dynamic

and nested. Third, they involve iteration caused by progress

and evolving insights on the design and coordinating differences

between processes. Since ECM processes inherit the three DDP

challenges, the aim of the current study is to develop a process

modeling approach that is more sensitive to iteration, novelty,

and complexity of processes.

We derive four conclusions from Table I. First, studies ex-

amining ECM generally focus on the procedural aspects of

the process, mostly ignoring the informal iterative processes

that play an important role. While literature provides various

prescriptive examples of procedural models, limited studies

have addressed the dynamic and iterative nature of the EC

management process. Second, two literature reviews highlight

the diversity in ECM processes across sectors and contexts,

suggesting that a prescriptive “one-size-fits-all” approach might

not fit the bespoke needs in a company setting. Most studies

in the field of ECM process modeling have mainly focused

on the procedural aspects of managing ECs to convey best

practices. Third, limited studies have investigated the actual pro-

cess sequences of activities resulting in discrepancies between

the informal activity and formal procedural description of the

process [19], [22]. Finally, few studies focus on using advanced

computerized data and process mining techniques to mimic

the actual EC process. In product development, limited studies

have applied computer modeling to investigate the implications

of microlevel models of engineering activity [21]. The same

holds for ECM process modeling. This calls for ECM process

modeling approaches that are more sensitive to the specific

context, that combine analytical, computational, and procedural

aspects of process modeling on the microlevel [21].

In this article, we provide situation-specific insights based

on representing the details of a particular ECM instance.

Our work can be classified as a microlevel analytical process

model that provides formalisms to assist in the modeling of

design knowledge such as EC processes [21]. It is also suitable

for a wider range of process areas. It also can be classified

as a management science model in that it develops insights

by mathematical/computational analysis of a representative

case [21].
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TABLE I
DESCRIPTIVE LITERATURE OVERVIEW OF ECM

(1) Study, (2) research type, (3) sector, (4) type of process, (5) process steps, (6) highlight diversity and novelty in ECM processes, (7) explicitly distinguish between formal and informal

process, (8) use empirical methods to extract EC process, (9) use data mining and process mining techniques.

III. PROCESS MINING AND ANALYSIS OF PROCESSES

Process mining emerged as a new discipline linking process

science with data science, thus enabling the discovery and

automatic analysis of business processes based on event logs

[5]. According to recent survey papers [18], [23]–[26], process

mining research focuses on developing new techniques (method-

ologies, tools) and empirical results. As process mining research

rapidly grows, and there is an increasing interest also from prac-

titioners and commercial parties, review papers are published

at regular intervals. In Table II, the “research type/purpose”

(new method/tool, empirical results, review papers) is discussed

for a selection of articles. Furthermore, typical process mining

tasks are process discovery, conformance checking, process re-

engineering, and operational support [23] (see Table II, the “PM

task/perspective” column). Process discovery refers to learning

process models from event data. Conformance checking focuses

on detecting and diagnosing both differences and commonali-

ties between an event log and a process model [27]. Process

re-engineering uses both an event log and a process model as

input. Here, the goal is not to diagnose differences, but to change

the process model, or enrich an existing process model with

additional perspectives. Operational support directly influences

the process by providing warnings, predictions, and/or recom-

mendations.

Next to process task, the process perspective is considered a

relevant classification dimension; it refers to control flow, orga-

nizational, and case-based perspectives. The control flow, e.g.,

order of activities, and mining this perspective, means finding a

good characterization of all possible paths. The organizational

perspective focuses on the originator field, i.e., which performers

are involved and how they are related. The goal is to either

structure the organization by classifying people in terms of

roles and organizational units or demonstrate the relationships

between individual performers (build a social network). The case

perspective focuses on the properties of cases [23].

In Table II is shown the “sector” where process mining re-

search was executed. In a recent article [18], the authors reviewed

144 research papers where process mining is applied in various

economic sectors, such as public administration, finance, health-

care, manufacturing, and education. However, to our knowledge,

there has been no contribution of process mining to engineering

design or NPD.

An additional dimension (see Table II) that we propose is the

“data-driven method” used for research, where different data

Authorized licensed use limited to: University of Groningen. Downloaded on June 14,2021 at 10:21:07 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE II
DESCRIPTIVE LITERATURE OVERVIEW OF PROCESS MINING

mining and text analytics are used in conjunction with process

mining techniques. It is common to propose process discovery

techniques inspired by existing data mining techniques, see [28].

However, fully fledged data-driven approaches tackling EC real-

world context are not so common.

Most of the process mining methods developed so far en-

able an objective process analysis (diagnosis), which aims to

facilitate redesign and improvement. Linking to terminology

from [21], these methods can be classified as providing: 1) ana-

lytical models and 2) management science/operations research

(MS/OR) models. For instance, the research described in [9]

proposes a methodology to develop a design process model, to

be classified as an analytic model that provides situation-specific

insights into design projects.

We can conclude from this table that previous research cov-

ers the considered dimensions reasonably well, but there is

hardly any existing research that uses empirical research and

a combination of process mining and data mining techniques

(unsupervised and supervised) to obtain thorough understanding

of the underlying ECR processes.

Furthermore, this research attempts to address the three char-

acteristics of design (ECR) processes, namely, novelty, iteration,

and complexity [21]. First, it addresses the novelty challenge,

namely, it does not rely on a domain-specific underlying process

architecture, and it is not affected that the process changes

over time. Second, the result of the process mining is a pro-

cess model which can cope with the iteration challenge—the

resulting process model can be behaviorally and structurally

verified via conformance checking [27]. Third, the proposed

method aims to determine a detailed (informal) process model,

which can be adjusted to the desired level of abstraction. Finally,

our study proposes a fully fledged data-driven approach, where

existing process mining methods and tools, clustering, decision

trees, and text analytics are applied to the engineering design

domain.

IV. METHODOLOGY

We use data from a manufacturer of chip-making equipment,

consisting of a sample of 5000 ECs executed between 2002

and 2005. We present a framework for addressing the research

questions in Fig. 1.

To answer the first research question (Step 1), we develop a

novel method which combines text analytics, process mining,

and data mining techniques, to identify and analyze the ECM

process.

Two processes raise concerns: 1) the standard and 2) the

detailed EC process. To determine the standard process, we use

the structured information in the process log. This information

covers eight typical activities—registering a new EC request (1

− New, 1 – In Process), sending for sign-off (2 – Sign-Off), re-

quest to approve change (3 – For Approval), change approved (4

– Approved), change request closed (5 – Closed), change request

rejected (6 – Rejected), change request on hold (7 – On Hold),

Authorized licensed use limited to: University of Groningen. Downloaded on June 14,2021 at 10:21:07 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 1. Proposed framework.

and change request resumed (8 − Resumed). These activities

are recorded as such in the original process log. Although this

information can be useful to determine process performance,

it lacks the description of the actual tasks, and the types of

employees and departments involved in the change project. More

importantly, this information provides only limited insights into

the interactions that take place.

Thus, to gain a better understanding of the process, we

investigate additional textual information. The process steps

are determined by applying text analytics to unstructured data

(texts), and subsequently, we identify the detailed EC process

using the process mining technique. The process model results

are then validated by discussing them with the process owner.

For the second research question (Step 2 in Fig. 1), we aim

to operationalize and characterize the EC process complexity

and furthermore develop a classification model. We identify

the a priori known factors (e.g., reason for change, the actors

initiating the EC), and the a posteriori computed factors (e.g.,

the frequency of events involved in an EC) which can be used

to predict the EC complexity level.

To operationalize process complexity, we take into account

that this concept can be approached from many angles. For

instance, in project management, process complexity emerges

due to the fact that “many different actions and states of the world

parameters interact, so the effect of actions is difficult to assess”

[29]. In NPD contexts, several sources of complexity are identi-

fied, including technological, market, development, marketing,

organizational, and interorganizational sources [30]. In business

contexts, the complexity of process models has been formalized

with a variety of metrics; see review paper [31]. In [32], the con-

trol flow is considered using business process model and notation

(BPMN) process models, where complexity measures refer to

the total numbers of separate activities, events (including repeat

activities), gateways, data objects, loops and self-loops, etc.

Here, we approach process complexity from a control-flow per-

spective, by considering the frequency of events and lead time.

Employing these two complexity measures, the self-

organizing maps (SOMs) unsupervised learning approach [33]

is used to determine homogeneous clusters to define EC types.

Finally, classification models are created that, based on a priori

characteristics and steps already followed, predict future events

and the approximate duration of EC processes. For developing

the classification models, the decision-tree algorithm J48 (an

implementation of the well-known decision-tree algorithm C4.5

[34]), and the rule-based algorithm JRip (implementation of the

RIPPER algorithm [35]) are used.

The proposed data-driven methodology is novel as includes

a broad set of goals, approached with techniques to detect

EC process steps, identify ECM process, understand EC types,

and predict complexity, all relevant to better understanding EC

processes.

V. RESULTS

A. Step 1 Results: Determining the “Standard” and

“Detailed” EC Process

Step 1 retrieves the structured information, formatting it as

input event log for the process mining tool—Disco [36]. The

resulting process model, based on the standard EC event log,

consists of eight distinct activities (and 23 454 events); see

Fig. 2. The most frequent patterns (dark colored rectangles and

thick lines) and also potential deviations are shown on the left

side of Fig. 2. The standard, or typical path, is the sequence

“New EC” -> “Sign-Off” -> “For Approval” -> “Approved”

-> “Closed.” You choose the level of detail in the graph by

setting the percentage of activities and paths. The mean (median)

duration of an activity, or of the transition between two activities,

is shown on the right side of Fig. 2.

This is comparable to a “typical” EC process, reported

in the literature [4], [22], which follows three main phases:

“Before Approval,” “During Approval,” and “After Approval.”

These phases seem to correspond to the process phases <“New

EC,” “Sign-Off”>, <“For Approval”>, and <“Approved,”

“Closed”>. Overall, 4288 ECs have been accepted and 667

rejected.

We observe that most rejected ECs have a long average

duration (cycle time), namely, 26 weeks directly after the process

starts. On the other hand, the duration of rejected ECs via the

sign-off activity is only approximately 17 weeks (38.2 days +

80.6 days=118.8 days). The approved ECs following the typical

path have a substantially shorter cycle time (38.2 days + 11.1
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Fig. 2. “Standard” EC process (left—absolute frequency; right—mean duration); all activities and 50% of paths selected.

days+ 26.9 hours+ 71.1 hours= 53.38 days) than most rejected

ECs (26 weeks). An interesting question is then what determines

this large cycle time difference between accepted and rejected

ECs.

It is worth taking a closer look at this process in order to

identify unexpected results. After “Sign-Off,” a new EC is

usually sent “For Approval,” then it can be “Rejected” or put

“On Hold.” Also, after a new EC arrives, it can be put “On

Hold” (37 cases) or “Rejected” (602 cases).

We identify exceptional paths usually associated with long

lead times; 348 EC cases are “Resumed” after the “On Hold”

activity, which raises further questions about the ECs following

this path. Apparently the “On Hold” activity seems to delay the

resolution of 472 ECs (out of ∼5000) by almost 2 weeks on av-

erage (and if we consider the “Resume” activity, by additionally

11.6 + 12.7 days, approximately 24 days). This should be an

issue of concern. If we bear in mind the 37 cases put “On Hold”

for almost 2 months (57.6 days), it is definitively important to

better understand the process.

Although the standard process does not seem very complex,

it too raises concerns. It only allows a shallow analysis of the

entire process by computing data such as frequency of activities

and cycle time statistics (mean, median, total) for the overall

process or each separate activity.

Thus, a more detailed approach is needed, by considering

the unstructured log information. This information is a mix of

data on the executed activities, such as date, executor, reason for

change, change description, transfer to another department, as

shown in Table III.

To interpret this unstructured material, the text is parsed (using

an R script) and the information necessary for process mining

is extracted and copied to a new, more detailed event log (in

Table III, the relevant information for process mining is marked

bold). The “######” separator is considered as delimiting the

executed activity.

The detailed event log includes information about process

instance ID, date and time, the executed activity/interaction label

(or the department where the EC is sent—for example, type of

EC request “ECR Status: 1 – New”), executor name (“Johnny”),

EC status (Accepted/Closed or Rejected), but also the reason for

the EC request (“reason for change”, e.g., New Part, Functional-

ity, Reliability, etc.), and the department (“source”) that issued

the EC (for example “development”). Moreover, information

about the “product type” (such as “A”) and “subsystem” (“system

electrical layout and environmental electronics”) is available.

An example of an EC process instance in the detailed log

is presented in Table IV. The detailed event log is cleaned

by filtering irrelevant and noisy activity labels; ultimately, 89

distinct activities and 99 611 events remain. Please note that an

activity can happen multiple times, thus it will result in different

events. For instance, the activity “ECR summary” determines

two events in the log presented in Table IV.

In Fig. 3, the detailed EC process is obtained by applying the

process mining tool to the detailed event log. In order to get

a readable graph, only 30% of the most frequent activities are

represented in the process map.

The standard process steps can be mapped to the correspond-

ing steps in the detailed process: “1 - New, 1 – In Process”
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TABLE III
EXCERPT OF ONE EC CASE WITH SELECTIONS OF ORIGINAL UNSTRUCTURED TEXT

TABLE IV
EXAMPLE OF ONE EC CASE

corresponds to “ECR Status 1 – In Process,” “2 – For Sign-off”

to “ECR Status 2 – For Sign,” “3 – For Approval” to “ECR

Status 3 – For approval,” “4 – Approved” to “ECR Status 4 –

Approved,” “5 – Closed” to END (“END” represents an artificial

final event, which does not exist in the real event log).

The detailed process model (see Fig. 3) provides new insights.

Namely, we can show that after a new EC enters the system, it

gets the status “In Process,” and a description “ECR Summary.”

Further, it is sent either to the production engineer “PE” (948

times), the electrical engineering department “EE” (1407 times),

a project leader “PL” (1667 times), or to departments “Other1”

(1073 times), “Other2” (1468 times), or explicitly via email

“Other e-mail (1384 times).”

Note that activities “On Hold” and “Resume,” belonging

to the standard process, disappeared, and were replaced by

more meaningful process steps (e.g., “In Process,” “Screening,”

“Screened”).

Analyzing the execution time of the “detailed” EC process,

we see that in the initial phase (between “ECR Summary” and

“PIM Status: Draft”), some departments need more time to

analyze ECs than others, namely, the NPD project leader (“PL”)

scores the highest, with an average of 18.4 days (the absolute

frequency of EC cases is also the highest—1667 cases). The

next phase “Sign-Off” and “Implementation Plan” activities

executed by different departments take much less time (in hours)

than the activities before “PIM Status: Draft.” Finally, the last

phase after sending “For Approval” is streamlined. However,

it is worth noting that after an EC is approved, it takes more

than one week to finalize “PIM Status: Dispatched.” The overall

statistics in Table V show that the mean and median case duration

(cycle time) of the standard and detailed EC processes differs

significantly. This is because the detailed view contains more

precise information about the final process steps. Based on

median and mean values, it is apparent that projects take on

average longer than one month to complete.

B. Step 2 Results: EC Types and Implications for EC Processes

Step 2 of the proposed framework (see Fig. 1) identifies

the types of EC. An EC request can range from very simple

(e.g., changing a parameter in software) to very complex (e.g.,

redesigning a complete part), which will be reflected in the time

it takes to complete an EC. Since the data do not reveal the extent

or complexity of the EC, we aim to determine different EC types

from a complexity (as control flow) perspective, and investigate

in which way EC types impact process duration.
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Fig. 3. “Detailed” EC process (mean duration)—only 30% of activities.

TABLE V
BASIC STATISTICS FOR THE STANDARD AND DETAILED EC PROCESS

(INCLUDING ALL POSSIBLE PATHS)

C. Step 2a. Complexity Measures: Cycle Time, Frequency of

Events, and Variants

Process duration is usually measured in terms of process cycle

time (lead time or throughput time). Cycle time is related to the

frequency of events in a process instance, as the latter determines

the lead time. A large number of process steps may determine

a short lead time, but a small number of process steps can also

determine a long lead time.

Besides the numbers of events and lead time, process patterns

or variants can reveal another dimension of complexity. A

process variant is a unique path from the beginning to the very

end of the process [36]. Different variants can exist in business

processes. For instance, it could be useful to retrieve process

variants for identifying preferred work practices [37], [38].

Here, we use the number of different process variants as

an additional measure of process complexity, along with the

frequency of events and lead time. Identifying process variants

is a useful way to distinguish typical/nontypical or exceptional

paths.

We identify 34 path variants for the standard event log.

The most occurring variant—“Variant 1”—consists of the most

typical process sequence, and includes five events: “New EC,”

“Sign-Off,” “For Approval,” “Approved,” and “Closed,” ac-

counting for 72.51% of all variants (3625 cases). The next

“Variant 2” includes two events “New EC” and “Rejected,”

accounting for 12.02% (601 cases). These two variants account

for almost 85% of all variants, which is not so surprising; the

first variant refers to the most typical path of “accepted” ECs,

and the second refers to “rejected” ECs.

“Variant 3” involves seven events and includes “On Hold” and

“Resumed” activities, covering 5.15% (258 cases). We provide

details of the six variants that cover more than 50 cases (chosen

as threshold value) in Table VI.

Determining the patterns based on the detailed event log yields

4593 variants. Unsurprisingly, this number is much larger than

the standard process with only 34 variants. This detailed process

view provides more insights into the process complexity. The

number of variants for standard and detailed process views will

be used to determine and characterize EC types.
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TABLE VI
DETAILS OF THE SIX VARIANTS (EACH COVERING > 50 CASES): THE STANDARD PROCESS VIEW

TABLE VII
CHARACTERIZATION OF CLUSTERS DETERMINED WITH THE SOM CLUSTERING METHOD

aCentral value.
bMinimum and maximum.
cMean.
dStandard deviation.

D. Step 2b. Determining EC Clusters With SOMs Method

For determining EC request types, we aim to develop homoge-

neous and clear-cut clusters. We consider homogeneity from the

process complexity perspective and the clustering variables are:

1) lead time and 2) frequency of events, for the standard (S) and

detailed (D) process view, respectively. We include both standard

and detailed process views because two process instances may

have similar steps in the standard process view, yet be different

when taking into account the detailed process view.

We do not consider the process variants as input for clus-

tering because this complexity measure can be used later for

classification purposes. Variants can be considered a priori char-

acteristics of the process. For example, a still unfinished process

including three steps “New EC,” “Sign-Off,” “For Approval”

can be assigned to variants V1 or V5, but not to V2, V3, V4,

or V6. Knowing a priori which steps have been taken, even

though the process is not yet finished, may help to predict

which process steps will follow, and thus, to which variant

a process instance likely belongs. The complexity measures

“frequency of events” and “lead time” can be seen more as a

posteriori process characteristics (variables only known when

the process instance has finished), and are therefore used for

clustering.

For clustering, we apply the SOMs unsupervised learning

approach. SOM is an effective method for converting complex,

nonlinear statistical relationships between high-dimensional

data into simple geometric relationships on a low-dimensional

display. These two aspects, visualization and abstraction, can

be utilized in various ways for complex tasks such as process

analysis, machine perception, control, and communication [33].

For this work, we use the Weka implementation available in

Knime [39]. Unlike other unsupervised clustering methods such

as k-means, SOM is useful as it is not necessary to specify a

priori the number of clusters.

Based on the analysis of EC types and implications for EC

processes (Step 2), we come to the following conclusions.

1) The method of analyzing process types enables a defini-

tion of clusters. We obtain four clusters corresponding

to four EC types, including 9%, 30%, 44%, and 18%

of the EC. This clustering model typically has relatively

homogeneous clusters regarding the frequency of events

(for both standard and detailed views), and is relatively

heterogeneous regarding duration (also standard and de-

tailed views). Based on the characterization in Table VII,

we label the four clusters; see column “characterization

EC type.”
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2) The clusters enable an analysis of performance differ-

ences. It seems that ECs involving many events do not

necessarily imply long duration. We also observe that most

ECs belong to Cluster-2 (44% of cases), which can be la-

beled the “standard process” cluster. This cluster includes

ECs with 5–18 events on average (for standard and detailed

views, respectively). The mean duration is 38 and 56 days

(for standard and detailed views, respectively). Thus, a

standard process will most likely follow five events, and

take between five and eight weeks. This large variation is

not surprising, given that this cluster can include small but

also large EC projects.

The cluster with the smallest number of ECs is Cluster-0

(9% of cases), labeled as “complex process,” which in-

cludes ECs with 7 and 27 events on average (for standard

and detailed views, respectively). A complex process is

likely to include on average 7 (standard view) and 27

events (detailed view). The mean duration is around 13–14

weeks (94 and 97 days, for standard and detailed views).

It is also remarkable that the duration is comparable in the

two views (94 and 97 weeks), despite the very different

average amount of events (7 and 27).

Cluster-1 refers to the “moderately complex process,”

which is almost one-third of the cases (30%). A process in

this cluster will most likely involve 5 and 26 events, and

takes on average between 77 and 105 days, in the standard

and detailed view, respectively. This cluster seems to

comprise cases which follow the five typical steps, but

on closer inspection, actually involve more events. The

events visible in the detailed view explain why the lead

time is so long, namely, 105 days on average.

Cluster-3 “long, but simple process,” refers to the remain-

ing 18% of cases, involving the fewest events (two and nine

for standard and detailed view, respectively). This cluster

groups the cases with the longest lead time (138–150

days, corresponding to 20–21 weeks). Since rejected cases

usually have a long lead time, a hypothesis is that such

cases will mainly be found in this cluster. Step 3 involves

a separate analysis of “Rejected” ECs.

3) The method of analysis enables prediction of future per-

formance. It would be useful to use the four clusters

developed so far for prediction purposes. Thus, in the

next section, we investigate which a priori characteristics

(known before the actual EC process has finished), and

others, such as process variants, can be used as predictors

for developing classification models to classify EC types.

In other words, knowing that an EC’s “reason for change”

is a “New Part,” means it belongs to the “subsystem”

“mechanical layout”; and as two events have occurred so

far in the process, namely, “New EC” and “Rejected,” in

which cluster (of the four possible) is it likely to belong?

E. Step 3. Develop Predictive Classification Models

Classification models (also called classifiers) are based on

algorithms which enable the mapping of input data to a category.

Classifiers are represented as rules or trees, which can be used

for decision-making and data compression. At the previous

Step 2b, we developed four categories of EC. For EC data, we

identify four a priori known EC characteristics which can be

used as predictive features (nodes), namely, “reason for change,”

“source,” “product type,” and “subsystem.” “Reason for change”

refers to the issue which determined the EC request, and can be

due to a “New Part,” or a repeated “Old” EC. “Source” refers

to the department that issued the EC. The “product type” refers

to the product family (“NA” or “MA”), and “subsystem” to the

category in which the product belongs (“electrical integration,”

“mechanical layout,” “computer systems,” or approximately 30

others). Also, the variant type is used as the fifth predictive

feature, based on the standard view. For the standard view,

significantly less variants were determined than for the detailed

view (34 and 4593, respectively). From the 34 variants in the

standard view, the six variants covering more than 50 cases

are used as categories of the variant type feature (see Table VI).

The class or predicted value (the “leaves” in the decision tree)

is the four clusters obtained previously.

F. Development of Classification Models

To develop classification models, again we use Knime soft-

ware. As there are restrictions with numerical/nominal values,

not all Knime algorithms that develop classifiers can be applied.

Since we aim to use categorical variables as predictors, we need

to apply Knime algorithms that can handle nominal values.

Since we require efficient algorithms which produce readable

trees or rules for further decision-making, we find suitable

candidates in the decision-tree algorithm J48 (an implementation

of the well-known decision-tree algorithm C4.5 [34]), and the

rule-based algorithm JRip (implementation of the RIPPER al-

gorithm [35]). Both are optimizations of their original algorithm

variant.

The first class of experiments creates a decision tree J48 model

and a rule-based JRip model on 70% of the total dataset (3494

items), forming the training dataset. As usual, the training data

are used to develop the classifier and the test data (the remaining

30%) to assess the classifier’s performance.

The decision-tree algorithm results in a big tree (165

branches), which is hard to interpret. The rule-based algorithm

JRip produces a more compact model with 19 rules, making it

easier to interpret, and so we focus on this model. Table VIII

shows the best rules of the JRip classifier for each cluster.

The classification model based on the JRip algorithm pro-

duces some interesting rules. For Cluster-0, the best rule involves

the variable Variant 3, which applies to this cluster in 187

cases, called positive instances (there is one case where the rule

fails to classify correctly, called a negative instance). Variant

3 comprises seven events (“New EC,” “Sign-Off,” “On Hold,”

“Resumed,” “For Approval,” “Approved,” “Closed”). This rule

seems to suitably characterize this cluster, as it covers more

than a quarter of the entire dataset (187 positives and only one

negative out of 427 items). The ECs of type “Variant 3” seem to

have a complex process path (Cluster-0). When discussing the
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TABLE VIII
SELECTION OF JRIP RULES FOR THE FOUR CATEGORIES OF EC TYPES

characterization of Cluster-0, we already see that on average,

seven events (a minimum of six and maximum of seven) were

involved (standard view) and 18 events (a minimum of eight and

maximum of 40) in detailed view.

ECs in Cluster-1 are relatively well-predicted by the a priori

variable “subsystem.” Remarkably, the rule for this cluster only

refers to the variable “subsystem” and does not include any

variant type. Apparently, the “Electrical-Integration” ECs have

a complex, but relatively standard process (409 positive versus

162 negative instances). The same holds for “Component A-

Handling” ECs (69 positive versus 24 negative) and “Handling-

Transport” (71 positive versus 27 negative). For Cluster-3, three

rules which cover 619 items (out of 874) involve three variants:

Variant 2 with two events “New EC” and “Rejected,” Variant

4 with three events “New EC,” “For Approval,” “Closed,” and

Variant 6 with three events “New EC,” “Sign-Off,” “Rejected.”

We note that for this Cluster-3, two rules involve variants which

include “Rejected” ECs. The ECs verifying the three rules

associated with Cluster-3 are likely to have a long, but simple

process. Also, these rules do not have negative items (i.e., zero

failed classifications). Cluster-2 is the majority class referring

to standard EC processes, matching many positive items (2005),

but also with a high number of negative failures (689).

G. Quality of the JRip Classification Model

It is important to not only examine the number of rules

and coverage ratio of positive and negative cases, but also the

performance of the JRip rule-based classification model.

This can be assessed by evaluating the performance of the

classification model on the remaining 30% of data (1498 −

testing dataset), and by carrying out a tenfold cross validation.

K-fold cross validation is a model validation technique for as-

sessing how the results of applying a classifier will generalize for

an independent dataset [40]. The usual performance measures

are considered, namely, accuracy, error, precision, recall, and

F-measure. Recall is the proportion of real positive cases that are

correctly predicted positive, and precision denotes the propor-

tion of predicted positive cases that are correctly real positives

[41]. The F-measure is a combination of precision and recall, as

it is computed as the weighted harmonic mean of precision and

recall. For the testing data, 27.303% are incorrectly classified

(1089 correctly and 409 incorrectly), which means an accuracy

of 72.697%.

For the tenfold cross validation, the aggregated accuracy is

73.5%. Table IX presents the confusion matrix for the aggregated

tenfold validation experiments, and the precision, recall, and

F-measures.

The aggregated error rate of the tenfold cross validation

slightly exceeds 25%. We can interpret this as modest accuracy

performance. If we examine the performance for each clus-

ter, we see that the precision is maximum for Cluster-3 (1)

and very high for Cluster-0 (0.993). Recall is also very high

for Cluster-3 (0.995) and Cluster-0 (0.972), and moderate for

Cluster-2 (0.879). These results yield a composite F-measure of

0.988, 0.746, 0.4, and 0.982 for Cluster-3, Cluster-2, Cluster-1,

and Cluster-0, respectively. Based on these results, we can be

confident about the accuracy of the prediction rules for Cluster-0

and Cluster-3. Given the model’s overall modest accuracy of

almost 75%, we conclude that it is useful for further predictions.

Based on the predictive classification models (Step 2), sce-

narios can be derived about an EC’s future behavior. In other

words, for a given EC it is possible to predict future events

and approximate duration based on some a priori characteristics

or steps already followed in the process. For example, if three

activities have been executed for an EC, namely, “New EC,”

“Sign-Off,” and “On hold,” that EC will probably be Variant 3.

Consequently, four activities are likely to follow (“Resumed,”

“For Approval,” “Approved,” “Closed”), making this a complex

process, belonging to Cluster-0. As previously described, in Step

2b, we characterize the four clusters regarding average lead time.

The average resolution time in Cluster-0 is 94–97 days (∼13

weeks).

An electrical integration EC will likely end up in Cluster-1,

and be a complex process with five standard steps (or 26 detailed

ones), and a large spread in terms of events (standard 77 to 105

detailed days).

An EC in Cluster-3 is not so useful for predicting the next steps

in the process, but can provide insights into ECs of Variants 2, 4,

and 6. Variant 2 and Variant 6 refer to rejected ECs (involving 2

and 3 events, respectively), and Variant 4 refers to accepted ECs

with three events (“New EC,” “For Approval,” “Closed”). These

ECs typically have few events (between two standard and nine

detailed events), but very long lead times (138–150 days, that is

20–21 weeks). It is especially striking that (423 + 40 = ) 463

out of ∼690 total rejected ECs fail here. It would be interesting

to investigate in depth the rejected ECs and find out why they

take so long.

VI. DISCUSSION AND IMPLICATIONS

Our study proposes a new framework of analysis for investi-

gating NPD processes. While prior research provides valuable

knowledge on the main stages of the EC process, this article

contributes to understanding the details of this process. More-

over, a priori characteristics, or initial process steps enable

predictions about the next process steps, process duration, etc.
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TABLE IX
CONFUSION MATRIX AND PERFORMANCE MEASURES FOR THE CLASSIFICATION MODEL, TENFOLD CROSS VALIDATION

Our data-driven approach considers real-world data of a mixed

structure (date/time relating to process steps) and unstructured

(free text description of EC provided by engineers).

Standard and actual EC processes. The answer to our first

research question, concerning automatically determining the

EC process by applying the process mining technique, reveals

various aspects.

First, we confirm that a “typical” or standard path exists,

namely, “New EC” -> “Sign-Off” -> “For Approval” -> “Ap-

proved” -> “Closed,” which takes on average 54 days. Excep-

tional paths also seem to exist, and if these are followed, they

substantially increase the lead time. Moreover, the standard pro-

cess view shows activities with an unclear meaning (“Resume,”

“On Hold”).

Second, the standard process reveals problematic aspects,

such as back and forth iterations, which can indicate congestion.

Repetitive behavior may also indicate rework, which usually

represents undesirable behavior in the context of the Lean Six

Sigma manufacturing paradigm.

Third, the detailed process view reveals interesting infor-

mation about the sequence of the process steps. For instance,

we would expect to systematically see “Implementation Plan”

followed by “Sign-Off” activity, and made available to the rele-

vant departments, namely, PL (NPD project leader), NPL (new

product logistics), PE (product engineering), EE (electrical engi-

neering), and GL (NPD group leader). However, this order is not

what we would expect, and its connection with the department is

mixed (first, “Sign-Off PE” followed by “Implementation Plan

PL”).

Fourth, we note the discrepancy that sometimes occurs be-

tween the lead time in the standard view and detailed view. We

observe that after an EC is approved, it takes more than one week

to dispatch that EC, which is questionable. In the standard view,

apparently after approval (“Approved” in Fig. 1), it takes only

71 h (three days) to close an EC. One obvious explanation is that

only the most important activities are recorded in the standard

view. Since the detailed view is more complete, the lead time

is also longer. This illustrates that comparing the two views can

provide a better understanding of the actual EC process.

Last, but not least, the detailed process view pinpoints the

problematic steps in the process, such as bottleneck departments,

whose processing time is longer than expected. For instance, the

detailed process view in Fig. 3 shows that the PL department

gets many ECs (1667) and takes the greatest associated time to

receive but also to resolve a change (mean duration: 18.4 and

8.5 days). The PL department’s load could therefore possibly be

reconsidered.

Definition of EC types. Since ECs obviously differ in terms

of complexity, we use the frequency of events and EC duration

as indicators of complexity. The answer to our second research

question focuses on grouping ECs in homogeneous clusters from

a complexity perspective. Using the Knime implementation

of the SOMs unsupervised clustering method, we obtain four

clear-cut clusters corresponding to four EC types. Each cluster

contains EC’s with a certain frequency of events and of certain

duration (with corresponding measures for means, minimum,

maximum). Two types can be seen as opposite, the “standard

process” (Cluster-2, 44% instances) and “complex process”

(Cluster-0, 9% instances), and two types are a combination of the

previous two, namely, “moderately complex process” (Cluster-

1, 30% instances) and “long, but simple process” (Cluster-3,

18% instances). A general conclusion is that the average lead

time within every cluster is quite long, even for a “standard

process” (longer than one month). For the “complex process”

cluster, the average lead time is more than 94 days.

Classification model for predicting EC type. Furthermore, we

investigate which a priori characteristics and others, such as

process variants (frequent patterns), can be used as predictors

for developing classification models to classify EC types. In

other words, we want to develop models that, based on a priori

characteristics and steps already followed, predict future events

and the approximate duration of EC processes.

We experiment with two types of classifiers—decision trees

and classification rules (the Knime implementations of J48 and

JRip algorithms). Because the decision-tree model results in a

very large and hard-to-read tree, we prefer to use the rule-based

model provided by the JRip algorithm. The overall classifica-

tion error of this model slightly exceeds 25%, which can be

interpreted as modest accuracy performance. However, if we

inspect the performance measures separately for each cluster,

some clusters score higher than others. Namely, the F-measure

associated with rules for Cluster-0 is 98.2% and for Cluster-3 is

99.8%, which implies a very high accuracy.

Zooming into the obtained rules, if for example, three ac-

tivities have been executed, namely, “New EC,” “Sign-Off,”

and “On Hold,” the considered EC is probably Variant 3. This

implies that four activities are likely to follow (“Resumed,”

“For Approval,” “Approved,” “Closed”), making this a complex

process, belonging to Cluster-0. If the process steps resemble

Variant 2, Variant 4, and Variant 6 patterns, the EC can belong to

Cluster-3. Variant 2 and Variant 6 refer to rejected ECs (involving

two and three events, respectively), and Variant 4 to accepted

ECs with three events (“New EC,” “For Approval,” “Closed”).

An EC belonging to Cluster-3 is likely to end up with few events
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(between two standard and nine detailed events), but a long lead

time (from 138 to 150 days, that is 20–21 weeks). Concerning

ECs in Cluster-2 (“standard process”), since Cluster-2 is the

majority class, there are no rules associated with it. In other

words, if an EC cannot be assigned to Cluster-0, Cluster-1, or

Cluster-3, by default it can be associated with Cluster-2, and the

characteristics associated with this cluster apply.

Furthermore, predictions can be made for ECs exhibiting

certain a priori characteristics. For instance, an electrical in-

tegration EC will likely end up in Cluster-1 (complex, relatively

standard process), be a complex process with five steps (based

on the standard process view) or 26 (considering the detailed

view), and have a large spread in terms of events (77 days based

on standard view, and 105 days based on detailed view).

A. Research Implications

New perspective on analyzing the impact of ECs on manu-

facturing and service processes. While most research analyzes

the effects of ECs at a design and design process level, more

studies are required to investigate the impact of ECs at the

manufacturing and service level [12]. Moreover, in our case

study setting, we can examine not only the initiation and as-

sessment phases of ECs, but also their implementation in a

development and production setting. Implementation can be

improved by analyzing the process properties of ECs, and their

impact on the production and testing process, allowing for

mitigation and process improvement actions. Being able to mine

and analyze the EC process from initiation to final implementa-

tion provides insights about the effects of ECs on product and

manufacturing process quality. While most impact assessments

are done a priori, our methods allow for post hoc analysis of

impacts.

New method to study design processes. The growing amount

of data thanks to robotics and sensor technology offers great

opportunities in the area of product and process optimization.

Production processes are becoming less linear. The growth in

data can be used for learning and process improvement. This

requires smart methods for knowledge transfer from production

and service to development. EC process mining and incident

data can yield valuable knowledge. For example, who should be

involved in what kind of ECs? How can development learn from

this? In addition, we must carefully consider the link between

the product and process architecture. Which incident should be

assigned to which module? Analyzing EC, incident, and test data

in a smart way can improve product and process design.

We present a new method to extract detailed process events

from an unstructured event log, which enables the application

of a process mining tool. To our knowledge, this is the first

attempt to apply process mining in the context of NPD processes.

The data-driven approach demonstrates the benefits of corrobo-

rating different standard data mining algorithms (unsupervised

and supervised) and the process mining technique, on a large

corporate dataset. The success of a data-driven approach does

not lie so much in the choice of algorithms, but in identifying

the nature of the problem and the appropriate solution type.

That is, corporate data include sequential data which can be

used to uncover patterns that can be interpreted by decision

makers through visualizing and representing process models,

and data that can be operationalized by performance aspects

such as complexity, enabling the grouping and classification of

similar process instances. Despite the variety of new tools and

algorithms, our claim is that standard algorithms as those used in

this article can produce insightful results in fields such as ECM.

In high-tech settings ECs can be caused by evolving insights

on product and process technology. A glitch or a mistake in

a component, or new manufacturing procedures, might require

a change in the design of that component (i.e., EC). Conse-

quently, ECs are variate, complex, uncertain, requiring bespoke

processes, and thus, customization. Our method can handle these

challenges and also supports process customization. As such,

managers can use the method to identify a standard process with

some common steps, and derivative processes that inherit the

common parts, but also have specific steps.

Enabling people and process-oriented analysis to facilitate

the avoidance of ECs. Engineers are better able to analyze

the sequence of process steps and the various people involved

in each process step. This enables the development of much

needed people-oriented measures and the analysis of organiza-

tional issues related to ECM [12]. Examples are the analysis of

congestion points, communication frequency, and centrality of

individuals in solving issues. Our method provides a framework

of analysis for these kinds of measures.

B. Implications for Management

The proposed method can help managers reconsider prob-

lematic process aspects and achieve improvements. The results

of process mining can explain process optimization priorities,

namely, ECs following a certain path that seems to be associated

with long lead times can be thoroughly investigated. Grouping

ECs in four clusters is insightful because it provides information

about the actual volumes of ECs, their associated KPIs, and can

shape a company’s strategy. For instance, if a company aims

to focus on operational excellence and customer satisfaction,

it can make informed decisions on what type of EC processes

to enhance. For operational excellence, it would be insightful

to have a measure that assesses the performance for different

types of EC. It would be interesting, for example, to focus on

Cluster-3 (“long but simple process”) projects and attempt to

decrease the lead time. Since for the central value (median) for

lead time is close or above two months for all four clusters, a

shorter lead time is, of course, essential for customer satisfaction.

ECs emerge both in a product development and manufacturing

context. In manufacturing, the handling of ECs is particularly

complex and challenging. ECs need to be released at the ap-

propriate timing, they need to be clustered and batched where

possible, they need to be planned in production and assembly

in the appropriate routing slot, they include upgrades requiring

new test procedures, and they even require altering warehouse

locations. Especially in the area of computerized techniques, the

proposed approach enables knowledge elaboration and process
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innovation, facilitating the optimization of EC implementation

processes and operators’ training.

C. Limitations and Future Research

Our research was executed in the context of one company.

Future research is required to replicate our results and validate

them in other contexts. Also, unstructured data closer to natural

language can lead to a more accurate classification model, and

better, more useful rules. Further research will examine variables

such as the various departments involved in the EC process.

What is more, the proposed approach can be extended to other

types of processes, not only NPD projects.

Although the focus of this article mainly was on the EC

process management in the front-end and midend of the EC

process, future research could address in handling ECs dur-

ing the back-end manufacturing implementation process. Some

challenging issues in the computerized EC management area

include automatic detection of loops or iterations in the man-

ufacturing process, impact propagation and implications for

testing, operational decision support for clustering and release

management, modeling of process knowledge required for EC

implementation, process simulation, and so on. Another highly

potential area for further research is digital twins. A digital twin

is basically a digital replica of an actual product. In the same

vein one could create a digital twin for a process, where the

digital version is a replica of the actual process and registers

changes in the process over its lifecycle. Our method provides

opportunities for improvement in the organization of ECs by

allowing us to compare the documented EC process and the

actual process. As such, the documented process can act as

a baseline, i.e., digital twin, for organizational improvement.

The proposed method enables us to record the dynamics and

changes over the process lifecycle, and thus, the development

of digital simulation models based on the digital twin to test for

potential updates and improvements. It would be interesting to

examine data and process mining techniques in relation to the

development and maintenance of digital twins.
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